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Introduction. Let C be a field of characteristic p^O, and let K be a finite

algebraic extension field of C such that the pth power of every element of K

lies in C. Then K/C is called a purely inseparable extension of exponent 1.

It was shown by N. Jacobson that there is a Galois theory for such extensions

in which the place of the Galois group is taken by the derivation algebra of

K/C. In particular, if K is any field of characteristic p, the purely inseparable

extensions K/C of exponent 1 are precisely those in which C is the field of

constants of a restricted P-Lie ring of derivations of K which is of finite

dimension over K. In the classical theory of simple algebras, it is shown that,

if K/C is a Galois extension, the Brauer similarity classes of the simple

algebras with center C and split by K constitute a group which is canonically

isomorphic with the group of equivalence classes of the group extensions of

the multiplicative group of K by the Galois group of K/C. The present

paper provides the answer to a question put to me by J-P. Serre, of whether

one could establish an analogous result, for K/C purely inseparable of ex-

ponent 1, in which restricted Lie algebra extensions [2 ] of K by the derivation

algebra of K/C take the place of the group extensions. Not only is the answer

to this question affirmative, but it provides an excellent illustration of the

theory of restricted Lie algebra extensions. It turns out, in fact, that the Lie

algebra extensions which arise from simple algebras are trivial extensions

when regarded as ordinary extensions, so that the essential structural ele-

ments are here precisely those which differentiate the restricted extensions

from the ordinary ones.

§1 contains the field theoretical background of our problem. In particu-

lar, it gives a simple proof of the main theorem of Jacobson's Galois theory

[4] which we include here because it gives us the connection, on which many

of our subsequent arguments are based, between the structure of the field

extension K/C and that of the derivation algebra of K/C. Theorem 2, which

is not needed in the sequel, is the analogue for the present situation of a well

known result in the classical Galois theory and is significant for the cohomol-

ogy theory of derivation algebras. In §2 we give a proof of a theorem of

Jacobson's on derivations (in a slightly generalized form) which is funda-

mental for the crossed product theory that follows, in the same way as the

analogous theorem for isomorphisms is the source of the classical theory of

crossed products. In §3 we discuss the special type of restricted Lie algebra
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extensions which arise from simple algebras. §4 contains the main results.

A nonmeasurable, but very considerable, portion of this paper is the result

of collaboration with J. T. Tate. Without making him in any way responsible

fordts content, I wish to thank him here for his various contributions.

1. Differential Galois theory.

Theorem 1 (Jacobson). Let K be a field of characteristic p, and let T be a

Lie ring of derivations of K such that

(1) if rCT then also tpCT, and
(2) if uCK and tCT then also utCT, where, for vCK, (ut)(v)=ut(v).

Suppose furthermore that the dimension [T:K] of T over K is finite. Let C

be the field consisting of all elements of K which are annihilated by all tCT.

Then [K:C]=plT'K], and every derivation of K which annihilates C is con-

tained in T.

Proof. Put [T:K]=k. By an elementary lemma concerning spaces of

maps of arbitrary sets into fields (Lemma 2.1 of [l]), we can find elements

Mi, • • • , m* in K and a basis n, • • • , t* for T over K such that Ti(uj) =6,7

(Kronecker symbol). Writing [n, Tj] = ^Zt vijiTi, with VtjqCK, we get

0= [t,-, Tj](uq) =Viiq, whence [r,-, t;] =0. In the same way we find that t? = 0.

Since Tq(uq) =1 while rq(C[ui, ■ ■ • , m,_i]) =(0), we have ms6£C[mi, •••,

Ma_i]. On the other hand, since pth powers are annihilated by every deriva-

tion, u\CC. Hence uq is of degree p over C[mi, • ■ • , m,_i]. It follows that

C[mi, • • • , uk] is of degree pk over C, and that the monomials uei ■ ■ • up,

with 0^et<p, constitute a basis for C[ux, • ■ • , uk] over C.

There remains only to prove that C[«i, ■ • • , uk] =K. For then, if t is any

derivation of K which annihilates C, we have evidently t= zZi r(Ui)TiCT.

Suppose that this is false, i.e., that there is an element vi in K which does not

belong to C[ui, ■ ■ ■ , uk\ Assume inductively that we have already found

an element vq of K which is not in C\u\, • • ■ , uk] and which is annihilated

by every n with i < q. Since tp = 0, there is an exponent e (0 ^ e < p) such that

rq+1, but not t°, maps vq into C[mi, • • • , uk]. We have T(r\(vq) =rqTi(vq),

which is 0 for i<q. Hence, replacing vq by Teq(vq), we may suppose that

rq(vq)CC[ui, ■ ■ ■ , uk]. Since rq(vq) is annihilated by each n with i<q, it

follows then that rq(vq)CC[uq, • ■ ■ , uk]. Write Tq(vq) as a polynomial of

degree p — 1 in uq, with coefficients in C[m9+1, • • • , uk]. Since this polynomial

is annihilated by t^-1 (for rvq(vq) =0), the coefficient of uq~l must be 0. Hence

we can "integrate" this polynomial with respect to uq, i.e., there is an element

wCC[uq, • ■ ■ , uk] such that rq(w) =rq(vq). Now put vq+i=vq — w. Then

vt+iCC[ui, ■ ■ ■ , uk] and Ti(vq+i) =0 for all i<q + l. We can repeat this con-

struction until we obtain ^+i^C[mi, • • • , uk] such that Ti(vk+i)=0 for all

* = lf • • • , k. But then vk+iCC, and we have a contradiction. Hence

C[mi, • • • , uk] =K, and Theorem 1 is proved.

We can now introduce a device which will be very helpful in our later
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dealings with T. Put <t, = m,t,-, where the w< and the r,- are chosen as in our

proof of Theorem 1. Then [ai, <r,-] =0, and a\ = Oi. Let Po denote the restricted

subalgebra of the restricted Lie algebra T (over C) which is spanned, over C,

by the oYs. Construct the restricted universal enveloping algebra Ut0 of TB.

(Ut„ is obtained from Jacobson's M-algebra of P0 by adjoining an identity

element; for the terminology and notation used here, see [2]). Ut0 is finite

dimensional and commutative, and (because of o-p = cn) has no nilpotent ele-

ments other than 0. Hence Pr0 is semisimple.

In [2] we have defined the restricted g-dimensional cohomology groups

H%(L, M) for restricted Lie algebras L in restricted P-modules (i.e., unitary

Pi-modules) M. We shall repeatedly use the elementary fact that if L and M

are finite dimensional and Ul is semisimple then H%(L, 7kf)=(0), for q>0.

This is seen by considering the Pi-module 5 of all linear maps of Ul into M,

the operations being given by (u-s)(v) =s(vu), where u and v are in Ul and

s in S. This module Scontains Mas a Pi-submodule. In fact, if, iormdM, we

define smdS by putting sm(v) =v-m, the map m—>sm is a Pi-isomorphism of

Tkf into 5. It is not difficult to see from the definition of the restricted co-

homology groups that H\(L, 5)=(0), for g>0. In our case, M is a direct

module summand in S, because S is finite dimensional and Pi is semisimple.

Hence we must also have H%(L, M) = (0). In particular, PJ(P0, M) = (0), for

every finite dimensional restricted P0-module M, and all q>0.

It is well known that if G is a finite group of automorphisms of a field K

then the 1-dimensional cohomology group of G in the multiplicative group of

K is trivial. As a first application of our above remarks, we prove the follow-

ing analogous result.

Theorem 2. If K, C, and T are as in Theorem 1 we have H\(T, K) = (0),

where we regard T as a restricted Lie algebra over C, and K as a restricted

T-module, in the natural fashion.

Proof. Let wG77*(F> K). This cohomology class w can be represented by

a restricted Lie 1-cocycle (see Theorem 2.1 of [2]), i.e., by a C-linear map/

of T into K such that

(1) PX(f(p2))-P2(f(Px))=f(\px, P2]), and

(2) p'-^Pp)) =f(pp), for all p, px, p2 in P.

Since the restriction of w to P0 is 0, by what we have seen above, we may

choose/ so that f(a{) =0, for each i. Now write, with udK, f(uax)=gi(u).

Then gt is a C-linear map of K into itself. If, in (1), we set px = <Jj and p2 = uat

we find that Vjgi = g&j. Hence each gt is a P0-endomorphism of K. If a is any

monomial in ux, ■ • • , uk then Ca is evidently a simple P0-submodule of K.

Furthermore, K is the direct module sum of Ca and other such monomial

submodules, and no two of these simple components of K are P0-isomorphic.

It follows that we must have g((a) = (a)(a, where (a)idC. Now apply (1) with

Pi = ao-i and p2 = bait where a and 6 are monomials in U\, • • • , «*. This gives
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a(b)j(Ti(b)—b(a)iO-j(a)—f(ao-i(b)(Tj — b(Tj(a)ai), and since avi(b) and baj(a) both

lie in Cab the right side is equal to (ab)ja<Ti(b) — (ab)ib(Tj(a). In particular, if a

does not contain a factor My, so that ffj(a) =0, this shows that a(b)j=(ab)j.

Now write hj(e) = (u"j)j. Then it will suffice to show that hj = 0. For this, by

what we have just seen, implies that g, = 0, and since T = KT0 this implies

that/ = 0. Now return to the last relation deduced from (1), putting i=j,

a=uj, and b=uf. Then we obtain e2hj(e2) — eihj(ei) = (e2 — ei)hj(ei+e2).

Write e for e2 and put d = p — 1. Noting that hj(e) depends only on the residue

class of e mod p, we then find that ehj(e)+hj(p — 1) = (e + l)hj(e — 1).

On the other hand, let us apply (2) with p=uJ~1aj=UjTj. Then

pp = 0, and we find hi(p-l)pv~1(uv}~1) =0, whence hj(p—l) =0. Hence the last

result becomes ehj(e) = (e + l)hj(e — 1). Since hj(0) =0, this gives hj(e) =0, for

all e. This completes the proof of Theorem 2.

2. Derivations of algebras. The possibility of having a crossed product

theory with derivations in the place of automorphisms hinges on the following

result of Jacobson's [3].

Theorem 3 (Jacobson). Let A be a simple ring with minimum condition,

and let C denote the center of A. Let B be a semisimple finite dimensional algebra

over C such that CCB CA, and let r be a derivation of B into A which annihilates

C. Then there is an element tCA such that r(b) =tb — bt, for all bCB.

Proof. Let A* be an anti-isomorphic image of A, and construct the tensor

product B®A* with respect to C. Then B®A* is still a semisimple ring with

minimum condition, as follows from standard results. Let (A, A) be the direct

sum of two copies (A, 0) and (0, A) oi A, with its natural structure as a right

^4-module. We define a left E-module structure on (A, A) by setting b- (ai, a2)

= (bai, r(b)ai + ba2). Correspondingly, (A, A) has now the structure of a

E®^4*-module. Since B®A* is semisimple with minimum condition, (0, A)

is a direct module summand in (A, A), i.e., (A, A) = U+(0, A), where U is

a E<g>4*-submodule of (A, A), and Uf\(0, A) = (0). Now U is E<g>,4*-

isomorphic with (A, A)/(0, A), and therefore also with A, regarded as a

E®.4*-module in the canonical fashion. Let a be a E®.4*-isomorphism of

A onto U, and write a(l) =(u, v). Then we have, with bCB, (bu, r(b)u + bv)

= b-a(l) =a(b) =a(l-b) =a(l) -b = (ub, vb). Hence bu=ub and r(b)u=vb — bv.

Now there is an element of the form (1, w) in U, and hence there is an element

aCA such that a(a)=(l, w), i.e., (ua, va) = (l, w), whence ua = l. Also,

a(au) = (u, wu), and so a(au — 1) =(0, wu — v)C(0, A). Since Ur\(0, A) = (0),

this gives au = l. Since u commutes with the elements of B, so does its inverse

a. From r(b)u = vb — bv, we obtain therefore r(b) = (va)b — b(va), and Theorem 3

is proved.

3. Regular extensions. Let K/C be a purely inseparable extension of ex-

ponent 1, and put [K'.C]=pk. Let T be the restricted Lie algebra over C

which consists of all derivations of K that annihilate C. We can find elements
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Mi, • • • , Uk in Psuch that K = C[ux, ■ ■ ■ , Uk] and the monomials u-l1 ■ ■ ■ ue£

(0 = e,-<£) constitute a basis for K over C. Then P evidently contains deriva-

tions Ti such that Ti(Uj) =8ij, and it is easily seen that an element of K

which is annihilated by each t,- must lie in C. Hence C is the field of constants

for P, and we are in the situation of Theorem 1.

Now let A be a simple finite dimensional algebra with center C which con-

tains K as a maximal commutative subring. Let 5 denote the set of all

elements 5 of A for which Ds(K)dK, where P„ denotes the derivation of A

which is given by D,(a) =sa — as, for all adA. Let #(5) denote the restriction

of P„ to K. S carries the structure of a restricted Lie algebra over C, with

[sx, s2]=sxs2 — s2sx, and the p-map s—>sp. By Theorem 3, the restricted Lie

algebra homomorphism s—*<j>(s) maps S onto all of P, and clearly the kernel

of <p coincides with K. Thus the pair (S, <f>) is a restricted Lie algebra exten-

sion of K by P.

Now we observe that both 5 and P carry also the structure of a vector

space over K, and that this vector space structure is connected with the re-

stricted Lie algebra structure in a certain way which we shall make explicit.

Let P stand for S or P, and denote the elements of R by p, px, etc. Then, if

Vi and v2 are in K, we have

(i) [vipx, v2p2]=vi(pi-v2)p2 — v2(p2-vi)px+vxv2\px, p2], where p-v denotes the

p-transform of v in the appropriate P-module structure of K.

While this identity is evident, the connection of the P-space structure

with the p-map is more difficult to find. The result is the following:

(ii) (vp)p =vppp+tp~1(v)p, where tc, for any <rGP, denotes the c-operator

v—ra-v on K.

This result is an immediate consequence of the following general lemma.

Lemma 1. Let U be an associative algebra over the field P of the integers

mod p, and let V be a commutative subalgebra of U. Let u be an element of U

such that Du( V) d V. Then, for every vdV, (vu)p =vpup+DP^1(v)u.

Proof. Let y, x0, Xi, • • • be algebraically independent elements over P,

and consider the polynomial ring H = P[y, x0, Xi, • • • ]. There is evidently

a derivation r of H such that r(y)=l and T(x,)=xi+X, for each i. Let f;

denote the multiplication by x,- in H, and let P be the ring of additive endo-

morphisms of H which is generated by t and all the f j. Then, in E, we have

Tf» = fiT+r»+i whence we see that there is a homomorphism/ of E into U

such that/(r) —u and/(£"<) =D*u(v). There is an evident isomorphism q—>q' of

the subring of E which is generated by the f < into Hsuch that f< =x,-. If gi and

q2 are in this subring Q, say, of E we have

(qir)(q2) = ql(rq2 - q2r)' = (qiTq2 - qxq2r)' = (DqiT(q2))'.

By rearranging the factors in the product (£ot)p, using that Tfj = f,T+r,-+i,

we clearly obtain (after applying a finite sequence of such straightenings) a
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relation (Zot)p = Z0'tp + zZt-i Q^, where the </« are certain elements of Q

which remain to be determined. Now we note that (for)* and rp are deriva-

tions and apply our map to the element yp~l. We obtain (p— l)($or)p(y)yp~2

= zZl-i (p — l) ' ' ' (p — i)qly1'''1~i- By comparing coefficients, we conclude

that ql =0 iori>l, whence qi = 0 iori>l, while q{ =(£or)p(y) =(£ot)p~1(xo)

= (for)p-1(fo')=(ror)p-2((Efor(ro))')= ■ ■ ■ = (Ef0V(fo))'. Henceqi = Df-\^o)
and (foT)3, = fSrP+Efor1(fo)T. Now if we apply the homomorphism / this

yields the result of Lemma 1; and it is clear that Lemma 1 gives (ii) for

R = S when applied to A, and for R=T when applied to the ring of all ad-

ditive endomorphisms of K.

A restricted Lie algebra extension (S, <p) of K by T such that 5 can be

given the structure of a E-space satisfying (i) and (ii) and for which <f> is

E-linear will be called a regular extension of K by T.

The following example shows that, in general, not every restricted exten-

sion of K by T is regular. Let K = C[u], where upCC, but m(£C. Let S be

the semidirect sum of the Lie algebras K and T, i.e., the underlying space of

5 is the direct sum (T, K) of the C-spaces T and K, and the commutation is

given by [(pi, v{), (p2, v2)] = ( [pi, p2], pi(v2) -p2(vi)). Let p->p' be any ^-semi-

linear map of Einto C, i.e., an additive map such that, for cCC, (cp)' =cpp'.

Define the p-mao in 5 by (p, v)p = (pp, p'+pr~1(v)+vp). This makes 5 into a

restricted Lie algebra (see [2 ], §3). If we define <f>(p, v) =p then cp is a restricted

Lie algebra homomorphism of S onto T whose kernel coincides with (0, K),

which we identify with K. Now suppose that this extension (S, <p) of K by T

is regular. Let r be the element of E for which t(u) = 1, and put <j = ut. Then,

if m(t, 0) denotes the M-multiple of (r, 0) in an admissible E-space structure

of S, we must have (er, 0) =u(t, 0)+v, where v lies in K. Using (i), we obtain

(t, 0) = [(r, 0), (<r, 0)]=[(t, 0), u(r, 0)+v] = (r, 0)+t(v), whence r(»)=0,

and so vCC. Using this and (ii), we find that (<r, a') =(<r, 0)p = (u(t, 0)+v)p

= (u(t,0))p + vp = upr' + (ut)p~1(u)(t,0) +vp = upt' + u(t,0) +vp, whence

a' =upt'+vp — v. We may, for instance, take C = P(x), with x transcendental

over E, t'=0 and a' = x. Then, since no element v of C satisfies vp — v=x, it

follows that our extension of K by T cannot be regular.

Theorem 4. Let (S, <p) and (S', <j>') be regular extensions of K by T which

are equivalent as restricted Lie algebra extensions. Then, for any admissible

K-space structures of S and S', there is a K-linear equivalence isomorphism of

S onto S'. Also, there is an ordinary Lie algebra isomorphism if/ of T into S

which is K-linear and such that, for every tCT, ^(t) =t, and ^(t)p —^(t") CC.

Proof. We shall first prove the second assertion of the theorem. Let E0 be

the restricted subalgebra of T which we introduced in §1, and put So=<j>~1(T0).

Let <t>o denote the restriction of <p to So, so that (50, <po) is a restricted exten-

sion of K by To. We define a new £-map 5—>5[pl in S0 by putting s[p] =sp — s',

where 5—>s' is any p-semilinear map of S0 into C such that, for vCK, v' =vp.
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Then we have i/[pl =0, and with this new p-map (S0, <j>o) is a restricted exten-

sion of K by Po, where now K is regarded as an abelian restricted Lie algebra

with p-map 0. Since Hl(T0, K)=(0), it follows from Theorem 3.3 of [2] that

this restricted Lie algebra extension is trivial. In particular, ignoring the

p-map now, there is an ordinary Lie algebra isomorphism \j/0 of P0 into So

such that <bo^o is the identity map on P0. Now equip S with an admissible

P-space structure and let \p be the unique extension of \po to a P-linear iso-

morphism of P (which, as a vector space over K, is isomorphic with the

tensor product P® F0, taken with respect to C) into .S. Then <j>\p is the identity

map on P. It follows from the identity (i) that yp is an ordinary Lie algebra

isomorphism of P into S. Furthermore, if cGPo, we have yp(o,)p — ̂ ((jp)

='rV(o-)/GC. Also, if vdK, we have, by the identity (ii), (vrp(a))p=vp\i/(<r)p

+ tprt(l)(v)f((r) =vPyP(<j)p+(vo-)p-1(v)\P(cF) = vp^(a)' + vpyp(cr)w + (vc)*-1 (v)f(a)

= vp\j/(a)'+\[/(vpar + (vo-)p-1(v)o-)=vpil/(<r)'+\l/((vo-)p), whence (\p(vo-))p-\p((va)p)

= vp\p(cr)'dC. Finally, in any restricted Lie algebra, (a+b)p=ap + bp+s(a, b),

where s(a, 6) is a certain sum of commutators formed from a and 6, whence

\p(s(a, b)) =s(\p(a), \p(b)). Hence our above result extends to sums of elements

of the form va, i.e., to arbitrary elements of P. This completes the proof of

the second assertion of Theorem 4.

Now let (S', </>') be a second regular extension of K by P, and let a be an

equivalence isomorphism of S onto S'. Equip S' with an admissible P-space

structure. We can evidently find a basis for 5 over K which is of the form 1,

5i, • • ■ , Sk, where each Sid^(T0). We claim that the set 1 = a(l), a(sx), • ■ • ,

a(sk) is P-linearly independent in S', and therefore constitutes a basis for 5'

over K. In fact, suppose that we have a relation v+ Yt-i via(si) =0, where

v and the z\- belong to K. Apply <j>', noting that </>' is P-linear and <p'a=<f>.

There results the relation Yt-i v'<t>(si) =0. Since <p is P-linear, we may con-

clude from this that Yri-i ViSidK, whence each Vi = 0, whence alsoz/ = 0. Now

define j3 as the P-linear isomorphism of 5 onto S' which sends 1 into 1 and

each Si into a(si). Then /3 evidently coincides with a on K+\p(T0) =S0. Since

the P-space structures of S and 5' satisfy the regularity condition (i), it

follows from the fact that /3 is a Lie algebra isomorphism on S0 that /3 is

also a Lie algebra isomorphism on KSo = S. Similarly, using the regularity

condition (ii), we find that f}(vs)p=f}((vs)p), for all vdK and all sdS0. As in

our proof of the second assertion of Theorem 4, we may now conclude from

this that /? is a restricted Lie algebra isomorphism of 5 onto S'. Clearly, /3

leaves the elements of K fixed and <p'j3=4>, so that j3 is the desired P-linear

equivalence isomorphism. This completes the proof of Theorem 4.

4. Differential crossed products. Let (S, <j>) be a regular extension of K

by P, and construct the restricted universal enveloping algebra Us of S. Let

Us denote the ideal of Us which is generated by the canonical images s' in Us

of the elements sdS. Let J be the ideal of Us which is generated by the ele-

ments of the form v's' — (vs)', where vdK, sdS, and vs denotes the ^-multiple
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of s in an admissible E-space structure of S. Put Vs = Us/J. Although our

construction of Vs uses an admissible E-space structure of 5, it is clear from

the first part of Theorem 4 that Vs is essentially determined by the equiva-

lence class of (S, <f>).

Theorem 5. Let (S, <j>) be a regular extension of K by T, equipped with an

admissible K-space structure on S. Then the canonical map of S into Vsis 1 — 1,

and its restriction to K is a field isomorphism by means of which we identify

K with a subfield of Vs- Then Vs is a simple finite dimensional algebra with

center C, and K is a maximal commutative subring of Vs. Furthermore, S be-

comes identified, by the canonical map, with the set of all aCVs for which

Da(K) CK, and the corresponding regular extension of K by T coincides with

(S, 4>). Conversely, if A is a simple finite dimensional algebra with center C and

containing K as a maximal commutative subring, and if (S, <t>) is the correspond-

ing regular extension of K by T, then the homomorphism of Us into A which

extends the injection of S into A induces an isomorphism of Vs (constructed by

using the natural K-space structure on S) onto A.

Proof. The main difficulty is the proof of the first statement of Theorem 5.

Our method will be to construct an algebra A quite explicitly which has the

properties asserted for Vs and which is eventually shown to be isomorphic

with Vs. Let (S, <j>) be a regular extension of K by T, and equip S with an

admissible E-space structure. Let xp be a map of T into S such as was found in

Theorem 4. Let o\, ■ ■ ■ , ak be a basis for E0 over C such that a\ = o\, and put

Si=^(di). Then sv = Si+c{, with ctCC. In the polynomial ring C[xi, ■ • • ,xk],

where the x,- are algebraically independent over C, let I be the ideal which

is generated by the elements x% — x< — c,-. Put E=C[xi, • • • , xk]/I. Then, if

Zi denotes the coset of x,- mod /, we have E = C[zi, • • • , zk], zp = Zi+d, and

the monomials z\l • • • zkk, with 0^ei<p, constitute a basis for R over C.

Now put W = K®R, the tensor product being taken with respect to C and

regarded in the natural fashion as a vector space over K. There is evidently

a unique C-linear transformation y( of W such that yfy®r) =<r,-(w) ®r

+v® (z,r), for all vCK and all rCR- Let A be the ring of C-linear transforma-

tions of W which is generated by the scalar multiplications with elements of

K and the y/s. We identify the canonical image of K in A with K. We have

yiyi = yjyi, yj=y»+c>, and, for vCK, y,v = vyi+ai(v). Furthermore, the

monomials yl1 • • • y\k, with 0^e,<£, are (left) E-linearly independent in A

and span A over K. Now every element of 5 can be written uniquely in the

form 5=^0+ zZa-i visi, with ^jCK. We define then a(s) =v0+ zZi-i v<yiCA.
If we regard A as a restricted Lie algebra over C in the usual way, we see at

once from the regularity condition (i) that a is a Lie algebra isomorphism of

5 into A, and from the regularity condition (ii) that a is a restricted Lie

algebra isomorphism. Hence a can be extended uniquely to a homomorphism

of Us onto A, which we shall still denote by a. Evidently, a maps the ideal
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J of Us into (0), and since it maps S' isomorphically we have JP\5' = (0).

Hence we may identify 5 with its canonical image in Vs. Furthermore, a

induces a homomorphism y of Vs onto A which (with the identifications we

have made) leaves the elements of K fixed. Clearly, the cosets mod / of the

ordered monomials in the elements si, with non-negative exponents less than

p, span Vs over K. Hence the dimension of Vs over K is no greater than that

of A, and since y maps Vs onto A it must therefore be an isomorphism. Hence

we may verify the remaining assertions concerning Vs by operating in A.

We write the elements of A as polynomials in the y{ with coefficients in K,

the degree in each y; being at most p — 1. Let «i, • • • , uk be the elements of

K which we have used repeatedly already, so that (r,-(«,-) = 5,/M/. We claim

that if adA and aUi — utadK then the degree of a in y< is at most 1. In

fact, write a=a0+aiyt+ • • ■ +aqyg, where the a3- do not contain y,- and

q<p. Then we find that

aui — Uia = axUi + a2(uiyi + y<«i) + • • •

i       r      9~1   r q~2   i i     J_1   1
+ aq(Uiyi     + yiUiyi     + ■ • ■ + y{   «,■)

-i      q~2

= qaqUiy{    + Y ^iVit
j'-o

where the 6y do not contain y,-. This shows that our condition on a implies that

aq = 0 when q>l, and thus establishes our claim. We can now conclude that

S is precisely the set of all adVs for which Da(K) dK. At the same time we

conclude that the center of Vs is contained in S, and since the only elements

of S which commute with all elements of K are the elements of K, we find

that the center of Vs is contained in K and hence that it coincides with C.

Now let P be any nonzero 2-sided ideal of A, and let Os^oGP. Compute

aUi—uta as above. Our computation shows that if we repeat this a suitable

number of times and with suitable indices * we finally obtain a nonzero ele-

ment of LC\K. Hence L = A, and we have shown that A, and therefore Vs, is

simple. It is clear from our construction of Vs that the inner derivation

effected by an element 5 in 5 coincides with cp(s) on K, and hence that (S, <j>)

is indeed the extension of K by P which is derived from the simple algebra Vs

with the maximal commutative subring K.

There remains to prove the last part of Theorem 5. In the notation used

there, it is clear that the canonical homomorphism of Us into A annihilates

the ideal J and hence induces a homomorphism of Vs into A. This homo-

morphism leaves the elements of K fixed, and in particular is not 0. Since

Vs is simple, this homomorphism must therefore be an isomorphism of Vs

into A. But [VS:C] = [K:C]2= [A:C], because Vs and A are simple and K

is a maximal commutative subring of each. Hence our isomorphism maps Vs

onto A, and Theorem 5 is proved.

It will be convenient to look upon our results in the following way: We
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consider the Brauer similarity classes of the simple finite dimensional algebras

with center C which are split by the (fixed) purely inseparable extension

K/C of exponent 1. From each of these similarity classes we pick an algebra

which contains K as a maximal commutative subring. Any two such repre-

sentatives of the same class are isomorphic by an isomorphism which leaves

the elements of K fixed. Hence the corresponding regular extensions of K by

T are equivalent. Thus there results a map f of similarity classes of simple

algebras into equivalence classes of regular extensions of K by T. By Theorem

5, f maps the subgroup of the Brauer group over C whose members are split

by K in a 1 — 1 fashion onto the set of all equivalence classes of regular exten-

sions of K by T. It is easily seen that the composite (as defined in [2, §3])

of two regular extensions is again regular, so that the equivalence classes of

the regular extensions of K by T constitute a subgroup of the group of all

restricted extensions of K by T. We shall prove that f is actually a group iso-

morphism.

Let A denote the algebra of all C-linear transformations of K. If we

identify the elements of K with the multiplications effected by them in K we

may write EC-<4, and K is now a maximal commutative subring of A. The

algebra A is a representative of the identity element of the Brauer group

over C. The corresponding regular extension (S, <p) of K by T is simply the

following: S = K+T, and <f> is the natural projection of S onto T. This exten-

sion is trivial and so represents the 0-element of the group of equivalence

classes of the restricted extensions of K by T. Hence, in order to conclude

that f is a group isomorphism, we must show only that f maps the product of

two algebra classes into the composite of the corresponding classes of regular

extensions of K by T.

In order to do this, we recall a construction which, starting from any

simple finite dimensional algebra B with center C and splitting field K, pro-

duces a simple finite dimensional algebra A with center C in which K is a

maximal commutative subring and which is similar to B. Let B* be anti-

isomorphic with E, by an anti-isomorphism leaving the elements of C fixed.

Then B* is split by K, whence there exists a finite dimensional vector space

W over K which has also the structure of a E*-module such that the B*-

operators are E-linear and the tensor product K®B* with respect to C is

faithfully represented as the ring of all E-linear transformations of W. Then

the required algebra A is simply the ring of all those additive endomorphisms

of IF which commute with each E*-operator. If (S, <p) is the regular extension

of K by T which is derived from A, then, since A is similar to E, (S, <p) be-

longs to the class of regular extensions of K by T that corresponds to the

similarity class of B. Now it is easily seen that S is precisely the set of all those

E*-endomorphisms 5 of IF for which (with vCK and wCW) we have s(vw)

=v'w+vs(w), where the map v—n>' is a derivation of K, namely the derivation

<p(s).
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Now let Ai and A2 be simple finite dimensional algebras with center C

which are split by K. Let IFi and IF2 be modules attached to Ai and A2, re-

spectively, as W was attached to P above. Then the tensor product WX®W2,

taken with respect to K, inherits the structure of an (^4i®^42)*-module in the

natural fashion, and it is clear that K®(Ai®A2)* is thereby faithfully repre-

sented as the ring of all P-linear transformations of IFi <g> IF2. (Symbolically,

we have K®c(Ax®cA2)*~(K®cA*)®K(K®cA2k)). It follows that the ring

A of all L4i®.42)*-endomorphisms of WX®W2 is a suitable representative

for the similarity class of AX®A2. Now let (Si, <t>x) and (S2, <f>2) be the regular

extensions of K by P which are derived from IFi and IF2, respectively, as ex-

plained above. Let SidSi (» = 1, 2) be such that <px(sx) =<b2(s2). Then there is

a unique endomorphism .s of IFi®IF2 such that s(wx®w2) =sx(wx)®Wi

+wi®s2(w2). One checks easily that if (S, <b) is the regular extension derived

from the module Wi®W2 we have sdS and (p(s) =<j>i(si) =<pi(s2). Moreover,

writing s = (sx, s2), etc., we verify that [(sx, s2), (tx, h)] = ([si, s2], [tx, t2))

and (51, s2)p — (sx, si). It is evident that (51, s2) =0 if and only if sx and

s2 are both in K and sx= —s2 (i.e., sx is the multiplication by an element v of

K and s2 is the multiplication by the element — v). Hence we see that the

dimension of the P-space spanned by the elements (sx, s2) with <bx(sx) =<bi(s2)

is equal to the dimension of the P-space Sx, and so is also equal to the dimen-

sion of S over K, whence we conclude that every element of S is of this form

(51, s2). But then it is clear that (S, <p) is precisely the composite of (Si, <bi)

and (S2, 4>2). Hence f is a group isomorphism, and we have our main result:

Theorem 6. The correspondence which attaches to a simple finite dimensional

algebra with center C and containing K as a maximal commutative subring a

regular extension of K by T induces a group isomorphism of the subgroup of

the Brauer group over C whose members are split by K onto the group of equiva-

lence classes of the regular extensions of K by T.

In view of this result, it is desirable to obtain an explicit description of

the group of all regular equivalence classes of extensions of K by P. This is

quite easy to do. By Theorem 4, if (S, <f>) is any regular extension of K by P,

there is a P-linear Lie algebra isomorphism \[/ of T into K such that (pip is

the identity map on P and ^(r)p-\p(Tp)dC, for every rdT. Put/(r) =^(t)"

—^P(tp). Then, as we have already seen in the proof of Theorem 4, / is an

additive homomorphism of T into C and, if vdK, f(vr) =vpf(r). We express

these properties by saying that/ is a ^-semilinear map, with respect to K, of

T into C. Let us denote the C-space of all such maps by SK(T, C). We can

describe our extension (S, <p) as follows. Put (r, v) =\p(r)+v. Then 4>(t, v) =t,

[(ti, vi), (7-2, v2)] = ([tu n], ti(v2)-t2(vi)), and (t, v)p = (tp, vp+Tp-1(v)+f(T)).

Conversely, if/ is an arbitrary element of SK(T, C) these formulas define a

regular extension of K by P, an admissible P-space structure being v(r, vx)

= (vt, vvx). This is verified easily in a straightforward fashion (referring to
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[2] for the discussion of the p-map), except for the regularity condition (ii).

In order to verify that (ii) holds, observe that we have

(vr, vvi)p  =  ((vt)p, (Wl)p + (VT)^1^!) + V»f(T))

= (v T   + (vr)     (v)t, V Vi + (vt)     (Wi) + v /(t))

= vp(t, Vi)p + ((vt)p~1(v)t, (z)r)p-1(^i) - vprp-l(vi))

p p p—1 p_1 p    p_1
=   V   (t, Vi)     +  tv(r.v,)(v)(T, Vl)   +   (0,  (VT) (VV1)   —   V   T (Vi)

-   (Vr)"-1^!).

This shows that condition (ii) is equivalent to the condition (ot)p_1(oti)

= vptp~1(vi) + (vt)p~1(v)vi. In order to prove this identity we merely have to

consider the ring E[x], where x is transcendental over K, and observe that t

can be extended to a derivation of E[x] (still denoted t) such that t(x) =Vi.

Then we have (zit)p-1(oti) = (vt)p(x) which, by Lemma 1, is equal to vptp(x)

+ (vt)p~1(v)t(x) =vprp~1(vi) + (vt)p~1(v)vi.

If we have two such regular extensions, defined by elements /1 and f2 in

Sk(T, C), we can verify directly from the definition that the composite ex-

tension is the extension defined by/i+/2. Hence the above construction yields

a homomorphism of Sk(T, C) onto the group of equivalence classes of the

regular extensions of K by T. There remains only to determine the kernel of

this homomorphism.

Suppose that fCSg:(T, C) and that the corresponding extension (S, <j>) is

trivial. By Theorem 4 there exists a restricted Lie algebra isomorphism 7 of

T into 5 which is inverse to <p and furthermore E-linear. Put y(r) = (r, h(r)).

Then k is a E-linear map of T into K. Since 7 is a Lie algebra isomorphism,

we must have Ti(h(r2)) — T2(h(n)) =h([ru r2]) which means that h belongs

to the space Zr(T, K) of the E-linear 1-cocycles for T in K. Since 7 is re-

stricted, we must have (t, h(r))p = (Tp, h(rp)) which means that f(r) =h(rp)

— h(T)p-Tp-l(h(r)) =h'(r), say. We know already from [2, p. 571] that if h

is any 1-cocycle for T in K then h' is ^-semilinear with respect to C, and so,

in particular, is additive and takes values in C. If, furthermore, h is E-linear

we find that

h'(vr) = vph(rp) + (vrj^^h^r) - vph(r)p - (vt)^1^^))

which, by the identity we have proved above, reduces to vph'(r). Hence

h'CSK(T, C). By reversing the above computation we see that if/ is of the

form h' with hCZx.(T, K) then the corresponding regular extension of K

by T is trivial. Hence we have the following result.

Theorem 7. //, for hCZK(T, K), we denote by h! the map given by h'(r)

= h(Tp)—h(r)p — Tp~1(h(T)), then h'CSK(T, C). The group of equivalence classes

of the regular extensions ofKby T is isomorphic with the factor group of Sk( T, C)

modulo the image of Zk(T, K) by the map h—>h'.
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If we abandon the invariant nature of our description of the regular exten-

sion group, we can obtain something much more explicit. Let ax, • ■ ■ , crk be

a basis for (P0 over C and hence for) P over K such as we used in the begin-

ning. Then an element/ in Sk(T, C) is completely determined by the images

Ci=f((ri). Hence Sk(T, C) may be identified with the group of all vectors

(cx, • • ■ , ck) in Ck. Now suppose that/ is of the form h'. Put h(<Xi) —VidK.

Since h is P-linear, the vector (vx, • • ■ , vk) in Kk determines h completely.

The condition that h be a 1-cocycle becomes simply ffi(vf) =<Tj(vi), for all i

and/ We have Ci=f(<ri) =h'(<Ji) = i\- —if —of"'(»<). Thus our group of regular

extension classes is isomorphic with Ck/D, where D is the subgroup consisting

of all vectors whose components are of the form Vi — vp — of_1(i>j), where

VidK and ai(vj) =<Tj(vi), for all i and/.
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