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1. Introduction^). Let #: P—»G- be a normal homomorphism, with

X=4>-1(0), N=<f>(K), Q = G/N, as in [CGE I]. Any continuation <£:P-»G of
<f>:K-^>G induces several different "operations," which determine each other

in accordance with the following scheme:

~~G -+ Ax(K)/c(xT

_S_ \_

G-+AZK(X)/I(X)  | \Q^AX(K)/I(K)

(1-D I _i_
G-^AZK(ZX) | | Q->Ax(ZK)

\   _ /

Q-+A(XC\ZK)

where Al(M) denotes the group of all automorphisms of  M which map

LC\M onto itself, and Zm denotes the center of M.

The role of Hn(Q, X(~\Zk) in [CGE I] results from the adoption of

G-^Ax(K)/c(X) as the type of "operation" to be held fixed. In [CGE IV],
G—>A(X)/I(X) is held fixed, with the result that continuations are classified

in terms of the relative cohomology groups H"(G, N; Zx)- In the present

paper we explore the effects of adopting Q^>AX(K)/I(K) as the fixed "opera-

tion." We show that in this situation the relevant cohomology groups, as far

as continuations are concerned, are the groups Hn(<j>) of the mapping

Cn(Q, ZK)^C"(Q, Zn). Specifically, we find an obstruction in 7P(#) to the
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(') Rudimentary portions of this paper appeared in [CFB]; the remainder was written

while the author was partially supported by the Office of Scientific Research (ARDC). The

notation and terminology of [CGE I] and [CGE II] will be extensively used throughout. Sym-

bols such as [CFB] and [CGE I] refer to the bibliography at the end of the paper.

In addition to the notational conventions of [CGE I ], we call the reader's attention to our

use of p (mentioned in §4) for the natural mapping of any group of cocycles onto the correspond-

ing cohomology group; the cochain complex in question is to be identified from the context.

The proofs of (9.11) and (9.12) are examples of this usage.

We take this occasion to point out three misprints. In [CGE I, p. Ill], diagram (2.6), of

the two vertical arrows labelled Cn, the one on the left should be Ck, while the one on the right

should be Cn- In [CGE II, p. 307], the seventh line below the diagram should read i?o = 5o = 2?«
-54 = 0.
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existence of a continuation of <p:K—">G inducing a given Q—>Ax(K)/I(K),

and we show that a certain modification B2(<t>) of H2(<p) operates simply

transitively on the set of all isomorphism-classes of such continuations. H2(<p)

itself operates simply transitively on the set of all (appropriately defined)

"similarity classes" of such continuations.

We are interested in classifying not only the continuations, but also the

modular structures which induce a given Q—*Ax(K)/I(K). Moreover we wish

to study these two questions in relation to each other, and to the classification

of the extensions of the ^-kernels Q-^AX(K)/I(K) and Q-*A(N)/I(N). For

such purposes it helps to regard the extension (G, p.) of Q by N as a variable

rather than a constant. Consequently, we shall begin not with a normal homo-

morphism <p:K—>G, but merely with two groups Q and K, a normal sub-

group X of K, and an arbitrary homomorphism r:Q—>Ax(K)/I(K). iVwill de-

note K/X, and <p:K—>2Vthe natural homomorphism. Recalling from [CGE I]

the induced homomorphism <po'.Ax(K)/I(K)—>A(N)/I(N), we obtain a

"derived" Q-kernel (p0T:Q-+A(N)/I(N). We now redefine a "continuation"

as an extension

(1.2) 0->N->G-^<2->0

of the (J-kernel <por:Q-*A(N)/I(N), together with a continuation <j>:E-+G of

<t>:K-*G in the earlier sense of [CGE I], which induces t:Q—*Ax(K)/I(K).

In the definition of "isomorphism" of continuations, we insist that the two

extensions of the Q-kernel <por:Q^>A(N)/'I(N) he not merely isomorphic but

identical. (The precise definitions in the correct logical order are given in §3.)

The above results concerning H"(<f>) are now formulated as follows: H2(<p)

operates simply, but not transitively, on the set of all isomorphism-classes of

continuations, the orbits being the nonempty counter-images of individual

extensions of <p0T:Q-^A(N)/I(N) under the natural mapping

(1.3) (continuations) —> (extensions of the Q-kernel <por);

in place of an individual "obstruction element" of IP(<j>) we now have a

"natural mapping" of the set of all extensions of the Q-kernel cj>0t into LP(<p),

such that the sequence

X
(1.4) (continuations) —»(extensions of the (?-kernel #0r) —» H3(<b)

is "exact." Furthermore, we are now able to formulate and establish supple-

mentary facts such as the following: the mapping x:(extensions of <t>oT)—>IP(<j>)

is "equivariant" relative to the natural homomorphism E^2(0;, ZN)^>LP(<j>);

the image in LP(<f>) oi the set of all extensions of <p0T (whether empty or not)

is equal to the counter-image, under the natural homomorphism LP(<p)

-^LP(Q, ZK), oi the Eilenberg-MacLane obstruction [CTAG II ] of the Q-
kernel t : Q^A X(K)/I(K).
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Let us now define a "modular expansion" as an extension (1.2) of the

<2-kernel <poT\Q~^A(N)/'I(N) together with a modular structure

e:G->Ax(K)/c(X)

on 4>:K—*G which induces r:Q—*AX(K)/I(K), i.e. which satisfies

(1.5) ud = rp.,

where w:Ax(K)/c(X)-^Ax(K)/I(K) is the natural homomorphism. This

concept is somewhat similar to that of a "related crossed module," as defined

in [APC]. However, the results of [APC] are not directly applicable here,

for three reasons: (1) in [APC] it is assumed that XdZx, a restriction which

is no longer needed when "crossed modules" are replaced by "pseudo-

modules"; (2) in [APC], the homomorphism /x:G—><2 is not considered part

of the structure—such a homomorphism is merely required to exist; hence

the mapping (modular expansions)—»(related crossed or pseudo-modules) is

onto but many-to-one; (3) the results of [APC] are partly false (a counter-

example is given in [QKO II], and the results are corrected in [QKO I]).

Nevertheless, [APC] does indicate that the kernel of H2(Q, <bZK)

—>H2(Q, Zn) operates simply transitively on the set of all isomorphism-classes

of modular expansions which determine a given isomorphism-class of exten-

sions of the <2-kernel <j>ot:Q^>A(N)/I(N), and that the image of H2(Q, <pZK)

-^>H2(Q, Zn) operates simply transitively on the set of all isomorphism-classes

of extensions of 4>0t:Q^>A(N)/I(N) which arise from modular expansions.

This suggests, but does not prove, that H2(Q, <(>Zk) operates simply transi-

tively (in a natural way) on the set of all isomorphism-classes of modular

expansions. We show that this is indeed the case, and that both this result

and the criterion in [APC] for the existence of a modular expansion (minus

the restriction XdZx) are in fact special cases, via [CGE II], of the main

results of [CGE I].
The main results of the present paper are all stated in §5 (using terminol-

ogy and notation developed in §§2-4). They include all of the above, together

with certain other operations of various groups on certain sets of "continua-

tions" and "modular expansions," related by mappings which are "equivari-

ant" in the sense of §2. Proofs of the major portions of these results are given

in Part II (§§7-10). Proofs of the remaining portions, involving for the most

part groups of cocycles rather than of cohomology classes, are given in Part

III (§§11-16).
The present study was originally undertaken in order to clarify the fol-

lowing phenomena. If <b:K—>G, d:G-+Ax(K) is a crossed module in which K

is abelian, then the exact sequence

(1.6) 0-»X-»ir-»2V-»0

of operator homomorphisms rel. Q induces an exact sequence of cohomology

groups
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(1.7)    -> H"(Q, X) -* H"(Q, K) ̂  H"(Q, N) X H"+\Q, X)-* ■ ■ ■ ,

and the obstruction of the crossed module is precisely V(7) CH%(Q, X), where

yCH2(Q, N) is the element corresponding to the group extension (1.2) of Q

by N. Hence the crossed module is extendible if and only if

(1.8) y C <t>*H2(Q, K).

In attempting to generalize the criterion (1.8) to the nonabelian case, we

must replace yCH2(Q, N) by yCH2(Q, N, <por) [CGE I, §5], where t\Q

-^>Ax(K)/I(K) is induced by the given modular structure 0:G—>Ax(K). Now

<p:K^>N induces <p*:H2(Q, K, t)^>H2(Q, N, <p0t); hence we might try re-

placing (1.8) by

(1.9) yC<t>*H2(Q,K,T).

This condition is still necessary for the extendibility of the crossed module,

but it is no longer sufficient (actual counter-examples can be constructed).

(1.9) is a necessary and sufficient condition for the existence of a continuation

of <f>:K—>G which induces t:Q-+Ax(K)/I(K); but the modular structure in-

duced by such a continuation need not coincide with the given 9.

However, it turns out that (1.9) suffices for the extendibility of the crossed

module in the situation of [CNG], i.e. when all groups are topological, N is

the component of the identity in G, and K is a connected covering of N. More

generally, condition (1.9) suffices (for pseudo-modules as well as crossed

modules) whenever, in the notation of §4, the "iterated connecting homo-

morphism"

(1.10) ViV2:E1(g,Z^Zx) ->E3(Q, XC\ZK)

is zero. This state of affairs is explained by the results of §5, which imply, as

immediate corollaries:

(a) If (1.10) is zero, then any two modular structures on <p:K—>G which

induce the same t:Q—>Ax(K)/I(K) have the same obstruction; hence if one

such is extendible, so are all others.

(b) If Vi'.H^Q, ZN/<PZK)-^H2(Q, <pZK) is zero, then any two modular

structures on <j>:K—>G which induce the same t\Q—*Ax(K)/I(K) are "con-

gruent" (§3), and hence, a fortiori, have the same obstruction.

(c) If X/2p:Z\Q, ZN/<pZK)^>H2(Q, <f>ZK) has kernel zero, then any two
congruent modular structures are equal. Combining this with (b): If

Z\Q, ZN/<bZK) = 0

then any two modular structures on 4>:K—>G which induce the same r:Q

->AX(K)/I(K) are equal.

(d) If (airN)*:IP(<j))-^II2(Q, ZN/<j>ZK) is zero, then for every extension

(1.2) of the (?-kernel <j>0t:Q^>A(N)/I(N), there exists a modular structure on

<j>:K-^G which induces t:Q-^Ax(K)/I(K).
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In particular, if <j>Zk = Zn, then for every (G, p.) and r, there exists one

and only one modular structure. Cf. [CNG, Proposition (6.2)].

In a sense, the best generalization to arbitrary pseudo-modules of the

abelian formula x(<t>< 6) — V(t) [mentioned in connection with (1.8)] is the

statement, included in Theorem 5.3, that x^P-*H3(Q, XC\ZK) is equivariant

relative to VX:H2(Q, $ZK)^H*(Qt XC\ZK), i.e. x(h+p) = Vifc+XP- The

abelian formula is easily derived as a special case of this.

Part I

2. Equivariant diagrams. Let the additive group A act additively as a

group of left operators on the set X; let the additive group B act similarly on

the set Y; \etf\X—>Y be a (set-theoretic) mapping, and a:.4—>P a homo-

morphism. We say that/ is equivariant rel. a if

(2.1) f(a+x)=a(a)+f(x)

for all adA and all xdX. If the formula

(2.2) f(a + x) = - a(a) + f(x)

holds in place of (2.1), we say that/ is antivariant rel. a. If we assert that

f'.X—^Y is equivariant or antivariant rel. a\A^>B, and  it happens that

Y = B, it is to be understood that the operation of B on itself is left translation.

A diagram of set-theoretic mappings

X—s—^z

(2.3) / I   k
h

Y->W

will be called equivariant relative to the diagram of groups and homo-

morphisms

A->C

(2.4) a I   8

7
B->D

if each group in (2.4) operates on the correspondingly placed set in (2.3), and

each mapping in (2.3) is equivariant relative to the corresponding homo-

morphism in (2.4). The same terminology will be used for more complicated

pairs of diagrams, provided the set-diagram and the group-diagram have the

same format.
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An operation of A on X is called simple if [a£.4 and there exists xCX

such that a+x = x] implies [a = 0]; transitive if for every pair (x, x')CXXX

there exists aCA such that a+x = x'; simply transitive if it is simple and

transitive. The orbits in X under A are the equivalence classes of X deter-

mined by the relation [x is equivalent to x' if there exists aCA such that

a+x=x']. It follows from standard conventions that every group operates

simply transitively on the empty set, and that the empty set is never counted

as an equivalence class.

If f'.X—>Y and g:X—>Z are mappings, fXg'-X—>YXZ will denote the

"cartesian product" of/and g, defined by (fXg)(x) = (fx,*gx). If the mappings

are indicated simply by the symbols X—> Y and X—>Z (without symbols such

as/, g), X^>YXZ will denote the cartesian product of X—>Fand X—>Z.

We call the diagram (2.3) regular if, for all (y, z)C YXZ: (y, z)C(fXg)(X)
if and only if h(y)=k(z). Every regular diagram is commutative, but not

conversely. We call (2.3) strict if fXg'-X—>YXZ is 1-1 into; strictly regular

if it is strict and regular.

A sequence of mappings X—^Y—t'A, where X and Y are sets and A is

a group, will be called exact if f(X) =g_1(0).

Ii A operates simply on X, and x, x' are elements of the same orbit in X

under A, then x — x' will denote the element aCA such that a+x' = x.

Let/:X—>F be a set-theoretic mapping. By the fibers of f'.X—+ F we mean

the equivalence classes of X determined by the relation [x is equivalent to x'

if f(x) =f(x')]. In other words, the fibers of a mapping are the nonempty

counter-images of individual points.

The following propositions are easily verified:

(2.5) Let f:X—*Y be equivariant rel. a:A-*B; let the.operation of B on Y

be simple, and let the orbits in X under A be the fibers of X—*T. Then the orbits

in X under a_1(0) are the fibers of X-^TX Y.

(2.6) Let A operate simply on X;let B and C be subgroups of A. If the orbits

in X under B and C are the fibers of X—*S and X-^T respectively, then the orbits

under BC\C are the fibers of X—>SX T.

(2.7) Let X^^Y^>"C be equivariant relative to A—*B—>C (where X and Y

are sets and A, B, C are groups). If X is nonempty, the operation of A on X is

transitive, the operation of B on Y is simple, and X-+Y-+C is exact, then so is

A^>B—>C. "Conversely," if (gf)_1(0) is nonempty, the operations of A and B

on X and Y respectively are transitive, and A^>B-+C is exact, then so is

X-*Y->C.

(2.8) Let f'.X—*Y be equivariant rel. a:A^>B. If S is an orbit in X under

A, thenf(S) is an orbit in Yunder a(A). Iff(X) = Y, then each orbit in Yunder

a(A) is the image of some orbit in X under A ; hence in this case, "the images of

the orbits are the orbits under the image."

(2.9) Let (2.3) and (2.4) be diagrams of set-theoretic mappings and homo-

morphisms respectively. Let B, C, D operate on Y, Z, W respectively, so that



496 R. L. TAYLOR [July

Y—*Wis equivariant rel. B^>D, and Z—*W is equivariant rel. C-^D. If (2.3) is

strictly regular and (2.4) is commutative, then there exists one and only one opera-

tion of A on X such that (2.3) is equivariant rel. (2.4).

(2.10) Let (2.3) be equivariant rel. (2.4). If the operations of B and C on

Y and Z respectively are simple, and (2.4) is strict, then the operation of A on X

is simple.

(2.11) Let (2.3) be equivariant rel. (2.4). Let the orbits in Y under B be

the fibers of Y-^S; let the orbits in Z under C be the fibers of Z—>T. If (2.3) is
strict and commutative, and (2.4) is regular, then the orbits in X under A are

the fibers of X->SXT.
(2.12) Let the set-theoretic map f:X—*Yand the homomorphism a:A-*B be

onto. Let A operate on X so that the orbits in X under a_1(0) are the fibers of

X—* Y. Then there exists one and only one operation of B on Y so that f is equi-

variant rel. a. If the operation of A on X is simple, then so is the operation of B

on Y. If g: Y-+T is a mapping such that the orbits in X under A are the fibers

°f gf'-X-^T, then the orbits in Y under B are the fibers of g: Y-^>T.
(2.13) Let X-+Y be equivariant rel. A—*B. Let the mapping Y—*Z and the

homomorphism B-^C be such that X—>Z is equivariant rel. A—+C. If X—> Y and

A^>B are onto, then Y-^Z is equivariant rel. B—+C.

(2.14) Let (2.3) be regular, and equivariant rel. (2.4); let D be abelian,

and let the operation of D on W be simply transitive. Define %'• FXZ—>P 6y

%(y, z) =h(y)-k(z). Define p:B + C-*D by p(b, c) =7(6)-5(c). Let B + C oper-

ate on YXZ by (b, c)+(y, z) = (b+y, c+z). Then

is exact, and equivariant relative to

aX/3 p
A-> B + C-► P.

(2.15) Let (2.3) be equivariant relative to (2.4), and let (2.4) be regular. If

X is nonempty, the operations of B and C on Y and Z respectively are transitive,

the operation of D on Wis simple, and (2.3) is commutative, then (2.3) is regular.

3. The sets CON, EXT(t), EXT(0ot), P. It is suggested that the reader

consult diagram (5.4) while reading this section.

Throughout the paper we assume given two fixed groups Q and K, a

normal subgroup X of K, and a homomorphism t:Q—>Ax(K)/I(K). We

denote K/X by TV, and the natural homomorphism by <f>:K—*N. We shall

use all the symbols introduced on pp. 110-111 of [CGE I], not involving G

or p.

A continuation is a group extension (1.2) of Q by TV, together with a

group E containing K as a subgroup, and a homomorphism $:E—>G satisfying

(3.1) $| P = <p,        <?(P) = G,        $-»(0) = X,       tp$ = vCK.

The last condition means that
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(3.2) O^K-^E^Q-iO

is an extension of the Q-kernel t : Q^>A x(K)/I(K). It follows that (1.2) is an

extension of the £>-kernel 4>0t:Q-*A(N)/I(N).

Two continuations (G, p, E, #) and (G', p.', £', $') will be called isomorphic

if (G, p.) = (G', p') and there exists a homomorphism W:E—>E' satisfying

(3.3) W | K = identity,        $'W = <£.

By the "five-lemma," such a homomorphism is automatically an iso-

morphism of E onto E'.

Two continuations (G, p, E, $) and (G', p', £', $') will be called similar if

(G, p.) = (G', p.') and there exist n0CZu and a homomorphism W:E—*E' satis-

fying

(3.4) IF | K = identity,        «0 + $e = <£'IFe + »0

for all eCE. Such a TF is automatically an isomorphism of E onto E'. Condi-

tion (3.4b) may be written ^'JF=(cG«o)<?-

CON, CON, and EDSJc will denote, respectively, the set of all continua-

tions, the set of all isomorphism-classes of continuations, and the set of all

similarity-classes of continuations. Since any two isomorphic continuations

are similar, we have natural mappings CON—>CON—^ED^.

EXT(r) and EXT(r) will denote, respectively, the set of all extensions of

the ^-kernel T.Q—>Ax(K)/I(K) and the set of all isomorphism-classes of

such. EXT(0or) and EXT(0or) will denote, respectively, the set of all exten-

sions of the (^-kernel <j>ot:Q-^>A(N)/I(N) and the set of all isomorphism-

classes of such. The passage from (G, p., E, $) to (E, p$) is a mapping CON

->EXT(t), which induces a mapping <S09c->EXT(t).

A modular expansion is a group extension (1.2) of Q by N, together with

a modular structure 9:G—>Ax(K)/c(X) on the normal homomorphism

0:E—>G satisfying (1.5). P will denote the set of all modular expansions. The

passage from (G, p, 9) to (G, p) is a mapping P—>EXT(0or).

Two modular expansions (G, p, 9) and (G', p.', 9') will be called isomorphic

if there exists a homomorphism IF: G—*G' satisfying

(3.5) W | W = identity,        p!W = p,        d'W = d.

Such a IF is automatically an isomorphism of G onto G'. Two modular expan-

sions (G, p, 0) and (G', p', 0') will be called congruent if they are isomorphic and

(G, p) =(G', p'). $ and P will denote, respectively, the set of all congruence

classes of modular expansions and the set of all isomorphism-classes of modu-

lar expansions. We have natural mappings P—>'$—>P. Furthermore,

P-^EXT(</>„r) induces mappings $-»EXT(0„r) and P-*EXT(</>0r).

Given a continuation (G, p, E, $), define 9:G—>Ax(K)/c(X) by 9<p~=\Ck

(cf. [CGE I ], §3). Then the passage from (G, p, E, #) to (G, p, 0) is a mapping

CON-+P, which induces mappings CON-+P and &D5tf-»<p.
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Given an extension

(3.6) 0-^K->E-^Q-*0

of the (2-kernel t:Q-^Ax(K)/I(K), let G = E/X, and let <£:P->G denote the
natural homomorphism. Thenp:P—>Q induces a homomorphism p,:G—*Q,

defined by p$=p; and (G, p., E, $) is a continuation. This construction

defines a mapping EXT(t)—+CON, which is a right inverse of CON—>EXT(r),

showing that the latter mapping and hence also SDSft—->EXT(r) are onto.

Since EXT(r)—»CON does not commute with all the mappings defined pre-

viously, it will, for the most part, be ignored. However, the mapping EXT(t)

—>P obtained from the composition EXT(t)—>CON—>P—>(>I3—>P does com-

mute with the other mappings, and will be included in our investigation.

EXT(t)-->P induces a mapping EXT(t)->P.

If (G, /x)GEXT(cM, and P = CON, CON, (SOW, P, or <$, then P(G|11)
will denote the counter-image of (G, p.) under the mapping F—>EXT(</>0t).

4. Cohomology groups. The following symbols will denote the indicated

natural homomorphisms:

(4.1) i:Xr\ZK^ZK;       j:<j>ZK-+ZN;        a\N -> N/<pZK.

The maps Zk—><J>Zk and Zn—>Zn/<I>Zk obtained by restricting <f> and a

respectively will be denoted by the same symbols <f> and a.

Given any cochain complex C, p:Z"^>H" will denote the natural mapping

of the group of w-dimensional cocycles onto the w-dimensional cohomology

group.

a:N^N/4>ZK induces homomorphisms

af:A*ZK(N) -^A(NUZK),   a0:AiZK(N)/I(N) -> A(N/<bZK)/I(N/(j>ZK)

analogous to those induced by $:P—»TV[CGE I, p. 110]. Clearly <Pot(Q)

dA*zK(N)/I(N).
If Y = XC\ZK, Zk, <t>ZK, ZN, ZN/<pZK, ZaN, or ZaN/aZN, the cohomology

groups Hn(Q, Y) are to be understood as defined in terms of the operation of

Q and F induced by t:Q-*Ax(K)/I(K), 4>0t:Q^>A(N)/I(N), or a^oT'-Q

-*A(aN)/I(aN).
Let C"(<p) denote the direct sum Cn(Q, ZkI + C^^Q, Zn). In particular,

C°(4>) =ZK, and C"(<p) =0 for n <0. Define P: C"(0)-*C"+1(</>) by

(4.2) D(f,g) = [8f,8g+(-lY-^f]

(cf. [E-S, p. 155]). Then PP = 0. Let

Z»fo) = C»fo) HP-HO), 5»(0) = D[C^(4>)], H»(<p) = Z»(*)/S»(0).

Define



1955) COMPOUND GROUP EXTENSIONS. Ill 499

*K:C"(Q, ZK) -► C"(4>), eN:C»-\Q, ZN) -» C"(*),

ti:C"(*) -»C-(Q, Zx), **:C"fo) -> C-1©.' ZN)

by

(4.4)  ex(/) = (/, 0),       eN(g) = (0, g), TK(f, g) = f,       Mf, S) = *•

Then the homomorphisms

e*i:C»(g, X n Zje) -> C-(«), e^rC-1©, Z*) -> C»fo),

*-*:C"(4>) -> C"(Q, ZK), airN:C"(<p) ->■ C-1©. Zw/*Zjt)

are cochain mappings. We obtain a diagram

i .   i i v    i
-► E«(Q, X(~\ ZK) -^» H"(Q, £*)-^-* ff»(Q, ̂ Z^) > H»+1(Q, Xf\ Zk)-+■ ■ ■

I («*»)*                                                   ] J*                          j («Jrt)*

. . . ^g.(0)       <">»     >g.(g| Zjt) _Z^U h.(Ci ZW) _&»>•_ ff»+W-> • • •

(4.6) (.earn)* a* (<mw)*

-> H^KC, ZW/«ZA) -* 0-► #»«?, Zw/«Zjr) <—► E«{Q, ZN/<pZK)-► • • •

V1V2 IV2 ViV2

->E'+1(Q, Xf\ ZK) % H»+1(Q, ZK) -^-* ff»+1(G, 4>Zk) -^ H"+2(Q, iHZi)-*.--

I i 1 1

in which all rows and columns are exact, and each small rectangle is com-

mutative, except for the one in the upper right-hand corner, which is anti-

commutative for n odd: that is, for n odd, the sum of the maps («x»)* Vi:

H"(Q, 4>ZK)^>H*+K4>) and (tN)*j*:H"(Q, 0Zx)->H»+>(0) is zero.
The presence of 0 in (4.6) gives rise to an "involution" of the diagram,

in which the same nontrivial exact sequences occur in a different arrange-

ment. Each small rectangle in the involuted diagram is commutative, except

for

H"(4>) -{^-^H"(Q,ZK)

(4.7) (earn)* <t>*

H-\Q,ZN/^ZK) ^H"(Q, <fiZK),

which is anti-commutative for n odd.
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It follows from these assertions that the sequences

(«K*)*   +   (— l)"(<w)*
fA  0,-► H»(Q, Xf^ZK) + H"-*(Q, ZN) KK -—^ H»(<t>)
(4-8)

<£*(kk)* Vi + 7*
^-^ H»(Q, 4>ZK) -^ H~»(Q, XC\ZK) + H"(Q,ZN) -> • • •

0* + (-i)n_1v2

-» 77"(Q,Z*) + H"-\Q,ZN/4ZK)-> H"(Q, <j>ZK)

^hh H^W M* + (aWNh H^(Q, ZK) + H»(Q, ZN/<t>ZK) - • • •

are exact. They remain exact if <j>*(ttk)* is replaced by  V2(cota0*. and/or

(«jv)*7* is replaced by (eKi)* Vi.

VetB-(<p)=DeK[C-1(Q,ZK)], B"(<p)=Z"(<p)/B-(<p). Let(3:27"(4>)^H"(cf>)
denote the natural homomorphism. eKi'-Cn(Q, Xr\ZK)—>Cn(4>) maps

Bn(Q, X(~\Zk) into Bn(<t>), and therefore induces a homomorphism (mi)*'-

H"(Q, Xr\ZK)-*B"(<j>). airN:Cn(4>)^Cn-1(Q, ZN/4>ZK) maps Bn(<b) to zero,

and therefore induces a homomorphism (air^f- Hn(<p)—>Zn-1(Q, Zn/4>Zk).

e!f:Cn-1(Q, ZN)^C"(<p) carries the subgroup <pZn-\Q, Z£) of C"-1(Q, Zw) into

Bn(<f>),  and   therefore  induces  a  homomorphism

M#:Z»->(<2, Z^/^Z'-^Q, ZK)-*H»(<p).

Commutativity holds throughout the diagram

Z»-'(0, 2,v UZ»-<(Q, ZK) --^7P(<#>)----->2"-'«?. A-/«Za)

i    \
(4.io) i/s y-H»(Q, xn ZK)   I

I /^ I

//»-'(& ZN)/jt**H*-HQ, ZK) -* //"W--—-►»»-'(& Z.v/*Z*)

where   the   unlabelled   horizontal   homomorphism   is   induced   by   (e^)*:

Hn~1(Q, Zn)—>Hn(<f>). For each w, the sequences

(«a0#    _         (tjt)*/3
(4 11) ° "* Z"~1(e' Z^^Z"_1^' Zx)-* H"(*)  -* Rn{Q' Zk>

(tni)f   ~ (oitn)*
(4 12) ° ~^ Hn(Q' Xr^Z^A-^^H"W-" ^'(Q, Z^Zx)

Vi V2P («xi)*
-^-^ P"+1(0, a- n zK) -^^ P"+1W -> • • •

are exact. With the finite number of exceptions shown, (4.11) and (4.12) co-

incide with sequences from (4.6).
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All of the above holds, of course, if the exact sequence

(4.13)    0 -> C"(Q, XC\ZK)-> C"(Q, ZK) J-t C"(Q, ZN) -+ C"(Q, ZN/<bZK) -> 0

is replaced by an arbitrary exact sequence (of the same length) of cochain

complexes.

5. The main results. We recall from [CTAG II], and Theorem 5.12 of

[CGE I], that H2(Q, ZK) and H2(Q, ZN) operate in a natural way as simply

transitive transformation groups on EXT(r) and EXT($0t) respectively. By

Theorem 10.2 of [CGE I], H2(Q, XC\Zk) operates naturally as a simply

transitive transformation group on each fiber of CON—>P; hence we may say

that H2(Q, XC\Zk) operates simply on CON, the orbits being the fibers of

CON—+P. The notion of the "obstruction of a pseudo-module," defined in

[CGE I], provides a natural mapping x'.F—>LP(Q, XC\ZK). It is easily veri-

fied that any two isomorphic modular expansions have the same obstruction;

hence x-P^EP(Q, XC\ZK) induces a mapping x'-V^H*(Q, XC\ZK). By

Corollary 10.3 of [CGE I], the sequence

(5.1) CON -* P ^ H\Q, X C\ ZK)

is exact; hence so is

(5.2) EXT(t)-^ P ^ E3(Q, XC\ZK).

Theorem 5.3. There exist a natural mapping x^EXT^ot)-*^3^), natural

operations of Z1(Q, (J>Zk) and Zl(Q, ZN) on CON, and natural operations of

S2(<p), H2(4>), Z\Q, ZN/<j>ZK), V2H>(Q, ZN/<pZK), H2(Q, <pZK) on CON,
SOS?, P, ^|3, P respectively, such that the diagram

CON-> CON-> EXT(r)

I I I
CON-> CON-> g£>9c-> EXT(t)

(5.4)

P-> $-> P-> H*(Q, x n ZK)

(tKl)*

EXT(tf>0r) —> EXT(<M -^ E3(0)

is equivariant relative to the diagram



502                                                         R. L. TAYLOR [July

Z\Q, 4>ZK)-> Z\Q, ZN)-► 0

I VlP                   .     |PCA' 1

E\Q, XC\ ZK) ̂ iBf.*)--—> *'(*)-^=—» E\Q, ZK)

(5.5) (a*tl)f V2(c«w)* L*

Z\Q, ZN/<t>ZK) -4 V2ff'(C, Z^Z*) -* »»(<?■ <I>Zk) -^lE»(Q, Xr\ ZK)

0-> H\Q, ZK) ̂ //'(*),

exce£/ iAa« CON->CON m antivariant rel. Vip'.Z^Q, <pZK)^H2(Q, XC\ZK).

All the operations are simple. The operation of IP(Q, 4>Zr) on P is simply transi-

tive. The orbits in CON under Z1(Q, <j>Zk) and Zl(Q, Zn) are the fibers of CON

-^PXEXT(r) and CON^EXT(0or) XEXT(t) respectively. The orbits in

CON under 82(4>) are the fibers of CONTEXT(<p0r). If S= £D5ft, P, or %, then
the orbits in S under the corresponding group are the fibers of S—>EXT(<£ot).

We note that diagrams (5.4) and (5.5) are commutative, except for the

upper left-hand rectangle of (5.5), which is anti-commutative.

Theorem 5.6. In diagram (5.4), the rectangles from 6D9? to P and from

P to ZE((/>) are regular. The rectangle from ty to EXT(</>0t) is strictly regular.

The rectangles

CON-> EXT(t)        CON-> EXT(t)

(5.7)

P-> P EXT (<b0r) -> EXT (for)

are regular.

The assertions concerning (5.7a) and the rectangle from ^5 to EXT($0t)

may be verified directly from the definitions in §3. Since P—>^5 is onto, the

regularity of the rectangle from SO^U to P, and hence of (5.7b), follows auto-

matically. Consequently the only part of Theorem 5.6 which we shall prove

in the sequel is the regularity of the rectangle from P to LP(<p).

Theorem 5.8. The sequences

(5.9) EXT(t) -* EXT^ot) 4 fl«(0)

(airrf)*X
(5.10) P -> EXT(<M-» H2(Q, ZN/<bZK)

are exact.
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The fact that all the unlabelled horizontal maps in (5.4) are onto yields

many equivalent formulations of Theorems 5.6 and 5.8. In particular, the

exactness of (5.9) is equivalent to the exactness of (1.4).

x(r)G7P(<2, ZK) and x(4>^)dHz(Q, ZN) will denote, respectively, the

obstructions [CTAG II] of the ^-kernels t\Q-+Ax(K)/I(K) and <p0T:Q

->A(N)/I(N).

Theorem 5.11. The subset x(P) of H3(Q, XC\ZK) is equal lo C'[x(r)]. The

subset x[EXT(0or)] of H*(<p) is equal to Or*)*1^)].

Theorem 5.11 holds whether the sets in question are empty or not. Thus

the "empty" case of Theorem 5.11a asserts that there exists a modular ex-

pansion if and only if x(T)&*H3(Q, X(~\Zk), i.e. if and only if the element

4>*x(t) of H\Q, 4>ZK) vanishes (cf. [APC, Theorem l]). The "empty" case of

Theorem 5.11b asserts that the Q-kernel <j>or'-Q^A(N)/I(N) is extendible if

and only if x(r)G0r.K)*7P(</>), i.e. if and only if j*cj)*x(T) =0- Actually, it is

easily verified that

j*<t>*x(r) = x(<t>or)

(cf. [APC]). Hence, in the sequel, we shall prove 5.11b only in the nonempty

case.

6. Corollaries. Applying (2.14) to Theorem 5.6, we find that

(6.1) SD9? -> $ X EXT(t) -> H2(Q, <bZK),

(6.2) P ->EXT(<£0r) X ES(Q, XC\ZK)^ W(<p),

(6.3) % -» EXTOM X P -» H2(Q, ZN),

(6.4) CON -> P X EXT(r) -» H2(Q, <bZK),

(6.5) CON -» EXT(^or) X EXT(t) -* H2(Q, ZN)

form exact sequences, equivariant relative to

(6.6) H2(<p) -* VtH'(Q, ZnUZk) + H2(Q, ZK) -+ H2(Q, <t>ZK),

(6.7) H2(Q, <bZK) -> H2(Q, ZN) + E\Q, X C\ ZK) -» H*(<t>),

(6.8) V2P1(e, ZN/<bZK) ~> H2(Q, <bZK) -» H2(Q, ZN),

(6.9) H2(<b) -> Z\Q, ZN/4>ZK) + H2(Q, ZK) -> P2(<2, <pZK),

(6.10) 7P(4>) -> H2(Q, ZK) -» £P(Q, ZW)

respectively. The exact sequence (6.1) [equivalently, (6.4)] yields, in a sense,

a cohomological criterion for the existence of a continuation which determines

simultaneously a given modular expansion and a given extension of the

<2-kernel t:Q^Ax(K)/I(X). The other sequences may be interpreted simi-

larly.

Applying (2.5) and (2.6) to Theorem 5.3, we find that:
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The
orbits in under the subgroup of are the fibers of

CON <pZ\Q,ZK) Zl(Q,ZN) CON^CONXEXT(t)

CON Z\Q,4>ZK) Z\Q,Zn) CON-»PXEXT(t)

CON ptNZl{Q,ZN) //2(<*>) CON->EXT(0„t)XEXT(t)

CON (eXf)#H2(e, XC\ZK) H'(4,) CON->P

CON [**(irK)*(3]-1(0) H\<p) CON-^ip

CON (tKi)tViH\Q,<t>ZK) HH<t>) CON^PXEXT(r)

EXT(r) UH\Q,Xr\ZK) LP(Q,ZK) EXT(r)-^P

EXT(r) (tk)*H2(4>) W(Q,Zk) EXT(r)^EXT(*or)

P aZ\Q,ZN) Z\Q, Zn/4>Zk) P->y

P (ax.v)#i/20) Z\Q,ZNl4>ZK) P^EXT(<t,0T)XH3(Q,xnzK)

% \72W(Q,ZN/<t>ZK)r\<p*H*(Q,ZK)   V2H>(Q, ZNUZK)    ^-^EXT(ct>0r)XH\Q, XC\ZK)

P **W-(Q,ZK) H*{Q,4>ZK) -P^H\Q, XC\ZK)

P V2ff(Q, ZnI4>Zk) H\Q,<j>ZK) P^EXT(4,„t)

P \J2W(Q,Zn/^Zk)C\<p*H^Q,Zk)    H\Q,4,Zk) P^EXTWXfffft lHZx)

EXTfaoTj   j*<p*HHQ, ZK) H*(Q,Zn) EXT(<p0t)^H3(<p)

(avN)*x

EXTfer)   j*HKQ, 4>ZK) HHQ,Zx) EXTW->H*(Q, ZN/4>ZK)

In the table on the following page we assert that the domain (and hence

the image) of the mapping in the second column is nonempty if and only if the

condition in the first column is satisfied; and that in the nonempty case, the

image of the mapping is an orbit under the subgroup in the third column of

the group in the fourth column. (G, p) is an arbitrary element of EXT(</>0r);

%(G, p) is the image of (G, p) under the composition EXT($0r)—>EXT(<£0r)
-+*IP(<j>).

In the last three rows, of course, "orbit" means "coset." The assertions

concerning the images are applications of (2.8). The third row of the table

generalizes Theorems 1 and 2 of [APC].
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x(r)=0 EXT(r)-P **H*(Q,Zk) H*(Q,<t>ZK)

x(t)=0 EXT(7-)->EXT(0or) j*<t>*H\Q, ZK) H*{Q, ZN)

4>*xM=0        P->EXT(0ot) j*H*(Q,4>ZK) H\Q,ZN)

**X« = 0       P^EXT(<frr) XlP(Q,xr\ZK)  all (a, b) such that    H*(Q,ZN)+H\Q,xr\ZK)
{eN)*(a) = {tKi)*{b)

x(G,u)=0       CON^^Ptc.^) (a7rjv)#772(0) ZKQ, ZNUZK)

X(G,n)=0       CON(G.^^(C.^ V2H'(Q,Zn/<I>Zk)       X/JIHQ, ZnUZk)
r\<t>*W{Q, ZK)

X(G, M)=0       CON((?./l)->P(G,M)XEXT(r)       all {a, b) such that     Zl(Q, Zn/<1>Zk)+H*(Q, Zk)

V2P(0)=**(6)

x(G,M) = 0       CON(G,^^(0,^)XEXT(r)      all (a, b) such that     \/2H'(Q,Zn/<j>Zk)+IP(Q,Zk)

a=4*(b)

0*xM=O        P**(HQ, Xt~\ZK) y1H'(Q,^>ZK) H>(Q,xr\ZK)

<p*x(t)=Q        P-^^i^W (eKi)*\7xH*(Q,<i>ZK)    H*(<t>)

{carN)*x{G, u)  P<e,^H'(Q, xr\ZK) VNJr{Q,ZN/<t,ZK)  HHQ, Xf~\ZK)
=0

Part II

7. The role of Hn(<f>) and H2(cj>). In this section we shall define the opera-

tions of 82(<b) and H2(<p) on CON and S£)9c respectively, and the map

x:EXT(<£0r)->773(<p). We shall prove: the operations of 272(4>) and H2(<p) are

simple, and their orbits are as in Theorem 5.3; the maps CON—>CON—►EDSft

—>EXT(r), x^EXT((/>0t)—*2P(</>) are equivariant relative to the appropriate

homomorphisms; the rectangle in (5.4) from P to H3(<j>) is commutative;

sequence (5.9) is exact; the second assertion of Theorem 5.11 holds.

Consider (V, ^)GEXT(</>0t). By a weak structural cochain in (G, p) we

shall mean a triple (/, v, t), where/GC2(<2, P), vdC^Q, G), tdCy[Q, ^x(P)],
satisfying

(7.1) pv = 1,       <j>ft — Cnv,       CkJ = dev /,        vi = t.

This differs from the concept of a "structural cochain in the normal homo-

morphism (b:K->G" in the sense of §12 of [CGE I] in that the condition

<£/ = dev v has been dropped and the condition vt=T added.

S((?,«) will denote the set of all weak structural cochains in (G, p.).
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(7.2) For every (G, p) C EXT(</>0r), S(a,,i) is nonempty.

Proof. Choose v'CCx(Q, G) and tCCl[Q, AX(K)] satisfying (7.1a) and

(7.Id). Recall that V.A(N)-*A(N)/I(N) denotes the natural homomorphism.

Then v4>tt=<povt=<poT=(poTpv' = vCnv'', hence <ptt—CNv'CI(N). Therefore

there exists dCCl(Q, N) such that <t>#t = cNd + CNv'. Let v = d+v'. Since dev /

CI(K),f may be chosen to satisfy (7.1c). Q.E.D.

Given hCC^Q, K), (a, b)CC2(<j>), (/, v, t)CS(a,,h define

(7.3) h + (/, v, t) = (ht■/, <ph + v, cKh + I),

(7.4) (a,b) + (f,v,t) = (a+f,b + v,t).

It is easily verified that C1(Q, K) and C2(<p) now act as groups of operators

on S(G,„). Let £(<?,„) denote the set of all orbits in S(o,n) under Cl(Q, K).

Theorem 7.5. There exists one and only one operation of C2(<p)/B2(<p) on

S(G,U) such that Stattl)—>S(G.^ is equivariant relative to the natural homomorphism

p:C2(4>)-^C2(<p)/B2(4>). The operation is simply transitive.

Proof. Let 7 :S(G,u>—>£(<?,«} denote the natural mapping. Consider (a, b)

CC2(<p) and (f, v, t)CS(a,^. To establish the first assertion, it clearly suffices

to show that the definition p(a, b) +y(f, v, t) =7 [(a, b) + (/, v, t) ] is "independ-

ent of the choice of representatives."

So consider also (c, d)CB2(4>) and hCC1(Q, K); we must show that

(a, b) + (f, v, t) and [(a, b) + (c, d)]+[h + (f, v, t)] lie in the same orbit under

0(Q, K).
Choose gCCl(Q, ZK) such that (c, d) =DeKg = (8g, <t>g). Then g+h

CC\Q, K), and (g+h) + [(a, b)+(f, v, t)] = (g+h) + (a+f, b+v, t) = [(g+h)t
■(a+f), 4>(g+h)+b+v, cK(g+h)+t]=[a + (g+h)t-f, <pg+<t>h+b+v, cKh+t]
= (a + 8g+htf, b+<bg+<ph+v, cKh+t)=(a+c+hrf, b+d+<ph+v, cKh+t)
= (a+c, b+d)+(hrf, <j>h+v, cKh+t) = [(a, b) + (c, d)]+[h + (f, v, t)], com-

pleting the first portion of the proof.

Now consider any (/, v, t) and (/', v', t')CS(.a,iJ.y v(t' — t) =0; hence we may

choose hCCl(Q, K) such that t'-t=cKh. Let (a, b)=(ht-f-f, <ph+v-v')

CC2(Q, K)+0(Q, N). Then cxo = cx(Ar/)-cx/'=dev (cKh+t) -dev t' = 0,

and cNb=cN<ph + CNV—CNv'=(pi(cKh+t — t') =0; therefore (a, b)CC2(<p). Now

p(a, b)+y(f, v', t') =y(a+f, b+v', t') =y(hrf, <ph+v, cKh+t) =y[h + (f, v, t)]
=7(/ v, 0. showing that the new operation is transitive.

Suppose, finally, that p(a, b)+y(f, v, t)=y(f, v, t). This means there

exists hCCl(Q, K) such that (a+f, b+v, t)=h + (f, v, t) = (hrf, <ph+v,

cKh+t). From t = cKh+t we infer hC&(Q, ZK); hence (a+f, b+v)=(8h+f,

<ph+v), hence (a, b) =(8h, <f>h) =DeKhCB2(4>), hence p(a, b) =0; therefore the

operation is simple. Q.E.D.

Remark. If E denotes the group of all [(a, b), h]CC2(<p) + Cl(Q, ZK) such

that (a, b)+DeKh = 0, it may be shown that [C2(<p) + Cl(Q, K)]/R operates

simply transitively on S(atli). We shall not need this fact, however.
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Given (/, v, t)dS(G,»), define

(7.6) 8(f, v, I) = (8tf, dev v - <f>f) G C3(Q, K) + C2(Q, N).

(7.7) i[5(W]CZ'(*).

Proof. By Theorem 5.17 of [CGE I] (derived from [CTAG II]), 8tf
dZ3(Q, ZK). cN(dev v-<bf)=dev (CNv)-<ptcKf = dev (<ptt)-(bt dev f = 0.

Therefore 8(f, v, t)dC3(<t>), and trKD8(f, v, t)=0. irND8(f, v, t)=irND(8tf,
dev v— 4>f)=8(dev v—<bf)+<b(8tf)=8(dev v — 4>P+8i,ft(<pf)=84,ft(dev v—<j>f
+<bf)=8CllV(dev v) =0. Therefore D8(f, v, t) =0. Q.E.D.

(7.8) If hdC^Q, K) and (/, v, OG-W, then 8[h + (f, v, t)]=8(f, v, t).
("Any two equivalent weak structural cochains have the same coboundary.")

Proof. By Lemma 5.16 of [CGE I], 8CK^t(ht-f)=8tf. By (7.7), de\v-<pf
dC2(Q, ZN). Hence, using formulae (4.8) and (4.5) of [CGE I], <p(ht-f)

= (**)♦#«•«>/) = (#)%„■ [f>/-dev v)+dev v] = (<bf-dev v) +(<ph)cN,■ (devv)

=<£/—dev v+dev (<ph+v). Therefore 8[h + (f, v, t)] = [8cKh+t(hff), dev

(<ph+v)-<t>(hrf)] = (8tf, dev v-<pf)=8(f, v, t). Q.E.D.
Hence 8:S(a,»)—>Z3(<^>) induces a mapping 8:S(a,n)—>Z3(0).

(7.9) 5:5(0,W)—>Z3($) is equivariant rel. D:C2(<f>)—>Z3(<t>),

Proof.   8[(a,  b) + (f,  v,  t)]=[8t(a+f),  dev  (b+v) -<p(a+f)] = (8a + 8tf,
8b-<ba+devv-<j>f)=D(a, b)+8(f,v,t). Q.E.D.

Therefore, by (2.13),

(7.10) 5:5((?,rt-*Z3(0) is equivariant rel. D^C2(<p)/B2(<j))-^Z3(<p).

Applying (2.8) to (7.10), we find that 5[5Co,<i)] is a coset of

Dt[C\4>) /B2(<b)] = D[C2(<t>)]

in Z3((b). In other words, o[5(g,„)] is a coset of B3(<j>) in Z3(<f>). We define

x(G, p) = 5[S«j,M)]G7P(<£). Clearly x:EXT(</>0t)—>7P(</>) is constant over each

isomorphism-class; hence it induces a mapping

XtEXTfoor)-»/?»(*).

(7.11) In the sense of §5 of [CGE I ], let (f, t) be a structural cochain in the

Q-kernel t'.Q—^Ax(K)/I(K), and let (g, <bft) be a structural cocycle in the Q-

kernel <poT:Q-*A(N)/I(N), representing eGEXT(^T). Then (8tf, g-<bf)

dZ3(<b) represents x^dH3(<t>).

Proof. Choose (G, p) representing e. Then there exists vdC1(Q, G) such

that pv = l, dev v=g, CNV=<ptt. Now (J, v, t) is a weak stuctural cochain in

(G, p), and xe is represented by 8(f, v, t) = (8tf, g—<t>f). Q.E.D.
(7.12) x:EXT(</>ot)->2P(0) is equivariant rel. (eN)*:H2(Q, ZN)^H3(<p).

Proof. Given adZ2(Q, ZN) and eGEXT(0or). Choose a structural cochain

(f, t) in the Q-kerne\ t:Q—>Ax(K)/I(K); then e may be represented by a

structural cocycle of the form (g, (pit), and the structural cocycle (a+g, <ptt)
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represents pa + e. Therefore, by (7.11), x(pa + e) =p(8tf, a+g—^>f) =p[tN(a)

+ (otf, g~€)]=peN(a)+p(8tf, g-<pf) = (eN)*P(a)+xe. Q.E.D.
(7.13) The rectangle in (5.4) from P to LP(cj>) is commutative.

Proof. Given a modular expansion p = (G, p, 9)CP- Choose a struc-

tural cochain (/, v, t) in the pseudo-module (cp, 9), in the sense of [CGE I],

§10. Then (/, v, t)CSiG,„) and <£/" = dev v. Therefore (eKi)*XP = (eKi)*p(8tf)

=p(8tf, 0) =p(8tf, devv-cpf) =X(G,p). Q.E.D.
A structural cocycle in (G, p)£EEXT($0r) is an element (/, v, t)CS(a,»)

whose coboundary is zero. This is the same thing as a structural cocycle in

<p:K—>G, in the sense of §12 of [CGE I], satisfying the additional condition

vt = T. Hence by §12 of [CGE I],

(7.14) Given (G, p)£EXT (4>ot). Then (G, p) comes from an element of

CON if and only if (G, p) admits a structural cocycle.

It follows at once that (1.4), and hence (5.9), is exact.

Using §11 of [CGE I ], it is easy to show that (G, p) comes from an element

of P if and only if (G, p) admits a weak structural cochain (f, v, t) such that

4>f = dev v. This yields a proof of the exactness of (5.10); but we prefer the

proof given in §10.

Proof of Theorem 5.11b. By the remark at the end of §5, we may assume

that x[EXT (4>ot)] and (ttk)*1^?)] are nonempty. Then, by (7.12) and

the exactness of the second row of (4.6), both are cosets of (€n)*H2(Q, Zn) in

LP(<t>). To show that they are the same coset, it suffices to establish

(7.15) // e<EEXT(0OT) then (TrK)*Xe = x(r).

This, however, follows immediately from (7.11). Q.E.D.

We return to the consideration of a fixed (G, p)£EXT (<p0r). Let S^)

and 5(ci(J) denote the (possibly empty) kernels of 8:S(o.^)—->Z3(<£) and

8:S°G^)—^Z3(4>) respectively. We note that S"^ may also be regarded as the

set of all orbits in S^g^ under C1(Q, K), which operates on Sfg^ because of

(7.8).
Applying (2.5) to (7.10), we find that the orbits in .S(<j,„) under Df 1(0)

= H2(<p) are the fibers of 8:S(Q,tf—J>Zi(<p). In particular, H2(4>) operates simply

transitively on S°g,„)- But by §12 of [CGE I], S^ is in a natural 1-1

correspondence with CON(<j,M). We may say that 52(<p) operates simply on

all of CON, the orbits being the fibers of CONTEXT (0or).
If (f, v, t)CSfG,») represents the continuation $:E-J>G, then (/, t) is a

structural cocycle in the £>-kernel t:Q-+Ax(K)/I(K), representing (E, p<?>)

(EEXT (t). Consequently, a comparison of (7.4) with formulae (10.8) and

(5.11) of [CGE I] yields immediately
(7.16) CON—>CON—>EXT (r) is equivariant relative to

H2(Q, X r\ ZK) -^-'-^ H\4>) —^ H2(Q, ZK).

We record for reference the corollary



1955] COMPOUND GROUP EXTENSIONS. Ill 509

(7.17) CONTEXT (r) is equivariant rel. i*:H2(Q, XC\Zk)->H2(Q, ZK).

Since any two isomorphic continuations are similar (§3), the elements of

CONfc,,,) divide into "similarity classes," which are the fibers of CON(o,„)
-»(££)9C(G,„).

(7.18) The similarity classes of CON(g,m) are the orbits under the subgroup

/3-1(O)=P2(0)/P2(<p) of H2(cj>).

Proof. Consider two elements <p:E—>G and <j>':E'—>G of CON(o,M>. Choose

/GC'[<2, AX(K)] such that vI = t. We know that $:E->G and <£':P'->G- may

be represented by structural cocyclesof the form (/, v, t) and (/', v', t) respec-

tively. Let 7:5,(G,ri-^5(0i^) denote the natural mapping, and let x=y(f, v', t)

— t(/> v, t)dH2(<t>). We have to show that $:P—>G and <f>':E'—>G are similar

if and only if /3x=0, i.e. if and only if (/'—/, v' —v)dB2(<p).

Choose ddC\Q, E) and d'dC^Q, E') such that (dev d, $d, CKd) = (f, v, t)
and (dev d', $d', CKd') =(/', v', t). In the presence of (3.4a), condition (3.4b)

holds automatically for edK, and is therefore equivalent to $'Wd = (cano)d<p~d,

i.e. <p~'Wd = (cono)v. By the identification Zn = C°(Q, Zn) and the definition of

5: C°(Q, Zn)^C1(Q, Zn), we have, for each WoGZjv,

(7.19) 5wo = (1 — can0)v.

Therefore $:P—>G- and <j>':E'-+G are similar if and only if there exist a

homomorphism JF:P—>P' and an element nodZu such that IF|P = 1 and

(7.20) v = 8no + $'Wd.

By Lemma 5.22 of [CGE I], the formula Wd = h+d' establishes a 1-1

correspondence between homomorphisms F/:P—>P' satisfying

(7.21) IF | P = 1,       p$'W = m<£,

and cochains hdC1(Q, Zr) satisfying f = hff ( — 8h+f). Therefore #:P—>G

and $':E'—>C- are similar if and only if there exists (h, no)dC1(<j>) such that

f=8h+f and v = 8no+<j>'(h+d') [ = 8n0+<l>h+v']. Therefore the continuations

are similar if and only if there exists (h, no)dC1(<p) such that (/—/', v—v')

= (8h, 8n0+<ph)=D(h, nB). Q.E.D.

Hence, by (2.12),

(7.22) There exists one and only one operation of H2(4>) on SO?H such that

CON—>£D9f is equivariant rel. fi:H2(4>)—J>H2(<p). The operation is simple, and

the orbits are the fibers of (SDS^—>EXT (</>0r).

By (2.13) and the second half of (7.16), @£)91->EXT (T) is equivariant rel.

(-irK)*:H2(<p)->H2(Q, ZK).

8. Differentiation; the graph. In this section we shall apply the results of

[CGE I] and [CGE II] to obtain the simply transitive operation of H2(Q,

4>Zk) on P and a criterion for the existence of a modular expansion. We

shall also show that P-»EXT (<p0r) is equivariant rel. j*:H2(Q, <pZK)-*H2(Q,

Zn) , and we shall prepare the ground for several of the proofs in later sections.
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In the present paper, our given data consist of the groups Q, K, X and

the homomorphism t:Q—>Ax(K)/I(K). Now the groups Q, N, <pZK and the

homomorphism <poT'.Q-+A(N)/I(N) constitute a similar set of data, to which

all our results may be applied. We call the system (Q, N, <pZK, <Pot) the de-

rivative of the system (Q, K, X, r). By the derivative of any concept or state-

ment formulated in terms of (Q, K, X, r) we mean the same concept or state-

ment as applied to (Q, N, <$>Zk, <Pot), and perhaps re-interpreted as a new con-

cept or statement about (Q, K, X, r). For instance, denoting differentiation

by primes, we have

Q' = Q,      K' = N,      X' = (X r\ Zk)' = 4>ZK,      r' = <j,0t,

(8.1) (ZK)' = ZN,      $ = a,      (<pZK)' = a(ZN) = ZN/<pZK,

N' = N/<pZK,      [EXT(r)]' = EXTOor),     i' = j,      (Vi)'=V2.

The derived system has certain special properties not generally shared by

the original system. For example, X'C(Zk)'. More significantly, since

xW>ot) =j*<p*x(t)CJ*IP(Q, <I>Zk), we have [</>*x(t)]'=«*x(<Aot) =0. By the
derivative of the "empty" case of Theorem 5.11a (which we have not yet

proved), this suggests that E' is always nonempty. It turns out, in fact, that

the derived system admits a certain "natural" or "preferred" modular expan-

sion. For let \j/§:N/4>ZK~I(K)/c(X) denote the isomorphism defined by

commutativity in

\

I \
(8.2) laV*

N/4>ZK 4 I(K)/c(X).

(See [CGE I, formulae 2.9, 2.10])

Then by Theorem 2.3 of [CGE II], the diagram

0 -^ N/<pZK Q -■-> 0

(8.3) h

0 -> I(K)/c(X) -* Ax(K)/c(X) 4 AX(K)/I(K) -* 0

admits a completion

0 -> N/<pZK -*—-* T-> Q-> 0

(8.4) fo ir2 t

0 -> I(K)/c(X) -* Ax(K)/c(X) 4 AX(K)/I(K) -» 0,
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and any two such are isomorphic in one and only one way. We call (r, e, iri, 7^)

the graph of the given system (Q, K, X, t) ; it is the same as the graph of

t:Q^Ax(K)/I(K) rel. w.Ax(K)/c(X)-*Ax(K)/I(K), in the terminology of

§6 of [CGE I], if we identify N/<pZK with I(K)/c(X) via \pt.

Theorem 8.5. The homomorphism 4>*ir2:T-+A(N) is a modular structure

on the normal homomorphism ea:N—*T. P is in a natural 1-1 correspondence

with the set of all extensions of the crossed module (ea, cp*^); P is in a natural

1-1 correspondence with the set of all isomorphism-classes of extensions of the

crossed module (ea, $*tt2).

Proof. We noted at the end of §2 of [CGE I ] that <£* :Ax(K)/c(X)->A(N)

is a modular structure on the normal homomorphism \j/:N^>Ax(K)/c(X).

Therefore Theorem 5.4 of [CGE II ], applied to the diagram

0 -^ N Q-> 0

(8.6) J^ Ir

0 -»I(K)/c(X) -> Ax(K)/c(X) ^ Ax(K)/I(K) -> 0,

tells us: (£*Tr2:r—>A(N) is a modular structure on the normal homomorphism

ea:N—>T; the extensions of the crossed module (ea, </>*7r2) are in a natural 1-1

correspondence with those completions

0->N->G--->Q-> 0

(8.7) i£ e t

0 -> I(K)/c(X) -» Ax(K)/c(X) ^ AX(K)/I(K) -* 0

of (8.6) which satisfy the appropriate version of formula (5.3) of [CGE II ],

namely <p*9 = Cn; ditto for isomorphism-classes. But we notice that by defini-

tion, an element of P is precisely a completion (8.7) satisfying <p*9 = CN; and

isomorphism of "modular expansions" means the same as isomorphism of

"completions of (8.6)." Q.E.D.

The derivative of u>:Ax(K)/c(X)^Ax(K)/I(K) is

v:AtZR(N)->AtZK(N)/I(N).

Now (</>o,r)7ri=(/)oco7r2 = p(0*7r2). Thus (r, in, tt2) satisfies the derivative of con-

dition (1.5); hence (r, irh tt2)CP'.

The kernel of the normal homomorphism ea:iV—>r is 4>ZK- It is easily

verified that the operation of Q on 4>Zk resulting from the modular structure

4>*ir2:T-^>A(N) coincides with the operation described in §4 of the present

paper. Therefore the cohomology groups H"(Q, X) of §§8 and 9 of [CGE I]
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become, in the present application, H"(Q, <j>Zk). Hence, combining Theorem

8.5 with [Theorem 8.5 and Corollary 9.5 of CGE I], we obtain

(8.8) H2(Q, 4>Zk) operates in a natural way as a simply transitive trans-

formation group on P. P is nonempty if and only if the obstruction in 2P(<2,<£Zir)

of the crossed module (ea, 4>*tt2) vanishes.

Theorem 8.5 focuses our attention on those continuations of the derived

system which are extensions of the particular crossed module (ea, <b*iri). We

may say that P and P are the derivatives, respectively, of "a particular fiber

of CON—>P" and "a particular fiber of CON—>P." Then the operation of

H2(Q, <j>Zk) on P is, by construction, the derivative of the operation of

H2(Q, XC\ZK) on any particular fiber of CON-*P. Therefore, by differentiat-

ing (7.17), we obtain

(8.9) P-*EXTW>0r) is equivariant rel. j*:H2(Q, <bZK)-^H2(Q, Zn).

9. Modified structural cochains. In this section we shall show that

EXT(r)—>P and x;P—>PP(Q, XC\Zk) are equivariant relative to the cor-

responding homomorphisms; we shall also prove Theorem 5.11a.

Definition. A modified structural cochain is an ordered pair (/, s), where

fdC2(Q, TV) and sGC'iQ, Ax(K)/c(X)], such that

(9.1) us = t,       \pf = dev s.

One easily verifies

(9.2) The passage from (f, u) to (f, w2u) is a 1-1 mapping of the set of all

structural cochains in the crossed module (ea, <b*Tr2) (in the sense of [CGE I],

§9) onto the set of all "modified structural cochains."

We define "coboundary," "equivalence," etc. for modified structural co-

chains by composing the definitions in [CGE I], §§7-9 [as applied to the

crossed module (ea, <p*ir2)] with the 1-1 correspondence given by (9.2). We

say that a modified structural cocycle (f, s) represents a modular expansion

pGP if (/, u) represents e, where (/, u) corresponds to (/, s) via (9.2) and e is

the extension of (ea, <b*ir2) which corresponds to p via Theorem 8.5. Then we

find:

(9.3) 8(f,s) = S,JdZ3(Q,<t>ZK);

two modified structural cochains (/, 5) and (/', s') are equivalent if and only

if there exists hdC^Q, TV) such that

(9.4) /' = **..-/,       s' = +h + s;

a modified structural cocycle (f, s) represents a modular expansion (G, p, d)

if and only if there exists vdCl(Q, G) such that

(9.5) pi> = 1,        dev v = /,        Bv = s;

the operation of H2(Q, <pZK) on the set of equivalence classes of modified

structural cocycles (and hence on P) is induced by
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(9.6) a+(f,s) = (a+f,s)

where (/, s) is a modified structural cocycle and aCZ2(Q, 4>Zk).

Let M denote the set of all modified structural cochains, and ST the set

of all structural cochains in the Q-kernel r'.Q—*Ax(K)/I(K). With either

symbol, the superscript 0 changes "cochain" to "cocycle."

(9.7) <pX\:C2(Q, K) + C1[Q, AX(K)]-^C2(Q, N) + Cl[Q, Ax(K)/c(X)]
maps Sr onto M and S°T into M°.

Proof. Given (g, t)CST, aht = vt=r, and i^<£g=Xcjs;g=X dev /=dev (Xr);

hence (4>g, \t)CM. Conversely, given (/, s)CM, choose tCC*[Q, AX(K)]

such that A/=.s. Then \j/f = dev s=\ dev t; hence by Lemma 6.4 of [CGE I],

there exists gCC2(Q, K) such that <pg=f and Cicg=dev t. vt=cS\t=us=r;

therefore (g, t)CST and (<pXK)(g, <) = (/, *). Finally, if (g, t)CS°T, then

8[(*XX)(g, t)] = 8^t(pg = 8nt(<pg) =<p(8tg) =0. Q.E.D.
(9.8) If sCSt represents cGEXT(t), and pCP is the image of e under the

mapping EXT(r)—»P of §3, then (<(>XX)(s) represents p.

Proof. Let (g, t) =s, (E, p) =e, (G, p,9)=p as usual. Choose dCC^Q, E)

such that pd = l, dev d=g, CKd = t. Let v = $dCO(Q, G), where §:E-^E/X
= G is the natural homomorphism, as in §3. Then pv = p.<j>d = pd = 1; dev v

= dev (<f>d) = <j5 dev d=<pg; 9v = 9<p~d =XC'xd =Xt, verifying the appropriate ver-

sion of (9.5). Q.E.D.
Since Z2(Q, ZK) and Z2(Q, 4>Zk) operate on S° and M° respectively by

means of the first coordinate in each case, it is obvious that (<p XX): Sj—>M°

is equivariant rel. <p:Z2(Q, Zk)—*Z2(Q, 4>Zk). Combining this with (9.8), we

obtain

(9.9) EXT(t)^P is equivariant rel. (p*:H2(Q, ZK)->H2(Q, <pZK).

(9.10) Let (g, t)CSr be such that (<pg, \t)CM°; let (G, p, 9) be a modular

expansion represented by (<pg, \t). Then x(G, p, 9) =p(8tg)CIP(Q, X(~\Zk)-

Proof. Choose vCCl(Q, G) satisfying (9.5), with (/, s) replaced by (<pg, Xt).

Then (g, v, t) is a structural cochain in the pseudo-module $:E—>G, 9:G

-^Ax(K)/c(X), in the sense of §10 of [CGE I]. Q.E.D.

(9.11) x-~P-^D?(Q, XC\ZK) is equivariant rel.   \7i'.H2(Q, <pZK)^>IP(Q,
xr\zK).

Proof. Given <j>aCZ2(Q, <f>ZK) [where aCC2(Q, ZK)] and p£P. Choose

(/, s)CM" representing the modular expansions in the isomorphism-class p;

by (9.7), choose (g, t)CST such that ((pg, \t)=(f, s). Then the modular ex-

pansions in the isomorphism-class p<pa+p are represented by the modified

structural cocycle <pa + (f, s) = [<p(a+g), X/]. Therefore by (9.10), x(p<pa+p)

=p[8t(a+g)]=p8a+p(8tg) = Vip^a+XP- Q.E.D.
(9.12) The obstruction of the crossed module (ea, <pifir2) is equal to <p*x(T)

CLP(Q, 4>ZK).
Proof. Choose (g, t)CST; then by (9.7), (<pg, Xt)CM. Therefore x(««, <p*ir2)

=p8(<pg, \t) =p8^t(<Pg) =p8Ht(<pg) =p<p(Stg) =<P*p(8tg) =4>*x(r). Q.E.D.
Combining (9.12) with (8.8b), we obtain
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(9.13) There exists a modular expansion if and only if 4>*x(t) =0 (cf.

[APC]).
This proves the "empty" case of Theorem 5.11a. Assume now that x(P) and

C'bcOO] are nonempty. Then, by (9.11) and the exactness of the top row of

(4.6), both are cosets of VXH2(Q, <pZK) in W(Q, XC\ZK). To show that they

are the same coset, it suffices to establish

(9.14) IfpdP,thenux(P)=x(r) (cf. [APC]).
This, however, follows at once from (9.7) and (9.10).

10. Proofs by formal devices. In this section we conclude the proofs of

Theorems 5.6 and 5.8 by showing that (5.10) is exact and that the rectangle

in (5.4) from P to 7P(<£) is regular.

Let ?j:P—>EXT(</>0t) denote the natural mapping.

(10.1)  If pd^ then (airN)*xVP = 0.
Proof. By (7.13), (aT^+xVP = (airN)*(eKi)*XP =0- Q.E.D.
(10.1) establishes half of the exactness of (5.10). To prove the other half,

suppose eGEXT(</>or) and (cttnv)*xe = 0. Then by (7.15) and the anticom-

mutativity of (4.7) (with w = 3), <j>*x(.T) —'P*(t'k)*xs= — V2(cnrw)*xe = 0.

Therefore by (9.13), P is nonempty. Therefore by (10.1), [(airN)*xv]~1(!^) is

nonempty. But now (5.10) is exact by (2.7b).

Now suppose eGEXT(</>oT), hdH3^, X(~\ZK), and xe = (eKi)*h. Then by

(7.15), 0*x(t) =$*(ttK)*xe=<P*(irK)*(eKi)*h=<i>*Hh = 0. Therefore by (9.13),

P is nonempty. The regularity of the rectangle from P to 2P((£) now follows

from (7.13) and (2.15), because it is easily verified that the corresponding

rectangle of homomorphisms is regular.

Part III

11. Automorphism groups. Given an extension (1.2) of the Q-kernel

4>ot:Q-*A(N)/I(N), let AN(G) denote the group of all automorphisms IF of

G satisfying

(11.1) IF | TV = 1,       pW = p.

C1(G, G), the set of all 1-cochains on G in G, forms an additive group by

addition of values in G. Elements of C1(G, G) may also be multiplied, by com-

position. CX(G, G) is then a "near-ring," satisfying all the axioms for a ring

with identity except the commutativity of addition and the left distributive

law x(y+z) =xy+xz.
(11.1) Given ddCx(Q, G) such that pd = l, and rdC\Q, TV). Then there

exists at most one WdAN(G) such that Wd = r+d. There exists such a W if and

only if rdZ1(Q, Zn).
Proof. Transform the notation of Lemma (5.24) of [CGE I] as follows:

(/, *, Q, K, E, p, d,f, t', Q', K', E', p', d', <b, 6, r, $)->(/, t, Q, TV, G, p, d, f, t,
Q, TV, G, p, d, 1, 1, r, IF). Then the lemma tells us: there exists at most one

homomorphism W:G->G satisfying (11.1) and Wd=r+d; there exists such
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a homomorphisn if and only if f = rt-f and t = CNf+t, where/ = dev d and

t = CNd. But by the "five-lemma," any homomorphism W:G-^G satisfying

(11.2) is automatically an isomorphism and hence an element of AN(G); and

by formula (4.6) of [CGE I], the conditions f = rt-f and CNr=0 are together

equivalent to rdZ\Q, ZN). Q.E.D.
It follows that for fixed ddCx(Q, G) such that pd = l, the set of all

(r, W)dZx(Q, ZN)XAN(G) such that Wd=r+d is the graph of a function

o-d-.Z^Q, ZN)->AN(G) which is 1-1 onto. Given wGTV, qdQ, and rdZ\Q, Zn),
we have (rp +1)(n +dq) = rp(n +dq) +n+dq = r(pn +pdq) +n+dq=rq+n+dq

= n+rq+dq = n + (r+d)q = [ffd(r)](n) + [o-d(r)](dq) = [ad(r)](n+dq). There-

fore Gd(r) = rp + l. Hence Od is independent of d, and we have proved that the

function o-.Zx(Q, ZN)-*AN(G) defined by <r(r) =rp+l is 1-1 onto. But

(ar)(ar')=(rp + l)(r'p + l) = rp(r'p + l)+r'p + l =r(pr'p+p)+r'p + l = rp+r'p

+ l=(r+r')ju + l=(r(r+r'). Therefore

(11.3) The formula a(r) = rp + l defines an isomorphism of the additive

group Z^(Q, Zn) onto the multiplicative group AN(G) (cf. [AEG]).

It follows, of course, that AN(G) is always commutative, and that up to

isomorphism, AN(G) is independent of the particular extension (G, p) of the

<2-kernel <poT\Q^A(N)/I(N).
We shall be interested in the subgroups o-[(pZ1(Q, ZK)\d<^\Z1(Q, (PZk)]

dAN(G). We note:

(11.4) AN(G)/a[Z1(Q, <pZK)} « aZ\Q, Zn) d Zl(Q, ZN/4>ZK),

(11.5) a \Z\Q, <pZK) ]/c [tpZ^Q, ZK) ] « Hl(Q, <*>ZX)/>*PK<?, ZK)

« ViH^Q, 4>ZK) C H2(Q, x n ZK).

Applying the above to the particular extension of the ^-kernel aotboT'.Q

-^>A(aN)/I(aN) given by the top row of (8.4), we obtain, as the "deriva-

tives" of (11.3) and (11.5),

(11.6) o-'lZ^Q, ZaN) « A-"{T)  by <r'(r) = trirx + 1,

(11  7)    "' [Z'(C' Zn/<J>Zk) ]A'[aZ1(e' Zn) ] ~ W{Q' ZN/<pZK)/a1,H1(Q, ZN)

~ \J2W(Q,ZN/<pZK)dH2(Q,<pZK).

For each (G, /u)GEXT(#0t) we obtain, from (11.4),

(11.8) AN(G)/<r[Z1(Q, 4>ZK)] « o-'aZKQ, Zn) C A"»(T).

It may be verified that the homomorphism %:AN(G)—>AtaN(T) which in-

duces (11.8) is characterized by

(11.9) '&V)y = ea(Wg - g) + y

where IFG^(C-), 7Gr, gGG, and pg=irxy.

12. The operation of Zl(Q, ZN) on CON. Given (G, m)GEXT(0ot), let
CON(g,^)  denote the counter-image of  (G, p)  under the mapping CON
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-»EXT(0ot). Given (£, 0)GCON(g,„> and WCAN(G), define W(E, $)
= (E, JF$)ECON(G,M). Then AN(G) operates as a left multiplicative trans-

formation group on CON(o,„). It is readily verified that the operation is

simple, and that the orbits are the fibers of CON<<?,„>—>EXT(r). Combining

this with (11.3), we obtain a simple operation of ZX(Q, Zn) on CON((j^), with

the same orbits. Since Z1(Q, ZN) is independent of (G, p), we may now say

(12.1) ZX(Q, Zn) operates simply on CON, the orbits being the fibers of

CON->EXT(<£0t) XEXT(r).
(12.2) Given (G, p)GEXT(<£0t) and bCZl(Q, ZN). Let (/, v, t) be a struc-

tural cocycle in (G, p) (§7) representing (E, #)£CON(G,„). Then (/, b+v, t) is a

structural cocycle in (G, p) representing b + (E, $).

Proof. By definition, b + (E, $) = [E, (bp + l)$]. Choose dCCl(Q, E) such

that p$d=l and (dev d, $d, Cxd) = (/, v, t). Then [dev d, (bp + l)(j>d, Cxd]
= (dev d, b+$d, Cicd) = (f, b+v, t). Therefore (f, b+v, t) represents b + (E, $);

it follows automatically that (/, b+v, t) is a structural cocycle. Q.E.D.

Comparison of (12.2) with (7.4) shows that CON—>CON is equivariant

rel. peN:Z\Q, ZN)-+B2(<p).

13. The operations of Z\Q, ZN/<t>ZK) on P. In this section we shall de-

scribe two operations of Zl(Q, Zn/4>Zk) on P, which differ in sign. The "first"

operation is the one referred to in Theorem 5.3; with respect to it, CON—>P

—>P is equivariant relative to

_ (airff)t V2P

H2(<f>) --" Z\Q, ZN/4>ZK)-> H2(Q, 4>ZK).

Moreover, for each (G, p)£EXT(</>0t), let P(<?,M> denote the counter-image of

(G, p) under the mapping P—>EXT(</>0r). Then we shall describe a natural

operation of AN(G) on P<g,„) such that, using the "first" operation of

Zl(Q, ZN/4>ZK) on P(o„o, the identity mapping P(g,p)—>P(g,c) is equivariant

relative to the composition aa~1:AN(G)—!>Zl(Q, Zn/<]>Zk).

However, we shall show in §15 that the "second" operation is the "deriva-

tive" of the simply transitive operation (not yet established) of ZX(Q, <j>Zk)

on each fiber of CON->PXEXT(r).
In this section, to provide a clear basis for comparison, we shall describe

both operations in terms of cochains. For the most part we shall consider a

fixed (G, p)GEXT(0ot). We note that P(o,„) may be identified with each of

the following sets:

(a) the set of all modular structures 9:G-+Ax(K)/c(X) on the normal

homomorphism <p:K—>G which satisfy (1.5);

(b) the set of all extensions of the crossed module ea:N—>T, </>*7r2:r

-^A(N) which determine (G, p)GEXT(0or) (§8);
(c) the set of all equivalence classes of those frames (u, s) [CGE I, §11 ]

in the normal homomorphism <p:K-^G which satisfy us =r.

The condition cos = r will be implicitly assumed whenever we speak of

"frames."
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Given a frame (u, s), and bCC1(Q, G), define

(13.1) b+ (u, s) = (b + u, s).

(13.2) b + (u, s) is a frame if and only ifbCC1(Q, Zt/) and «55 = 0.
Proof. Suppose b + (u, s) is a frame. Then 1 =p,(b+u) =pb + l, hence

p6 = 0, i.e. bCC1(Q, N). cNb + CnU = Cx(b+u) =<p*s = Cnu, hence cNb = 0, i.e.

bCC1(Q, Zn). ^8b=\(/(8b+dev m —dev M)=^[dev (b+u)— dev M]=dev 5
— dev s = 0; hence a8b = 0. The argument is clearly reversible. Q.E.D.

Let Z\Q, ZN/<pZK) = Cl(Q, ZJV)n(a5)-1(0). It follows from (13.2) that

(13.1) defines a simple operation of Z1(Q, Zn/4>Zk) on the set of all frames [in

<p:K—*G, satisfying cos = t]. If the frames (m, s) and (u', s') are equivalent in

the sense of [CGE I, §ll],and6GZ1(i?, ZN/<pZK), then since u-u'CC\Q, N),

we have if/[(b+u) — (b+u')]=\p[b + (u — u')—b]=\f/(u — u')=s — s', hence

b + (u, s) and b + (u', s') are equivalent. Therefore the operation of

ZX(Q, Zn/<pZk) on the set of all frames induces an operation of

Z\Q, ZN/<pZK)

on the set of all equivalence classes of frames.

b + (u, s) is equivalent to (u, s) if and only if s — s=\p(b+u — u), i.e. if and

only if bCC\Q, <pZK). Since

(13.3) 0 -» Cl(Q, <bZK) -* Z\Q, ZN/<pZK) -^ Z\Q, ZN/<pZK) -> 0

is exact, it follows that the operation of Z1(Q, Zn/4>Zk) on the set of all equiv-

alence classes of frames induces a simple operation of Zl(Q, ZN/4>ZK) on the

same set, and hence on P(g,m)- This is our "first operation."

Let T denote the set of all ordered pairs (u, s) such that uCCl(Q, G),

sCCY[Q, Ax(K)/c(X)], and pu = l. The concept of "equivalence" between

two elements (m, 5) and (u', s') of T, namely s — s'=ij/(u — u'), makes sense

whether the elements of T are frames or not. If (m, s) and (m', s') are equiva-

lent, it is easily verified that (u', s') is a frame if and only if (u, s) is a frame.

Given (u, s)CT and bCC\Q, N), define

(13.4) b +'(«, s) = («,# + s).

(13.5) b+'(u, s) is equivalent to —b + (u, s).

Proof. (4>b+s)-s=$[u-(-b+u)]. Q.E.D.
Hence, by (13.2),

(13.6) // (m, 5) is a frame, then: b + '(u, s) is a frame if and only if

bCCl(Q,ZN) anda8b = 0.

Using (13.5) at each step, it follows that (13.4), as well as (13.1), induces

a simple operation of Z\Q, ZN/<pZK) on P(g,k), and that for each hCZl(Q,

ZN/4>ZK) and each 0GP(g,„), h + '9= —h+9. The operation induced by (13.4)
will be called the "second operation" and denoted with primes.
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(13.7) Using the first operation of Z1(Q, ZN/<f>ZK) on P(ff,rt, CON(G,M)

—»P(G,/i) is equivariant rel. (awx)*'-B2(<b)—>Z1(Q, Zn/4>Zk)-

Proof. Let P denote the set of all frames (u, s) in <p:K-*G such that

us=t; let F denote the set of all equivalence classes of such frames. Recall

from §7 that Sf0ill) denotes the set of all structural cocycles in (G, p), and that

S(Oi(l) denotes the set of all equivalence classes of such. Let ^:CON(o,^

—>P(G,^) denote the natural mapping. By §12 of [CGE I], the formula

£(/> v, t) = (v, ^0 defines a mapping £: .S^)—>F, which induces a mapping

k'Sia,n)—*F such that the diagram

CON(GriM)  —> P(G,|i)

(13.8)

S(c,/o-► F

is commutative. It therefore suffices to show that j-iSfg^—iF is equivariant

rel. tn-.Z^-^Z^Q, ZN/<t>ZK). But £[(a, 6)+(/, v, i)]=H(a+f, b+v, t)

= (b+v, \t)=b + (v, \t)=irN(a, b)+H(f, v, t). Q.E.D.
The equivariance of P—>P rel. X72p:Zl(Q, Zn/4>Zk)—+H2(Q, <pZk) will be

proved in §15, where we shall also investigate the orbits.

Now consider 0GP(G,»o and WdAN(G). Then it is easily verified that

dW"l:G—*Ax(K)/c(X) satisfies the required conditions, so that 01F-1

GP(G,».i- Hence the formula W6=6W~1 defines a left operation of AN(G) on

P(G,(.)- By definition of "congruence," the orbits under this operation are the

fibers of P(<7,„)—»$.

(13.9) Using the first operation of ZX(Q, Zn/<j>Zk) on P(o.n), the identity

map P(g,m)—>P(g,j«) is equivariant rel. aa~1:AN(G)-^Z1(Q, Zn/<PZr)-

Proof. Given WdAN(G) and 0GP<g.„); let r = <T~1(W)dZ1(Q, Zn), and
choose a frame (u, s) associated with 6. Then (W9)(r+u) =8W-l(r+u)

= 6r+6( — rp + l)u=9u=s. Therefore r + (u, s)=(r+u, s) is a frame associ-

ated with WO. Therefore W0 = ar+8=a<r-1W+6. Q.E.D.
14. The operation of ZX(Q, <pZK) on CON. We define the operation of

Z'(<2, 4>Zk) on CON by the condition that the identity mapping CON—>CON

shall be equivariant relative to the inclusion j:Z1(Q, 4>Zk)-^Z1(Q, Zn).

Combining (13.7) with the last statement of §12, we have

(14.1) Using the first operation of Z\Q, ZN/<pZK) on P, CON-^P is equi-

variant rel. a'.Zx(Q, Zn)—*Z1(Q, Zn/<I>Zk).

Hence, by (12.1) and (2.5),
(14.2) The orbits in CON under Z\Q, <pZK) are the fibers of CON->P

XEXT(4>0t)XEXT(t), i.e. the fibers of CON->PXEXT(t).
(14.3) CON->CON is antivariant rel.  ViP'-Z^Q, <bZK)->H2(Q, Xr\ZK).
Proof. This follows immediately from the following established facts about

the upper left-hand rectangle of (5.4): the other three maps in the rectangle
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are equivariant; the two horizontal maps are identity maps; the correspond-

ing rectangle of homomorphisms is anti-commutative.

15. The operations of ZX(Q, ZN/<pZK) on P (concluded). By (14.2),
ZX(Q, <pZK) operates simply transitively on each fiber of CON—>PXEXT(t).

Differentiating, we obtain a simply transitive operation of ZX(Q, Zn/4>Zr) on

each fiber of P->EXT(0or).

(15.1) For each (G, p)(EEXT(#0r), the operation of ZX(Q, Zn/<1>Zk) on

P(g,,i) obtained by differentiating the operation of Z1(Q, <pZx) on CON coincides

with the "second" operation, i.e. the one induced by (13.4).

Proof. Given 0GP(g,m) and abCZl(Q, ZN/<pZK), where bCZ\Q, ZN/<pZK)
= Cl(Q, Zff)r\(a8)~l(0). Since w0 = r, there exists one and only one homo-

morphism 6:G—>T such that 7Ti0=p and iri9=9; 0£P(g,h) corresponds, via

Theorem 8.5, to the extension 0:G—>r of the crossed module ea:N-^T,

4>*tt2:T-*A(N). Let W = a'(ab)CA'aN(T). Then, in the sense of the "deriva-

tive," a.b+9 is the modular expansion corresponding to the extension W8:G

—>r of the crossed module (ea, <p*ir2). That is, in the sense of the "derivative,"

ab+9 is the modular structure ir2W6:G—>Ax(K)/c(X) on the normal homo-

morphism <j>: K—>G.

Choose uCC1(Q, G) such that pu = l. Then (u, 9u) is a frame associated

with the modular structure 9:G-^>Ax(K)/c(X). Therefore, in the sense of

(13A),ab + 'B is the modular structure associated with the frame b+'(u,9u)

= (u, }pb+9u). But w2W8u=ir2(eabiri + l)du=irieabiri6u+iridu=}pfabpu+9u

=^b+9u. Therefore ab + '9 = ir2Wl Q.E.D.
Therefore

(15.2) The orbits in P under the "second" operation by Zl(Q, Zn/<pZk) (and

hence also under the "first" operation) are the fibers of P—+EXT(<£0r).

Differentiating (14.3), and using the fact that the "first" and "second"

operations differ in sign, we obtain

(15.3) Using the second (first) operation of Zl(Q, ZN/<pZK) on P, P—>P is
antivariant (equivariant) rel.  SJ2p\Z1(Q, Zn/<PZk)-^H2(Q, <J>Zr)-

16. The operation of \/2IP(Q, ZN/<pZK) on <p. Henceforth we shall refer

only to the first operation of Zl(Q, Zn/<pZr) on P.

By (15.2), (15.3), and (2.5), the orbits in P under the kernel aZ\Q, ZN) of

V2p:Z1(<3, ZN/<pZK)^H2(Q, <pZK) are the fibers of P-^EXT(0or) XP, i.e.
the fibers of P—>Sp. [This also follows from (13.9) and the remark preceding

(13.9).] Therefore, by (2.12) and (15.2),
(16.1) There exists one and only one operation of \/2Hl(Q, ZN/<pZK) on ^5

such that P—*y> is equivariant rel. S/2p:Z1(Q, ZN/<pZK)—>V2H1(Q, ZN/<pZK).

The operation is simple, and the orbits are the fibers of "iB—>EXT(<£ot).

By (15.3) and (2.13), ^T3—>P is equivariant relative to the inclusion

\7tH\Q, ZN/<pZK)^H2(Q, 4>ZK).

By (13.7) and (16.1), CON->^ is equivariant rel. (V2p)(aTrN)i'.B2(<t>)

->S72Hl(Q, ZN/<pZK).  But (V2p)(«*"*)# =[V2(a7Hv)*]/3, and CON-^S03c is
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equivariant rel. t3:B2(<t>)-+H2(<p). Therefore, by (2.13), <£©9i-»<P is equivari-

ant rel.  V2(a^)*:7P(0)-^V2P1(<2, ZN/<pZK).
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