
FINITE EXTENSIONS OF ABELIAN GROUPS WITH
MINIMUM CONDITION

BY

REINHOLD BAER

Among the groups with minimum condition one meets, often quite un-

expectedly, groups which satisfy one of the following two conditions:

(a) the commutator subgroup is finite;

(b) there exists an abelian subgroup of finite index.

It is our objective in this investigation to give various characterizations

of these two classes of groups some of which have very little obvious con-

nection with either the minimum condition or properties (a) and (b).

Our principal result, stated in §0, contains characterizations of the groups

with minimum condition and finite commutator subgroup; and the proof of

this theorem is effected in §1 to §5. In §6 we specialize this result to show

that torsion groups with finite automorphism groups are finite. In §7 we

enunciate a characterization of the groups with minimum condition possess-

ing abelian subgroups of finite index; and the proof of this proposition will

be effected in §8 to §11. These results are used in §12 to show that the

p-Sylow subgroups of these groups are conjugate.

0. In this section we enunciate and discuss our principal

Theorem. The following properties of the group G are equivalent.

(i) G is a torsion group and every torsion group of automorphisms of G is

finite.
(ii) G/Z(G) is finite and the minimum condition is satisfied by the subgroups

ofZ(G).
(iii) [G, G] is finite and the minimum condition is satisfied by the subgroups

ofG/[G,G].   '
(iv) Classes of conjugate elements in G are finite and the minimum condition

is satisfied by the abelian subgroups of G.

(v) If J ?*1 is a homomorphic image of G, then the number of elements of

squarefree order, not 1, in J is finite and positive.

Here, as always, we denote by Z(G) the center and by [G, G] the commuta-

tor subgroup of G.

Remark 1. It is an immediate consequence of either condition (ii) or

(iii) that the minimum condition is satisfied by the subgroups of G. On the

other hand conditions (ii) and (iii) require only the validity of the minimum

condition in a certain class of normal subgroups of G.
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Remark 2. Subgroups and homomorphic images of groups with properties

(ii) or (iii) clearly satisfy these properties too. Thus all the five properties of

our theorem are inherited by subgroups and homomorphic images, a fact

that is not obvious in the case of property (i).

Remark 3. The equivalence of properties (ii) and (iii) shows that our

class of groups is self-dual in the sense of MacLane.

Remark 4. It is not an exceptional situation that every torsion group of

automorphisms of a group G is finite, though G is not a torsion group. De-

note, to construct some such example, by R(p) the additive group of rational

numbers of the form ip~> for integral i and/ li pi, ■ ■ ■ , pk are finitely many

distinct primes, then the direct sum G= zZ^-(P') ls an abelian group which

contains every R(pt) as a characteristic subgroup. This group possesses

exactly 2* automorphisms of finite order.

Remark 5. Suppose that A is an abelian group which contains only a

finite number of elements of squarefree order; and consider the group G which

is obtained by adjoining to A an element g subject to the relations:

gi = 1    and   g~lag = a-1 for every a in A.

One verifies that G contains only a finite number of elements of squarefree

order and that every element of the form ag or ag~* for a in A has order 4.

This family of examples shows the impossibility of substituting for condi-

tion (v) the weaker condition that G be a torsion group which contains only

a finite number of elements of squarefree order.

Remark 6. If the minimum condition is satisfied by the subgroups of a

group G [i.e. if every nonvacuous set of subgroups of G contains a minimal

one], then cyclic subgroups of G cannot be infinite and so such a group is

necessarily a torsion group [i.e. a group without elements of infinite order].

We note the important and useful fact that each of the conditions (ii),

(iii), and (iv) implies in particular that G is a torsion group.

1. Throughout this first section we assume that the group G is a torsion

group and that every torsion group of automorphisms of G is finite. It is our

aim then to derive the validity of (ii).

We note first that G/Z(G) is a torsion group, since G is a torsion group;

and that G/Z(G) is essentially the same as the group of inner automorphisms

of G. Thus G/Z(G) is isomorphic to a torsion group of automorphisms of G;

and as such G/Z(G) is finite.

Select next in every coset of G/Z(G) a representative; and denote by S

the subgroup of G generated by these finitely many representatives. Clearly

G = Z(G)S so that G/Z(G)~S/[SC\Z(G)]. Since S is finitely generated and

S/[SC\Z(G)] is finite, SC\Z(G) is finitely generated; see, for instance, Baer

[5, §1, Finiteness Principle]. Thus Sf~\Z(G) is a finitely generated abelian

torsion group; and as such SC\Z(G) is finite. Hence S/[SC\Z(G)] and

SC\Z(G) are both finite; and consequently S itself is finite. Thus we have

found a finite [normal] subgroup 5 of G such that G = Z(G)S.
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As an abelian torsion group Z(G) is the direct product of its primary

components Z(G; p). Denote by P the finite set of primes which divide the

order of the finite group S; and let

A = JlZ(G;p),        B=SUZ(G;P).
vdp *ep

It is clear that

G = Z(G)S = JlZ(G; p)S = AB;
V

and since every Z(G; p) is part of the center of the torsion group G, one

verifies easily that A is the totality of elements in G whose order is prime to

the order of S whereas B is the totality of those elements in G whose orders

are divisible by primes in P only. This implies in particular that A(~\B = 1.

Consequently G is the direct product of B and of the primary components

Z(G; p) with p prime to the order of 5.

Now we consider the totality 2 of automorphisms a oi G with the follow-

ing two properties:

b" = b for every 6 in B;

if the prime p is prime to the order of 5 [does not belong to P], then a

induces +1 or —1 in Z(G; p).

Since G is the direct product of B and of the Z(G; p) for p not in P, 2 is

an abelian group of automorphisms of G and 22 = 1. As a torsion group of

automorphisms of G this group 2 is finite; and consequently there exists only

a finite number of primes p which are prime to the order of S such that

Z(G; P)t*1. Since A is the totality of elements in G whose order is prime to

the order of S, and since B is the totality of elements in G whose orders are

divisible by primes in P only, we see that we have verified the following fact:

(*) There exists only a finite number of primes p such that G contains

elements of order p.

Consider now some definite prime q. The totality of elements of order q

[or 1 ] in Z(G) is a characteristic subgroup Q oi G. To prove the finiteness of

Q we distinguish two cases.

Case 1. There exists a normal subgroup TV of G such that [G:TV] =q.

We consider the totality 9 of automorphisms a of G with the following

properties:

x" = x for every x in TV;

g" =: g modulo Q for every g in G.

It is fairly obvious that 8 is a group of automorphisms of G. Since G/N is a

cyclic group of order q, since Q^Z(G) and Qq = 1, it is easy to see that Q and

9 are isomorphic groups. Hence 9 is a torsion group of automorphisms of G;

and as such 9 is finite. The isomorphic group Q is therefore finite too.
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Case 2. There does not exist a normal subgroup of G whose index is q.

We recall the existence of a finite subgroup S oi G such that G = Z(G)S;

and we denote by M the product of S and of all the primary components

Z(G;p) for p^q. Since G = MZ(G;q) and Z(G; q)^Z(G), M is a normal sub-

group of G. Consequently

G/MZ(G; q)q = MZ(G;q)/MZ(G;qY~Z(G;q)/[Z(G;q) (\ MZ(G;q)q]

~Z(G;q)/[Z(G;q)r\M]Z(G;qY

so that G/MZ(G; q)q is an abelian group whose gth power is 1. But such

a group is either 1 or else it possesses a [normal] subgroup of index q; and

now we deduce G = MZ(G; q)q from the hypothesis of Case 2. This implies

in particular that Z(G; q) = SZ(G; q)9; and we deduce the finiteness of

Z(G; q)/Z(G; q)q from the finiteness of S. Thus Z(G; q) is an abelian g-group

with finite Z(G; q)/Z(G; q)q; and it is well known that such a group is the

direct product of finitely many cyclic groups and of groups of type q°°. Since

SC\Z(G; q) is finite, there exists consequently a direct decomposition Z(G; q)

= U® V with the following properties:

SC\Z(G; q)^U;
U contains only a finite number of elements of order q;

V= Vq is a direct product of groups V, of type g°°.

If we recall the definition of M, then we verify easily that G = (MU)V and

that

vr\Mu = vr\su = vr\z(G;q)r\su = vr\ [z(G-,q)r\s]u = vnu = 1.

Hence G is the direct product oi MU and F and consequently of MU and the

groups V, of type g°°.

Consider now the totality <p of automorphisms a of G with the following

properties:

a induces +1 or —1 in V,\

x° = x for x in MU.

One verifies easily that <p is an abelian group of automorphisms of G and that

cpI = l. Thus 0 is a torsion group of automorphisms of G; and as such <p is

finite. Since G is the direct product oi MU and of the groups Vv of type q°°,

the finiteness of <j> implies the finiteness of the number of direct factors Vt.

Thus V too contains only a finite number of elements of order q. Since

Z(G; q) is the direct product of groups U and V each of which contains

only a finite number of elements of order q, the group Z(G; q) itself contains

only a finite number of elements of order q. Thus we have verified in either

case the finiteness of Q.

By (*) there exists only a finite number of primes p such that Z(G) con-

tains elements of order p; and by what we have shown just now it follows
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that Z(G) contains only a finite number of elements of squarefree order. It

is well known that the minimum condition is satisfied by the subgroups of the

abelian group Z(G) if, and only if, Z(G) is a torsion group containing only a

finite number of elements of squarefree order. Thus we have shown that (ii)

is a consequence of (i).

Remark. For what it is worth it may be pointed out that once we had

proved the finiteness of G/Z(G) we applied condition (i) only on abelian tor-

sion groups of automorphisms of G.

2. The following lemma which we shall need below is not a special case

of our principal theorem.

Lemma. If P is an abelian p-group and P = Pp, if the automorphism <r of

P leaves invariant every element of order p2 in P, and if the order of a is finite,

then (7 = 1.

Proof. If a were not 1, then there would exist a positive integer k such

that <jh=T has order a prime q. Since every element of order p in P = PP is

the pth power of an element of order p2 in P,

xpi = 1 implies xT = x.

Since r^l, there exists an element w of minimal order pm which is not a

fixed element of the automorphism r of P. Clearly 2 <m; and every element

whose order divides pm_1 is a fixed element of r. Let v = wr~1. Since wp has

order pm_1, it is a fixed element of r. Hence

■U)P  =   lijVT  —   wrp   —   WPVP or VP  =   J_

Consequently v is a fixed element of r; and this implies

ws — wvi for every positive j.

But q is the order of r. Hence

W = wr   = wvq or vq = 1.

Since v^l, as w is not a fixed element of r, q=p is the common order of v

and r.

From P = Pp we deduce the existence of an element u in P such that

up = w. Let r = «T_1. Then

•wv = wT = upT = uTp = uprp or rp — v.

Since v has order p, r has order p2; and consequently r is a fixed element of t.

Therefore

v? = ur> for every positive /.

Since p is the order of r, we find that

u = u1* = «rp orf = 1;
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this contradicts the fact, established before, that the order of r is p2. This

contradiction proves <r = 1, as we desired to show.

Remark 1. If P is the group of type 2°° and a the automorphism of E

which maps every element in P onto its inverse, then the order of a is 2. The

first and third hypotheses of our lemma are satisfied by a, the second one

only in the weaker form that elements of order £>[ = 2] are fixed elements.

Thus we cannot, in general, weaken the second hypothesis.

Remark 2. If E is a group of type pK and a the automorphism of P which

maps x in E onto xp2+1, then the first and second hypotheses of our lemma are

satisfied, but not the third one. Thus the third hypothesis is indispensable.

For our application it will be convenient to derive from our lemma the

following

Corollary. If the minimum condition is satisfied by the subgroups of the

abelian group A, then there exists a positive integer n = n(A) with the following

property:

If the order of the automorphism a of A is finite, and if xn=l implies

x" = x, then <r = l.

Proof. Since the minimum condition is satisfied by the subgroups of A,

A is a torsion group; and A is, as an abelian torsion group, the direct product

of its primary components A(p). The minimum condition implies that only a

finite number of the A(p) is different from 1.

Since the minimum condition is satisfied by the subgroups of the abelian

£-group A(p), it is the product of a finite group F(p) and of a characteristic

subgroup B(p) satisfying B(p)=B(p)p—clearly B(p) is also a characteristic

subgroup of A. We denote by k(p) the maximum order of elements in F(p);

and we let n(p) he the maximum of p2 and k(p). Finally we denote by

n = n(A) the product of the finitely many n(p) with A(p)^l.

Suppose now that a is an automorphism of A, that the order of a is finite,

and that xn = l implies x" = x. It is clear that a induces automorphisms in

the characteristic subgroups A(p) and B(p) of A. From our choice of n and

n(p) it follows that every element in F(p) is a fixed element of <r. Since p2 is a

factor of n(p), we deduce from the lemma that every element in B(p) is a

fixed element of <r. Hence every element in A(p) = F(p)B(p) is a fixed element

of <r; and consequently <r = l.

3. We are now ready to deduce (i) from (ii). Accordingly we assume in

this section that G/Z(G) is finite and that the minimum condition is satisfied

by the subgroups of Z(G).
Consider now a torsion group T of automorphisms of G. We denote by A

the totality of automorphisms in T which leave invariant every element in

Z(G). It is clear that A is a normal subgroup of V and that T/A is essentially

the same as the group Y* oi automorphisms of Z(G) which are induced in

Z(G) by automorphisms in V.
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Since the minimum condition is satisfied by the subgroups of the abelian

group Z(G), there exists a positive integer w with the following property:

(+) The automorphism a of Z(G) is equal to 1 if, and only if, the order

of a is finite and xn = 1 implies x" = x.

[The existence of w is a consequence of §2, Corollary.] We denote by TV

the totality of elements x in Z(G) which satisfy xn = l. This is a character-

istic subgroup of Z(G) and G; TV is finite, since the minimum condition is

satisfied by the subgroups of the abelian group Z(G). Since T is a torsion

group, so is its homomorphic image V*, and now we deduce from (+) that

r* is essentially the same as the group of automorphisms of TV which are

induced in TV by automorphisms in V*. But groups of automorphisms of

finite groups are finite. Hence T* is finite, and this implies the finiteness of

[r:A].
Denote by 2 the totality of automorphisms it in A which satisfy

x" = x modulo Z(G)

for every x in G. It is fairly clear that 2 is a normal subgroup of A; and

that A/2 is essentially the same as the group of automorphisms of G/Z(G)

which are induced by automorphisms in A. Since G/Z(G) is finite, so are the

groups of automorphisms of G/Z(G). Hence [A:2] is finite.

If a is an automorphism in 2, then every element in Z(G) and every ele-

ment in G/Z(G) is a fixed element of a. If g is an element in G and z an ele-

ment in Z(G), then

r_1 = fa)-1

is an element in Z(G). Consequently X"'1 is a well determined element in

Z(G) for every coset X in G/Z(G). If m is the finite order of G/Z(G) and g

is an element in G, then gm belongs to Z(G). Hence

1 = (sm)"—1 = gm°g—m = R°mg—'n — (j?"- Wm'jJ—m = g("~1)m

since g"-1 belongs to Z(G). Hence every X"-1 has an order dividing m. Denote

by M the totality of elements z in Z(G) satisfying zm = l. Since the minimum

condition is satisfied by the subgroups of the abelian group Z(G), TIT" is a

finite subgroup of Z(G). Thus we see that 2 is essentially the same as a set of

mappings [actually a group of homomorphisms] of G/Z(G) into TIP Since

G/Z(G) and M are both finite, there exists only a finite number of mappings

of G/Z(G) into TIP Hence 2 is finite.

Since [r:A], [A:2] and 2 are all finite, T is finite. Hence (i) is a conse-

quence of (ii); and this completes the proof of the equivalence of properties

(i) and (ii).

4. In this section we are going to prove the equivalence of conditions (ii),

(iii) and (iv). If G/Z(G) is finite, then [G, G] is likewise finite; see, for in-

stance, Baer [4, p. 163, Zusatz]. If furthermore the minimum condition is
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satisfied by the subgroups of Z(G), then it is satisfied by the subgroups of G

and hence by the subgroups of G/[G, G], Thus (iii) is a consequence of (ii).

It is almost obvious that (iv) is a consequence of (iii).

Assume now the validity of (iv). There exists, as in every group, a maximal

abelian subgroup A of G. Since the minimum condition is satisfied by the sub-

groups of A, there exists a uniquely determined subgroup B of A such that

A/B is finite and B=B" for every positive integer n.

If g is any element in G, then g possesses only a finite number of conjugate ele-

ments in G [by (iv)]. The centralizer C(g) of g in G has therefore finite index

[G:C(g)] in G. This implies the finiteness of the index [B:B(~\C(g)]. But B

does not possess proper subgroups of finite index. Hence B=BC\C(g) or

Ei= C(g) for every gin G; and this implies

B ^ Z(G).

Ii x is an element in the centralizer of A in G, then {A, x} is an abelian sub-

group of G, since A is abelian; and now we deduce A = {A, x} from the

maximality of A. Hence x belongs to A; and this proves that A is equal to

its centralizer in G. Since ^4/E is finite, there exists a finite subset E of A

such that A = {B, F}. Since B is part of the center Z(G) oi G, an element be-

longs to the centralizer of A if, and only if, it belongs to the centralizer of E.

Hence

a = n c(f).
/ in F

We have pointed out before that each of the finitely many indices [G: C(f)]

is finite. By Poincare's Theorem, the index [G:^4] is finite too. Since [^4:E]

is finite, it follows that [G:E] is finite. Since B^Z(G), this shows the finite-

ness of G/Z(G); and since Z(G) is abelian, the minimum condition is satisfied

by its subgroups [by (iv)]. Thus (ii) is a consequence of (iv); and this com-

pletes the proof of the equivalence of conditions (i) to (iv).

5. In this section we are going to prove the equivalence of condition (v)

with conditions (i) to (iv) [whose equivalence has already been verified].

Assume firstly the validity of conditions (i) to (iv). Then every homomorphic

image J9^1 oi G likewise satisfies condition (ii). Thus J/Z(J) is finite; and

the minimum condition is satisfied by the subgroups of Z(J). This implies in

particular that Z(J) contains only a finite number of elements of squarefree

order. If x and y are elements in J such that xn=y" = l and such that x=y

modulo Z(J), then there exists an element z in Z(J) such that x = zy; and we

have 1 = x" = z"y" = z"; and now it is clear that / contains only a finite number

of elements of squarefree order. Since / is a torsion group and Jj^l, J con-

tains elements of order a prime. Hence (v) is satisfied by G.

Assume conversely the validity of (v). It is known that a finite class of

conjugate elements of finite order generates a finite normal subgroup; see
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Neumann [l, p. 186, 5.22, Corollary]. Thus (v) implies the following stronger

property:

(v*) If JVI is a homomorphic image of G, then the elements of square-

free order in / generate a finite normal subgroup Q(J) 7s 1 of J.

There exist normal subgroups of G which are torsion groups; and among

these there exists a maximal one, say TV. If TV were different from G, then

Q(G/N) would be a finite normal subgroup, not 1, of G/N; and this would

lead to an obvious contradiction because of the maximality of TV. Hence

G = N is a torsion group.

Consider now an abelian subgroup A of G. Since G is a torsion group, A

is an abelian torsion group; and since G contains only finitely many elements

of squarefree order, so does A. Hence the minimum condition is satisfied by

the subgroups of A; and consequently the minimum condition is satisfied by

the abelian subgroups of G.

We define inductively an ascending chain of characteristic subgroups

Qi(G) of G by the rules:

Qo(G) = 1,       Qi+x(G)/Qi(G) = Q[G/Qi(G)].

By an obvious inductive argument one deduces from (v*) that every Qi(G)

is finite; and that Qi(G) contains every element in G whose order is not

divisible by an (i + l)st power [of a prime]. Since G has been shown to be a

torsion group, we see that every element in G belongs to at least one of these

finite normal subgroups Qi(G) oi G. This implies in particular that classes of

conjugate elements in G are finite. Hence (iv) is a consequence of (v); and

this completes the proof of the equivalence of conditions (i) to (v).

6. As an application of our principal theorem we prove the following

Corollary. Torsion groups with finite automorphism group are finite.

Proof. If G is a torsion group whose group of automorphisms is finite,

then an immediate application of our principal theorem shows that G/Z(G)

is finite and that G contains only a finite number of elements of squarefree

order. We denote by k the product of the finitely many primes that are orders

of elements in G. As in §1 we show the existence of a finite subgroup 5 of G

such that G = Z(G)S; and we denote by m the order of S. Then 1+km is

prime to the order of every element in G so that the mapping a defined by

x"=x1+km for every x in G is a one to one mapping of G upon itself. But a

leaves invariant every element in S and <r induces an automorphism in the

abelian subgroup Z(G). Consequently a is an automorphism of G, and this

automorphism has, by hypothesis, finite order/. Consequently x=x{1+km)' for

every x in G so that the orders of the elements in G are bounded. Since the

minimum condition is satisfied by the subgroups of Z(G) and since the orders

of the elements in Z(G) are bounded, the abelian group Z(G) is finite. Since

Z(G) and G/Z(G) are finite, G is finite, as we wanted to show.
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Remark. If we form the direct product of a finite group and an infinite

cyclic group, then we obtain an infinite group whose automorphism group is

finite but which, naturally, is not a torsion group.

The author is indebted to the referee for the following application of the

preceding corollary.

A group G is finite if it possesses only finitely many endomorphisms.

Proof. If the set of endomorphisms of G is finite, then the group of inner

automorphisms of G is finite, and this implies the finiteness of G/Z(G). Ii

j=[G:Z(G)], then the transfer of G into Z(G) is an endomorphism of G

mapping every element upon its jth power. Since there exists only a finite

number of endomorphisms of G, there exists a positive integer n such that

gf=gi" l for every g in G. If jVl, then this implies that G is a torsion group;

torsion groups possessing but a finite number of automorphisms are finite by

the corollary. If j = l, then G = Z(G) is an abelian group, and mapping every

element in G upon its nth power is, for every integer n, an endomorphism. But

G possesses only a finite number of endomorphisms, and consequently there

exist two different integers h and k such that gh = gk for every g in G. Again

we see that G is a torsion group and that G is finite by the corollary.

7. Our principal theorem will now be used to obtain a characterization of

a more comprehensive class of groups, namely the groups with minimum con-

dition and an abelian subgroup of finite index.

Proposition. The following properties of the group G are equivalent.

(1) The minimum condition is satisfied by the normal subgroups of G and

there exists an abelian subgroup of finite index in G.

(2) The minimum condition is satisfied by the abelian subgroups of G and

there exists a maximal abelian subgroup of G which possesses only a finite

number of conjugates in G.

(3) The minimum condition is satisfied by the abelian subgroups of G and

every infinite homomorphic image H of G contains an element x^l which

possesses only a finite number of conjugates in H.

(4) (a)  G is a torsion group.

(b) Simple subgroups of homomorphic images of G are finite.

(c) If H is an infinite homomorphic image of G, and if 1 is the intersection

of the subgroups of finite index in H, then there exists a minimal normal sub-

group of H.
(d) Every torsion group of automorphism classes of every subgroup of G is

finite.

Remark 1. If the minimum condition is satisfied by the normal subgroups

of G, then the intersection J(G) of all the subgroups of finite index in G is a char-

acteristic subgroup of G whose index [G: J(G) ] is finite; see, for instance, Baer

[3, p. 3, §2, Proposition 2]. Thus condition (1) implies the existence of an

abelian characteristic subgroup of finite index in G.
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Remark 2. By an obvious combination of the equivalent conditions (1)

and (2) one sees that the minimum condition is satisfied by the subgroups of

groups with properties (1), (2).

Remark 3. It is clear that every group satisfying condition (ii) of §0,

Theorem likewise satisfies the above condition (1). That the converse is not

true, one sees from easily constructed examples; such an example one obtains

by adjoining to an infinite abelian group A with minimum condition an

element 6 satisfying (6a)2 = 1 for every a in A.

Remark 4. As has been pointed out in Remark 2 the class of groups under

consideration is the class of all groups with minimum condition possessing

an abelian subgroup of finite index. It is clear that this class contains with

any group G every subgroup and homomorphic image of G.

Remark 5. It seems to be difficult to assess the strength of condition

(4.d). The reader may be reminded of the fact that every automorphism of

the infinite symmetric group is inner, i.e. its group of automorphism classes

equals 1, though we cannot claim anything like this of the subgroups of this

symmetric group.

Remark 6. The conditions of the principal theorem often require that

every subgroup [every element] has a certain property [like possession of

only a finite number of conjugates] whereas the corresponding conditions of

our proposition require only the existence of at least one subgroup [at least

one element] with the corresponding property. For instance, condition (ii) of

§0, Theorem implies that every subgroup possesses only a finite number of

conjugates whereas condition (2) of our proposition requires the existence of

at least one maximal abelian subgroup possessing only a finite number of con-

jugates. That we cannot claim more may be seen from the following example:

Let A be an infinite abelian group with minimum condition and without ele-

ments of order 2; and denote by G the group arising from A by adjunction of

an element 6, subject to the condition (6a)2 = 1 for every a in A. Then G

meets all our requirements; but the subgroups {6a} for a in A form an in-

finite class of conjugate maximal abelian subgroups of G.

Remark 7. If H is a homomorphic image of a group, satisfying the equi-

valent conditions (1) to (4), then either H is finite or else the abelian char-

acteristic subgroup J(H) of finite index in H is infinite; see Remark 1. Since

the minimum condition is satisfied by the subgroups of the abelian group

J(H), the elements of squarefree order in J(H) form a finite characteristic

subgroup of H which is different from 1 whenever J(H)y^l, e.g. whenever H

is infinite. Thus we see that every group G with the equivalent properties (1)

to (4) has the following property:

every homomorphic image H^l of G contains a finite characteristic sub-
group 7*1.

This improves upon (3).

8. In this section we are going to prove the equivalence of properties (1)
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and (2). If property (1) is satisfied by the group G, then there exists an abelian

subgroup of finite index in G; and this implies the existence of a maximal

abelian subgroup A of finite index [G:.<4] in G. But the normalizer of A in

G contains A and has therefore finite index too so that A possesses only a

finite number of conjugate subgroups in G. It is clear furthermore that the

intersection J(G) of all the subgroups of finite index in G is abelian. But the

minimum condition is satisfied by the subgroups of G whenever J(G) is

abelian and the minimum condition is satisfied by the normal subgroups of

G; see Baer [3, p. 15-16, §5, Theorems 2 and 4]. Hence (2) is a consequence

of (1).
Assume conversely the validity of (2). Then there exists a maximal abelian

subgroup A oi G which possesses only a finite number of conjugate subgroups

in G. This latter property is equivalent to the fact that the index [G:E] of

the normalizer E of A in G is finite. Since A is a maximal abelian subgroup

of G, A is equal to its own centralizer in G. Hence E/^4 is essentially the same

as a group of automorphisms of A. Since the minimum condition is satisfied

by the abelian subgroups of G, G is a torsion group. Thus B/A is a torsion

group of automorphisms of A and the minimum condition is satisfied by the

subgroups of the abelian group A. We apply our principal theorem to see

that E/^4 is finite. Since the indices [G:E] and [E:^l] are finite, [G:.4] is

finite. Since the minimum condition is satisfied by the subgroups of A and

since [G:.4] is finite, the minimum condition is satisfied by the subgroups

of G. Hence (1) is a consequence of (2).

9. In this section we show the equivalence of (3) and the equivalent con-

ditions (1) and (2). Assume first the validity of the equivalent conditions

(1) and (2). Then we deduce from (2) the validity of the first half of condi-

tion (3). If H is an infinite homomorphic image of G, then the intersection

J(H) of all the subgroups of finite index in H is abelian and [H: J(H) ] is

finite; see §7, Remark 1. Since the minimum condition is satisfied by the

subgroups of J(H), J(H) contains only a finite number of elements of square-

free order. Since His infinite and the index of J(H) is finite, J(H)^1. Hence

J(H) contains elements of prime number order; their number is finite and

they form complete classes of conjugate elements in H. Thus (3) is a conse-

quence of (1) and (2).

Next we assume the validity of condition (3). It is clear then that G is a

torsion group. We prove first the following fact which will be used variously

in the course of our proof.

(a) If N is a normal subgroup of the subgroup 5 of G, and if N and S/N

are both abelian, then there exists an abelian subgroup of finite index in 5

and the minimum condition is satisfied by the subgroups of S.

Since N is an abelian subgroup of 5, there exists a maximal abelian sub-

group A of S which contains N. Since S/N is abelian, A/N is a normal sub-

group of S/N and hence A is a normal subgroup of S. Since A is a maximal
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abelian subgroup of S, A is its own centralizer in S. Hence S/A is essentially

the same as a group of automorphisms of A. Since S/A is a torsion group

and since the minimum condition is satisfied by the subgroups of the abelian

group A [by (3)], S/A is finite as a consequence of our principal theorem.

Since S/A is finite and the minimum condition is satisfied by the subgroups

of A, the minimum condition is satisfied by the subgroups of S, proving (a).

There exists among the abelian normal subgroups of G a maximal one, say

M. It is an immediate consequence of (a) that the minimum condition is

satisfied by the abelian subgroups of G/M. We form the totality P= F(G/M)

of elements in G/M which possess only a finite number of conjugates in

G/M. We have shown elsewhere that P is a characteristic subgroup of G/M;

see Baer [2, p. 1023, §2, Proposition l]. Since every element in P possesses

only a finite number of conjugates in the group P, and since the minimum

condition is satisfied by the abelian subgroups of P, we may apply our prin-

cipal theorem on P to see that F/Z(F) is finite.

Denote by H and K the uniquely determined subgroups of G which con-

tain M and satisfy F=H/M and Z(F) =K/M. Since P and Z(F) are char-

acteristic subgroups of G/M, K and H are normal subgroups of G. It is clear

furthermore that H/K~F/Z(F) is finite and that K/M is abelian. Since M

and K are normal subgroups of G, the centralizer L of Min K is a normal sub-

group of G. Since M is abelian and K/L is a torsion group of automorphisms

of M, we deduce as usual from our principal theorem that K/L is finite.

Since M and the subgroup L/M of K/M are abelian, we deduce from (a)

[and §7, Remark l] the existence of an abelian characteristic subgroup J(L)

oi finite index in P. Since J(L) is a characteristic subgroup of the normal sub-

group L of G, J(L) is a normal subgroup of G. Since M is part of the center

of L and J(L) is an abelian subgroup of P, MJ(L) is an abelian normal sub-

group of G. Since M is a maximal abelian normal subgroup of G, we find that

M=MJ(L) or J(L)£M. Hence [L:M] is finite. Thus the indices [H:K],
[K:L], and [P:Tkf] are finite; and this implies the finiteness of F=H/M.

It is noteworthy that the second part of condition (3) has not been used

up till now. Assume by way of contradiction that G/M is infinite. Since H/M

is finite, this implies the infinity of G/H. Consequently there exists [by (3) ]

an element x?^l in G/H which possesses only a finite number of conjugates

in G/H. Let y be some element in G such that x = Hy. Since H/M is finite,

and since x possesses only a finite number of conjugates in G/H, My possesses

only a finite number of conjugates in G/M. It follows from the definition of

P that My belongs to P. Hence y is in H so that 1 =x^l; this is the desired

contradiction. Consequently G/M is finite. Since the minimum condition is

satisfied by the subgroups of the abelian group M, the minimum condition is

satisfied by the subgroups of G; thus we see that (1) is a consequence of (3).

10. In this section we are going to show that (4) is a consequence of the

equivalent conditions (1) to (3). In the presence of these conditions the
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minimum condition is satisfied by subgroups of G and G possesses an abelian

characteristic subgroup of finite index. Clearly the same is true of all the sub-

groups of homomorphic images of G; and this puts into evidence the validity

of conditions (4.a) to (4.c).

Consider now some subgroup 5 of G. Then the minimum condition is

satisfied by the subgroups of S and the intersection J(S) of all the subgroups

of finite index in S is an abelian characteristic subgroup of finite index in S;

cf. §7, Remark 1.
Every group of automorphism classes of 5 has the form <p/Y where <p is a

group of automorphisms of 5 and where T is the group of inner automor-

phisms of 5. Since 5 is a torsion group, and since T~S/Z(S), T is a torsion

group. Hence cp/T is a torsion group if, and only if, <p is a torsion group; and

this is what we are going to assume in the sequel.

Denote by A the group of all those automorphisms in <p which leave in-

variant every element in J(S). Since J(S) is a characteristic subgroup of 5,

A is a normal subgroup of <p and <p/A is essentially the same as the group of

automorphisms of J(S) which are induced in J(S) by automorphisms in <p.

Clearly this is a torsion group of automorphisms. Since the minimum condi-

tion is satisfied by the subgroups of the abelian group J(S), by our principal

theorem <jf>/A is finite.

Denote by 2 the totality of automorphisms a in A which satisfy

g° = g modulo J(S)

for every g in 5. Since J(S) is a characteristic subgroup of S, 2 is a normal

subgroup of A and A/2 is essentially the same as a group of automorphisms of

the finite group S/J(S). Hence A/S is finite too.

Denote by n the finite order of S/J(S) and by N the totality of elements

x in J(S) which satisfy xn = 1. Since the minimum condition is satisfied by

the subgroups of the abelian group J(S), A7" is a finite characteristic subgroup

of J(S). Denote by 2* the totality of automorphisms a in 2 which satisfy

5" = s modulo N for every 5 in S.

It is clear that 2* is a normal subgroup of 2, and that therefore every element

in 2* leaves invariant every element in J(S). Thus s'-1 = [/(5)s]ff_1 for every

s in 5 and every a in 2*. Hence 2* is essentially the same as a set of single-

valued mappings of the finite group S/J(S) into the finite group N; and conse-

quently 2* is finite.
Consider now an automorphism a in 2. Then a induces the identity both

in J(S) and in S/J(S). If X is a coset in S/J(S), then X"~l is a well deter-

mined element in J(S). Since J(S) is abelian and S/J(S) is finite, we may form

the product
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where the product ranges over all the X in S/J(S). Since J(S) is an abelian

group without proper subgroups of finite index [as every subgroup of finite

index in J(S) has finite index in S] we have J(S) =J(S)n; and consequently

there exists an element / in J(S) such that tn = s. Denote by t the inner auto-

morphism of S which is induced by t so that xT = t~1xt for every x in 5. If

y is an element in S, then

y-i = tr^-fty-1 = tr1,f-1yty-1 = y'-1f1yty-1 = y-1yT-1,

since y"_1 and t belong both to the abelian group J(S); and we note that

yT~1 belongs to J(S), since / belongs to the characteristic subgroup J(S) of

S. Thus y""1 belongs likewise to J(S). Since y"-1 and t belong to the abelian

subgroup J(S), we find furthermore that

[y7- 1]n   =    [y-l]«[y>—l]n   =   y(»-l)n^-n^ny-l   —   y(v-l) ng-lygy-1

= y<*-«" II [X^'yX^y-1]

= n [x'-yi'-'y-1] = n X1~° JliyX)'-1 = 1

where all the products have to be taken over the w cosets X in S/J(S). Thus

we have shown that y™-1 belongs to TV for every y in 5 or

y"T = y modulo TV for every y in S.

If in particular x is an element in J(S), then x" = t~1x't = x, since x and t are

both in the abelian group J(S). Thus we have shown that or belongs to 2*.

Hence 2^2*r. Since 2*^2, it follows that 2r=2*r and that consequently

zr/r = s*r/r ~ 2*/ [2* r\ r]

is finite.

If we remember finally that <f>/A and A/2 are finite, it becomes clear that

0/r is finite, as we wanted to show.

11. Assume now that condition (4) is satisfied by G. We are going to

prove that the equivalent properties (1) to (3) hold in G. To do this we shall

first substitute for conditions (4.a) and (4.d) some weaker and handier condi-

tions.

If A is an abelian subgroup of G, then A is a torsion group [by (4.a) ] and

every torsion group of automorphisms of A is finite [by (4.d) ]. We apply our

principal theorem to see that the minimum condition is satisfied by the sub-

groups of A. Hence

(a') the minimum condition is satisfied by the abelian subgroups of G.

If 5 is a subgroup of G, then we denote by C(S<G) the centralizer and by

N(S<G) the normalizer of Sin G. It is clear that SC(S<G) is a normal sub-

group of N(S<G) and that an element in G induces an inner automorphism

in S if, and only if, it belongs to SC(S<G). Thus N(S<G)/SC(S<G) is
essentially the same as a group of automorphism classes of S; and this group
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of automorphism classes of 5 is a torsion group, since G is a torsion group

[by (4.a)]. We deduce from (4.d) that

(d') N(S<G)/SC(S<G) is finite for every subgroup S of G.
Suppose next that T is a normal subgroup of the subgroup S of G, that

S/T is abelian and that T contains an abelian subgroup of finite index. Since

the minimum condition is satisfied by the abelian subgroups of T [by (a')],

the minimum condition is satisfied by the subgroups of T. The intersection

J(T) of all the subgroups of finite index in T is therefore an abelian subgroup

of finite index in T; see §7, Remark 1. Since /(E) is a characteristic subgroup

of the normal subgroup T of S, J(T) is a normal subgroup of S. Next we note

that the minimum condition is satisfied by the abelian subgroups of 5 [by

(a')]. Consider now a normal subgroup N^Soi S. If firstly Eg TV, then S/N

is abelian and every element in S/N possesses only a finite number of con-

jugatesin5/A7'[namelyone].IfJ(r)gAr,butEgiV,then7VE/7Vr~r/(iVrPiE$)

is finite as a homomorphic image of T/J(T); and so every element in the

finite normal subgroup NT/N^l of S/N possesses only a finite number of

conjugates in S/N. If finally -/(E) UN, then NJ(T)/Nc*J(T)/[Nr\J(T)]
is an abelian normal subgroup, not 1, of S/N; and the minimum condition is

satisfied by the subgroups of NJ(T)/N, since the minimum condition is

satisfied by the subgroups of /(E) [by (a') ]. Consequently there exists only a

finite number of elements of any given order in NJ(T)/N so that elements

in NJ(T)/N possess only a finite number of conjugates in S/N. Thus we have

verified the validity of (3) in 5. But (1), (2), and (3) are equivalent; thus we

have shown the following fact:

(a") If T is a normal subgroup of the subgroup S of G, if T contains an

abelian subgroup of finite index, and if S/T is abelian, then the minimum con-

dition is satisfied by the subgroups of S.

Among the abelian normal subgroups of G there exists a maximal one,

say M. The centralizer of M in G is a normal subgroup of G which contains

M. By (d') therefore

(e.l) G/C(ilf<G) is finite.
Denote by P/M the product of all the finite normal subgroups of G/M.

It is clear that E is a normal subgroup of G; and, by (a'), the minimum con-

dition is satisfied by the abelian subgroups of E. If ./WE is a normal sub-

group of E which contains M, then there exists a finite normal subgroup

X/M of G/M which is not part of N/M[ <P/M]. Thus NX/N~X/(XC\N)
is a homomorphic image of the finite group X/M and this finite normal sub-

group, not 1, of P/N contains an element, not 1, which possesses only a finite

number of conjugates in P/N. If next the normal subgroup N oi P does not

contain M, then NM/N~M/(NC\M) is a homomorphic image of the abelian

subgroup M of G. By (a') the minimum condition is satisfied by the subgroups

of M; and thus NM/N is an abelian normal subgroup of P/M which pos-

sesses only a finite number of elements of any given order. Hence NM/N con-
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tains elements, not 1, which possess only a finite number of conjugates in

P/TV. We have verified the validity of (3). Because of the equivalence of con-

ditions (1), (2), and (3) we may now deduce from §7, Remark 1, that the

intersection J(P) of all the subgroups of finite index in P is a characteristic

and abelian subgroup of P whose index [P:J(P) ] is finite. As a characteristic

subgroup of a normal subgroup J(P) is a normal subgroup of G. The product

M\_J(P)C\C(M<G)] of two abelian normal subgroups each of which is part

of the centralizer of the other is a normal and abelian subgroup of G. But M

is a maximal abelian normal subgroup of G; and consequently we have

M = M[j(P)r\C(M <G)]    or   J(P) (~\ C(M < G) ^ M.

Since

J(P)/[J(P) C\ C(M < G)] =a C(M < G)J(P)/C(M < G) ^ G/C(M < G)

is finite by (e.l), and P/J(P) has been shown to be finite before, P/[J(P)

C\C(M<G)] is finite too; and consequently

(e.2) P/M is finite.

If X/P is a finite normal subgroup of G/P, then X/M is, by (e.2), a

finite normal subgroup of G/M. By the definition of P we have therefore

P^X^P or P = X so that

(e.3)  1 is the only finite normal subgroup of G/P.

If A/P is an abelian subgroup of G/P, then we note that P contains the

abelian normal subgroup M whose index [PrTlf] is finite by (e.2). It follows

from (a") that the minimum condition is satisfied by the subgroups of A and

hence also by those of A/P. Ii A is in particular a normal subgroup of G,

then the elements of squarefree order in A/P form a characteristic subgroup

of A/P and hence a normal subgroup of G/P which is finite, since the mini-

mum condition is satisfied by the subgroups of the abelian group A/P. By

(e.3) this normal subgroup equals 1; and so .4/P = 1. Thus we have shown the

following facts

(e.4) The minimum condition is satisfied by the abelian subgroups of

G/P and 1 is the only abelian normal subgroup of G/P.

Assume now by way of contradiction that P<G. By (e.3), G/P is infinite.

Denote by J(G/P) the intersection of all the subgroups of finite index in

G/P. We distinguish two cases.

Case 1. J(G/P) =1. In this case there exists, by (4.c), a minimal normal

subgroup W/P of G/P. Because of J(G/P) = 1 there exists a subgroup 5 of

finite index in G/P which does not contain W/P. By Poincare's Theorem

there exists a normal subgroup V/P of G/P which is part of 5 and whose index

in G/P is finite. Clearly V/P does not contain W/P either. Since V/P and

W/P are normal subgroups of G/P, and since (V/P)C\(W/P) <W/P, the

minimality of W/P implies (V/P)C\(W/P)=1 or VC\W = P. Hence

W/P = W/(W C\V)~ WV/V ^ G/V ~ (G/P)/(V/P)
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is finite. By (e.3) therefore W = P; and this contradicts our choice of W/P as

a minimal normal subgroup of G/P.

Case 2. J(G/P) ?*1. Since Z[J(G/P)] is a characteristic and abelian sub-

group of G/P, Z [J(G/P) ] = 1 by (e.4). Denote by K the uniquely determined

normal subgroup of G which contains P and satisfies J(G/P) =K/P. Then

P<K and K is the intersection of all those subgroups of finite index in G

which contain P. It is a consequence of (d') and the normality of K that

G/KC(K < G) is finite.

If X/P is a normal subgroup of J(G/P), then X is a normal subgroup of

E so that

KC(K < G) g EC(Z < G) g AT(X < G);

and consequently [G:iV(X<G)] is finite. By (d'), N(X<G)/XC(X<G) is

finite. Hence XC(X <G) is a subgroup of finite index in G which contains E;

and this implies X^JC(J<G). Consequently

J (G/P) = (X/P)C[(X/P) <I(G/P)];

and this implies

(X/P) r\C[(X/P) < J (G/P)] £Z[J(G/P)] = 1.

Thus we have shown the following fact.

( + ) If X is a normal subgroup of J(G/P), then J(G/P) is the direct

product of X and C(X<J(G/P)).
Assume now by way of contradiction the existence of a properly descend-

ing sequence of normal subgroups Xi of J(G/P). If we let F< = C(Xt<J(G/P))

then, by (+),

J(G/P) = Xi ® Yi,

and we deduce from X,<X,_i that

X<_i = Xi ® (Y(r\ X,-_i)    and    F,-P\ X,_i ^ 1.

Since G is a torsion group, every Y,C\Xi-i contains an element y,- of order a

prime; and it is fairly clear that these elements y< generate an infinite abelian

subgroup of G/P all of whose elements are of squarefree order; and this is

impossible by (e.4). This contradiction shows that the minimum condition

is satisfied by the normal subgroups of J(G/P).

Since J(G/P)^1, there exists a minimal normal subgroup L of J(G/P).

By (+), J(G/P)=L®C(L<J(G/P)). It follows that every normal subgroup

of L is a normal subgroup of J(G/P). By the minimality of L we find now

that L is simple. Application of condition (4.b) shows that L is finite. We

recall that J(G/P) =K/P and that clearly KC(K<G)/P^N(L<G/P). But
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G/KC(K<G) is finite, by (d'). The normalizer of L in G/P has therefore

finite index in G/P; and this shows that the class of conjugate subgroups of

P is finite. Since every subgroup conjugate to P in G/P is a finite normal sub-

group of J(G/P), it follows now that P is contained in a finite normal sub-

group of G/P [which is part of J(G/P)]. Application of (e.3) shows that

P = l, a contradiction.

Thus we have been led to a contradiction in either case by assuming that

P<G. Hence 67 = P. By (e.2), M is an abelian subgroup of finite index in

P = G; and by (a') the minimum condition is satisfied by the abelian sub-

groups of G. It is clear now that the minimum condition is satisfied by the

subgroups of G; and we have derived condition (1) from (4). This completes

the proof.

12. It is customary to term p-group, for p a prime, any group all of

whose elements are of order a power of p. Every group contains a maximal

^-subgroup; and these take, in the general theory, the place of the Sylow

subgroups of finite groups. It is known that, in general, maximal ^-subgroups

need not be conjugate; see, for instance, Baer [l]. Thus the following result

may be of some interest.

Corollary. If the minimum condition is satisfied by the subgroups of the

group G, and if there exists an abelian subgroup of finite index in G, then any

two maximal p-subgroups of G are conjugate in G.

Proof. By our hypothesis there exists an abelian normal subgroup TV of

finite index in G. We denote by P the totality of elements of order a power

of p in TV; and we denote by Q the totality of elements of order prime to p

in TV. Clearly P and Q are characteristic subgroups of the abelian group TV,

and TV is their direct product: N = P®Q. Since TV is a normal subgroup of

G, P and Q are normal subgroups of G.

If P is a finitely generated subgroup of G, then R/(RC\N)~NR/'N is

finite as a subgroup of the finite group G/N. Since P is finitely generated

and R/(RP\N) is finite, RC\N is finitely generated; see Baer [5; §1, Finite-

ness Principle]. But finitely generated subgroups of abelian torsion groups

are finite. Hence R(~\N is finite so that P itself is finite.

Consider now some maximal ^-subgroup 5 of G. Since P is a normal

^-subgroup of G, PS is a p-groxip. By the maximality of S we have therefore

P5=5 or P^S. Since QC\S = 1, it follows that P = NC\S. Consequently

S/P = S/(Nr\S)~NS/N is finite as a subgroup of the finite group G/N.

Consider now two maximal ^-subgroups H and K of G. Then Nf~\H=P

= PfW and both H/P and K/P are finite. Consequently there exists a fin-

itely generated subgroup H* of H such that H = PH*; and there exists a

finitely generated subgroup K* of K such that K = PK*. ThenP= {H*,K*}

is a finitely generated subgroup of G; and we have shown before that every



540 REINHOLD BAER

finitely generated subgroup E of G is finite. It is clear that H*^=Rr\H. Since

H is a £-group, RC\H is a /'-subgroup of the finite group E; and as such RCMI

is part of a p-Sylow subgroup U of E. We note that

H = PH* g P(R C\H) g PU.

Since E is a normal p-subgroup of G and since U is a finite p-group, PU is a

^-subgroup of G. By the maximality of H we find that H=PU. Hence

Rf^H^ U^Rf^H or Rf~MI= U is a £-Sylow subgroup of E. Likewise we see

that RC\K is a £-Sylow subgroup of E and that E = E(EPiE). But any two

£-Sylow subgroups of the finite group R are conjugate in E. Consequently

there exists an element r in R such that r~l(Rr\H)r = RC\K; and this implies

r^Hr = r-xP(R C\ H)r = P(R H E) = K.

This completes the proof.

Remark. It is well known that any two maximal ^-subgroups of some

group G are conjugate in G, if there exists only a finite number of maximal

^-subgroups of G; see, for instance, Baer [l]. But this theorem cannot be

applied in our case, since groups of the type considered by us may easily con-

tain an infinity of maximal ^-subgroups, as may be seen from easily con-

structed examples; see, for instance, §7, Remark 6.
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