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1. Introduction. Let {£„(#)} be a sequence of random variables on a prob-

ability space (X, S, m), i.e., S is a <r-algebra of subsets of the basic space X,

and m is a measure on S, m(X) = l. Form the new random variables

Sn(x) — u(Sn)
(1-1) ,*       > ff-1,2,3,.--,

where Sn(x) = yiil, £,-(x) and where for any random variable ^(x) we define

n(£)=Jl«tdF(t) and <r(£) = [Jr^-M©)2^)]1'2, the mean and standard

deviation respectively of £(x) with respect to its distribution function F(t).

The Central Limit Problem of mathematical statistics may then be stated as:

(1.2) Determine necessary and sufficient conditions under which the distribu-

tion functions { FN(t)} associated with the random variables (1.1) will converge

pointwise to the normal or Gaussian distribution G{t) = (2-ir)~l,if'_ *,e~"ll2du.

A history of the progress in solving this problem is found in a recent

article by Loeve [6](2). The work has separated naturally into two parts: the

case of independent random variables solved completely by Levy, Lindeberg,

and Feller; and the dependent case for which one of the best known results is

due to S. Bernstein. We shall be concerned here with partial solutions to the

Central Limit Problem in the special case of certain sequences of real-valued

measurable functions on (0, 1). Lebesgue measure of a set E shall be denoted

throughout by m{E).

One version of the Central Limit Theorem (Lindeberg [5]) for a sequence

\fk(x)} of independent functions states that

if fofk(x)dx = 0, fofl(x)dx = l, k = l, 2, 3, • • • , and if

e> 0O-3I = M(e) 3    f 2 fl(x)dx<e, k = 1, 2, 3, • • • ,

then 2_,k=i fk(x)/N112 is distributed asymptotically normally with mean value

zero and dispersion 1.
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The investigation in the case when the functions are not necessarily inde-

pendent has proceeded along two lines. Kac [4] established the following:

(1.3) Theorem. Let f{x) be a periodic function of class Lipschitz-a with

a^l/2 and flf(x)dx = 0. If {ck) is an arbitrary sequence of real numbers for

which

(a) (IXi &m = CN^* as JV^»,
(b) cN = 0(l),

(c) lim^oo fo(SN(x)/Ctf)2dx=ai>0,

where Sn(x) = 2Xi Ckf{2bkx) and {bk} is any sequence of integers with{bk+\ — bk)

increasing, then Sn{x)/Cn is distributed asymptotically normally with mean

value 0 and dispersion (fof2(x)dx)112.

The other direction of approach has been to specify the functional form

of the/t(x). A number of authors have considered the case of a lacunary se-

quence of trigonometric functions. The most general result here is due to

Salem and Zygmund [9] who state the following theorem.

(1.4) Theorem. Let Sn(x) denote the Nth partial sum of the lacunary

trigonometric series XX i (a* cos KkX + bk sin nkx), nk integral, nk+i/nk>q>l,

and let a\, a2, a3, ■ ■ ■ ; bi, bi, b3, ■ ■ ■ be arbitrary sequences of real numbers for

which, as N—> <*>,

(a)  CN= [l/2(a21 + b2l+al+bl+ ■ ■ ■ +4+$)]1/2-^,

(b) (4 + &)1/2/cv->o.
Then, for any set EC. [0, 2ir] of positive measure, the distribution functions

_ ,    _      m{{x^E\sN{x)/CN^y\)
FN(y.E) =-—-,   N = 1, 2, 3, • • •,

m{E)

tend to the Gaussian distribution with mean 0 and dispersion 1.

This result has been extended by the authors to the case of the infinite

interval (using relative measure) and the case of nonintegral nk-

The main problem of this paper is to establish an analogue of the Salem-

Zygmund theorem for general uniformly bounded orthonormal systems. If

{dn(x)} is a sequence of real-valued functions in L2(a, b) for which

/■b (0, m t6- n,
Bm{x)dn{x)dx =  {

U, m = «,

the system is termed a real orthonormal system.

In §2 below a theorem of Banach and Sales on average strong convergence

in Lp is generalized. This basic lemma is then used in §3 to establish the fol-

lowing result for real-valued, uniformly bounded, orthonormal systems.

(1.6) Theorem II. Let {<£„(x)} be a uniformly bounded orthonormal system

of real-valued functions on a finite interval [a, b]. Then there exists a subsequence
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{<t>nk{x)\ and a real-valued function f(x) on [a, b], f%f{x)dx = \, 0^f(x)^M2,

M the uniform bound of {<j>n(x)}, such that for any measurable set EC. [a, b]

with m{E) >0 and any {a*} an arbitrary sequence of real numbers satisfying:

(a) AN = (a21+a22+ ■ ■ ■ +<&)i/»->oo as N->«>,

(b) aN = o{AN),

the distribution functions

mi <x G E  J2 ak(f>nk(x)/AN ^ y> J

FN{y:E) =-^—--,        N= 1,2,3,--,
m(E)

converge to a limiting distribution F{y: E) at each point of continuity of the lat-

ter, and the characteristic function of F(y:E) is

(1.7) $(X:£) =m(E)-1 f e~^^i*dx.

Counterexamples are also given in §3 to show that a true Gaussian dis-

tribution cannot always be obtained as the limit F{y\E) and so in a sense this

theorem cannot be strengthened. The appearance of (1.7) suggests the title

Pseudo-Gaussian Distribution Theorem for Theorem II. Theorem III asserts

that for every nonnegative, bounded function/(x) on [a, b] with f£f(x)dx = l

there exists a uniformly bounded orthonormal system for which, when Theo-

rem II is applied to this system,/(x) appears in the exponent of <J>(X:.E) in

(1.7). The section ends with a generalized result of the type obtained by Kac

(see (1.3)) for the sequence \f(nx)} where/(x) is any bounded, periodic func-

tion of mean value zero on a finite interval [a, b]. The hypotheses of the

result are less restrictive than those of Kac in that only boundedness rather

than membership in a Lipschitz class is assumed for/(x). The conclusion is

somewhat less precise in that the existence of a subsequence \f(nkx)} is

asserted for which the Central Limit Theorem holds rather than the assertion

of its validity for the particular sequence {/(26*x)} of Kac's result.

The final section contains Theorem V, the analogue of Theorem II for

complex-valued orthonormal systems. The resulting distributions are two-

dimensional, { FN{y, z:E)}, and the limit distribution has characteristic func-

tion

.     (1.8)   $(X, M:£) = m(E)-1 f exp (-l/2(X2i?(x) + 2XMQ(x) + n2S{x)))dx

where R(x), Q(x), S(x) are real-valued, O^R(x), \Q(x)\, S(x)^M2, and

f*(R(x)+S(x))dx = l. Moreover, given nonnegative, bounded functions R(x)

and 5(x) satisfying /*(i?(x)+5(x))ix = l there exists a complex orthonormal

system on [a, b] for which this R(x) and 5(x) appear in the exponent in the

corresponding $(X, fi'.E) of (1.8) and the function Q{x) is zero a.e.
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It is clear that Theorem II is a special case of Theorem V. It may be

thought, therefore, that economy and elegance would demand that the com-

plex result be stated and proved without mention of the special case of real

systems. The examples and remarks included after each result, however, are

of some interest and the main ideas of the proof are more efficiently presented

in the case of real systems. Thus, in order to spare the reader considerable

complication of notation and to save printed space, the details of the proof

for real systems shall be spelled out and the discussion in the complex case

(the proof embodies the same ideas as for real systems) shall center around

the examples only.

2. On a result of Banach and Saks. Banach and Saks [l] observed that

weak convergence of a sequence of functions of bounded norm in Lv implies

average strong convergence of a subsequence of the functions. Specifically,

Theorem. // {^„(x)} £Z,P(0, 1), p> 1, \j/n(x) bounded in norm, there exists

a subsequence {$nk(x)} and a function f(x) £Z>(0, 1) such that

lim   f   I £ *»M/N ~ /(*) "dx = 0.

Although the generalization of this result plays the role of a lemma to

support the main result of this paper, it has intrinsic interest.

Theorem I. If {yp„(x)} ^Lp(a, b), p>l, ipn{x) bounded in norm, there

exists a subsequence {^nk(x)} and a function f(x) in Lp(a, b) such that for any

sequence {X,} of nonnegative real numbers satisfying:

(a) ^4iv = (Xi+X2+ • • • +Xat)-^°o as7V->«\

(b) \w = o(Aif)

/. b I   N pE U^nk(x)/AN - f(x)   dx = 0.
a   I fc=l

Proof. The first lemma is well known.

Lemma 1. Conditions (a) and (b) imply maxigtgjv (\k)/AN—»0 as N—><».

Lemma 2 (F. Riesz [8]). If the functions {\f/„(x)\ ^Lp(a, b), p>l, are

bounded in norm, there exists a subsequence \^nk{x)} and a function f(x)

£Lp(a, b) which is the weak limit of \^nk(x)}, i.e., for every h(x)£zL"(a, b),

l/p + l/q = l, limk^fbah(x)tnk(x)dx=fbah(x)f(x)dx.

The crucial number-theoretic lemma of the Banach-Saks paper may be

stated as follows:

Lemma 3. For p>\ and any real numbers a, b

[p]

(2.2)    \a + b\"^  | a\p + p\ a^iSgn a)b + £ CPl< | «lp~''l b\l + A \ bV
i'-2
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where A designates a positive constant independent of a and b.

The proof of the theorem may be carried out immediately for general p

if it is only observed that for p<2 the third term on the right side of (2.2)

vanishes from the discussion. Also there is no loss of generality in taking

[a, b] as [0, l] throughout.

Given the initial sequence \^n{x)} of the theorem, we apply Lemma 2 and

obtain a subsequence {t/'nl(x)} and a function /(x)ELp(0, 1) such that/(x)

is the weak limit of {ipnk}- It is no loss of generality to assume /(x)=0. If,

to simplify notation, we denote this subsequence which converges weakly to

f(x) =0 by {^n(x)}, it is necessary to devise a scheme for choosing a further

subsequence {^^(x)} having the property of the theorem. Assuming ^„1=i/'i,

^n2, Tpn„ • • • , ^nj have been suitably choosen, we shall specify how i/v,+1 is to

be selected.

Set Sj{x) = 2~l'i=i Xii/'n/x) and apply Lemma 3 with a = Sj(x), b=\j+\
■^n,-+1(x). An integration yields

r \sj+1(x)\"dt
J 0

S   f   I Sffl \'dt + p\j+1 f   I S,(t) |"-i(Sgn Sj(t))fni+1(t)dt
«/ o J o

+ £Cp.iX-+1 f |sffl \*-*I <M0 \w + \p+1a f [ ̂ n.+1(o \*dt.
t-2 J 0 J 0

For p^2 the third term on the right may be majorized as follows. By

assumption [/o|W)| pdt]Up^K, all n, and hence by Holder's inequality

[p] /»i

(2.4)     M J°

^ lc„4^[£|5-,(o \pd^p-i)lp.

But L/Sl^WK^'^Zl-i  [/^lfnJ«N]1"gB-.U = ̂ i by Min-
kowski's inequality and upon substitution the right side of (2.4) is majorized

by
[pi        .     t.     _.   _{ [pi        t.

=   ^ CViihj+\K [K    Aj    J = A"   2-i Cp,i\j+iAj   .
i=2 i=2

Let b=i—2 and then this last expression is majorized by

*- ^V    ^"-f^T'v^2 ^          a5    A[p]-2-b~W                  Cp,6+2 "I
s A Xy+1i4y 2^   CIp]_2,iXy+ii4y max       -   .

L   6=0 JL.O^M-2     C(p]_2|6J
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Since p is fixed, [maxogtg[P]-2 C'j>,m-2/C[p]-2,&] is a constant, say R, and so the

right side of (2.4) is majorized by

g i?if Xy+i^y [Xy+i + 4yJ

V   2 p—2
g i?KPXy+14y+1.

Using this estimate in (2.3) and employing the identity | a| p-"1 Sgn a

= a\a\ p~2 we have

(2.5) f    \Sj+1(t)\pdt^    f     \Siit)\'dl + p\i+1f    |Sy(0|"-2Sy(/)^n. + 1(/)^

+ i?tfPAy+1/iy,;i2 + i4X*\Jn.

The function \^„j+1(x) will be selected so as to make the second term on the

right small compared to A*'1, independently of sequence {Xt}.

Consider now the sequence of functions in j-space defined by

/«l I    j ip-2 r   j -i23 «i^nX0 23  «flW<)     $m{f)dt,     M  >   tlj,
o 11=1 I     L >-i J

where \pnv ipni, • • ■ , ^nj are the fixed functions previously chosen. Now the

coefficient of ^pm{t) in the integrand is observed to have absolute value

| 23*-1 otfpniit) | p~1 and hence, for any numbers au a2, • • • , ay this coefficient

belongs to Lvlp~l. Since sequence {^m(0 } converges weakly to zero, it follows

that for each point (at, a2, • • • , ay) on the face of the j'-hedron 23«-i at = l

lying in the first "quadrant" of j-space, i.e., a<^0, * = 1, 2, 3, • • • , j,

lim fm(au a2, ■ • • , ay) = 0.
m—»w

It may further be verified that the {/m(ai, a2, • • • , ay)} form an equicon-

tinuous set of functions at each of these points («i, a2, • • • , ay). It follows

that the functions {fm(cti, a2, ■ ■ • , aj)} converge uniformly to zero on the

closed bounded subset of j-space represented by the face of the j-hedron in

the first quadrant. This affords the selection scheme required. Choose the

integer nj+\ so large that

(2-7) \r\i «*nW [    \i «flM')l *-mW*   * l/2'+1

for all points (alt a2, • • • , a,) satisfying 23i-i«* = l>Q;> = 0>1 £i^j-

Suppose the subsequence {^„4(x)} is so selected. For any sequence JX*},

Xt^O, assume j so large that Aj^O. We may then divide (2.5) by AJ+1. It is

observed, however, that the right side of the resulting inequality will only

be increased if the integral of the second term is replaced by its absolute value
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and if in its denominator the factor AJ+i is replaced by the lesser quantity

A*'1. The resulting expression is

J o  I   Aj+\ J o  I Aj+\ I

(2.8) +Jr±-\     Hr     Mr k"m(0AAi+1 I Jo  My  I      L Aj A

AAaj+i       AK Xy+i

In the first and second factors of the integrand in the second term on the

right-hand side of (2.8) the coefficients of ypni(t), ^ni{t), • ■ • , ^n,(t) are

\\/Aj, ~Ki/Aj, • • ■ , \j/Aj respectively. But (Xi/yly, \i/Aj, • • • , "Kj/Aj) is a
point on the face of the j-hedron in j-space and by (2.7) the second term does

not exceed p\J+i/Aj+i2'+1.

Make this replacement in the second term on the right and use inequality

(2.8) as a recursion formula, applying it in all (J— 1) times. (Of course, if say

^4y_, = 0, then Xi=X2= • • • =Xy_, = 0 and Si(t) = 0, i^j — v, so that we would

apply the formula only (j—v + 1) times.) If e.g., X^O, we have

f 1^ Pdt * AK'\(^Y] + tiii.(JL) + 3^i±
Jo\Ai+1 LWi/J       Ai+1\2>+1J A*+1

\Aj+J I    A? A,\2i) A)

Jo I    Aj    I     J

But

\A]+J    Aj \2>/~ Aj+1\2i)

since (Ai/Ai+i)p-1^l. Also when p^2

\Aj+J       A)     ~ \Ai+1)        A)+l    ~   A*m

In the case p <2 it has already been mentioned that the second term on the

right is missing in the basic inequality (2.2), (2.3), and subsequent expres-

sions.

With these remarks, the right side of the last inequality is
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l\AHJ       W./J      /l,+iL2'+'       2'J

—[(^y+(^)*]

\Ai+J L     ̂  ^y_i \2>W     "   AJ_ J„  I   Aj^   I     J
Continuing to repeat the simplification just employed, and factoring out, we

are led to

T max    (X,)"|p_1

niti^'dt^AK*isisi+i     \^+j±.+ ...+2l\
J a  I   ^4y+i L      Aj+i      J     LAj+1       Ai+1 Aj+1J

max    (X<)~
i=is/+i       riii in

+ p-   — + —+ — +••• + —
L Aj+i.      JL2'+1       2'     2'"1 22J

f" max    (X;)~|
ig<sy+i r Xy+i Xy X2

+ RKp\-■     -£- + _!- + ...+-
L      ^y+i      -IL^y+i      -4y+i ^y+J

[f   max    (X,))"-1           f   max    (X,-)'
isisj+1                         lgigy+i

^iP"-        +p  -
I          "3+1          J                       I         "3+1

max    (X,-)l       ,p^p"
lUij+l XiA

I 4y+i J i4;-+1J

By application of Lemma 1 and with -4y+i—* oo , it is evident that this quantity

is small with large j, and thus the theorem is proved.

Corollary. Any subsequence {^ni;(x)} of the subsequence {^„fc(x)} pro-

vided by Theorem I still enjoys the property of Theorem I with respect to the same

function fix). That is, given any nonnegative sequence of reals {Xy} satisfying

(a) 4w = (Xi-r-X2-r- • • • +Xw)->co as #-»»,

(b) ~KN = o(AN),

then

rl\^ x^n (*) p
I      2^-/(*)    dx —> 0 as N —> =o.

•Jo  I y=i        -4at
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Proof. Take any sequence {Xy} satisfying the conditions (a) and (b).

Define a sequence {X*} by the relations

=    Ay   if fnk = ^nkj,

\0    elsewhere

and set ^4m = Xi + X2 + • • • + Xjif. Then {X*} is a nonnegative sequence for

which ^4at—>■ oo and \m = o(Am) because of the properties of {Ay}. Hence

{X*} is an admissible sequence in Theorem I. Then

I      2-1 ——-J\x)   «x —»0 as M —* oo
Jo  I *=i     Am

with/(x) being the same/(x) as in Theorem I. Also for each integer p = N,

2Z Ayfnt (x) J2 Zur-nk
y=i *-i

A p Akp

thereby proving the corollary.

3. A pseudo-Gaussian distribution theorem for real orthonormal se-

quences. Counter-examples will be given to show that the form of the limit-

ing distribution in the following theorem need not be truly Gaussian.

Theorem II. Let {$„(x)} be a uniformly bounded orthonormal system of

real-valued functions on a finite interval [a, b]. Then there exists a subsequence

{(/>ni(x)} and a real-valued function f(x) on [a, b], Jlf(x)dx = \, 0 5S/(x) ^ ikf2,

M the uniform bound of {<f>n(x)}, such that for any measurable set EC [a, b]

with m{E) > 0 and any {a*} an arbitrary sequence of real numbers satisfying:

(a) AH = (a2 + a\ + ■ ■ ■ + a2,)1'2^ °o as N-+ *>,

(b) aN = o{AN),

the distribution functions

FN(y:E)=m({x <= E\ 2Z a«t>»k(x)/AN ̂  y)))/m(E),
(3.1) k-A

N = 1, 2, 3, • • • ,

converge to a limiting distribution F(y: E) at each point of continuity of the lat-

ter, and the characteristic function of F(y: E) is

(3.2) $(X:£) =m(E)~1 f e~^^i2dx.
J E

Proof. By the continuity theorem for characteristic functions of distribu-

tions it is sufficient to show the existence of a subsequence {<t>nh(x)} and func-

tion/(x), flf{x)dx = \, 0^f(x)^M2, such that for any sequence {ak} admis-

sible under the conditions of the theorem and for any set EC [a,b], m(E)>0,
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the characteristic functions of the distributions {Ftfiy'-E) ],

/I      f /     ^ ak<t>nk(x)\
e*dFN(y.E) = ——      exp (iX 23 ) dx,

m(E) J e       \     k-i      AN    /

N = 1,2,3, ■■■ ,

converge uniformly to$(X:.E) forX in any neighborhood [a, /?] of the origin.

Let the system {<£„(x)} be written as <£»(x) =2M£*(x), » = 1, 2, 3, • • • ,

whereupon the orthogonal system {#*(x)} has the uniform bound 1/2. Ob-

serving that e« = (l+z) exp (zi/2 + Q(z)) is valid for z—>0 with Q(z)=o(zi),

we shall use Riesz products as in the paper of Salem and Zygmund [9]. Sub-

stituting {</>*(x)} into (3.3) and applying the preceding formula N times

with zN,k—i2M\ai4>tk/^-N we obtain

$N(\:E) = ——— I   exp[i2M\ 23 a-k<t>lk(x)/AN )dx
m(E) J E        \ k-i /

= ~— f   IKH i2M\ak<t>Zk(x)/AN)
m(E) J e k-i

(3.4)
I * o     *2 o

. exp ( -(2M)2X2/2 23 ak<t>nk(x)/AN
\ *=i

N \

+ X Q(i2M\o*&t(x)/AN))dx (2V = 1, 2, 3, • • • ).
*-i /

The proof proceeds with a number of lemmas the first of which is essen-

tially Lemma 1 of Theorem I.

Lemma 1. For any sequence {ak} satisfying the conditions of the theorem,

max    (ak)
l%kSN

—-> 0 as N —» =o.
AN

Returning to (3.4), it may be readily verified that since Zjv,*—K) as N—->°°

and Q(zN,k)/z$i,k-+0 as ztf.k—>0,

N

exp Y^Q&N.k) = exp o(l),
*-i

uniformly for xG [a, 6] and X on any finite range [a, /?]. Moreover, for all

xG [a, 6], all XG [a, j8], and all N,

N N

II (1 + i2M\ak<t>tk(x)/AN)   = If [1 + (2M)\ial<j>*nl(x)/A2N]1'2
4=1 fc=l

(3.5)

^ exp (X2M2/2 23 <>1/An) = exp (XW2/2) < C(a, j8).
i-i
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The next lemma now follows easily.

Lemma 2. Define

1      r   N
$N(\:E) = ——       11(1+ i2M\ak<t>nk{x)/AN)

m(E) JE k-i
(3.6)

/ 2   2 _       2    *2 2 \

• exp ( - (2ilf) X /2 2J ak<t>nk(x)/AN\dx.

Then for any subsequence {<t>nk(x)}, any set EC [a, b], m(E) >0, and any se-

quence {fl*} admissible in the sense of the theorem,

lim | 4>at(X:£) - $*(X:£) |   = 0

uniformly for A on any finite interval [a, B].

Proof. Irrespective of {<f>nk(x)}, {a*}, and E, the definitions of $n and

$N together with (3.5) imply

C(a 8)  rb\        / N \        I
I <MX:£) - $N(\:E) |   g -1-^i |     exp ( EG(^, *)) - 1 <** £ C(«, 0)«

W(£)    J a   I \ *_j / I

if iV is large.

The sequence of functions {<j>^(x)} and numbers {al} may be considered

as the functions {^„(x)} and sequence {\k} of Theorem I. Hence, by Theo-

rem I, there exists a subsequence {<j>2nk{x)} and function g(x) in L2 such that

the sequence { JXi al<t>*k(x)/A2N} converges in the L"1 mean to g(x). More-

over, this choice of {<j>*2(x)} and g(x) is independent of the sequence \a\\

satisfying the conditions of the theorem. Since a subsequence of the averages

converges a.e. to g(x) and since the averages are nonnegative and bounded

by 1/4, we may assume 0 Sig(x) g 1/4, x£ [a, b]. It also follows that flg(x)dx

= 1/4.
Suppose that the {<t>nk(x)} corresponding to the {^(x)} just selected

had been used from the very beginning in defining Fff(y.E) etc., and now

define

1      c   N
(3.7)     *7(X:£) = ——      11(1 + i2M\ak<Kk{x)/AN)

m{E) J e *_i

• exp (-(2Af)2X2g(x)/2)<fx, N = 1, 2, 3, • • • .

Lemma 3. For any set E of positive measure and any admissible {a*},

[$at(X:£) — <I>]v*(X:£)] tends to zero as N—»oo uniformly for A on any finite

range [a, B].

Proof. By Lemma 2 it is enough to consider [$£(X:E) — $jy*(A:£)].
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| *£(X:£) - *^*(X:£) |

(3.8) ^ ̂ -f f I exp (-(2M)Y/2 23 oV!l(*)/^
w(£)  Je\        \ *-i /

- exp(-(2Jkf)2X2g(x)/2)  <fx.

By the mean value theorem, \ex'—eX2\ ^K(a, (3)\xi — x2| for xG[a, b],

XG [«, |8] and where Xx and x2 are the exponents in (3.8). Thus

| *iv(X:£) - <E>Ar (X:£) |  ^- - I      2^ ak^nk(x)/AN - g(x)  dx.
2m(E)       J a \ k=i

But the integrals on the right tend to zero, proving the lemma.

The corollary to Theorem I shows that any subsequence of {(j>nk(x)} may

be used in the definitions of Fti(y'-E) and $%*(\:E), and Lemmas 2 and 3

would still be valid. To prove the present theorem it suffices therefore to

show that \<t>nk{x)\ may be further refined to \4>n.k{x)} independently of

{ak\ and set E, m(E)>0, so that using this refinement in definition of

FN(y:E) and $£*(X:£) we have [$^*(X:£)-$(X:£)] tending to zero uni-

formly for XG[«, /3], as N-+<*>, where in definition (3.2), f(x) = iM2g(x). It

is clear from the properties of g(x) that 0^/(x) ^M2, Jlf(x)dx = \.

Now for any X,

I ** I

|**(X:E)-*(X:E)|

=   - f T II (1 + i2M\ak<Kk(x)/AN) - l] *-*,("0«.(-)/i  dx.
m(E) JeL k-i J

Using the series expansion for e' and integrating term-wise we obtain

| 4*(X:£) - *(X:£) |  = —M £ (-l)'\^2M2)'/jl f g'(x)
m{E) I y_0 «/#

[AT -1 I

II (1 + i2M\ak&k{x)/AN) - 1 \dx\
*=i J      I

(3.10)

5S —— E(2M2X2)Vi!| f f'(«)
m(E) y=0 IJj

[AT -| I

II (1 + i2M\at&h(kx)/AN) - l\dx\.
t-i J      I

Lemma 4. Gwe« any fixed set E, a subsequence {<f>nk(x)} may be found such

that for X on any finite interval [a, (3] the corresponding $%*(\ '■ E) tend uniformly
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to$(\:E) irrespective of admissible sequences {a*}. Moreover, any subsequence

{<t>„k.(x)} of {<f>nk(x)} also has this property.

Proof. Formula (3.10) shows that for uniform convergence, it is enough to

demonstrate the existence of a subsequence {<j>nkix)} and constants Cn{cc, B)

for large N such that Cn(ol, /3)—»-0 as N—»°o and

«'(*)    II (1 + i2M\ak4>*«k(x)/AN) -l\dx\g CN(a, 8)
J L  k=l J I

for every integer j = 0 and every X£ [a, 8]. For, granting this, the right side

of (3.10) is majorized by

Cs(a,P)-    (2M2X2)'      CN(a,8)
g-2^-=-e      —* o

m{E)    y=0        j\ m(E)

uniformly for X£ [a, 8], as iV—»oo.

Consider now the identity

N t N N

J! (1 + ak) = Y + 2~1 a* +   X)  "toy
(3.12) M l       M ***

V N \

+     2~1    »<•<*><** + • • • + (aia2 • • • a^)> .
iS«y<* /

For each j and every N this formula establishes the inequality

|//^n('+^^)-^«|
I i2MXI *   .     . I r * I

=   ——  D I «*l    I g'Xx)4>nk(x)dx\
I   An   I k=i \Je I

J2MX 2    N \  r
+   ——     Z)   I «< I | <*y |    I g'\x)<t>ti(x)<t>tj(x)dx

(3.13) ^       1-'<y lJB

i2M\ *    *     .    . .    . .    . I r *      *      *
+   ——       2-j      I «<|  I Oy|  | a*|    I  g,(x)4>nt(x)<l>nl(x)<t>nk(x)dx

An       i=«j<* IJ e

i2M\ N.     . . I  r * *
+ • • • -\-"—    I ai I • • •  I «w M I  £'(*)*»,(*) • • • <f>„N(x)dx .

An I J e

Now a number N0(a, 8) may be found by Lemma 1 so that for N>N0(a, 8),

2Jf|x|(  max   \ ak\) / AN ̂  1 for X £ [a, 8]

and therefore for r=2, 3, 4, • • •
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{2MY\\\r( max   \ ak\ J   /A*N-g, 2M\\\( max   \ ah\ ) / AN
\l£k£N /   I \l£t^N ) I

for X on [a, /S].

For such iV, the right side of (3.13) is majorized by

=    2Af I * I ( max   I a* I ) / Ax        23    I g\x)<£t(x)dx

N     I    /. I

+ 23 I I s'W^X*)**^*)^* + • ■ •
(3.14) lS*'|J* '

/• ng (x)0„,(x) • • ■ 4>nN{x)dx
E IJ

^r2M(|a|   + |j9|)(max   | ak \ \ / A^]rn{])

for all X on [a, /5],

where Rn(j) refers to the sums of integrals in the second bracket.

For each j we divide the terms of the type appearing in Rn(J) into groups

of terms, defining the pth group as the collection of all terms

(3.15) I  g'(x)<t>tc(x)<t>ti(x) ■ ■ ■ (j>tT(x)dx
I J E

in which np is the largest subscript to appear. Then the terms which appear

in Rn(J) but not Rx-i(j) constitute exactly the Nth group, and hence the pth

group does not increase with N.

We now note that the integrand in (3.15) is bounded, and so by the Rie-

mann-Lebesgue property we may choose </>*t(x) so far out in the sequence

{</>*(x)} that a given term of type (3.15) is small. In fact, if j is fixed, then for

each k, <j>*k (x)may be chosen so far out that

["sum of all terms in the £th~]       (b — a)

Lgroup of Rir'(j), N ^ k      J =       2*

This implies that if the corresponding subsequence {<$>nk\ so determined were

used to define FN(y.E) and $J*(X:£), we would have for this fixed j

(3.16)  (a) Ry(j)^(b-a), all N.
(b) If {<t>nkl}, any subsequence of {</>»*}, were used instead to define

<l>tf*(X:£), then Ry(j) would still be exceeded by (b — a) for the fixed j under

consideration since the terms in the rth group of Rn(J) relative to {<j>»ht}

would be a subcollection of the terms in the &rth group of Rn(j) relative to

{<t>tk\ and hence have a sum not exceeding (b — a)/2krg(b — a)/2r.

Employing the selection principle just described, we obtain a subsequence
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{<£™} such that Rs(0)£(b-a), all N, if <S&*(X:E) is defined starting with

this subsequence. Pick a subsequence {^i^} of {<f>nk} by having the pth

element satisfy the following two conditions:

"sum of all terms in the pth group of Rn(1) (defined"!
(b — a)

(a) with respect to  the first  (p — 1)   elements of    =->

L{<l>nl}),N^P
(3.17)

"sum of all terms in the pth group of Rn(1) (defined!
.,. (0)       ,    (i)     (i) , (i) .       . (b — a)
(b) with respect to 0B1   and 0», , 0», , • • • , 4>np-i),    s ——— •

JV ^/> = 2

Then if 3#*(A:E) is defined relative to {<f>^}, we have Rn(1) ^(b-a) for all

N. If <f>^ is replaced by 0^', then the sum of all groups of i?iv(l) beyond the

first does not exceed (b — a). In the same manner pick {0®}, {0®}> • ■ •>

etc., each a subsequence of its predecessor and such that the pth element of

{$%) satisfies the conditions:

"sum of all terms in the pth group of Rn(J) (de-"|
(b — a)

(a) fined with respect to the first (p — 1) elements of   =->
i   u) i ' 2*"

(3.18)
"sum of all terms in the pth group of Rn(J) (de-1

/u\     c     A      vv. <. *    J0)   -i(1)    ^(2) J°'-1)        <r  (* ~ a^(b) fined with respect to <j>ni , 0„, , <j>„, , • • • , 4>nj   ,     ^ —-•

-4>n-+v   •  •  • , tf^-l)- N = P ^ j + 1

Then if <i#*(X:E) is defined relative to {<t$k}, we have RN(j)^(° — a) for

all N. If the first j elements of {</>!»} are replaced by the j diagonal elements

from the preceding j subsequences, the sum of the groups of i?jvO"), with the

exception of the first j, will not exceed (b — a)/2'.

Finally, denote the diagonal subsequence of this collection of sequences by

{<l>nt(x) }• If $]!r*(X:E) is defined with respect to this diagonal subsequence,

(3.19) RN(j) £ (b - a) for each j and all N.

This may be ascertained as follows. For each j and all N, RN(j)^.(b — a)/2'

+ [the sum Qj of all terms in the first j groups of RN(j) ]'= (b — a)/2i+Q1. This

is because with the exception of the first j terms, {<£„*} is a subsequence of

{<f>nl}< and even with the first j terms replaced by diagonal elements, the

&th group of Rn{J), k>j, has a sum not exceeding (b — a)/2k. The estimate for

Qi, on the other hand, depends on the fact that Qj contains as many terms of

Rn(J) as the number of nonvoid subsets of a set consisting of j-elements, i.e.,

(2'—1). Each element in Qj is of the form
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S = \ \ «'(*)**</*) • • • 4>t{ (x)dx
I v E

where lgrgj and wtl<w,-,g ■ • • ^w,-rg»y. Then

5 g (l/4)'(l/2)m(£) ^ (1/4)'-(1/2)(i - a).

Thus

(6 - a)(2' - 1)      (b - a)

4'-2 2'+l

and so

(b- a)       (b- a)
(3-20) RN(j) g + , all N, j ^ 1,

and (3.19) is demonstrated. Hence (3.14) shows that if we define

r 2Jf[|«| + \P\]  (max \ak\)-\

CN(a, j8) =-   (b - a)
L AN

we shall have (3.11) for every j^O, and the lemma follows. We note that the

final statement of the lemma is a consequence of the remark (3.16)-b. Lemma

4 is tantamount to proving the theorem for a particular fixed set E, m(E)>0.

Lemma 5. If \4>nk{x)} is the subsequence provided by Lemma A for the fixed

set E and for which \$n(\:E) — $(X:£)| —>0 uniformly for X on any finite

interval, irrespective of admissible sequence {ak}, we may replace any initial

block of terms in \4>nk{x)} by other functions from the original orthonormal sys-

tem, and we will still have this property. Any further refinement of the "new"

subsequence will also have this property.

Proof. Suppose the first «0 terms of {<f>nk(.x)} are replaced by n0 other

functions of our original orthonormal system, say #„„ #„„ • • • , #„„„. The

function ^N*(K:E) defined with the "new" functions will be denoted by

~**rt   «           1      f ttA   ,   i2M\ak£k(x)\    *    /        i2M\a^*nk(x)\
*» (X:£) = -rrr I   III 1 +-I 11 (1 +-]-)

m{E)JEk-i\ AN /t=n0+i\ An /

• exp {-{2M)2\2g{x)/2)dx.

Lemmas 2 and 3 are obviously valid for $#* and the function <J>at(X:E) of

(3.4) (defined here with the "new" subsequence) since the proof of the

Banach-Saks result, Theorem I, is not changed if we alter an initial finitely

long block of terms. If we wish to show that |$jv(X:£)— <3?(X:E)| —>0 uni-

formly for X = 0(1), it is therefore enough to show that |$^*(X:£)-*(X:£)|

—*0 uniformly for X on any finite range. This will be done if we show that
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|£$*(X:E)-<f>tf'(X:£)|—>0 uniformly for X on a finite range, where $%* is

defined with the subsequence {<t>nk} provided by Lemma 4. Now

m(E)\ 4*(X:E) - 17{X:E)\

Irr^./ i2MXM>*\      ft/    ,    i2M\ak$tk\l

(3.21) =\JeLEV+ An       )~i}X+        An       )i

»     /        i2M\ak<j>*k(x)\ I
II   (1 +--^^)exp(-(2M)2\2g(x)/2)dx\,

k=n0+i \ An / I

and applying (3.5),

= cw) flfi(i+ j2JA"*'Vij(i + i2M^:k^dx
Je\ k=\\ AN       /        i   \ AN       / \

But since «0 is fixed, the integrand is clearly bounded and tends to zero as

N—►«> because An—>0°. The integral then tends to zero so that the result is

established. The last statement of the lemma is obvious.

Let IT, r = \, 2, 3, • ■ • , be an enumeration of all rational subintervals of

[a, b]. We shall now show that there exists a master-subsequence \<j>nk(x)}

of the given orthonormal sequence {<j>n(x)} such that if, for each rational sub-

interval Ir of [a, b], we define FN(y'Ir) and $^*(X:7r) with this subinterval

and this subsequence, $N*(\:Ir) will converge uniformly for X on any finite

interval [a, 8] and any admissible sequence {ak} to4>(X:/r), r = l, 2, 3, • • • .

Any subsequence of {#„t(x)} enjoys the same property.

To obtain such a master subsequence, we employ Lemma 4 with E = Ii

and find a subsequence {<t>^} such that for it or any subsequence of it the

corresponding {$^*(X:/i)} converges uniformly to 3>(X:Ji), X = 0(1). With

E = h, Lemma 4 tells how to find a subsequence {<t>®} of {^J,1'} such that

for it or any subsequence of it the corresponding {$^*(X:72)} converges uni-

formly to <J>(X:/2), X = 0(1). Similarly we determine subsequences {<£i3)}>

{<£»)> ' ' ' . etc, each a subsequence of its predecessor and with {</4''}

having the property that for it or any subsequence of it, the corresponding

{<£$*(X:I<)} converges uniformly to $(X:/<).X = 0(1). Now take the diagonal

subsequence of the subsequences {<$}, f = l, 2, 3, • • • , and denote it by

{<£n*(x)}. Define FN(y:Ir) and <l>jv*(X:7r) by means of this master subse-

quence, r = l, 2, 3, • • • . It may then be asserted that for this final subse-

quence *jy*(X: /()—^>(X:7«) for t = l, 2, 3, • • • , uniformly for X on any finite

range. This follows from Lemma 5, and the observation that for each t^l,

{<S>nk(x)} is a subsequence of {</>^(x)}, if we alter the first t terms. We have

therefore proved the theorem for every rational subinterval of [a, b].

Lemma 6. If FN(y:E) and <I>jy*(X:E) are defined with the master subsequence
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{<bnk} (or any refinement of it) and any measurable set EQ[a, b], m(E)>0,

then $N*(K:E) will converge uniformly for X on any finite range to $(k:E) as

N—* =o independently of admissible sequence \ak}.

Proof. It is enough to prove the lemma for Borel sets of positive measure.

Given any e>0 and any Borel set E, there is a finite union of disjoint rational

interval E0 = U?_i Iu such that

| E - E0 |   < e, \E0- E\   <e.

Also for any integrable /(x) we have

(3.22) f f(x)dx =  f /(*)+ f        fdx-  f        fdx.
J E J E0 J <.E-E„) J (Eo-E)

Apply this to the expression

m(E)\ *£*(X:£) - *(X:£) |

=    I   II (1 + i2M\a^*nkJAN) exp (-X2/(x)/2)
J E  3=1 '

(3.23)

-  f exp (-\2f(x)/2)dx .
JE

With /referring to the first integral on the right in (3.23) and /' to the second,

(3.22) implies:

sl/-/'H/  -/' H/  -/' I
*±|/-/'| + |/       "/'      1 + 1/       "/'    |
= d + £>2 + £>3.

Now independently of {a*} > each integral belonging to Dx is less than e/q

uniformly for XG [a, /3] if N> N0(e), by the discussion preceding Lemma 6.

In both D2 and Ds the integrand is bounded uniformly in N for XG [a, j3] and

xG [a, 6], say by C(a, /?), and since the measures of the range of integration

are in each case less than e, the estimate for (3.23) is

^ a + 2C(«, 0)6.

This proves Lemma 6.

The theorem is also proved, since throughout the discussion [a,/3] referred

only to an arbitrary interval and the choice of {(bnk(x)}, the master subse-

quence, was independent of [a, j3]. By repeating the proof of the corollary to

Theorem I, or even by direct inspection of Theorem II, we can prove:

Corollary. For any subsequence {<b„k.(x)} of the subsequence provided by

Theorem II, the distribution functions Fn (y: E) defined with this new subsequence
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will have the properties asserted in Theorem II with respect to the same function

f(x) appearing in the definition o/$(X:£).

Remarks. (1) The "pseudo-Gaussian" form of the characteristic function

of the limiting distribution, that is,

<*>(X:£) = ——- f exp (-\2f(x)/2)dx,       0 g /(*) ^ M2,
m(E) J e

is in best possible form. We could not expect /(x) to be a constant. Consider,

for example, the Walsh system(3) defined on [0, l]. If a Walsh system

{4^t\x)} is constructed on [0, 1) and another {^t2)(x)} on [l, 2], and if we

define

((1/W?\x)        on    [0,1),

oAx) -   |(3V2/2)^(2)(x)    Qn    ^ 2]i       j « i, 2, 3, • • • ,

we find that {p*(x)} is an orthonormal system on [0, 2] with uniform bound

M = 31'2/2.

Consider the revised system p*(x) =p*(x)/31/2, k = l, 2, 3, • • • as is used

in Theorem III. If Theorem I is applied to the functions {p*2(x)} to obtain a

limiting function g(x), the identities

£«W {V12    on    [0,1) ^=li2)3,..,

ti      A% U/4     on    [1,2],

{p^(x)} any subsequence of {p*2(x)}, imply that the only limiting distribu-

tion $(X:£) which could be obtained by the techniques of Theorem II in the

case E= [0, 2] is

,ft.[n9ll       If2 .    nM.,~.        exp (-X2/8) + exp (-3X2/8)
$(X: [0, 2 J) = — I     exp ( — 3\2t(x)/2)dx = -.

2 J o 2

(2) We may consider Theorem III as establishing a mapping between uni-

formly bounded, real-valued, orthonormal systems, and nonnegative,

bounded functions. This mapping is not unique even under the additional

assumption of completeness. Consider, for example, a Walsh system {^'(x)}

on [0, 1 ] which is considered to be on [0, 2] by defining each function as zero

on (1, 2]. Consider a similar Walsh system {^i2)(x)} on [l, 2] which is 0 on

[0, 1). Form an orthonormal system {#n(x)} which alternates functions of

(3) For a discussion of the Walsh system see N. J. Fine [3]. These functions are block func-

tions defined on [0, l] as follows: ^0(x) = l, tfw(x) = Ili.i <?»,(*) where N= £,'_i 2mi and the

<p's are Rademacher functions, <p0(x) = 1 (0gz<l/2), <po(*) = -1 (1/2 Sx<l), <t>„(x + l) =<poM,

*n(«) =*o(2"*).
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the two given sequences, i.e., {^(x), ^i2)(x), ^'(x), ^f(x), • • • }. This

system is complete and uniformly bounded. It is clearly possible, however,

under Theorem I, to get two distinct limit functions g(x) for the modified

system {<£*(x) =<£„(x)/2}, and hence two different f{x) =4g(x) depending on

which subsequence, {^'(x)} or {^42)(x)}, is chosen to represent the com-

bined sequence.

Consideration of the proof of Theorem II will lead to the further conclusion

that the determination of conditions under which the mapping is unique is

equivalent to determining when, for a uniformly bounded orthonormal se-

quence {(j>n{x)}, the sequence of squared functions {$2(x)} will have a single

weak limit for all possible subsequences. Despite this nonuniqueness, the next

theorem shows that to within a constant, every bounded, nonnegative func-

tion for which fbf(x)dx?±0 is an image under the mapping. The conditional

phrase, "to within a constant," appears in the theorem when we normalize

such an/(x) by (Jlf(x)dx)~1. The theorem is stated for the interval [0, l],

but the proof obviously generalizes.

Theorem III. Given any bounded, nonnegative function f(x) on [0, l], of

nonzero mean value, there exists a uniformly bounded, real-valued, orthonormal

system {<f>k{x)} on [0, l] such that for any real sequence {ak} satisfying

(a) AN = (a2+al+ ■ ■ ■ +4)1/2^*>, as #->«>,

(b) aN = o(AN)

and any set E, m(E) >0, the distribution functions

mi <x £ E   2 ak<t>k(x)/AN = >Y )

FN(y:E)=-^—-,        tf=l, 2, 3, •••,
m(E)

tend to a limiting distribution F(y: E) whose characteristic function is

<*(X:£) = —— f exp {-ck2f(x)/2)dx,
m\E) J e

where c= {f01f(x)dx}~1, a normalizing factor.

Proof. A scrutiny of the techniques in the proof of Theorem II will suffice to

show that we need only to obtain an orthonormal, uniformly bounded, real-

valued system on [0, l], such that for it and any of its subsequences {<£„t(x)}

we have
*        2    2

]C ak4>nk{x)

in the mean on [0, 1 ] independently of {ak}, where/(x) is the given function

and c is the normalizing constant for/(x). If this is done, the final subsequence
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obtained by the methods of Theorem II may be designated as {(f>k(x)} in

the above theorem and the result will be established.

Consider the Walsh-Fourier series XXo cki]/k(x) for /(x); that is, ck

= Iof{x)^k(x)dx. It is known (see Paley [7]) that the 2nth partial sums, Si "fa)

= 1lX-o ci$k{x), converge a.e. to/(x). It is also well known that we may

write S2»fa) =Jlf{x+t)D2*{t)dt where A»(0 = Z)t-o" W) is the 2"th
Dirichlet kernel and " + " is a measure preserving transformation defined by

Fine in his study of the Walsh system (4). The kernel is nonnegative and

flD2n(t)dt = 1, all n. These facts imply that S2»fa) is nonnegative and bounded

by the bound of /(x) uniformly in n and x. As a consequence, S2»(x) converges

to/(x) in the L1 metric on [0, l].

We further know from the properties of the Walsh functions that the

S2»(x) are really step functions with points pm — m/2n, l^m^2", as points of

jump and intervals of constancy of length l/2n. Therefore we define

Pn(x)   =  C"V2»(X)(52»(X))1'2

for each n where ip2n(x) is the 2"th Walsh function and c = (Jof(x)dx)~1>0.

Now

/S2»{x)dx        |    (   2~1 c^k(x) j dx
o J o   \ k=o / c0

J      pn{x)dx =- =- = -j- =   1,

f  f(x)dx f  f(x)dx f  f(x)dx
«/ o «/ 0 J 0

for each n ^ 1.

It is here that the normalizing factor is needed. Also

/Pn(x)pm(x)dx = 0, n 9^ m,
o

since if n + l^m, every interval of constancy of p„ is of the form [p/2n+1,

£ + l/2n+1]. Divide each such interval into subintervals of length l/2m. On

each such, fpm(x)dx is zero because SV»(x) is constant while ^y(x) is +1 on

the first half of the subinterval and —1 on the last half. Thus {p„} is a uni-

formly bounded, orthonormal system. Now for any subsequence {p„k(x)}, we

have

JV N

J2 a-kPnk(x)        J2 akS2nk{x)
t-i k=\

cAn An

(4) If x= 2J,-_i *</2* and y= £"_, yt/2' are the dyadic representations of x and y, Q^x,

ygl, then* +y=Zi"_0 |*<-y<|/2'.
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and clearly this converges boundedly a.e. (and hence converges in the Ll

metric) to/(x), and the theorem is proved.

We end this section with a result of the type obtained by Kac (see (1.3)).

The proof follows the general pattern of the proof of Theorem II except that

a substitute technique must be found at the point where the Riemann-

Lebesgue theorem was employed. Because of the similarity to Theorem II

only a sketch of the proof will be given.

Theorem IV. Letf(x) be bounded on [a, b], ofperiod(b-a),andf%f(x)dx = 0,

f0f2(x)dx^O. Then there exists a subsequence {f(nkx)} of the sequence of func-

tions {f(nx)}, » = 1, 2, 3, • • • , such that for any sequence of real numbers {ak}

satisfying

(a) AN = (a\+a\ + ■ ■ • +a2/)1/2->«>, as N-+*>,

(b) aN = o(AN)

and any measurable set Ed [a, b], m(E) >0, the distribution functions

/ ( ^ akf(nkx)       j\

,  ,   m\\xeE£-itr-y\)
FN(y.E) =-—-, N = 1, 2, 3, •••,

m(E)

converge to the Gaussian distribution with mean value zero and standard devia-

tion = {Jlp{x)dxyi2.

Proof. It is sufficient to show the existence of a subsequence {f(nkx)} such

that independently of {ak} and subset EC [a, b] the characteristic functions

for the Fti(y'E) defined with the subsequence {f(nkx)},

e**dFN{y.E),
-00

converge uniformly for X on any finite range to the Gaussian characteristic

function

$(X) = exp (-XV/2)    where    <r = (  f  f\x)dx\    .

The early techniques of the proof of Theorem 11 and also Lemma 2 of that

proof will hold here so that it is enough to show the uniform convergence for

X on any finite range of

* 1      C        /      j     A   » «,     w   *\ A T        i\akf(nkx)l
$*(X:£) =-      exp   -X /2 23 akf (nkx)/AN) II   1 +-Z-   dx

m(E) J e       \ *=i / *=i L AN     j

to $(X). The first lemma is well known (cf. Zygmund [lO]).

Lemma 1. Iff(x)(E.L(a, b) and h(x) is bounded, both periodic, then

lim   f   f(x)h(nx)dx =(  f  f(x)dxj( J     h(x)dx\
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Lemma 2. From the sequence {/(nx)} of the theorem can be extracted a subse-

quence {f{nkx)), & = 1, 2, • • ■ , such that for any sequence of real numbers {ak}

admissible in the sense of the theorem

N        2   2

2Z akf (nkx) b

-2-* (   I    P(x)dx\ = c2 in the L2 mean on [a, b].
AN \J a I

Moreover, any subsequence {P{nkjx)} of {f2(nkx)} also has this property.

Proof. By Lemma 1,

(3.24)        f  p(x)f(nx)dx->( f   p(x)dx\( f f(x)dx\ =  f  p{x)-a2dx

for every periodic p(x) in L2(a, b). This implies {/2fax)} converges weakly to

the constant a2, and hence, by Theorem I, there exists a subsequence

{f2(nkx)}, such that for any admissible {ak},

2~2 akf (nkx)
k=1 2 •    r2

-2-> <t2 in Ll mean.

An

This proves the lemma. The last statement in the lemma follows from the

corollary of Theorem I.

Using this subsequence {f2(nkx)} and arguments paralleling those of

Lemma 3, Theorem II, we find that for any £, m(E) >0, the function

** 1      C ¥~r /        i\akf{nkx)\
4 (X:E) = —— I   II ( 1 +-7-^) exp (-XV/2)rfs

m(E) JE k=i\ AN      I

_ exp (-XV/2)   r   «_/        i\akf{nkx)\ ^

m(E) J e k=i\ AN      )

differs from &N(\:E) by an error tending uniformly to zero for X on any

finite range, independently of {ak\.

It is therefore sufficient to refine \f{nkx)} to {/(«*,-*)} such that if

3>£*(X:E) is defined with this subsequence, 3$*(X:E) tends to$(X) uniformly

for X on any finite range independently of {ak) and set E. From (3.25) this

will be accomplished if it can be shown that

r   "  /        i\ajf(nk,x) \
(3.26) MX:E)=  I   n(l +-^^L-L)dx

J e y_i \ AN       /

tends to m(E) uniformly for X on a finite range and independently of set £

and {«*}.
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Expanding again by the formula (3.12) of Theorem II,

|/*(X:£) - »(£) I
i\    N \  r I      I »X I2   N I  /•

^   —-   23 I O; I    I   /(»*,■*)<**   +  —     23     U>-1 | ay |    I f(nkix)f{nkjx)dx
An   y=i \Je II -dy I  i=«y \J e

i\   3     N \   r I

+   ——       lu     I a< II °i I  1 °M    I   f(nkix)f(nkjx)f(nklx)dx   + • • •
^4y   iSt<3<t I«/b I

*X *.     . .      .If
+   ~T    I ffi I  ' ' "  I <»jv |    I  f(nkix) ■ ■ ■ f(nkNx)dx

An I J e

[\a\   +  \p\]( max   | ffy | \
VisysJV )

^-— Rn{E)
An

where Rn{E) is defined as in Theorem II. The integrals in Rn(E) are of the

form

I r"
I    XE(x)f(ncx)f(ndx) • • • f(npx)dx

I J a

and by Lemma 1 can be made small in absolute value by choosing np suffi-

ciently large. This is the key to the proof and serves as did the Riemann-

Lebesgue property in Theorem II.

Now enumerate the rational subintervals of [a, b] and with E replaced by

J„ a typical rational subinterval, refine subsequence {f(nkx)} to {/(r)(«tx)},

as in Theorem II so as to make 7iv(X:/r) tend to m(Jt) uniformly for X on a

finite range. The diagonal subsequence of the subsequences {/(r)(«tx)},

f = l, 2, 3, • • • , is such that if the distribution functions Fn(K'-E) are de-

fined with it, these distributions will converge for E = Jr, r = l, 2, 3, • • • .

The extension to arbitrary sets E of positive measure is done exactly as

in the last lemma of Theorem II.

4. Complex-valued systems. Let {0„(x)} be a uniformly bounded, com-

plex-valued, orthonormal system on a finite interval [a, b] with bound M.

Each 0„(x) may be decomposed, 0„(x) =rn(x)-\-isn(x), where r„(x) and s„(x)

are real-valued. Therefore the given orthonormal system gives rise to two

sequences of random variables, {rn(x)} and {s„(x)}. Moreover, for any sub-

sequence of these, {rnk(x)}, {s„k(x)}, the functions

C n n y

23 Ckrnk(x)                 23 a-kSnk(x)
m  \ x G E    *_i                              fc_i \

-^ y and- ^ z
. { An An J

(4.1)     FN(y,z:E) =-—-,
m(E)

N = 1,2,3, ••-,
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represent for each N a two dimensional distribution of unit mass over the

plane. Here {ak} is any real sequence satisfying

2 2 2    1/2
(a) An = (ai + a2 + • • • + oln)    —* °o as N —» °o,

(4.2)
(b) on = o(AN)

and EC [a, &] has positive measure.

The sequence {Ejvfa, z'.E)} will converge to a limiting distribution if we

show that for any rectangle R in the Xju plane the characteristic functions of

the Fn,

I     exp(*(Xy + /tf))d^(y,*:£)
-00 «^ —00

tend uniformly to a limit function $(X, p:E).

Defining r*fa) =rn(x)/2M, 5* fa) =sn(x)/2M, we have |r*(x)| gl/2,

15*(x) | ^ 1/2 for each n. Also,

$jv(X, ̂:E) = m(E)-1 I   exp I i2M(X 22 akrnk(x)/AN
Je \ \     k—\

+ n 2~2 aksnk(x)/AN J J <fx.

As in Theorem II, we apply the formula

e' = (1 + a) exp (z2/2 + Q(«))

in   which   Q(z)=o(32).    Letting   ZN,k=i2Mak[\r*k(x)+ns*k(x)]/AN,   k = l,

2, • ■ • , N, we have

r N
*Ar(X, /i.E) = ^(E)-1       11(1 + «y.*)

(4.4) j£ W
/ ",     2 * * 2       2 * \

• exp I -2Af2 2J a*[Xrni(x) + psnk(x)] /AN + 2~2 Qi^N.k) ) dx.

For (X, n) in a rectangle fi = [a^X^/3, 7^ju^S] it can be shown that

exP ( ZXi Q(zx.k)) =exp (o(l)) uniformly. It can also be shown as in Theo-

rem II that the remaining factors in (4.4) are uniformly bounded for (X, ju)

in a rectangle ft. It follows that the uniform convergence of <I?jv(X, p.'.E) on fl

to a limit $>(\,p.:E) is equivalent to the uniform convergence on ft of the func-

tions

$*(X, n:E) = «(£)-i f II (1 + zN,k) exp (-2M2 [~X2i; a!|r!*(*)/^
(4.5) Jb*=1 V L   *=1

+ 2X/x X) a>krnk(x)snk(x)/AN + p2 2~2 aks*k(x)/AN   ) <fx.
ft-i *=i J/
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A triple application of Theorem I and its corollary may be made and it is

clear that a subsequence {0nt(x)} (and so automatically subsequences

{r*k(x)}, {s*k(x)\) may be chosen so that for {0nk} or any further subse-

quences {0nkj(x)} = {r*k.(x)} +i{s*k.(x)}, there exists real-valued functions,

R(x), Q{x), S(x), such that for any sequence of real numbers {al} satisfying

conditions (4.2)

JO—       2*2 2

(a) 23 dkrnk{x)/AN —* R(x)    in measure on [a, b],
4-1

(b) 23 o.krnk{x)snk(x)/An —* Q(x)   in measure on [a, b],
*=i

N

(c) 23 akSnk(x)/AN —* S(x)    in measure on [a, ft].
*=1

The functions R{x), Q(x), S(x) are the same for all subsequences of {0„k}

and may be assumed to satisfy

0 g R(x),        | Q(x) | ,        S(x) g 1/4, »g^i.

Also since fba(rtl(x)+stk2(x))dx = l/(2AT)iJXk(x)hk(x)dx = l/iM2 for fe = l,
2, • • • , and since (from Theorem I) the functions R(x) and S(x) are weak

limits of {r*k(x)} and {s*k(x)}, it follows that

f   (R(x) + S(x))dx = —- •
J a 4M2

Defining FN(y, z:E) and <£jv(X, n'.E) with these subsequences: {rnk\, {snk},

and also defining with these (or any subsequence thereof),

1       C   N
$r(X,p.:£) = ——       11(1 + i(2M)ak(\r*nk(x) + ns*nk{x)) /AN)

m(E) J e k-i

• exp (-2ilf2[X2l?(*) + 2\ixQ(x) + n2S(x)])dx,

we see that the boundedness of the integrand in (4.4), (4.5), and (4.6) and the

convergence in measure on [a, b] of

(r-        N Nn     ^9 n 9    j, j, 2

— 2M2   X2 23 akrnk(x)/AN + 2Xju 23 o,krnk{x)snk{x)/AN
L    *=i t-i

*        2   *2 2"]\

+ M2 23 aks„k(x)/AN   J

to exp (-2M2 [X2l(x) +2Xp-C(x) +m25(x) ]) uniformly for (X, m) Gfi, as W-»<*>,

implies that for any E, m(E)>0 and any {ak} satisfying (4.2),

| $j,(x, m:£) - ***(X, (i:£)h0 as iV-> «,
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uniformly for (X, p.) in U. From this it follows that if we define

(4.7)     *(X, p:E) = —— f exp (-l/2(X2E(s) + 2\pQ(x) + p2S(x)))dx
m(E) J e

where Efa) =4Af2i?fa), Q(x) =4M2Q(x), Sfa) = 4M2S(x), and if a further
refinement of

{Mx)} = {r„k(x) + isnk(x)}

can be found for which, when FN(y, z\E) a.nd$N*(\,p,:E) are defined with the

new subsequence, we have

$n (X,/*:E)->*(X,m:E)

uniformly for (X, p.) £Q, independently of set E and sequences {ak} satisfying

(4.2), we shall have proved the generalized pseudo-Gaussian theorem. This

further refinement is obtained by expanding in series and employing the

Riemann-Lebesgue Theorem as in Theorem II. The details will not be given

here.

Theorem V. Let {9n(x)} be an orthonormal, complex-valued, uniformly

bounded system of functions on a finite interval [a, b]. Then there exists a subse-

quence {dnk(x)} and real-valued functions R(x), Q(x), Sfa) satisfying OfZR(x),

| Q(x)\, Sfa) ^M2, f%(R(x)+S(x))dx = l, such that for any real sequence {ak}

satisfying

(a) An = (0-1+0,1+ ■ ■ ■ +4)"2^«> as iV-*»,

(b) on = o(An)

and any measurable set EC [a, b], m(E)>0, the distributions {Ejvfa, z:E)}

defined by (4.1) tend to a limiting distribution {F(y, z:£)} at each point of con-

tinuity of the latter, and the characteristic function "J>(X, p.:E) of this limiting dis-

tribution has the pseudo-Gaussian form (4.7). Moreover, any subsequence

{6nkj(x)} of {0nk(x)} also has this property.

Remarks. (1) The nonsingular normal distribution for a pair of random

variables (cf. Cramer [2, pp. 263, 265, 288]) is given by

GV< s> " o-m-2TT7i f     P exP (-V2(l - p2) [(* - m,f/a\
2x<7-i<r2(l — p2)1,2J-KJ-x

— 2p(x — m{)(y — m2)/<Ti<r2 + (y — m2) /<r2])/dxdy

in which the center of gravity is (m\m2), G\ and <r2 are the standard deviations

of the random variables, and p is the coefficient of correlation. In the case of

the normal distribution, p=0 implies that the variables are independent. The

characteristic function of this nonsingular normal distribution is

2   2 2   2
$(X, p) = exp (i(m{h + m2p) — faiX  + 2<na2\p + tr^p  )/2).
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The limiting distributions of Theorem V will still deserve the title "pseudo-

Gaussian" inasmuch as when R(x)=clt Q(x)=c2^0, and S{x)=c3; C\, c2, c3

being constants, expression (4.7) will represent the characteristic function

of a two-dimensional, nonsingular, normal distribution of dependent random

variables with center of mass (0, 0). If Q(x) =0, the variables are asymptoti-

cally independent. An example in which this occurs is the case of two lacunary

trigonometric series,

00 00

23 (a* cos nkX + bk sin nkx)    and     23 (a* cos mkX + bk sin mkx),
o o

in which the combined sequence of integers [mk, nk\ is still lacunary. Zyg-

mund and Salem [9] show that the distributions corresponding to (4.1), but

with sums 23f and 23^ (M and N not necessarily equal), { Fnm{j, z:E)},

tend to the two-dimensional Gaussian distribution of independent variables

having characteristic function

exp (-1/2(X2 + p.2)) = exp (-X2/2) exp (-p2/2).

(2) As an example of the dependent variable case of Theorem V we con-

sider the complex-valued orthonormal system

.   , (<t>n(x)   +   l<t>n(x))
Pn(x) =-—-) » = 1, 2, 3, • • • ,

defined by means of the Rademacher functions(6) on [0, l], with uniform

bound M=l. Consider the distributions Fy(y, z:E) for this system in the

special case E= [0, 1 ].

By arguments preceding (4.7) we know that for any subsequence [p„k(x)}

and any {ak} satisfying (4.2), the characteristic functions $^(X, p.: [0, l]) de-

fined with the corresponding altered real and imaginary subsequences

{<Pnk(x)} = {<pnk(x)/2 }, as in (4.3), may be uniformly approximated over any

rectangle by

4*(X, n: [0, 1]) =  f   exp (-(X2R(x) + 2\liQ{x) + n2S(x)))
^ 0

.iL/        i2ak(X<)>nk(x) + n<t>nk(x))\
I I I 1 -\-)dx

where R(x), Q(x), S{x) are each the limit in measure of

N N
V-v     2    *2 2 ,—>     2    2 2
2_j ak<t>nk(x)/AN = l_, ak4>nk{x)/iAN.
k=l *=1

But for any subsequence {<f>nk(x)} of the Rademacher system and any {a2},

6 Ibid. Footnote 3.



1955]      A CENTRAL LIMIT THEOREM FOR ORTHONORMAL SYSTEMS        309

#,2    2 2 #,     2 2 1
X, ak<t>„k(x)/AAN = 2J ak/±AN = —'       N = 1, 2, 3, • • •,
k-l k—\ 4

and so R(x) =Q(x) = S(x) =1/4, and

4*(X, m:[0, 1])

r »  * /       tot(x + m)^(x) \
= exp (- 1/4(X2 + 2XM + M2)) II ( 1 + ' ) dx.

Jo    k=i\ 21'2An /

If the product in the integrand is expanded by the rule (3.12), we obtain, after

term-wise integration, a collection of terms which, with the exception of the

initial term, 1, are of the form

[coefficient in X and p]     j    &.* fa)0»t2fa) ■ • • 4>„k.(x)dx

with all nki distinct. But such an integrand is a Walsh function ^v(x), r>\,

and so has integral zero over [0, l]. This proves that uniformly over any

rectangle ft,

$jv(X, p:[0, l])-^exp(-l/4(X2+2XM + M2)) as N-+ oo.

If now the Theorem V were applied to obtain a particular subsequence

{pntfa)} which would give the result for any set E of positive measure, the

foregoing remark would imply that the corresponding distributions FN(y, z:E)

converge for E= [0, 1 ] to a nonsingular normal distribution whose character-

istic function is exp ( — l/4(X2+2Xp;+;u2)) of the dependent type.

(3) In the same manner the uniformly bounded orthonormal system,

P*(x) =(<p2n-i(x)+i<p2n(x))/2112,   w = l,   2,    3, ■ • • ,   contains   a   subsystem

{p*k(x)} which will determine distributions FN(y, z:E) such that for

£= [0, l], the limiting distribution is of the independent normal type with

characteristic function exp ( —l/4(X2+/x2)). This follows from the details in

Remark (2) and the additional fact that Q(x) =0 since {<p2n-i(x) -4>2n(x)} is a

uniformly bounded system converging weakly (Riemann-Lebesgue theorem)

to zero. By Theorem I there then exists a subsystem {</>2„t-i(x) -<p2nk(x)} such

that 2Xi alxp2r,k-i(x)-<p2„k(x)/AN converges in measure to ()(x)=0. This is

the way Q(x) was obtained in Remark (2).

(4) A difference between the systems p„fa) and p„*(x) of the preceding

remarks is that the Riemann-Lebesgue condition on the combined real and

imaginary components, that is,

(4.8) lim   I   f(x)rnk(x)snk(x)dx = 0 for all f(x) £ L,
k-no   J a

is satisfied by the latter but not by the former. This condition is a sufficient
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condition for obtaining, in Theorem V, Q(x) =0 in characteristic function

(4.7). This may be called the asymptotically independent case.

For, if [dnk(x)} is the chosen subsequence of (0„(x)} for which Theorem V

is valid, and if \dn{x)} has real and imaginary sequences satisfying (4.8), then

at the stage at which Theorem I applied to obtain Q(x) with

N

23 <ikrnk(x)s„k(x)/AN —* Q(x) in measure
fc=i

we could declare Q(x)=0 by the uniqueness of the weak limit in (4.8) and

the role of the weak limit in the proof of Theorem I. Thus we would get

(4.7) with Q(x)=0 as the limiting characteristic function in Theorem V.

The condition (4.8) then divides complex systems into two classes; the

first class (i.e., sequences satisfying (4.8)) includes many common systems,

e.g., (cos nx-\-i sin nx)/2ir, n = l, 2, 3, ■ • • , but excludes cases in which total

dependence (identity) exists between the random variables, 23^-1 o,krnk(x)/AN,

23?-1 aksnk(x)/AN, e.g. (cos nx+i cos nx)/(2ir)112.

Finally, using Rademacher functions it is possible to establish the follow-

ing result.

Theorem VI. Let R(x) and S(x) be any two nonnegative, bounded, real-

valued functions on [0, l] such that fl{R{x)-\-S(x))dx = \. Then there exists a

complex-valued, 'uniformly bounded, orthonormal system {8n(x)} = {rn(x)

-\-isn(x)} on [0, l] such that for any sequence of real numbers {ak} satisfying

(a) AN = (al+ ■ ■ ■ +a2Nyi2-+™, as JV->oo,

(b) aN = o{AN),

and any measurable set Ed [0, 1 ], m(E) >0, the distribution functions formed

with the real sequence {r„(x)} and imaginary sequence {sn(x)},

ml <x G E  23 akrk{x)/AN ̂ y and   23 akSk{x)/AN = s( )

FN{y,z:E) =-—-=-,
m{E)

N = 1, 2, 3, • • •

tend to a limiting distribution F(y, z:E) whose characteristic function is

*(X,p:£) = ——■ f exp (-l/2[X2.R(s) + n2S{x)])dx.
m{E) J e
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