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Introduction. Let F be a field of characteristic p, and let C be a finite
algebraic extension field of F such that C»CF. It has been shown in [4] that
there is a one to one correspondence (up to isomorphisms) between the simple
finite dimensional algebras with center F and containing C as a maximal
commutative subring and the regular restricted Lie algebra extensions of C
by the derivation algebra of C/F. This led to a very simple description of the
group of similarity classes of these algebras. The main task of the present
paper is to investigate the connection between restricted Lie algebras and
simple associative algebras of characteristic ¢ quite generally. For this pur-
pose, we generalize the notion of a regular extension of C by the derivation
algebra of C/F to that of a regular extension of a simple algebra 4 with
center C by the derivation algebra of C/F. The correspondence mentioned
above is then generalized to a one to one correspondence between these exten-
sions and the simple algebras with center F which contain 4 as the com-
mutator algebra of C (Theorem 3). We shall then show how every simple
algebra containing a purely inseparable extension field of its center as a
maximal commutative subring can be built up in a series of steps from regular
Lie algebra extensions. With a suitable composition of regular extensions,
which we define in §2, this reduces the structure of the group of algebra
classes with a fixed purely inseparable splitting field to the structural elements
of restricted Lie algebras, at least in principle. However, it does not yield a
direct description of this group, as was the case for splitting fields of exponent
one.

In §3 we show that the tensor multiplication with a purely inseparable
extension field C of F maps the Brauer group of algebra classes over F onto
the Brauer group over C (Theorem 5). Although this result seems not to
have been stated before, it may well be regarded as one of the culminating
points of Albert’s theory of p-algebras. In fact, Chapter VII of [1] con-
tains all the essential points of a proof along classical lines, which is the first
proof we give in §3. Here, the main tools are Galois theory and the theory of
cyclic p-extensions. Our second proof is entirely different. It proceeds within
the framework of the first part of this paper, replacing the field theory with
the theory of Lie algebras. In particular, we use the theory of restricted Lie
algebra kernels, [3], in order to show that if 4 is a simple algebra with
center C and C?CF then there always exists a regular extension of 4 by the
derivation algebra of C/F, whence (by Theorem 3) 4 can be imbedded as the
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commutator algebra of C in a simple algebra with center F. Theorem 5 then
follows almost immediately.

1. Regular extensions. Let F be a field of characteristic 50, and let
C be a finite algebraic extension of F such that CPCF. Let T be the derivation
algebra of C/F, regarded as a restricted Lie algebra over F. Observe that T
has also the structure of a vector space over C in the natural way. The scalar
multiplications are connected with the commutation in T by the identity
[ats, cata] =citi(ce)ta—cata(cr)ti+crca[ts, t2], where ¢;EC and t;ET. Further-
more, by Lemma 1 of [4], the scalar multiplications are connected with the
pth power map in T by the identity (ct)? =c?t?+(ct)?~1(c)t.

Now let 4 be a simple associative algebra with center C. Let S be a re-
stricted Lie algebra over F, and suppose that 4, with its natural structure as
a restricted Lie algebra over F, is contained as an ideal in S in such a way
that, for every s€.S, the restriction to 4 of the inner derivation effected by s
is even a derivation of the associative algebra 4, i.e., that for all ¢;C 4, we
have

(*) [S, 0102] = [S, a,]az + a [S, az].

Then these derivations map C into itself, and if ¢(s) denotes the restriction
to C of the inner derivation effected by s, ¢ is a restricted Lie algebra homo-
morphism of Sinto 7. We shall say that the pair (S, ¢) constitutes a regular
extenston of A by T if the kernel of ¢ coincides with 4, ¢(S)=T, and S can
be given the structure of a vector space over C, extending the C-space struc-
ture of 4, such that ¢ is C-linear and the following regularity conditions hold,
for all ¢, ¢;in C and all s, s;in S:

(i [e151, 6a52] = c1p(s1)(c2)s2 — cagp(s2) (1) 51 + crcalsy, 525
(ii) (cs)? = ¢Ps? + ¢(cs)P(c)s.

Such a C-space structure on S will then be called an admissible C-space struc-
ture. We say that two such regular extensions of 4 by T are equivalent if there
exists a restricted Lie algebra isomorphism « of S onto S’ which leaves the
elements of 4 fixed and for which ¢’a=¢.

If B is a simple finite dimensional algebra with center F and containing
C then the commutator algebra 4 of C in B is simple and has center C. Let S
be the set of all elements s&B for which sc—c¢s& C whenever ¢&C, and let
¢(s) denote this derivation c—sc—cs of C. Then it is easily seen (using Lemma
1 of [4] in order to verify condition (ii)) that (S, ¢) is a regular extension of
Aby T.

In order to deal adequately with regular extensions we require the follow-
ing auxiliary notion. A simple finite dimensional algebra 4 with center C may
be regarded as a full matrix algebra D, where D is division algebra with
center C. There exists a separable extension field Z of C which is a maximal
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commutative subring of D. Let R denote the subring of A which consists of
all those matrices whose diagonal entries lie in Z and whose other entries are
0. Then R contains C and is C-isomorphic with the direct sum of 7 copies of
Z. Thus R is a separable commutative algebra over C. Furthermore, R is a
maximal commutative subring of 4. Generally, if R is any maximal com-
mutative subring of A which contains C and is separable over C, we shall say
that R is a regulator of A. We have then CR?=R, and if F is a subfield of C
as above, FR? is separable over F.

THEOREM 1. Let F be a field of characteristic p#0, C a finite algebraic ex-
tension field of F such that C°CF, T the derivation algebra of C/F. Let A be a
simple finite dimensional algebra with center C, and let (S, ¢) be a regular exten-
sion of A by T. Then, for any regulator R of A and any admissible C-space struc-
ture of S, there exists a C-linear Lie algebra isomorphismy of T into S such that,
for any tET, ¢Y(t) =t, the inner derivation Dy, effected by Y(t) maps R into
itself, and Y (t)?» —y(t?) ER>.

Proof. Let S’ be the restricted subalgebra of S which consists of all those
elements s €S for which D,(R) CR. Since R is separable over C, every deriva-
tion ¢ of C can be extended (uniquely) to a derivation ¢’ of R. Let s€S and
consider the restriction to R of D,; call this §,. Then 8,—¢(s)’ is a derivation
of R into A which annihilates C. Since R is a semisimple subalgebra of 4,
we can apply a well known result of Jacobson’s(!) to conclude that there is
an element e €4 such that 8, —¢(s)’ coincides with 8,. Now 8, =¢(s)’ and
therefore maps R into itself, which means that s—a&ES’. Hence ¢(S') =T,
and if ¢’ denotes the restriction of ¢ to S’ then (', ¢') is a restricted Lie
algebra extension of ANS’ by T. Since R is commutative, every derivation
of R annihilates' R*. Hence every element of AMN.S’ commutes with every
element of R?, and therefore also with every element of CR?=R. Hence
ANS’' =R, so that (5, ¢') is a regular extension of R by T. Now the proof
of Theorem 4 of [4] applies without any changes to this extension (S, ¢’)
and gives the desired result.

Furthermore, one can now proceed exactly as in that proof to obtain:

THEOREM 2. Let (S, ¢) and (S, ¢") be any two equivalent regular extensions
of A by T. Then, for any given admissible C-space structures of S and S, there
is a C-linear equivalence isomorphism of S onto S'.

Let (S, ¢) be a regular extension of A by T, and let Ug denote the re-
stricted universal enveloping algebra of the restricted Lie algebra S(2). Let
U# denote the ideal of Ug which is generated by the canonical images s’ in
Ug of the elements s&.S. Now equip S with an admissible C-space structure,

() See Theorem 7 of [S], or Theorem 3 of [4].
(?) For this notation, and for the results we take from the theory of restricted Lie algebras
(due to Jacobson) and their cohomology groups, see [2 ]
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and let J be the ideal of U# which is generated by the elements of the form
c's’—(cs)’, with ¢&€C and s&S. Put Vg=U}/J. Then Vs is a finite dimen-
sional associative algebra over F. It is clear from Theorem 2 that, although
the construction of Vg involves the choice of an admissible C-space structure
on S, Vg is determined up to an isomorphism by the equivalence class of the
extension (S, ¢). More precisely, if « is a C-linear equivalence isomorphism of
(S, ¢) onto (S, @), then a induces an isomorphism a* of Vg onto Vs, such
that if p and p’ are the natural maps of S into Vg and of S’ into Vg, respec-
tively, we have a*p=p’. We are now in a position to prove the following
generalization of Theorem 5 of [4].

THEOREM 3. Let (S, ¢) be a regular extension of A by T. Then the canonical
map of S into Vsis 1—1, and its restriction to A is an associative algebra iso-
morphism by means of which we identify A with a subalgebra of Vs. Vg is then
a finite dimensional simple algebra with center F, and A is the commutator alge-
bra of C in Vg. Furthermore, the canonical image of S in Vg cotncides with the
set of all elements v&E Vg for which D,(C)CC, and the corresponding regular
extension of A by T is equivalent with (S, ¢) by the canonical map of S into V.
Conversely, if B is a finite dimensional simple algebra with center F and contain-
ing C, if A is the commutator algebra of C in B, and if (S, ¢) is the resulting
regular extension of A by T, then the homomorphism of UF into B which extends
the injection S—B induces an isomorphism of Vg onto B.

Proof. We have C=F[u, - -+, u] and corresponding derivations
t, - - -, ki of C such that £;(u;) =0;;4;, whence t¢#;=t;t; and tf =t;. (Cf. §1 of
[4]). Let R be a regulator of 4, and let Y be a C-linear Lie algebra isomor-
phism of T into S such as is given by Theorem 1. Write ¢(¢;) =s:. Then
s¥=s:+r;, with r;,&ER?. Put FR?=R,, and construct the commutative poly-
nomial ring Ro[x1, - - -, xi] in elements x; which are algebraically independ-
ent over Ry. Let I be the ideal of this polynomial ring which is generated by
the elements &7 —x;—7;. Then Ro[x1, - - -, x:]/I=Ro[y1, - - -, 3], where y;
is the coset of x;, so that 97 =y;+7;. Put V=4 ®gRo[y, - - -, y], this tensor
product being taken for the natural structure of 4 as a right Ry-module
and the natural structure of Re[y1, - - -, y] as a left Ry-module. We regard
V as a left A-module in the natural fashion. Since the inner derivation effected
by s; maps R into itself, it must annihilate R? and hence R,. It follows that
there is a unique additive endomorphism z; of V such that, for aEA4 and
YERo[y1, - - -, ¥, 2:(a®y) =[5s, ¢]®y+a®y:y. We may identify the ele-
ments of 4 with the module operations they effect in V, and it is easy to
check that we have then z.a—az;= [s;, a], and 2Z =z;4r.. Also, we evidently
have z;2;=2;2;. Let M be the ring of endomorphisms of V which is generated
by the z; and the elements of 4. Then it is easily seen that tlie monomials
281 - - - 2k with 0 <e;<p, are (left) 4-independent in M and span M over 4.

Now consider an element of M, writing it in the form m =mo+mz;+ - - -



1955] LIE ALGEBRAS AND SIMPLE ASSOCIATIVE ALGEBRAS 139

+m2f, where ¢<p and the m, are A-linear combinations of monomials in
the z; with j#4. Then the m, commute with %, and it follows that mu;—ugm
=gmquzi~'4+m’, where m' is of degree less than ¢—1 in z,. It is easily seen
from this that if m commutes with every element of C then mCA. Hence
the commutator algebra of C in M coincides with 4. At the same time we see
that the center of M is contained in A4, and hence also in the center C of 4.
Since a central element commutes with every z;, and since an element of C
which is annihilated by each ¢; must belong to F, it follows that the center
of M coincides with F. Finally, by repeatedly forming mu;—um (with suita-
ble choices of the index 7 at each stage), starting with any nonzero element
m, we eventually find a nonzero element of 4 which belongs to the ideal
MmM. Since A is simple, we conclude then that 1E MmM, whence MmM
=M. Thus M is simple.
Now every element of S can be written uniquely in the form

k
s=a++ E CiSiy
i=1

where a €4 and ¢;EC. We define a C-linear map « of S into M by setting
als) =a+ Dt ¢z If we regard M as a restricted Lie algebra over F in the
usual way, we see from the regularity conditions (*) and (i) that o is a Lie
algebra isomorphism, and from the regularity condition (ii) that « is even a
restricted Lie algebra isomorphism. Hence a can be extended uniquely to a
homomorphism of U# into M which is evidently onto and annihilates the
ideal J by means of which we have defined V. Hence the canonical map of S
into Vg, which is a right factor of «, must be 1-1. Clearly, the ordered mono-
mials in the canonical images of the s; in Vg, with non-negative exponents
less than p, span Vg over the canonical image of 4 in V. Hence we have the
dimensionality relations [Vs:F]|<pt[A:F]=[M:F]. It follows that the
homomorphism of Vs onto M which is induced by « is actually an isomor-
phism. Hence we may identify A with its canonical image in Vg, and Vgis a
simple algebra with center F which contains 4 as the commutator algebra of
C. Furthermore, if m is an element of M such that mc—cm&C, for every
¢&C, our above computation of mu;—wum shows that mCa(S). Hence S
may be identified with the set of all v& Vg for which D,(C)CC, and then the
corresponding regular extension of A by T evidently coincides with (S, ¢).
There remains only to prove the last part of Theorem 3. It is evident that
the canonical homomorphism of Ug into B which extends the injection
S—B annihilates J and therefore induces a homomorphism of Vg into B
which evidently leaves the elements of 4 fixed. Since we know already that
Vg is simple, we may conclude that this homomorphism is an isomorphism of
Vs into B. Also, we know that [Vg:F|=p*[4:F]=[C:F][A:F], and since
A is the commutator algebra of C in B we have [C:F][4:F|=[B:F). Hence
[Vs: F]=[B:F], whence our isomorphism must map Vs onto B. This com-
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pletes the proof of Theorem 3.

Now let 4 be a simple algebra with center F which contains a purely in-
separable extension field C of F as a maximal commutative subring. We can
insert a sequence of fields F=COCCeVC - - CC®=C such that
F(Cr—1)»=C® for each r. Let A™ be the commutator algebra of C” in 4,
and let S™ be the set of all elements a €A for which D,(C®)CC®. If T®
denotes the derivation algebra of C®”/C+V, we have in the natural way the
regular extensions (S, ¢®) of A™ by T™. It follows at once from Theorem 3
that Vs® is isomorphic with A*+Y by the map which extends the injection
of S™ into AU+V. In particular, we conclude that the subalgebra of A which is
generated by the elements of S® coincides with A+V. Moreover, it is now clear
how A4 can be built up from C by a sequence of regular extensions. If C°CF
we have e=1, and we know from [4] that our construction establishes an
isomorphism between the group of similarity classes of the simple algebras
split by C and the group of equivalence classes of the regular extensions of
C by T. It is therefore of interest to generalize the composition of regular
extensions of C by T to a composition of our present more general regular ex-
tensions. This is the purpose of the next section.

2. Composites of regular extensions. Suppose we are given two regular
extensions (S, @) and (5, ¢’) of simple algebras 4 and A’, with the common
center C, by the same derivation algebra T of C/F. We shall define a com-
posite regular extension of A®c¢A’ by T. Let D be the restricted subalgebra
of the direct sum (S, S’) of S and S’ which consists of all elements (s, s’) in
which ¢(s) =¢’(s"). Corresponding to each element d=(s, s’) of D, thereis a
unique derivation 8; of 4 ® ¢4’ such that 8;(a®a’) =[s, a]®a’+a®[s', a’].
The map d—d. is clearly a restricted Lie algebra homomorphism of D
into the derivation algebra of 4 @ cA’, relative to F. Now we regard 4 ®cA4’
as a restricted Lie algebra over F and use 6 for defining the semidirect sum
U=(A®cA’, D);. The commutation in U is given by the formula

[(%1, d1), (22, d2)] = (%125 — 2321 + 8ay(%2) — 8a,(%1). [d1, d2]),

where x;EA®cA’ and d;ED. It is known from the elementary theory of
restricted Lie algebras that there is one and only one p-map in U which
coincides with the given p-maps on the ideal A®c¢4’ and on the comple-
mentary subalgebra D. When equipped with this p-map, U is a restricted Lie
algebra containing 4 ® cA’ as a restricted ideal in such a way that the regu-
larity condition (*) is satisfied. Now let V be the subspace of U which is
spanned by the elements (a®1, —(a, 0)), with aEA4, and the elements
(1Qa’, —(0, a’)), with a’EA4’. It is easily verified that V is a restricted ideal
in U. We put E=U/V. The canonical map of 4 ®cA4’ into E is evidently an
isomorphism by means of which we shall identify 4 ® ¢4’ with a restricted
ideal of E. The homomorphism ¢ (or ¢’) induces a restricted homomorphism
¥ of E onto T whose kernel clearly coincides with 4 ® cA’. Hence (E, ¢) is a
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restricted extension of 4 ® cA’ by T which evidently satisfies the regularity
condition (*). Furthermore, any admissible C-space structures on S and S’
induce a C-space structure on U, and hence on E, which evidently satisfies the
regularity condition (i). In order to see that the regularity condition (ii) is
also satisfied, we must make a precise analysis of the p-map. We must show
that (ce)? =cre?+ D% '(c)e, for all c¢€C and all e€E. This holds clearly if
eCA®cA’, and also if ¢ is the canonical image in E of an element of D. Hence
it suffices to prove that if the formula holds for e=e, and for e=e; then it
holds also for e =e;+e¢.. In order to do this, we consider the ordinary universal
enveloping algebra Rg of E. Let I be the ideal of Rg which is generated by
the elements c’e’ — (ce)’, for e €E and ¢ & C, where e—¢’ denotes the canonical
isomorphism of E into Rg. If ¢, is any other element of E, we have

el (c'e’ — (ce)’) — (c'e’ — (ce))el = eic'e — c'eel + [ce, er]
= c'[e, €]’ — (c[er, e])’ + [es, c)e — ([es, cle)".

Hence I actually coincides with the right ideal which is generated by the
elements c’e’ —(ce)’. Hence we see easily that INE’'=(0), so that we may
identify the C-space E with a subspace of Rg/I. Now let us momentarily
indicate the p-map in E by e—el?], and let e? stand for the pth power of e
as an element of Rg/I, i.e., e? now denotes the coset mod I of (¢’)?. Observe
that, by our definition of I, we have c!?1=¢?, for every cEC. It follows at
once from the definition of a p-map in a restricted Lie algebra that the map
e—er —el?! of E into Rg/I is additive. If we apply Lemma 1 of [4] in Rg/I
we find that (ce)? =cre?+ D7 !(c)e, for all cEC and all eEE. Now suppose
that e, and e; are elements of E which satisfy our regularity condition (ii),
i.e., in our present notation, (ce;)!? =c"e§"'+DZ,: Y(c)ei. In Rg/I, we have

(cler + €2)) 1?1 = (ce1 + €2))? — (ce1)” — (ces)? + (cer) 1?1 + (ces) 71

If we expand the first three terms on the right by using the regularity of
Rg/I as noted above, and the last two terms by using our hypothesis that
(ii) holds for e, and e;, we find, on recombining the terms, that (ii) holds for
e1+e:.. Hence (E, ¢) is a regular extension of A ®cA’ by T.

THEOREM 4. Let (E, y) be the composite of two regular extensions (S, ¢)
and (S, ¢'). Then Vg is similar to Vg®@ ¢ Vs

Proof. Let Vg be the algebra of the right multiplications in Vs, and regard
Vs as a module for Vg® V¥ in the natural fashion. Since V5 is simple with
center F, Vs® V3 is thereby faithfully represented as the algebra of all
F-linear transformations of Vg. Now let A4 be the kernel of ¢, so that 4 is
the commutator algebra of its center C in Vs. Then our representation of
Vs® rV§ maps 4 @ r V3§ isomorphically onto the algebra of all C-linear trans-
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formations of Vg, where we regard Vi as a vector space over C, with C oper-
ating by left multiplication on V. Similarly, we represent 4’® ¢V as the
algebra of all C-linear transformations of V.. Now let W be the tensor prod-
uct, relative to C, of the C-spaces Vg and Vjg.; thus, W is obtained from
Vs®rVs by reducing mod the subspace spanned by the elements. cv ®v’
—vQ®cv’, with ¢&EC, vE Vg, and v'E€ V.. The corresponding tensor product
of our representations of A®rVg and A’® ¢ V3. defines the structure of a
module for (A ®rV3)®c(4’'®rV3:) on W, and represents this algebra faith-
fully as the algebra of all C-linear transformations of W. We can write our
tensor product in the form (4 ®cA’)® r(Vs® ¢ V%) and accordingly regard
W as a module for V3® ¢ V%. This gives an imbedding of 4 ® ¢4’ in the alge-
bra B of all V§®rV% endomorphisms of W, whereby A ®cA’ is identified
with the commutator algebra of C in B. By a standard result of the theory of
representations of simple algebras, B is similar to Vg® rVs. Hence it will
suffice to prove that Vg is isomorphic with B. In doing this, we shall use the
notation of the definition of (E, ¢). An element (s, s”) of D determines a unique
element of B which sends an element v ®v’ of W into sy ®v'+v®s'v’. If this
map of D into B is augmented by the canonical injection of 4 ® ¢4’ into B,
there results a restricted Lie algebra homomorphism of U into B whose kernel
is easily seen to coincide with V. Hence we obtain a restricted Lie algebra
isomorphism § of E into B which leaves the elements of 4 ® ¢4’ fixed. Since
A®cA’ is the commutator algebra of C in B, the regular extension cor-
responding to the pair CCB is a regular extension (R, p) of A®cA’ by T, and
we have evidently B(E) CR and pfB =y. This is enough to conclude that 8 is
an equivalence isomorphism of (E, ¢) onto (R, p). Hence Vg is isomorphic
with Vg, which is isomorphic with B, by Theorem 3. This completes the proof
of Theorem 4.

Now let Br denote the group of similarity classes of the simple algebras
with center F, and similarly define B¢, where C is an extension field of F
with CPCF. The map 4—A ® ¢C induces a homomorphism v of Br into B¢
whose kernel is the group Br(C) of the similarity classes of those simple
algebras with center F which are split by C. We shall show in the next section
that y(Br) =B¢. For the moment, we merely recall the well known fact that,
quite generally, the similarity class of an algebra A with center C belongs to
¥(Br) if and only if there exists a simple algebra U with center F such that A is
contained as the commutator algebra of C in U. In fact, suppose first that such
an algebra U exists. We may regard U as a module for C® rU* in the natural
way. Then we see that 4 may be identified with the algebra of all C® pU*-
endomorphisms of U, whence it follows that 4 is similar to U® rC. Con-
versely, let us suppose that there is a simple algebra V with center F such
that 4 is similar to A’=V® rC. Put [C:F] =n. Then we can imbed C in the
full matrix algebra F, over F so that it coincides with its own commutator
algebra in F,. Hence we can identify A’ with the commutator algebra of C
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in V® pF,. Since A is similar to 4’, there are positive integers m and m’ such
that the full matrix algebra 4, over 4 is isomorphic with 4;,.. Since 4’ is the
commutator algebra of C in VQ¢F,=V,, A}, may be identified with the
commutator algebra of C in (V,)m = Vym:. Since 4, is isomorphic with 4,,
it contains a copy of F,, and therefore V,, contains a copy of F,,. Hence we
may write Vum = U® rFn, where U is the commutator algebra of this copy
of Fp in Vam. Since 4 is the commutator algebra of F,, in 4,, our isomor-
phism of 4, into V,, (via 4,) must map 4 into U. Finally, since 4 is the
commutator algebra of C, in A, the image of 4 in U® rF,, is the commutator
algebra of C® pF,n in the image of A, i.e., in the commutator algebra of C
in UQ® pF, which, in any case, must contain the commutator algebra of
C®rF,. Hence the image of A is the commutator algebra of C®¢F,, in
U® rFn, i.e., the commutator algebra of C in U. This completes the proof of
the characterization of y(BF), in the general case.

Now let A be a simple algebra with center C, and suppose that the
similarity class of A4 belongs to ¥(Br). By the above, every similarity class
in Br which maps into the similarity class of 4 has a unique (to within iso-
morphisms) representative U such that 4 is contained in U as the com-
mutator algebra of C. Hence, by Theorem 3, the preimage in Br of the similar-
ity class of A is in one to one correspondence with the set of equivalence classes of
the regular extensions of A by T. The coset structure of this preimage, with
respect to the subgroup Bp(C), is reflected in the set of equivalence classes of the
regular extensions of A by T by their composition with the regular extension
classes of C by T, as follows at once from Theorem 4. Furthermore, if 4’ is a
second simple algebra with center C, then the preimage in Bp of the similarity
class of A®cA’ is represented by the composites of the regular extensions of A
by T with the regular extensions of A’ by T.

Next we observe that an algebra A with center C is of the form UQ rC,
where U is a simple algebra with center F if and only if there exists a trivial regu-
lar extension of A by T. Indeed, it is evident that U® rC has a trivial exten-
sion by T. Conversely, suppose that (S, ¢) is a trivial extension of 4 by T.
This means that there exists a restricted Lie algebra isomorphism ¢ of T
into S such that ¢y is the identity map of T onto itself. Then ¢(T)+C is a
restricted subalgebra of S which, together with the restriction of ¢ to ¥(T)
+C, constitutes a trivial regular extension of C by T. The corresponding.
simple algebra with center F is evidently a subalgebra of Vs. On the other
hand, we know from [4] that it is the full matrix algebra F,, where n=[C: F].
Hence we may write Vg=U® rF,, where U is the commutator algebra of
F.in V. Now Cis contained in F, and coincides with its commutator algebra
in F,., while 4 is the commutator algebra of Cin V3. Hence A =U® ¢C, and
clearly U is simple with center F.

3. Existence of regular extensions and related questions. It is clear from
the above that the following result implies the existence of regular extensions.
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THEOREM 5. Let F be a field of characteristic p, and let C be a finite algebraic
extension of F which is purely inseparable over F. Then every finite dimensional
simple algebra A with center C is similar to a tensor product BQ® rC, where B
15 a simple algebra with center F.

Proof. The algebra 4 is similar to a tensor product U® ¢V, where the ex-
ponent of U (in the group of algebra classes over C) is not divisible by p,
while the exponent of V is a power p” of p. Furthermore, we may take U to
be a crossed product, and it suffices to prove Theorem 5 in the two cases
A=U, or A=V. The case 4 =U is quite easy. We write U=Z(G, f), where
Z/C is a normal extension with Galois group G, and f is a factor set for G in
Z. Let u denote the exponent of U. Then f*is a trivial factor set. Let e be the
exponent of C relative to F, so that C**CF. Since p does not divide %, we can
find integers @ and b such that au+-bp°*=1. Then the factor set f**° is equiva-
lent to f and takes its values in Z*". Since C**CF, and Z is separable over C,
Z is isomorphic with FZ?* ® rC. Furthermore, FZ?° is normal over F, and the
restriction map sends G isomorphically onto the Galois group of FZ?'/F,
which we may therefore identify with G. But then we can form the crossed
product FZ?*(G, f***)=U’, say; and clearly U is isomorphic with U’® rC.
Now consider the more difficult case 4 = V. Since V has exponent p*, V has a
cyclic normal splitting field of degree a power of p. This is shown in Chap.
VII of [1]. Actually, it suffices to use the easier result that V is similar to a
tensor product of cyclic crossed products of degree a power of p. In any case,
it suffices to dispose of the case where V is a crossed product of a cyclic ex-
tension field Z of C, with [Z:C]=p". The case t=0 being trivial, we have to
dispose of the case £>0. But then it is known from Albert’s theorem on cyclic
extensions of p-power degree of a field of characteristic p that there exists a
cyclic extension ¥/C such that ZC ¥ and [V:C]=p*. Let ¢ be a generator
for the Galois group of Y/C, and let ¢’ be the restriction of o to Z. Then ¢’
is a generator for the Galois group of Z/C, and we have V=2Z(¢’, ¢), with
cEC. Now ZCY and [Y:Z]=pe. Hence, by a well-known result on cyclic
algebras, V is similar to the crossed product ¥(o, ¢*°). (See Lemma 11, Chap.
VII of [1]; this result is due to Albert, and Hasse). Since ¢ € F, we can now
make the same argument as above (for U) to conclude that V is similar to
FY? (0, ¢*) @ ¢C. This completes the proof of Theorem 5.

Theorem 5 implies that every derivation of C/F can be extended to a
derivation of 4. Actually, a more general result on derivations holds over
arbitrary fields (also in characteristic 0) and can be proved in a completely
elementary fashion. Our result extends Jacobson’s result, which we have
already used in the proof of Theorem 1, that if 4 is a finite dimensional simple
algebra with center C, and if B is a semisimple subalgebra of 4 containing C,
then every derivation of B into 4 which annihilates C can be extended to an
inner derivation of 4.
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THEOREM 6®. Let A be a stmple algebra of finite dimension over its center C,
and let B be a semisimple subalgebra of A containing C. Then every derivation
of B into A which maps C into itself can be extended to a derivation of A.

Proof. We observe first that it will suffice to prove that every derivation
of C can be extended to a derivation of 4. Indeed, let ¢ be a derivation of B
into A which maps C into itself, and let ¢¢c be the restriction of ¢ to C. Suppose
that ¢¢ can be extended to a derivation s of 4, and let sp be the restriction
of s to B. Then t—sp is a derivation of B into 4 which annihilates C, and
hence, by the result of Jacobson’s cited above, can be extended to a derivation
u of A. Now s+u is a derivation of 4 whose restriction to B coincides with ¢.

The extendability of a derivation of C to a derivation of A depends only
on the similarity class of 4. For, suppose that a given derivation ¢ of Ccan
be extended to a derivation ¢’ of a simple algebra 4’ which is similar to 4.
There are positive integers m and m’ such that 4, is isomorphic with A4:.
Let ¢, be the map of A4, into itself which sends the matrix with entries a;
into the matrix with entries #'(a;;). Then {,, is evidently a derivation of 4},
which extends f. The isomorphism between 4, and 4, transports £, into
a derivation s of 4, which extends ¢. On the other hand, ¢ can be extended
to the derivation ¢, of C, (defined in the same way as f, was defined above).
Let sc,, be the restriction of s to CnCAm. Then sc, —tn is a derivation of Cn
into A, which annihilates C, and can therefore be extended to a derivation
u of An. Now consider the derivation s—u of 4. Its restriction to Cn coin-
cides with ¢,,, whence s—« maps C, into itself. Since 4 is the commutator
algebra of Cn in A =4 @cCh, it follows that s—u must also map 4 into it-
self, and therefore provides the desired extension of ¢ to a derivation of 4.

Hence we may now assume that 4 is a crossed product Z(G, f), where
Z is a normal extension field of C, G is the Galois group of Z/C, and f is a fac-
tor set, i.e., a map of GXG into the multiplicative group of the nonzero ele-
ments of Z such that, for all p, o, 7 in G, p(f(s, 7))f (0o, 7)~Y (0, a7)f(p,0) 1 =1.
More explicitly, Z(G, f), as a left vector space over Z, has a basis %, in one
to one correspondence with the elements o of G such that »,u, =f(s, )%, and,
for 2&€Z, u,2=0(z)u,. Since Z is separable over C, there is one and only one
derivation of Z which coincides with the given derivation ¢ of C. We shall
denote this extended derivation of Z by the same letter £. Clearly, the map
oto~!is also a derivation of Z which extends our given derivation of C, whence
ote—1=t. In other words, the extended derivation ¢ to Z is also a G-endo-
morphism of Z. Now we define a map % of GXG into Z by setting (o, 7)
=t(f(a, 7))f(e, 7)~1. Using that ¢ is a derivation and a G-endomorphism, we

(®) In the case where C is finite over the subfield annihilated by the given derivation (and
hence is of characteristic 0 and purely inseparable of exponent 1 over that subfield), this
theorem was already proved by Jacobson in [5]; one merely has to combine (in [5]) Theorem 7
with the part of §10 that precedes Theorem 13, using the argument of the first paragraph of our
proof below. The rest of our proof is quite different from that of Jacobson.
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derive from the above multiplicative identity for f the corresponding additive
identity for its logarithmic derivative, &, i.e., p(k(o, 7)) —k(po, 7)+k(p, oT)
—nh(p, 0) =0. It is a well-known result (due to Witt) that such an additive
factor set must be a transformation set, i.e., that there is a map g of G into
Z such that o(g(7)) —g(ot) +g(0) =h(o, 7). Indeed, there is an element 2,EZ
whose trace is 1, i.e., Z,eg d(z) =1. Define g(p) = Z,EG pa(z1)h(p, o).
Then it is easily verified that g satisfies the above requirement. Now we de-
fine the additive endomorphism ¢* of Z(G, f) by the formula

t*( E z“"’) = E (t(za) + ng(a))uw
€ €aq

where the 2, are elements of Z. It is easy to check directly that t* is a deriva-
tion of Z(G, f) which coincides with ¢ on C. This completes the proof of
Theorem 6.

We shall now indicate briefly how Theorem 5 can be obtained from
Theorem 6 and the theory of restricted Lie algebras. It is evidently sufficient
to prove Theorem 5 in the case where C?C F. In view of Theorem 3, it suffices
then to show that there always exists a regular extension (S, ¢) of 4 by the
derivation algebra T of C/F, where C is the center of A. As in the proof of
Theorem 3, we write C=F[uy, - - -, u], and consider the derivations
b, - - -, t of C/F such that ¢t;(u;) =8;;u;. If T, is the subspace of T which is
spanned, over F, by these elements ¢; then T, is a restricted abelian Lie
algebra over F, the p-map in T is nondegenerate in the sense that the image
of Ty under the p-map spans T, over F, and we have T'=CT,. The key re-
sult for our proof is that the restricted cchomology groups of T are trivial.
This was shown in §1 of [4]. Before we can make use of this fact, we must
modify the p-map in 4. Let a—a’ be any p-semilinear of 4 into F such that
¢’ =cr, for every cEC. (The phrase p-semilinear means that, for a, b in F and
u, v in A, we have (au-+bv)’ =aru’+b7v’.) We define a new p-map by setting
a”!=q?»—qa’. With this p-map, and the usual commutation, 4 is a restricted
Lie algebra, which we shall denote by 4. Our new p-map annihilates the cen-
ter C of A,. By Theorem 6, every element of T, can be extended to a deriva-
tion of the associative algebra 4, and such a derivation is then also a restricted
derivation of the restricted Lie algebra A4,. Since the extension of a derivation
of C to a derivation of A4 is unique up to an inner derivation of 4, we thus
have the structure of a restricted Ty-kernel on 4, in the sense of [3] Since the
p-map in 4, annihilates the center of 4,, and since the restricted 3-dimen-
sional cohomology group for T, in C is (0), it follows from Theorem 3.1 of [3]
that the kernel 4, is extendable, i.e., that there exists a restricted Lie algebra
extension (S, ¢o) of Ay by Ty which induces our kernel structure on A4,, and
in particular satisfies the regularity condition (*). Now we extend the map
a—a’' to a p-semilinear map of S, into F and then redefine the p-map in S,
by s—sP14s' =57, where s—s?! is the original p-map in S,. There results a
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restricted extension (S, ¢1) of A by Ty, where 4 is now again regarded as a
restricted Lie algebra in the usual way, S; is the same as S, except for the
changed p-map, and ¢, is the same map as ¢o. The regularity condition (*)
continues to hold in S;, of course. The same argument which gave the proof
of Theorem 2 (which uses the vanishing of the 2-dimensional cohomology
groups of Ty; cf. [4]) shows that there is an ordinary Lie algebra isomorphism
¥ of T, into S; which is inverse to ¢,. Now we enlarge S; to a Lie algebra S
whose space is A4+ C® ¥(T), and where the commutation is that extension
of the commutation in S; which results from enforcing the regularity condi-
tion (i), with the matural C-space structure of S. There remains to define a
p-map in S. For s;=y/(t;) and ¢EC, define (c¢®s:)? =c?si+(cts)?(c) ®ss.
Then the inner derivation effected by (c®s:)? coincides with the pth
power of the inner derivation effected by ¢®s;. Indeed, this holds on 4, by
Lemma 1 of [4], and since C® sf(T) is isomorphic with T, this holds also
on C® s(Ty). Now it follows from the elementary theory of restricted Lie
algebras that there is one and only one p-map on S which coincides with the
map a—a? on 4 and which maps the elements ¢®s; into (c®s;)?. Clearly,
this p-map is an extension of the given p-map on S;. Furthermore, the
analysis of the regularity condition (ii) which we made immediately before
stating Theorem 4 shows that .S satisfies the regularity condition (ii). Finally,
¢1 can be extended in one and only one way to a C-linear map ¢ of S onto T,
and it is clear that (S, ¢) is a regular extension of 4 by T. This completes our
proof for the existence of regular extensions.
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