
ON CIRCUMFERENTIAXLY MEAN £-VALENT FUNCTIONS

BY

JAMES A. JENKINS

1. In the paper [4] was given a geometric proof of the precise bound for

the third coefficient of normalized regular univalent functions in the unit

circle, a result first proved by Lowner with his parametric method. The

present paper has its inception in the observation that the proof of [4] with

suitable technical modifications applies also to the case of circumferentially

mean l-valent functions in the sense of Biernacki [l ]. This leads in a natural

manner to the precise bound for the third coefficient of normalized regular

£-valent functions in the unit circle with a p-iold zero at the origin.

2. We begin by proving a symmetrization result for certain doubly-

connected Riemann domains. Let us denote by 93 the class of doubly-con-

nected Riemann domains D covering the w-plane obtained by slitting a

simply-connected Riemann surface, covering neither the origin nor the point

at infinity, along a piece-wise analytic arc y on the open surface. Then we can

obtain a corresponding circularly symmetrized domain D* in the following

manner. Let the portion of the domain D covering the circle \w\ =R have

total angular Lebesgue measure l(R) (which may be + °°) • Let S) be the Rie-

mann surface swept out by the open arcs —l(R)/2<$<l(R)/2 where R, <J>

are polar coordinates in the w-plane. Let Ri^R^R2 be the range of values

for which y covers a point on \w\ =R. Then D* is obtained by slitting 35

along the arc Pi ^ R =j R2, $ = 0. The symmetrization result in question is then

Theorem 1. Let D be a Riemann domain in 23 of module M and let D*,

the corresponding symmetrized domain, have module M*. Then

M ^ M*.

The modules here are the usual ones, i.e. for the class of curves separating

the boundary components [3]. For the proof we may suppose that the

boundary component T of P other than y is an analytic curve since the re-

sult follows in general in the limit from this case. Let now u(tv) be a function

harmonic for XodD taking the continuous boundary values 1 on y and 0 on

T. Let « = w(£, 7]) be a surface lying over the w-plane, w = £+ir), such that

«(£. '?)=«("') where h) covers £+«?. This surface will in general have self-

intersections, nevertheless we can apply to it the process of circular sym-

metrization with respect to the half-plane £ >0, y = 0 [6, p. 194]. In this way

we obtain a surface u=u*(%, rj) likewise lying over the w-plane and which

again may have self-intersections. The function u* has as natural domain of
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definition the surface © and the subset of 33 on which 0<m*<1 is precisely

D*. The standard argument now shows that the Dirichlet integral of u over

D is not less than the Dirichlet integral of u* over D* [6, pp. 194, 185] and

the inequality M=M* follows by the Dirichlet principle and the familiar

connection of the Dirichlet integral with the module [4, p. 512].

3. Let us denote by Fp, p a positive integer, the class of functions regular

in the unit circle, |z| <1, which have power series expansion about z = 0,

/(z) = zp + ap+izp+1 + ap+2z»+2 + ■ ■ ■

and which are circumferentially mean p-va\ent. By the latter we mean that

if/ maps |z| <1 on a Riemann surface 9t covering the w-plane the total

angular measure of the open arcs on 9? covering \w\ =r, all r>0, is at most

2irp [1].
In the paper [4] we constructed a continuous one-parameter family

ft(z), 0^/^l, of normalized regular univalent functions in the unit circle

associated with a pair of values n, r2,0<r<<l,i = l, 2, and having the follow-

ing mapping properties. To each function ft(z) is associated a quadratic dif-

ferential

(w — a)
<ff2 = + -dw2 = Q(w)dw2

w2(w — b)(w — c)

where 2><0, c>0 and a<b or c<a or for one particular value t0 of t, a coin-

cides with the point at infinity, the factor in the numerator of Q(w) being

replaced by unity. The sign is to be chosen so that d$2 is positive on the real

axis near the origin. By the trajectories of the quadratic differential we mean

the maximal open arcs or topological circles on which Q(w)dw2>0. The

maximal open arcs or topological circles on which Q(w)dw2 <0 are called

orthogonal trajectories. There are three trajectories which have a limiting

end point at a, Ti running out along the real axis to infinity and Ti, T3 sym-

metric in the real axis and tending to the origin. In the particular case where

a coincides with the point at infinity, t = t0, these degenerate to a single

trajectory through the point at infinity. Now/< maps | z\ <1 onto the w-plane

slit along Ti and along equilong arcs on the closures of T2, E3 having an end

point at w = a. In particular the functions ft(z) have real coefficients in their

power series expansions about the origin. Further/( maps z= — ri into w = b

and z = h into w = c. Finally/o(z) =z(l-z)-2,/i(z) =z(l+z)-2 and the func-

tion ft(z) passes continuously from one to the other as t runs over O^t^l.

Theorem 2. If fCFi and |/(-fi)| = \ft(-rx)\ then

I f(r2) I   ̂   I ft(r2) I .

It should be observed that for fCFi

ri/(l + ri)2^   \f(-ri)\   £ n/(l - n)2
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as was proved by Hayman [2 ] (actually for a slightly larger class of functions)

so that for every /GPi there is a function/( satisfying |/( —fi)| = |/<(~>'i)|.

in fact precisely one. Hayman's result for the class Pi can also be proved by a

simple version of the present method.

For the proof of Theorem 2 we observe first that the orthogonal trajec-

tories of Q(w)dw2 in the neighborhood oi w = 0 are Jordan curves which

approach circular form as they shrink down to the origin [7; 5]. Taking such

an orthogonal trajectory L sufficiently small, together with the trajectories

Tx, T2, Ti and the segment b^^c on the real axis it will bound two quad-

rangles Pi and R2, each with a pair of opposite sides on L, Rx having one fur-

ther side along the segment <rx of the real axis from L to c described twice,

R2 having a corresponding side along the segment cr2 of the real axis from b

to L described twice. If a <b the final side of Pi is made up of arcs on Tx, T2,

Ti, the final side of R2 of arcs on T2, T$; if c<a the situation is reversed.

Regard now the mappings w=ft(z), w'=f(z) and the composite mapping

w'(w) from the image domain of \z\ <1 under/(into the w'-plane. The map-

ping w'(w) carries Pi and R2 into quadrangles Rx and R% which are not

necessarily schlicht and L into a closed curve L'. Let P,-, i — 1, 2, have module

Mi for the class of curves joining the pair of opposite sides on L. Then P' has

the corresponding module also equal Mi, i = l, 2. We now choose L so small

that w'(w) is univalent on L, i.e. L' is a Jordan curve containing w' =0, that

the image Riemann surface covers simply a circle N centered at w' =0, con-

taining V on the closed disc it bounds and touching L' from outside, and that

N cuts off from P/, * = 1, 2, just two domains, one at each end, leaving a

quadrangle R[' with a pair of opposite sides on 7V, the other sides lying along

the corresponding sides of Ri. The module Mi' of Ri' for the class of curves

joining the pair of opposite sides lying on TV satisfies Mi' S; M,-, i = 1, 2.

Reflecting Rf' ,i = l, 2, in the circle N and joining it with its image across

its boundary arcs on N we obtain a doubly-connected domain P,- in 93. The

boundary component of P, arising from the side of Ri' corresponding to Oi

and its reflection in N plays the role of 7 of §2. The domain P, has module

M"/2, * = 1, 2, for the class of curves separating its boundary components.

Applying to P» the symmetrization process of §2 we obtain a domain Df of

not smaller module which in the present situation is schlicht. The circle N

divides Dt* into two quadrangles each with a pair of opposite sides on N

and of equal module for the classes of curves joining these sides. Let the

quadrangle arising from Dx* and exterior to N be denoted by P*. Let the

quadrangle obtained by rotating through 180° the quadrangle arising from

D2* and exterior to N be denoted by R2*. The quadrangle Pi* has in addition

to its sides on TV a side along a segment of the positive real axis from N to a

point of modulus 2; \f(r2) | described twice. The quadrangle R2* has in addi-

tion to its sides on TV a side along a segment of the negative real axis from N

to a point of modulus   ^|/( —n)|   described twice. The quadrangle P»*,
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t = l, 2, has module M?^M" =Mt for the class of curves joining the pair of

opposite sides on N. The two quadrangles Ei* and R* do not overlap since/

is in Ei.

Now the assumption |/(r2)| >|/i(r2)| leads to a contradiction by the

same argument as in [4, pp. 519, 520]. This completes the proof of Theorem 2.

Theorem 3. If f(z)CFi and 0<ri^r2<l, then

I f(-n) |  + | f(r2) |   ^ r,/(l - r2)2 + n/(l + n)\

equality being attained for the function z(l—z)~2.

The proof is almost the same as for Theorem 4 in [4] which the present

theorem extends. Because of its brevity it is repeated here. By Theorem 2,

the maximum of |/( — r{) \ + |/(r2) | for n, r2 fixed and / varying in the family

Ei is attained for a univalent function with real coefficients. For such

i i        i i 2 2
I /(-n) |  + | f(r2) \   = r2+ a2r2 +  ■ ■ ■ + rx — a2ri + • • • .

For functions with real coefficients we have \an\ gw and since ri^r2

I f(-ri) |  + | ffa) \  ^r2+2rl + 3rl+ ■■■ +ri- 2r\ + 3r\-

^ r2/(l - r2)2 + n/(l + ri)\

The statement concerning equality is evident.

Corollary 1. If f(z)CFx, 0<ri^r2<l, 0 real, then

\f(-riei0)\  + |/(r,««)|   ^ r2/(l - r2)2 + n/(l + n)2,

equality being attained for the function z(l—ze~w)-2.

Corollary 2. If f(z)CFu 0<r<l, then, for \zi\ =r

I f(-zi) |  + | /(zi) |   = 2r(l + r2)/(l - r2)2,

equality being attained for the function z(l—ze-'9)-2 with 0 = arg Zi.

Corollary 3. If f(z)CFi, then \a3\ ^3.

Indeed, if z = rei9, then

I /(-z) + /« I   =  I /(-«) I  + I /(*) I   ^ 2f(l + r2)/(l - r2)2.

Thus

r(l + 3r(a,z2) + 0(r*)) g r(l + 3r2 + 0(r*))

or

8t(a8e2<6) ̂  3.

Proper choice of 6 gives | a3\ ^3.
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It should be observed that the corresponding result does not hold for the

class of areally mean 1-valent functions [8] as is shown by an unpublished

result due to A. C. Schaeffer and D. C. Spencer.

Theorem 4. If f(z)CFp, then

a„+2       1/1        \   2

(1) Ir+^y-'H*3-
This bound is sharp, equality being attained for the functions zp(l—zeie)~2p,

0 real.

Indeed, with a suitable choice of determination, the function (f(z))1,p be-

longs to Ei and has power series expansion about the origin

(f(z)y,P = 2 + ^22 + (^i + l(l- l)4+1)z3+ ... .
p \   p 2p\p /        /

The inequality (1) then follows immediately by Corollary 3. The statement

concerning equality is evident.

Corollary 4. If f(z)CFp, then

| aP+21   ^ 2p2 + p.

This bound is sharp, equality being attained for the functions zp(l—zeii)~2p,

6 real.

Indeed |ap+.i| ^2p as was proved by Spencer [8] for the larger class of

areally mean ^-valent functions. Thus by inequality (1)

I Gp+2 | 1  / 1 \1 '   g3+-   1-W

P 2p\        p)

or

|«p+2|   ^2p2 + p.

The statement concerning equality is evident.

In case p > 1 equality can be attained only for the extremal functions

indicated, since it is only for these functions that equality can occur in

Spencer's result.
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