SOME CONTRIBUTIONS TO THE THEORY OF
RINGS OF OPERATORS. II

BY
ERNEST L. GRIFFIN, ]JR.

Preface. In [3], the first paper in this series, we extended various results
obtained by von Neumann in [6; 7] to general substantial rings. Now, in this
paper, we are able to extend them still further—to arbitrary rings of oper-
ators.

The plan of this paper is similar to that of [3]. First, we extend the notion
of coupling operator to general rings; then, using the crucial Radon-Nikodym
Theorem of Dye proved in [2], we show that the coupling operator is an im-
portant invariant governing the spacial isomorphism of rings. Finally, these
results are applied to questions of topology in rings; the main result in this
direction being the fact that the strongest and the o-weak topologies are
purely algebraic for arbitrary rings. Another result is the fact that the notion
of subring is purely algebraic.

The notation used in this paper is essentially the same as that of [3],
which in turn is essentially that of Murray and von Neumann in [5; 6; 7].
However, we wish to emphasize the fact that here the symbol < between
projections E and F(E < F) in a ring will denote the fact that E is equivalent
to a subprojection of Fand will denote a proper ordering only when specifically
stated.

In preparing this paper we have received much encouragement and assist-
ance from Professors I. E. Segal, I. Kaplansky, and R. Kadison, which we
gratefully acknowledge.

Note: Misonou, in [4], has proved a special case of Theorem 2 of this
paper.

1. The coupling operator for rings of type 11I. We begin by introducing
some definitions and a few general lemmas. The first lemma is a useful form
of Zorn’s Lemma.

DEFINITION 1.1. Let & be the set of projections possessing a property of
projections in a commutative ring M. We shall call the property hereditary
if the following conditions are satisfied: 1. For every collection of orthogonal
projections (Pa|a62[)C_3@, we have Zae?! P,=Pc& also. 2. If 0#PES
and Q is a projection satisfying 0#(Q < P, then QE&.

LeMMA 1.1. 4 set & corresponding to some hereditary property contains a
maximal projection. Further, if each nonzero projection in the ring contains a
nongero member of S, then the identity operator I lies in ©.
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Proof. Using Zorn’s Lemma, we select a maximal collection of nonzero,
orthogonal projections (Palaeﬂ)Q@ and let P= Zae!lPa- If Q€& then
it is clear from the above definition that the projection QP* is either 0 or a
member of &. Thus if this projection is not zero then the maximality of our
collection is violated, and P is easily seen to be our maximal element of &.

Now, assume that each nonzero projection in the ring contains a nonzero
element of &. But then, if P50, we could find a projection Q in & such that
0% Q=< P*; and again the maximality of P is contradicted. Thus P must be I
and the proof of this lemma is complete.

DEFINITION 1.2. A projection E in a ring of operators M on a Hilbert
space H is said to be ¢yclic relative to M if there exists a vector x & H such
that [M’x]=EH. If n is an infinite cardinal and P is a nonzero projection
in the center of a ring M, then P is said to have uniform dimension n (abbrevi-
ated u.d.n) if there exists a family (E.,,I a &) of orthogonal, equivalent, cyclic
projections in M such that P= Zaeu E,. A central projection P is said to
have dimension n (abbreviated d.n) if there exists a family (P,|]aE¥) of
orthogonal, central projections in M such that each P, has u.d.z and
P=7) .cu P

LEMMA 1.2, Let (E.,IaE%I), (F¢| ecC) be infinite families of orthogonal,
cyclic projections in a ring M on a Hilbert space H. If D acu Ea= Zfee F.=1,
then the cardinal of the set N equals that of the set G.

Proof. Let n, n’ be the cardinalsof U, Grespectively,and set &, = (e E@I E.F.
#0). For any ¢€G; if E,F.=0 for all €Y, then Z,eu E,F.=F.=0. This
contradiction proves that for each e&E there exists an a(e) €9 such that
EqFe#0, but then e€S,(y, yvielding finally

C= U G..
€

Since the E, are cyclic, we can find vectors (x.,laE?I)QH such that
[M'x,) =E.H for all a€¥. Now if 0= (Fexa, %o) =||Fexo||?, then Fax,=0,
which with FM'x,=M'Fx,=0 finally implies 0=F.E,=(E,F.)*. Thus
S.C (e E€C| (Fxa, x2) #%0), and the argument of Lemma 1.1.2, page 472 of
[3] shows that the sets &, are each countable.

It is now clear that #’=[cardinal of (U.gu ©.)]<No-n=n. By sym-
metry, n <n’, with finally » =#’. This completes the proof.

LEMMA 1.3. Let M be a purely infinite ring operating on a Hilbert space H.
There exists an infinite cardinal n and a central projection P such that P has
u.d.n.

Proof. Since the ring is purely infinite, we can find a family (E.,IaE?I)
of infinitely many nonzero, orthogonal, equivalent, cyclic projections in M.
By Zorn’s Lemma we can assume that the family is maximal and form
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E= Zaea E,. Comparing E, with E*, we notice that E, < E* is false by the
maximality of our family; and thus by Theorem 6, page 222 of [1], there exists
a projection P in the center of M such that P(E') < PE, (proper).

We now have P= ) .cu PE,+P(E'), and the projections PE, form an
orthogonal family of equivalent, cyclic projections. Let o, be a fixed element
of A and consider the fact that Z.,Ea_.,o PE ,~ Eaeﬂ PE, as each of the
index sets has the same infinite cardinality n#. But this leads to

> PE.> Y, PE.,+P(EY)~ Y PE.+ P(E')=P
AT aEA—aq €Y
or P~ Zuea PE,.

Next, select a partial isometry V in M such that V*V=P and VV*
= D ec¥ PE,. Then P=V*VV*V=V*(3 .cu PE,)V= ) .cu PV*E,V.
But now if we let W=PE,V, then W*W=PV*E,V and WW*=PE, shows
that the family (PV*E, VlaEQI) consists of equivalent, cyclic projections,
with finally P having u.d.n. This completes the proof of the lemma.

LEMMA 1.4. Let P be a projection of dimension n in the center of a ring M
on a Hilbert space H. P has uniform dimension n if and only if (MN\M')pu s
countably decomposable.

Proof. There is clearly no loss of generality in assuming that P =1I. First,
we assume that I is of u.d.n; then there exists a family (EalaEQI) of orthog-
onal, equivalent projections in M such that Zaeﬁ E,=1, and there exists a
family (x| @) of vectors in H such that [M’x, ]| = E.H for each «€3. Now
define the linear functional 8 on MN\M’ by B(T) = (T Xa, %) for some aE,
and assume that Q is a projection in MM’ such that 8(Q) =0. But this
yields (Qxe, %) =||Qx..”'*’=0, or Qx,=0. At once we get QM'x,=M'Qx,=0,
and then QE,=0. We next use the equivalence of the E, to get Q=0. Now
since 3(Q) =0 is seen to imply Q =0, we can apply Lemma 1.1.2, page 472 of
[3] to get MMM’ countably decomposable.

To complete the proof, now assume that MM\ M’ is countably decomposa-
ble. The identity, by hypothesis, can be split up into a sum of orthogonal,
central projections (P.I e€C) S M each having u.d.n. Consequently, there
exist families [(E‘_alaEQI)leE@] of orthogonal, equivalent (for the same ¢)
projections in M along with vectors (x.a|aE¥, ¢€E) such that Zaeu E, o
=P.and [M’x...]=E..H. (We can pick the same index set ¥ for each ¢ since
each P has the same uniform dimension.) Further, since the set € is countable
by hypothesis, we can assume that vectors (xa[ aE) exist such that
Xa = Zeeﬁ Xe,a-

We now let F, be the projection determined by [M’x.] and form E,
=Y ce E.. The equations E.x,= Zee@ Ea¥ea= D cc® ¥ea=Xs show
clearly that E.,M'x.=M'E.te=M'x. and that F,<E, But [Mx,]
2[M'Pay]=[M'x. ] =E..H leads to E. . < F, and consequently
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E,= ) E.,=<F.
EE

Thus E,= F,, and the E, are seen to form a family of equivalent cyclic pro-
jections adding up to I by the computation: Za@, E,= Zeeoz.aeaEe-a
= Zeeﬁi P.=1. This proves that I has u.d.n.

LEMMA 1.5. If E is a projection in a ring M of type 111 on a Hilbert space H,
then E 1is cyclic relative to M if and only if Mgn is countably decomposable.

Proof. Again it is clear that there is no loss of generality in assuming that
E is the identity I. We first assume that [M’x] equals H and consider the
linear functional B8 defined on M by the equation 3(T) =(Tx, x) for T in M.
Just as in the case of the 8 in the proof of Lemma 1.4 above, 3(Q) =0 for a
projection Q in M implies Qx =0 and hence QH=Q[M'x]= [QM'x] = [M'Qx]
=0. Thus the countable decomposability of M follows from Lemma 1.1.2,
page 472 of [3].

Now assume that M is countably decomposable. It is clear from Lemma
1.3 that there exist central projections of dimension N, in M; and, since the
property of having a given dimension is obviously hereditary (Definition
1.1), we can apply Lemma 1.1 to show that I has dimension N,. Further, it
follows from Lemma 1.4 that the identity operator I has uniform dimension
No.

To complete the proof of this lemma, now select a family (E.|a&%) of
orthogonal, equivalent, cyclic projections in M such that Eae?l E,=1, using
the fact that I has u.d. R,. But since M is of type III, each E, is infinite;
and if E is one of the E,, then the ring Mgy is countably decomposable and
of type I11. Thus, by the argument of the previous paragraph, E has u.d. N,
relative to Mgy; and hence E can be written as a sum of countably many
equivalent, orthogonal projections. We now use E~E,, a€¥, to obtain
equivalent, orthogonal projections (Ea,tiaE?I, e<@) such that Zee@ E,,.
=E, for all «&€¥; and we notice that Zae?l-feﬁ Eq. = Z-E?I E,=1. Since
the sets 9 and G are both countable, we see that I and each of the E, are
sums of countably many of the E,,. and are therefore equivalent. Finally,
since the E, are cyclic, I itself must be also.

We are now ready to prove

THEOREM 1. Let M be a ring of type 111 on the Hilbert space H, and let
N be the collection of infinite cardinals which are less than or equal to the cardinal
of H. For each n in N there exists a projection P, in the center of M such that
either P,=0 or P, is dimension n and such that Ene% P,=1. Further, this
decomposition is purely algebraic; in fact, the properties of being of u.d.n and
of being cyclic are purely algebraic.

Proof. The purely algebraic nature of cyclic projections in rings of type I11
clearly follows from Lemma 1.5 plus the fact that countable decomposability
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is purely algebraic. Hence if a central projection is a sum of a family of n
equivalent, cyclic, orthogonal projections, its image under a *-isomorphism
will be also. This proves that the property of being u.d.n is purely algebraic,
and it is clear that being of dimension # is too.

Further, it is clear that the property of being of dimension # is hereditary
with respect to the center of M ; and thus for each # &% which is the dimension
of some central projection in M we can use LLemma 1.1 to get a maximal
projection P, with d.». If there is no central projection of dimension n for
some 7 &N then we define P,=0.

Now let P= Znem P,. If Ps#1I, apply Lemma 1.3 to the ring M(I—P)
to find a nonzero central projection Q <I— P which has u.d.z for some n EN.
But by our choice of P, we get Q=QP,=QPP,=0, which proves that P
must have been equal to I; and the proof of our theorem is complete.

With Theorem 1 out of the way we are now able to define a “coupling
operator.” The aptness of this definition will be more evident after the proof
of Theorem 2 in the next section. But first we have

DeriniTION 1.3. Let M be a ring of type III on the Hilbert space H, and
let (P,,|n€§)?), (P |n€§)2) be decompositions of the identity in the rings
M, M’ respectively; the decompositions being those mentioned in the state-
ment of Theorem 1 above. We now introduce the formal operators
(n/n")P,P, and the formal sum C= Zn.n’em (n/n')P,P;. The formal oper-
ator C will be called the coupling operator for the pair M, M’.

2. *-isomorphisms of rings of type II1. This section will be devoted to the
proof of the type III analog of Theorem 9, page 497 of [3] which yields a
condition for the spacial isomorphism of certain *-isomorphic rings of oper-
ators. We first prove

LEMMA 2.1. Let M be a ring of type 111 on a Hilbert space H. If M is count-
ably decomposable, then every projection in M is equivalent to some central pro-
jection.

Proof. Let E be an arbitrary nonzero projection in M. Since Mgy is of
type III and is countably decomposable, it is clear from Theorem 1 that E
is of dimension Ny; in fact, Lemma 1.4 shows that E is of uniform dimension.
Hence E can be expressed as the sum of the collection (Fa[ a &) of countably
many orthogonal, equivalent, cyclic. projections in M; and we, by Zorn's
Lemma, extend this collection to be maximal in M with respect to being
orthogonal and equivalent, obtaining the family (F.|aC%' D). Let
F=) cw Fa

We now proceed as in the proof of Lemma 1.3, comparing F, with F*
and obtaining a projection P in the center of M such that P(F!)<PF,
(proper) and finally proving that 0 % P~ Zaeﬁ' PF,. Then PE= EaeuPFa;
and since the index sets ¥ and A’ are both countable, we get the result PE~P.
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We next observe that the property of central projections P to satisfy
PE~P is hereditary and use Lemma 1.1 to obtain a maximal projection Q
with that property. However if Q*E>0, we could apply the argument of the
preceding two paragraphs to get a central projection P such that 0P <Q*
and PE~P, thus contradicting the maximality of Q. Hence Q*E=0, and
Q~QE=QE+Q*E=E. This completes the proof of the lemma.

THEOREM 2. Let M, M', M, M’, be rings of type 111 on Hilbert spaces H,
H respectively. If C and C are the respective coupling operators and if ¢ is a
*_isomorphism of M onto M taking C into C, then there exists a linear isometry
W mapping H onto H such that $(A) = WAW-! for A in M.

Proof. Let (P,|nEN), (P, lnE‘,Tt) be the decompositions of the identity
in M mentioned in the definition of the coupling operator. By our hypothesis
of ¢(C)=C, itis clear that (¢(P.)|nERN) and ((P.)|nERN)) are the cor-
responding decompositions of the identity in M. We first observe that if we
can find isometries on the manifolds (P,P,H ]n, n'EN) implementing ¢,
that we can find one in the large by merely piecing together these partial
isometries.

Therefore we need only consider cases in which the identity has dimen-
sions n, n’ with respect to the rings M, M’ respectively. Next we notice that
we can further decompose I into central projections (Pa|a€21) which have
uniform dimension #. But by Lemma 1.4 this implies that each of the rings
(MNM")P, is countably decomposable; and hence that since the P, are of
dimension n’ with respect to M’, that they are of uniform dimension with
respect to M’ also. This finally reduces us to the consideration of cases in
which I has uniform dimensions %, »’ with respect to M, M’ respectively.
I will now be u.d.z with respect to # by Theorem 1 and u.d.»’ with respect
to M’ by Lemma 1.4. We now proceed to the proof of:

Case 1. M, M', M, M’ all countably decomposable. Choose a nonzero vec-
tor #€ H and consider the functional (¢(A4)%, %) defined for A EM. This
functional is obviously positive linear and countably additive and thus clearly
satisfies the hypotheses of Theorem 1, page 247 of [2]. Hence there exists a
nonzero projection E in M and a vector y in EH such that for each operator
Ain M,(4y,y) =(AEy,E,) =(EAEy,y) = (¢(EAE)%, %) = ($(E)p(A)$(E)%, )
=(¢p(4)p(E)Z, ¢(E)%). If we let ¢(E)% =7, then by the above computation,
[ 4y]|2=(4*4y, y)=(@(4*4)5, 3)=($(A%)d(4)F, 7)=(B(A)*$(4)3F, )
=||¢(4)7]|? for all operators 4 in M.

The above computation shows that we can define a mapping W, of [My]
onto [M75] by Wedy=¢(4)H and extending to the closures in the standard
manner. W, is clearly a linear isometry; and if we let E' = Ppy,;, E' =Py,
AEM, and BEM then WoAE' WilBj=W,AE'¢~1(B)y=W,A¢~(B)y
=¢(A4) Bj=¢(4) E' By. This proves that W, AE'Wi'=¢(A)E' by density of
Myin E'H.
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We next apply Lemma 2.1 to E’ and £’ and obtain central projections P
and P such that E'’~P and E'~ P. Thus there exist partial isometries V’, ¥’
such that V'*V'=E', V'V'*=P, V'*V'=F, and V'V'*= P. Further, we
define Wy = V'W,V’*; notice that W, is a linear isometry mapping PH onto
PH;and, for AEPM, consider the operator W14 Wi on PH. We see readily
that

WAWT = VW VAV WP = PV AW
= VW E AW (by V*V" = E')
= V' [¢(4)E']V'* (W,implements ¢ on E'H)
= ¢(A)V'EV'™* = ¢(A)V'V'*V'7'*
= ¢(4)V'V'* (by V'V'*V' = V')
= ¢(4)P.

Now, if A =P, we get W\ Wil=P=¢(P)P, or P<¢(P). By a similar argu-
ment we get ¢(P) < P, so ¢(P) = P. Therefore, by the above computation, for
AePM,

WiAWT! = ¢(A)P = ¢(A)$p(P) = ¢(AP) = ¢(4)

and we have been able to implement ¢ on PH.

We have now proved that every *-isomorphism which satisfies the hypoth-
eses of Case 1 can be implemented at least on a nontrivial manifold belonging
to the center of our ring. But the property of having an implementation is
obviously hereditary and thus we can use Lemma 1.1 to show that our
*.isomorphism ¢ can be implemented on H, since I is our maximal element
having that property. This completes the proof of Case 1.

Case 2. M, M countably decomposable and M', M’ with u.d.n'. Using an
index set A of cardinality n’ we select families of projections (E, IaEQI),
(EJ |a€A) as in Definition 1.2, since I and I have u.d.n’ relative to M’, i1’
respectively. If we let 19, we can find partial isometries (V. |aE?I) map-
ping E{ H isometrically onto the manifolds EJ H. If we do the same in M,
we end up finally with families of partial isometries (V. |a€¥), (V7 |a€N)
such that for all &N, V/*V! =E!, V.*V.=E!, VIV.I*=E!, and
Vi Vi*=E,.

We now consider the mapping B—BE{ of M into Mg.,u. If BE{ =0
for BEM, then O0=BV/*V!=V.(BVI*V!)=B(V.V.*V!)=BV/
=(BV4) V4 *=BE, for all a€¥; thus BE{ =0 implies 0= Z..Ea E/B
=IB=B. Therefore our mapping is a *-isomorphism of M onto Mg, u,
and a similar argument shows that the mapping B—BE{ is a *-isomorphism
of M onto M% 5. Also, the mapping BE{ —¢(B)E{ is a *-isomorphism of
Mg onto Mg since it can be factored into the *-isomorphisms: BE{ —B

—¢(B)—¢(B) Ey .
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Next, if x is the vector which generates the cyclic projection E{, then the
computation [Mg ux]=[ME{x]=[Mx]=E!H plus Lemma 1.5 shows that
the ring Mj g is countably decomposable. Since a similar argument shows
that M’z % is also countably decomposable, we arrive at the conclusion that
all the rings Mg,u, M'gu, M3 %, M'5 5 are countably decomposable and that
the mapping BE{ —¢(B) E{ is a *-isomorphism of Mg,n onto Mz 7.

With the results of the preceding paragraph, we can apply Case 1 of the
present theorem to obtain a linear isometry W, mapping E{ H onto E'H,
implementing the *-isomorphism induced by ¢. Further, it is clear from our
previous argument that the mapping V. W, V. * takes E. H into E/! H, and
hence the linear isometry W= Zaeﬁ Vi WoVd* maps H onto H.

Now, for B arbitrary in A, WE{W-l= D .cu Vi WoVJ{*E{ W1
= VaWoVg* W=V WoVi*( XagaVd Wil V'*) = Vi W Vi* VgWi Vi* =V
WoE! WiVi*=TVJ E! V;*=E{, by the properties of our partial isometries
(Ve Vd IaE%I). Also, for arbitrary B& M and finite subset %, of A, we get
a similar computation:

( > VJWoVJ*)B( > V,,’WO—IVJ*)

a€%, «E9,
= > VIWVI*BViWgiT4*
a'ﬁeﬂo
= D VIWo(BVI*VI)WqiV4* (B commutes with V4 *)
«,8E9,
= > VIW(BE{)WgV *  (since VI*V§ = 0fora > B)
aE%y
= > VIeBEIVI* = > &BVIJEIVI*
aE!lo de?[o
=¢(B) X Ed.
aEYU,

Since our set %, was arbitrary in ¥, an obvious continuity argument proves:
WBW-1 = ¢(B).

This clearly completes the proof of Case 2.

Cask 3. I, T of u.d.n with respect to M, M respectively and u.d.n' with
respect to M', M’ respectively. Since I has u.d.n relative to M, there exists a
family (Ea| a &) of n orthogonal, cyclic, equivalent projections in M such that
Y ecu E.=I. If we let ¢(E,) = Eo, the family (E.|a€¥) is a family of projec-
tions in M with properties similar to those of the E., by Theorem 1. For
1E9, there exist partial isometries (Va|a€d) in M such that V,V.*=E..
Va* Va=E1. _

Next, we notice that ¢ induces a *-isomorphism of Mg,n onto Mz5; and,
by the argument of the second paragraph of our proof of Case 2 of the
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present theorem, we find that the rings M’, M’ are *-isomorphic to the rings
Mg, M 's,# respectively. Further, if x is the vector which generates the
cyclic projection Ei, then [Mfyx]=[M'Eix]=[M’'x] and Lemma 1.5 prove
that the ring Mg,n is countably decomposable.

Thus we have proved that rings Mg,a, Mgn, Mz, and M'z g satisfy the
hypotheses of our Case 2 above, since the first and third of the rings are
countably decomposable and the second and fourth have identity operators
possessing u.d.n’ (by Theorem 1). This yields a linear isometry W, mapping
E,H onto E,H with the property: W(BWs1=¢(B) for B in Mg,n. Finally,
we define the linear isometry W= Zae% (Vo) WoVo*; and if U, is any finite
subset of ¥, then

W( > &)B( > Ea)W‘l
aeuo aE!Io
= Y, W(E.BEs)W-1
a.ﬁeﬂo
> d(V )WV EBVWilgp(Vs¥) (since WE, = ¢(Vo)WoV F)
a,8EY,

Y. ¢(Va)o(V*BVe)¢(Vs*) (by properties of W)
a,BEglo

2 o(VVEBVVE) = 20 ¢(E.BEp)
a,BG?Io a,ﬁe?[o

> E.p(B)Es
a,8E,

(5 =)eo( g o)

Again an obvious continuity argument yields finally that, for BE M,
WBW-! = ¢(B),

and the proof of Case 3 as well as that of the theorem is complete.

3. The coupling operator in arbitrary rings of operators. In [3] we intro-
duced a coupling operator for substantial rings of operators. Utilizing the
results of the earlier sections of this paper, we are now ready to define one
for any ring of operators. Also we shall be able to extend many of the results
of [3] concerning the standard topologies of operator rings. First we make

DEFINITION 3.1. An arbitrary ring of operators can be expressed as the
direct sum of a substantial part and a type III part. In the substantial part
we have defined in Definition 1.6, page 483, of [3] a coupling operator; and
in the type III part we have such an operator from Definition 1.3 of this
paper. We now form the formal sum of these operators to give a formal
operator which we shall call the coupling operator of our arbitrary ring.

If the substantial part of the coupling operator is essentially bounded, then
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we say that the coupling operator itself is essentially bounded. If our coupling
operator is essentially finite and the ordinary operator part is bounded, then
we say that the coupling operator itself is bounded.

Immediately we are able to prove

THEOREM 3. Let M, M be rings of operators on Hilbert spaces H, H re-
spectively. If C and C are the respective coupling operators and are essentially
finite, and if ¢ is a *-isomorphism of M onto M taking C into C, then there
exists a linear isometry W mapping H onto H such that ¢(A) =WAW- for
AE M. In particular, if ¢ is a *-automorphism of M leaving the center point-
wise fixed, then there exists a unitary operator W on H such that $(A) = WAW*
for each AE M.

Proof. We split the ring M into the direct sum of a substantial part and a
type 111 part. By hypothesis, the coupling operators for these parts are taken
over into the coupling operators for the corresponding split parts of M, the
coupling operators for the substantial parts being essentially finite. Thus we
can invoke Theorem 9, page 497 of [3] to get a linear isometry implementing
¢ on the substantial part. Finally, we can use Theorem 2 above to implement
¢ on the type III part with a linear isometry which can be pieced together
with our other isometry to get one in the large. This proves the first part of
our theorem.

In the case of a *-automorphism, the fact that C is left fixed shows that
we can use the first part of the proof of this theorem to obtain a linear
isometry W mapping H onto itself and implementing ¢. But this means that
W is unitary and W-'=W?*. Hence, for AEM, we get ¢(4A)=WAW!
=WAW?*, and the proof of this theorem is complete.

LeEMMA 3.1. Let M be a ring of type 111 on a Hilbert space H. If

C= Y (n/w)P,Pu
naEN

is the form of the coupling operator used in Definition 1.3 and if we apply
the process outlined in Theorem 4, page 483 of [3] to the ring M' (with m
as our cardinal), then the rings M, M' obtained in this manner have the
coupling operator C= D uwen (n/mn') P, Py

Proof. Since it is clearly sufficient to prove that P, P} has dimensions
n, n' relative to the rings M, M’ respectively, for arbitrary #, n’ in N, let
Q=P,P, and Q= P, P,.. Then, using the notation of Theorem 4, page 483 of
[3], we get a *-isomorphism ¢ of M onto M (our present M takes the place
of the M’ of Theorem 4); and thus we see that our present Theorem 1 implies
that 0 =¢(Q) has dimension # relative to M.

Next, noticing that there is no loss in generality in assuming that Q has
u.d.n’ relative to M’ and replacing M by MQ, we see that it is now sufficient
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to show that I has u.d.»n’ relative to M’. Further, using % as our index set of
cardinal m, the fact that each of the M, #(a€¥) is unitarily equivalent to
M’ implies that each e, has u.d.»’ relative to M, _z; and thus, for a fixed ele-
ment aoEY, there exists a collection (E;o'plﬂ € 98B) of orthogonal, equivalent,
cyclic projections in M, g such that ) se® Fays=ea, Also, since Theorem 1
implies that the E] 4 are cyclic relative to M’ and since the projections
(ealaEQI) form an orthogonal, equivalent set, we can find a collection
(E;,ﬁlaEE’I, BEB) of orthogonal, equivalent, cyclic projections in M’ such
that for each a €Y, Epes E| g=e,. It now follows easily from the equation
D ect ex=1 that I has, in M’, a uniform dimension N = (cardinality of the
set A®B) =mn'; and the proof of the present lemma is complete.

THEOREM 4. The strongest and a-weak topologies are purely algebraic, that is,
any *-isomorphism between rings of operators is bicontinuous in the strongest
and o-weak topologies.

Proof. Again, as in the proof of Theorem 3, we split our *-isomorphic rings
into substantial and type III parts. On the substantial parts we quote Theo-
rem 11, page 498 of [3] to show that on them the required topologies are
purely algebraic. Thus, since addition is continuous, it is now sufficient to
prove our theorem in the case of a type III ring.

We now assume that ¢ is a *-isomorphism of the type I11 ring M; onto M,.
The proof now proceeds in the same manner as that of Theorem 11, page 498
of [3] with our present Theorem 3 and Lemma 3.1 replacing the Theorem 9
and Lemma 3.3.1 of [3].

THEOREM 5. The notion of subring is purely algebraic, that is, if ¢ is a
*-isomorphism of the ring M onto the ring M and if N is a subring of M, then
&(N) is a subring of M.

Proof. The proof of this theorem is the same as that of Theorem 14, page
500 of [3].

THEOREM 6. Let C be the essentially bounded coupling operator for the rings
M, M’ on the Hilbert space H. C is bounded if and only if the strongest and the
strong, the o-weak and the weak topologies are equivalent pairs of topologies.

Proof. First, let C be bounded. As in the proof of Theorem 3, we split our
ring M into substantial and type III parts; and, since Theorem 12, page 499
of [3] takes care of the substantial part, we can now assume that M is of
type III.

Let C= > ..en (n/n')P,P, and apply Lemma 3.1 to get rings M, M’
with coupling operator C = 3. nen (n/n'No) P, Py = >0 wen (n/n') B, P,
if we assume that m=N,. Thus, using the notation of Theorem 4, page
483 of [3], we have C=¢(C); and Theorem 2 gives us a linear isometry W
implementing ¢. A
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Now, let (xi| FER = positive integers =index set used in the application
of Theorem 4, page 483 of [3]) be a sequence of vectors in H such that
D> ieg ||xi]|? is finite; and, using the notation of [3], define %= Vix for
kER. Clearly we can define a vector = Zkeg % in H; and, for AE M,
Sice AV, Vid)=Yice (v, x0)=(9(4)z £ =(WAWE, )
=(AW-'z, W-z). Thus we have proved that D ice (dxw, xx) =(AW'%,
W-1%) and it is easy to see that the strongest and the strong, the o-weak and
the weak are equivalent pairs of topologies.

Now suppose that the above pairs of topologies are equivalent. Then, by
Theorem 13, page 499 of [3], the trace in the finite part of our ring M is
continuous in the strong topology; and, by Theorem 8, page 490 of [3], the
coupling operator for the finite part must be bounded. But Definition 3.1
tells us that this means that our operator C is bounded and we have com-
pleted the proof of this theorem.

We bring our paper to a close by indicating the proof of

THEOREM 7. Let C, C be the essentially bounded coupling operators for the
rings M, M’, M, M’, which act on the Hilbert spaces H, H respectively. Further,
let Co and C, be the ordinary operator parts of the coupling operators, plus
S=L.U.B. (Co, I). Now, if ¢ is a *-isomorphism of M onto M, then ¢ is strongly
(weakly) continuous if and only if the operator T = Cop~1(S1) is bounded.

Proof. It is obvious that our continuity condition is independent of the
type 111 part of our ring M; and, since Theorems 4 and 6 yield strong (weak)
continuity of ¢ on this part of M, our present theorem is proved there. But,
on the substantial part, our theorem follows directly from Theorem A, page
503 of [3]; and our theorem is completely proved.
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