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Summary. §1 deals with the statistical regularity properties of a denum-

erable number of particles, all moving about the states of a Markov chain

according to the same transition probabilities.

§2 deals with the problem of obtaining a sharper version of a strong limit

theorem proved independently by Harris and Levy.

Introduction. We shall be concerned throughout with a sequence of ran-

dom variables {.Xn}, « = 0, 1, • • • , which assume only integer values(2) and

which have the property that

Pr { Jn+n = J I Xm = t, Xm-i, • • • , Xo \

= Pr {X^n = j\xm= i] = Pr {Xn = j| X0 = »}

for all integers m, n^O and all states i andj for which the conditional proba-

bility is defined. The distribution of X0 will be fixed but arbitrary. Sequences

of this type are known as Markov chains with denumerable states and sta-

tionary transition probabilities. The fundamentals of the theory of such

chains were laid down by Kolmogorov [14]. Chung [2] and Feller [10] have

also given expositions of the main results of the theory. In the remainder of

the introduction we shall state, without proof, those results from the general

theory which we shall need later on. Also, as much as possible, we shall assign

the notation which will be used throughout the remainder of the paper.

The probability given above is called the nth step transition probability

which we shall denote by py\ If given a matrix

E = {p™ = Pn], Pn ^ 0, i,j = 0,1, • • • («);

zZ Pn =i. * = o, i, • • •,
y-o
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(2) Each integer denotes a possible state of the Markov chain.

(3) We could just as well have included the negative integers in representing the totality of

states. It is clearly only a matter of notation.
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we can always construct a sequence of random variables {X„}, w =0, 1, • • • ,

which is a Markov chain having one-step transition probabilities P. The

wth step transition probabilities are then defined recursively by the relation

(») -^      (»-l)

Pa  = 2-, Po*    Pkj, h j, — 0, 1, • • • .

In what follows we shall sometimes refer to the Markov chain as being P

and sometimes as {-X"n}-

An important notion in Markov chain theory is that of the number of

transitions necessary to reach a certain state for the first time given initially

a particular state. We let

fa   = Pr {Xn+n - j,        Xm+, 9^ j   for    1 g v < n \ Xm = i \,

m, i, j = 0, 1, • • • ; n = 1, 2, • • • ;

00 CO 00

fa = Is/a >       ma = la "fa i      a a = 2-f (" - ma) fa ■
v=l v=l v=l

We call ntij the mean first passage time from state i to state/ If i=j, ma is

called the mean recurrence time of state i. States i and j are said to belong

to the same class if/«/j5>0, i.e., if there exist integers n(i,j) and n(j, i) such

that p%im>0 and £#W))>0. A state * is called recurrent if/5 = l. This im-

plies that/£ = l for all/ belonging to the same class as i. lifft<l,i is called

transient. If i is recurrent and / belongs to the same class as i, then j is also

recurrent. Consequently, all states of a class are either all recurrent or all

transient. We can then speak of a class as being recurrent or transient. If all

states belong to the same class we refer to the Markov chain as being irre-

ducible recurrent (transient). Even though it might not always be explicitly

stated, we shall deal throughout only with irreducible chains. If /« = 1 and

tna< oo, i is said to be a positive state. If mu= oo, i is called null. If i is posi-

tive (null) and j belongs to the same class, then j is positive (null). Thus all

states of a recurrent class will be positive or null together. A recurrent class

is called positive or null accordingly.

If fu = 1 > tna< oo, then

,.        1      A     (r) 1
hm —   2^ Pa   =-
n-»«i n    „=i ma

for all states^ belonging to the same class as i. If w,-,= oo then lim,,..,, p'fff =0.

If all states belong to the same positive class, then

"1 M     1 1

Y — = i  and   Y — Pu = —'     y = o, i, • • •.
,_o  ma ,-_o  w,< mjj
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In §2 we shall consider the number of times a state is visited in n transi-

tions. This number we shall denote by Nn(-). That is,

N„(i) = {the number of v's such that X, = i for 1 ^ v < n}.

1. Doob [8, p. 404] considered the macroscopic regularity of a denumer-

able number of particles diffusing on the real axis according to some stochastic

process. In particular, he gave some sufficient conditions on the nature of the

stochastic process such that a certain kind of statistical equilibrium would be

maintained. We consider here a denumerable number of particles, inde-

pendently moving about the states of a Markov chain, all according to the

same transition probabilities. We shall be interested in seeing what types of

chains maintain statistical equilibrium and in determining the nature of the

equilibrium^).

An intimately related problem is that of finding positive numbers [Vi]

satisfying the system of equations

00

(1) IZ ViPa = v}; j = 0, 1, • • • .
t'-O

When the Markov chain is irreducible, recurrent, and positive, there exists

such a set {z/,}> having the properties that 0<i>,<1, i = 0, 1, • • • , and

zZ?=o Vi—1. This set is unique. In fact, Vi = \\mn^x (l/n)zZ»-o Pu1,

i = 0, 1, ■ ■ ■ . However, for the null and transient cases this is not true. But,

if the restriction that the vt's be probabilities is removed, the question of

existence and uniqueness of such solutions is open. The significance in other

connections of the existence of such a set of numbers was pointed out by

Harris and Robbins [12]. They were concerned with the application of an

ergodic theorem of Hopf [13] to prove some strong laws concerning the ratio

of random variables.

Doeblin [8] first proved that

(2) lim —- = th, i, j = 0, 1, • • • ,

2j Pa
r- 0

exists and is both positive and finite for all types of Markov chains. Chung

[2] also proved this result and gave some formulas which express (2) in useful

terms. Utilizing the results of Doeblin and Chung, the following theorem was

proved by Derman [5]:

Theorem 1. If all the states of an irreducible Markov chain are recurrent,

(*) This line of research was suggested by T. E. Harris.
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then there exists one and only one set of positive^) numbers {z>*}> »o = 1, k = 0,

1, • • • , satisfying (1) and, in fact, vk = irko, k = 0, 1, • • ■ .

Theorem 1 answers the question of existence and uniqueness of numbers

{vk\ satisfying (1) for the recurrent case. We shall now give some examples

to show that the situation is not as simple for the case where the states are

transient.

Example 1. A renewal type chain. Let pi,i+i=pi and pi.o^l—pi, i = 0,

1, ■ • -.If {vk},v0 = l, k=0, 1, ■ • • , are to be solutions of (1) we must have

*-i

Vk = Jlp„ k = 1, 2, • • • ,

»o = 1 =  Y »••(! - pi) = \hn(l-flpX
•=0 »-*» \ v=0       /

Thus there is a unique solution to (1) if and only if Iim„..K U"=0 pp = 0. How-

ever, IJ"_o P» is the probability of no return to state zero in (w + 1) transi-

tions. Hence the above condition is that the probability is one that a return

to state zero occur in a finite number of steps, i.e., state zero is recurrent.

Since if one state is recurrent the chain is recurrent, we have that a solution

to (1) exists if and only if the chain is recurrent.

Example 2. The asymmetrical unrestricted random walk. Let pi,i+x=p9£l/2,

pi,i-i = q = l—p, i= • • • , —1, 0, 1, • • • . When p = q —1/2 it is known that

the Markov chain so defined is recurrent null. When p ?*q it is also known that

the chain is transient.

Equations (1) in this case become

(4) qvk+i — Vk + Vk-ip = 0, k =■■■, —1,0,1, ••• .

The general solution to this difference equation is

(5) Vk = ci(p/q)k + c2, k= •• • ,-1,0,1, • •• ;p*q

where Ci and c2 are arbitrary constants. The conditions v0 = l and vk>0,

k= • ■ ■ , —1, 0, 1, • • • , imply Ci^O, c2^0, and Ci-hc2 = l. Thus for any

value of Ci such that O^Ci^l, (5) is a solution to (l);i.e., for the asymmetrical

unrestricted random walk, solutions to (1) exist but are not unique.

When p=q = l/2, vk=Cik+d satisfies (4). If cit^O then vk will not always

be non-negative. This shows, since the chain is recurrent null, that the condi-

tion of non-negativeness is essential for the uniqueness in Theorem 1.

Example 3. Let

Poo = 1/2, Poi = 1/2, Pk.k-i = l/2*+2 = Pkk, pk.k+i = (2*+1 - l)/2<=+\

_ k= 1, 2, ••-.

(6) This positiveness condition can be weakened to non-negativeness. This can be seen by

noting that it is impossible for a sequence {vr} to satisfy (1) if one or more but not all vt's are

zero.
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We know that the probability of a direct drift to   <»  starting from  0  is

(1/2) ntM-,i(2*+1-T)/2*+1>0. Hence the probability of not returning to 0

in a finite number of steps is positive and, therefore, the chain is transient.

Equations (1) become

(l/2)»0 + (1/8)0! = vo,

(6) (l/2)»o + (l/8)i* + (l/16)t>, = vi,

pk-2,k-iVk-2 + pk-iik-ivk~i + pk,k-ivk = Vh-i, k = 2, 3, • ■ • i

The condition v0 = l implies vi=i. The vk's for k^2 are uniquely determined

since the equations (6) can be solved one at a time for each successive vk. It

remains to be shown that all vk's are positive. To do this we use induction.

We have %>z»i>0. Assume that vm>vm-i>0 for all integers m<k. From (6)

we get

pk.k-lVk = Vk-i(l  — pk-l,k-l)  — Vk-2pk-2,k-l

= »*_i(l - 1/2*+!) - r*_.(l - 1/2*-1).

Using the induction assumption we have Pk,k-ivk^vk-i(3/2k+1). Hence

vk^vk-i(3/pk,k-i2k+1) =6vk_i; i.e., the relationship holds for all integers. Thus

we have an example of a transient chain having a unique solution to (1).

For the last example, we give an example of a recurrent chain having the

property that the set {vk\ need not be bounded.

Example4. Let£o< = £<,*' = 0,1, • • • ;pu=f(i),pio = l-f(i),i = l,2,
where 0 </(*) < 1 for all i. Clearly the chain is recurrent.

Equations (1) become

(8) pk + vkf(k) =vk, k=l,2,---,

hence vk=pk/(l —f(k)), fe = l, 2, • ■ • . Let g(k) be any increasing function. If

we choosef(k) = 1 —pk/g(k), we have vk=g(k). Thus vk can be made to increase

as fast as desired by choosing g(k) appropriately.

We now consider the denumerable number of particles moving about the

states of a chain. More precisely, let {Xn(k)\, k = l, 2, • • • , be Markov

chains, each having the same matrix of transition probabilities P= {pa}

independent of the states of the other chains. We assume P to be irreducible

and recurrent. Let Af(n) he the number of k's, k = l, 2, ■ • • , such that

Xn(k) =i, i, n=0, 1, • • - , i.e., At(n) denotes the number of particles in state

i at time n. The sequence {vk\ will denote, throughout, the solutions to (1).

We prove the following theorem which establishes the existence of a statistical

equilibrium.

Theorem 2. If {-4,-(0)}., i = 0, 1, • • • , are independently distributed, each

having a Poisson distribution with mean Vi, i = 0, 1, • • • , then for every ra^O,

[Ai(n)}, i = 0, 1, • • • , are independently distributed each having a Poisson

distribution with mean »,-, i = 0, 1, • • • .
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Proof. Consider any subset *i, • • • , iT of states and the random variables

■A-h(n), • • - . -4 ir(n) for any w^l. The characteristic function of Ai;i(w), • • • ,

Ai,(n) is

uh, ■ • •, ir) - n i a + av -1) + • • • + av -1))- ̂-

= ft r« £ -i («*(1 + #£(.* - 1) + • • •
*=0 x-0   *!

(n).   •'*,
+ #«,(«   - l))"

« (l + pkh(e     - 1) + ■ ■ ■ + pkir(e     - 1))
w *-o

= flexp((e,''--l) YnPkVj    ■

r

= II exP (».«(«"« - 1)).
o-l

The last equality in (9) follows by virtue of Theorem 1. Now, the right side

of (9) is the characteristic function of r independent Poisson distributions

having means »,•„ • • • , v<r. Since this is true for all subsets ii, • ■ ■ , ir, the

theorem is proved.

The above result is similar to that of Doob. He considered a statistical

equilibrium of the following kind: Let Ix, ■ • • , IT be any r nonoverlapping

intervals. The random variables Zx, • • • , ZT denoting the number of particles

in the intervals Ix, ■ ■ ■ , IT respectively, are independently distributed ac-

cording to Poisson distributions having means proportional to the length of

the interval. A particular stochastic process for which this kind of equilibrium

exists is the Wiener process.

Let e/f be the space of all sequences of non-negative integers a={ao,

ai, • • • }. Then An= {^40(w), ^4i(w), ■ • • }, w = 0, 1, • • • , is a sequence of

random variables taking on the values in zA. For any cylinder set A £<vf let

&(A) be the probability measure of A defined by independent Poisson dis-

tributions having means »<, *=0, 1, • • • , where z»< is the mean associated

with the ith component of An. By the Kolmogorov extension theorem $ can

be extended to a probability measure defined over the smallest Borel field

zAF containing all the cylinder sets. Again, for any cylinder set A d-d. the

wth-step transition probability

Pr {Ak+n dA\Ak = a) = P^(a, A), n = 1, • • • ; k £ 0,

is determined by its characteristic function
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<t>Uh, ■ ■ ■ , t.) - ft (1 + pkt(eiH - 1) + ■ ■ ■ + pZlie"' - l))ak
ife=0

where ii, • ■ • , i, are the coordinates involved in the cylinder set A. Using

the Kolmogorov extension theorem again we have that PM(a, A),

» = 1, 2, • • • , for any AC*Af is uniquely defined. Thus {An} is a Markov

chain having the stationary probability measure 3> and transiton probabilities

P(1)(a, A). It should be noted that PM(a, A) is a genuine probability meas-

ure for only those values of a such that zZ?-o atpa < w for all k. However,

it will be shown in Theorem 3(ii) below that the ^-measure of such a set is

one. Strictly speaking, in defining the above Markov chain, we restrict our-

selves to those a which belong to this set. We get the following

Theorem 3. (i) If A = {a\ zZj°-o o<< °° } then $(A) =0 or 1 according as

{Pij} is null or positive.

(ii) If A = {a\ zZZo o-iPu < °° for al1 n and j\ then $(A) = 1.

Proof, (i) For each n, zZi'-o At(n) is a series whose terms are independent

Poisson random variables having as means (variances) Vo, Vi, • • • . If [pa] is

positive, zZZ-o ̂ »< °°. It follows then that zZi°~o -<4«(w) < °° with probability

(^-measure) one (see [8, p. 108]). If {pij} is null, zZ"-o v*= °° • The probabil-

ity that A i(n) =0 fori ^ k is exp (- zZ?-tvi) =0 for k= 0,1, • • • ;n = 0,l,
But

Pr I zZA<(n) <«>\   = zZ Pr [A<(n) = 0   for   i ^ k) = 0.

(ii) On taking the expectation with respect to the ^-probability measure

we have since the a,'s are non-negative

/     00 \ oo

(10) E\ZZ <*iPik   )   =   ZZ viPik    = "* <   °° •
\ «-0 / «=0

The assertion is an immediate consequence.

We may note that as a consequence of the stationarity of the Markov

chain {An}, the ergodic theorem of Birkhoff is applicable in proving certain

strong laws concerning functions of the sequence of random variables {A„\.

However, the following theorem is also implied:

Theorem 4. (i) Except for a set of ^-measure zero, and for all ZC*Av,

there exists a function H(a, £) such that

lim — JZ P™{a, £) = H(a, g).
n-*»  n  p=i

(ii) Except for a set of ^-measure zero, there exists a function Kj(a) for

every j such that
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lim  X) «*— 22 pkj = Kj(a).
»-»"  fc-o       n f=i

(iii) 7/ 77(a, £) is independent of a except for a set of ^-measure zero, then

H(a, £)=$(£).

Proof, (i) and (ii) follow immediately from a theorem of Doob [7, p. 400 ].

The crucial assumption in applying Doob's theorem is the existence of a sta-

tionary probability measure <F

(iii)  We have from the stationarity property

(11) — f .  YP^(a, E)Hda) = 4>(£) for all w.
w JzA   r==i

But since (1/w) Y"-i pM(^ £) is bounded and $(zA) = 1

f   P(a, £)$(<*«) = P(£) f .*(da) = 77(£)

= lim — f    £?«(«, 6)*(rfa) = $(£).

We now consider the limit in (ii) of Theorem 4 for the case where {pij} is

null. Let

(13) /,(*, TV) = sup — £ #w, j, k, N = 0, 1, • • • .
«>w n ,_i

Theorem 5. Pe£ \pa) be null and Cj any set of numbers,

(j) If A = {a\Ki(a) = Cj] then$(A) =0 or 1.
(ii)(6) If Ci=vjt / = 0, 1, • • • , awd if for some TV, Y?-0vl/2fj(k, N)< oo,

t^ew$(^) = l.

Proof, (i) For any integer w, let a be any point of zA differing from a'

only at the first m coordinates where a' is any point in A. We then have

oo 1    n      O)        m 1    n      oo        °° 1    n      (*')

(14) X) a* — Y Pkj   =  Y(ak~ °*) — Y Pki  +  Y a'k- Y P*i •
k=0 n   r-1 k—0 «   i—l t=0 W   ,_i

But since {pa} is null, limn^oo (1/w) Y"-i P« =0 Ior au &• Thus on letting

w—> oo, (14) tends to Cy and hence a £-4- This shows that the conditions deter-

mining the set A are independent of the first m coordinates for m = 0, 1, • • • .

Therefore, by the zero-one-law, $(A) =0 or 1.

(ii)  If for some TV, Yt-o I ak-vk\fj(k, TV) < oo then

(6) It has been pointed out by the referee that it is sufficient to assume X* vt(fj(k, TV))J< »•

Under this condition the left side of (14) converges in mean-square to »,-. Using this fact, to-

gether with Theorem 4 (ii), his assertion follows.



1955] DENUMERABLE MARKOV CHAINS 549

lim   zZ (ak - vk)(l/n) zZ pU = 0.
n->«o    j.=0 v=l

Let B be the set of all points aCA such that zZt-o akpif< oo for all n and

such that the above series converges. For any point aCB

00 1    "     c i       °° 1   n     oo       M 1    "     M

(15) 22 aft — zZ Pki = zZ (ak — n) — zZ Pkj + zZ »* — X) ̂ *y •
k-o       n v=i *=o n ^,i i_o       » v-i

On letting n—*a>, (15) tends to »y. Now since Ak(0) has variance !»*, fe=0,

1, • • • , E\Ak(0)— vk\ =vkil2, k=Q, 1, • • • . Thus by a theorem (see [8,

p. 108]) on the convergence of a series of random variables if zZt-o v\l2fj(k, N)

< oo and zZt=o vtf2(k, N) < oo (but here the convergence of the first series

implies the convergence of the second series) then with probability one

zZt-o\Ak(0)-vk\fj(k, N) converges. Since the set £= {a\ zZtLoaiP™ = <*>

for some n} has measure zero by Theorem 2, it follows that $(E) = 1.

If {pi,-} is positive, using (i) of Theorem 3 it is easy to see that if

A = {a\\imn^ zZ"-o a*1/nZ?=i P$=PjzZ?-o ak] then $(4)=1 where

Pi=lim—(l/»)Z?-i^,*-0,lf
We now investigate the behavior of {.4 ,■(»)}, i = 0, 1, • • • , for large n

given A0=a. Analogous to (13) we define

(16) gj(k, N) =  sup p%, k, j, N = 0, 1, • • • .
n>AT

Also let

(17) hj(n) = sup pki, j = 0, 1, • • • ; n = 1, 2, • • •.

We shall refer to the following conditions:

(18) zZ \ak- vk\ gj(k, N) < oo for some N,

(19) lim A,.(») = 0.
n—*<x>

We have now

Theorem 6. // (19) holds for a set of states j = ii, • • ■ , ir, and A is a set of

points in zA such that (18) holds for j=ii, • • • , iT, then

-Via   xa
J Q V

lim Pr {Ah(n) = xh • ■ ■ ,Air(n) = xr\ A0 = a} = H -—
n— oo a_!       xal

for all aCA, where xi, • • ■ , xr is any set of non-negative integers.
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Proof. The characteristic function of the distribution of -4^, • • • , A^

given Ao=a is

(20)    <pn,a(h, ■ ■ • , tr) = n (1 + pih(eh - 1) + ■ ■ ■ + p{kt(eitr - 1))°\
jfc-0

On taking logarithms we get

00

l0gtf>n,a =   Y ff* log (1 + tn,k(tl,  ■ •  ■  , tr))

CO

= £«*(*».*&. • • • ,tT) + e\f».k\*)
fe-0

where |fl| <1 and 1^..* =/>$(*"»-1)+ • • ■ +^(e»'''-l). Since {/>„} is null

we can assume w large enough, i.e., pifa, a = l, • • • , r, small enough, so that

the expansion of log (1 +\p„,k) in (21) is valid. By Theorem 1 and assumption

(18) for j=ii, ■ • • , ir and the fact that ^„,*—>0 uniformly as w—>oo, we

have

lim Y o/tl'n.k = lim  Y (a* — »*)&.,* + lim  Y »*&■,*
(22) n->»   £_() n-»»   jt_o »-»»   it=0

= vh(ei(i - 1) + • • • + vir(eilr ~ !)•

Also, by assumption (18) and (19)

CO 00 CO

(23) lim  Yak\in.k\2 = lim  Y (a* — »*) I ̂ «.* |2 + lim   Z^* I "A".* |2 = °-

Therefore, we have

(24) lim log <bn,a(ti, ■ ■ ■ , tr) = »«,(«'* - 1) + • • • + vir(eil' - 1)
n—*«

and hence lim n.M <pn,a(ti, • • • , tr) = Ha-i exp u,a(e"« —1).

We get the following

Corollary 1(7). If for some TV, X^°„o v]/2gj(k, TV) < oo, j = iu ■ ■ ■ , ir,

then the set A of Theorem 6 has ^-measure 1.

Proof. The proof follows using the same type of argument as used to prove

(ii) of Theorem 5.
Suppose, instead of Ao having the probability measure <I>, it has probabil-

ity measure $* generated, also, by a sequence of independent random vari-

ables. Then we get

(') It seems that the referee's strengthening of Theorem 5 (ii) should carry over here.

However, in this case, there is no analogue to the probability one limit of Theorem 4(ii) which

he used in his proof.
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Corollary 2. If E\Ak(0)-vk\ = ak, E\Ak(0)-vk\2-a\ = oi and if for

some N, zZt-o akgj(k, N) < oo, j=iu • • • , iT, and \Zk-o °tgj(k, N)<«>,

j = i\, • • • . ir, then the set A of Theorem 6 has Q*-measure 1.

Proof. The same remark used for the proof of Corollary 1 holds again.

We remark that the conditions of Corollary 1 for j = 0, 1, • • • imply

metric transitivity of the Markov chain {An} (see [7, p. 401]).

As an application of Theorem 6 and Corollary 2 let us consider the sym-

metrical unrestricted random walk. Here we have vk = l, k= ■ ■ ■ , —1, 0,

1, • • •  and

&-( ■   "       i       \~
\(n -   | k - j | )/2) 2"

if n^\k— j\ and n+\k— j\ is even, pif = 0 otherwise. For all k, j and

w= \k— j\ we have

oo     /       n       \ 1     (       I k - j I        \    l

Phi ~ \(n - Ai)/2/ 2^ ~ \( | k - j |   - A2)/2/ 21^1

where Ai=0 if n is even, Ai = l if n is odd and A2 = 0 if | k— j\ is even, A2 = l

if | k— j\ is odd. Hence we have

/ \ k - j\ \     1 /        n        \ 1
«i(*. 1) ^ (   i I 1-   and   hi(n) ^ [ }—■

\( | k - j |   - A2)/2,> 2I*"'I \(n - A2)/2/ 2-

It is clear thatfe/w)—*0as ra—>oo. Also, it is known that gj(k, 1)^0(\ k—j\~112).

Thus by Theorem 6, for any set ii, • ■ • , iT and for all a such that

Z*°°=-»I o*-11 (1/1 *|1/2) we have

lim  Pr \Aix(n) = xu ■ ■ ■ , Air(n) = xn \ A0 = a} = H ■-
n->» a_l   Xa\

By Corollary 2 to Theorem 6, if the probability measure $* associated with

^ois such that £r--ooE|^|il-l||/fe|-I'2<ooand zZL-.E(Am-l)2\k\~1
< oo, then

r       g-1

lim Pr {A{l(n) = xir ■ ■ ■ , Air(n) = xT) = JJ —: "
n->» a-1    *a!

We note, in closing this section, that most of the theorems proved here

rely heavily only on the existence of solutions to (1). Thus, transient chains,

for which solutions to (1) exist, have the stationarity property of Theorem 2.

The interesting feature, here, is that in such cases the drift is of such a nature

that although more than one distribution could serve as the stationary dis-

tribution (for those cases where the solutions to (1) are not unique) the initial

distribution is maintained.
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2. In [ll] and [15] Harris and Levy each prove the following theorem:

Theorem 1. If i and j are any two states belonging to the same recurrent

class, then with probability one

n (r)

„ , ~ Y Pa
,.    Nn(j) v=0
lun ■- =  lim - = tt,,-.
n— Nn(i)       »-«    "      <*>

L, Pa
t>=0

Chung [2] remarked that it would be of interest to prove some sharper

versions of the theorem. For example, if the Markov chain is that formed by

considering sums {Sn}, w = l, 2, • • • , of independent and identically dis-

tributed random variables { Un\, w=T, 2, • • • , which assume only integer

values and have means zero, then Chung and Erdos [4] proved that

Pr {!*■«>-^0) | >^-^infinitely often}  = 0
I Nn(j) f

for every e>0 where 71f„= Y%-i Pr {■S,v=/}. In this section we shall prove

a sharper version of Theorem 1.

First we define the following stochastic process { Fr|. Let ix, ■ ■ ■ , iT be

any finite subset of states and let Yk=i„ if XVk = ia, a = i, ■ ■ ■ , r, where

Vk is the &th v such that Xv equals any one of the states ix, ■ ■ ■ , iT. Levy, in

[15], considered such a "subordinate" chain.

Lemma 1. { Fr} is a Markov chain with stationary transition probabilities.

Proof. Since ix, • • • , ir are recurrent states, { Yk\, k = l, 2, ■ ■ ■ , are

defined except for a set of probability measure zero. Let Un= {co\vk=n}.

Then for any set yi, • • • , y*+i where yv (v = l, • ■ ■ , k + 1) is equal to one

of the values ii, • • • , ir we have

Pr {Yk+i = yk+i | Yk = yk, • • ■ , Yi = yi}

CO

= Y Pr {®n} Pr {Xn+V = yk+i for some v ^ 1, Xn+V. ^ ix, ■ ■ •, ir

iorl^v'<v\Xn = yk)

= 2Z Pr {fin} Pr {Xv = yk+i for some?; ^ 1, Xv> ̂  iit • • • , ir

for 1 g v' < v | Xo = yk)

= Pr {Xv = yk+i for some v ^ 1, xv> -£ ix, • • • , i,

for 1 ^ t»' < v \Xtt = y*}.
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Since this is true for any k and independent of yi, • • • , y*-i the lemma

follows.

We shall denote the transition probability given in (1) by p~iaip.

Let us consider the special case r = 2, namely ii=i, i2=j. Here p%j = ijp%;

pa=iiPu; P~n=nP*u P~a = nPi where kxp*,= YZl~i pr {Xn=j, Xv^k,l for
l^v<n\X0=i}. Since the original chain {X„} was recurrent and irreducible,

all four transition probabilities are positive. Some computations, see [10],

show that limn^oo p^ =\\mn^„ pff = apl/(ap%+ijp*t) and limn,M pff

= limn^w  pff' = ijpy'djpl + apt/) ■  We  have,  also,   that

If = Pn\ ]$ = hifci(h>)'-\ v = 2,3,---,

where fM are the recurrence time probabilities of state j for the chain { Yk}.

Some further computations yield

/">\ -2       V* i       - ^?(,>      ijP*''  ti        a* J*\(2) an = 2-, (" - mii) fn = —— (2 - tipi} - aPa)
»—l iiP ij

where Mn= zZv-i vfif- We now prove

Theorem 2. If i and j are any two states belonging to the same recurrent

class and if 4>(n) is any nondecreasing, unbounded function, then with probabil-

ity 1

_Nn(j)   ~  Nn(J)lTji_

(Nn(i) + Nn(j)yi2<l>(Nn(i) + Nn(j))   >Cii

will be satisfied for infinitely many or at most finitely many n according as

zZn~i (4>(n)/n)e~^(-n))l2 diverges or converges where

*3/2

_   aPa    .    *   .     .*n_1/!!
Cii = 0-,-y-— (ijpij + ijpji)   1'i.

iiPli

Proof. Let Nk(j) = {the number of v's such that yv=j, l^v^k]. It follows

from a theorem proved by Feller [9, p. 114] that with probability 1

*"'i,/f,"*(*)

will be satisfied for infinitely many or at most finitely many k according as

zZ"-i (0(&)/E)e~(* (*))/2 diverges or converges, where pj = limn^x p{jf. This

follows from the fact that the Markov chain under consideration has only

two states and must therefore satisfy the conditions of Feller's theorem. The

correspondence of the { Yn] chain to the [Xn] chain defines a transformation

from the space Q, of all sequences w of non-negative integers to the space fi'

of all sequences w' of integers i and j. Thus the inverse image of the set of all
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sequences co' having probability 1 by virtue of Feller's theorem applied to the

sequence (3) must also have probability 1. Now for any co and w, k is defined

by k = Nn(i, co)+TV„(j, u) and Nk(j) = N„(j, co) where TV„(-, co) is the value

of TV„(-) for a given co. Then

Nk(j) - kPj    = Nn(j, co) - Pj(Nn(i, co) + Nn(j, co))

Vl'ijiPyWk)   "  (Nn(i, co) + TV„(J, co))1/^yy^/^(TVn(J, co) + Nn(j, co))

(4) *       *
/_Nn(j, CO)  -  (ijpii/iipji)Nn(i, co)

" Cti (Nn(i,u) + TV„0>))1/l^(tf»(*>) + TVn(i,co))

where <^~ {\-&)/& = (&%*&$*)(«&+«P*)W- Let cis = c}j/c'v. From a

result due to Chung [2] it follows that ap%/ aP*i=Tr a- Since {Xn} is recurrent

we have that for all co except for a set of probability measure zero infinitely

many k implies infinitely many w and finitely many k implies finitely many

w. Hence, from (3) and (4) we get the desired result.

We close this section by proving a result, intuitively expected, concerning

the derived Markov chain { F„}.

Theorem 3. If { Yn} is the Markov chain derived for any subset ii, • • ■ , ir

from an irreducible recurrent Markov chain {X„}, and if {p~i,} is its matrix of

transition probabilities, then

,.       1   ,rA . (.) »<« .
lim — 2^ piaia =-;-;-> a = 1, ■ ■ ■ , r.
»-.« w „=i »<!+•••+ »•>

Proof. From Theorem 1 we have with probability 1 that

,.    Nk(ia) Nn(ia)
lim =  Inn ———- = Tr,.,-,        for a = 1, • • • , r.
»->» TVi(tl) n->»   P»(t,)

But from Theorem 1, §1, we know that 7T,a<„ a = l, • • ■ , r, must be unique,

up to a multiplicative factor, positive solutions to the equations

r

(5) Y iapi.ig = *s, ^ = 1, • • • , r.
er=l

It follows therefore that

-= - = hm — 2^ Piaia, a = 1, ■ ■ ■ , r.
*■*,+   •••  +  T>VU ».!+■••   +   Vi, »-»«    «    v=l
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