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Introduction. Let F be a field of characteristic p, and let C be a finite

algebraic extension field of F such that CPC.F. It has been shown in [4] that

there is a one to one correspondence (up to isomorphisms) between the simple

finite dimensional algebras with center F and containing C as a maximal

commutative subring and the regular restricted Lie algebra extensions of C

by the derivation algebra of C/F. This led to a very simple description of the

group of similarity classes of these algebras. The main task of the present

paper is to investigate the connection between restricted Lie algebras and

simple associative algebras of characteristic p quite generally. For this pur-

pose, we generalize the notion of a regular extension of C by the derivation

algebra of C/F to that of a regular extension of a simple algebra A with

center C by the derivation algebra of C/F. The correspondence mentioned

above is then generalized to a one to one correspondence between these exten-

sions and the simple algebras with center F which contain A as the com-

mutator algebra of C (Theorem 3). We shall then show how every simple

algebra containing a purely inseparable extension field of its center as a

maximal commutative subring can be built up in a series of steps from regular

Lie algebra extensions. With a suitable composition of regular extensions,

which we define in §2, this reduces the structure of the group of algebra

classes with a fixed purely inseparable splitting field to the structural elements

of restricted Lie algebras, at least in principle. However, it does not yield a

direct description of this group, as was the case for splitting fields of exponent

one.

In §3 we show that the tensor multiplication with a purely inseparable

extension field C of F maps the Brauer group of algebra classes over F onto

the Brauer group over C (Theorem 5). Although this result seems not to

have been stated before, it may well be regarded as one of the culminating

points of Albert's theory of p-algebras. In fact, Chapter VII of [l] con-

tains all the essential points of a proof along classical lines, which is the first

proof we give in §3. Here, the main tools are Galois theory and the theory of

cyclic ^-extensions. Our second proof is entirely different. It proceeds within

the framework of the first part of this paper, replacing the field theory with

the theory of Lie algebras. In particular, we use the theory of restricted Lie

algebra kernels, [3], in order to show that if A is a simple algebra with

center C and CPC.F then there always exists a regular extension of A by the

derivation algebra of C/F, whence (by Theorem 3) A can be imbedded as the
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commutator algebra of C in a simple algebra with center F. Theorem 5 then

follows almost immediately.

1. Regular extensions. Let F be a field of characteristic p9*0, and let

C be a finite algebraic extension of Fsuch that CPC.F. Let T be the derivation

algebra of C/F, regarded as a restricted Lie algebra over F. Observe that T

has also the structure of a vector space over C in the natural way. The scalar

multiplications are connected with the commutation in T by the identity

[Cih, Citi]=Citiici)ti — Cttiici)ti-T-CiCi[ti, ti], where c.GC and <<G7\ Further-

more, by Lemma 1 of [4], the scalar multiplications are connected with the

pth power map in T by the identity ict)p = cptJ,+ ict)p~1ic)t.

Now let A be a simple associative algebra with center C. Let S be a re-

stricted Lie algebra over F, and suppose that A, with its natural structure as

a restricted Lie algebra over F, is contained as an ideal in 5 in such a way

that, for every s£S, the restriction to A of the inner derivation effected by x

is even a derivation of the associative algebra A, i.e., that for all ai(£A, we

have

(*) [s, aiai] = [s, ai]ai + ai[s, a*].

Then these derivations map C into itself, and if #(s) denotes the restriction

to C of the inner derivation effected by 5, <j> is a restricted Lie algebra homo-

morphism of 5 into T. We shall say that the pair (5, <f>) constitutes a regular

extension of A by T if the kernel of <j> coincides with A, <f>iS) = T, and 5 can

be given the structure of a vector space over C, extending the C-space struc-

ture of A, such that <b is C-linear and the following regularity conditions hold,

for all c, d in C and all s, Si in S:

(i) [ciSi, c2si] = Ci<pisi)ici)si — ci<t>isi)ici)si + Cid[si, si];

(ii) ics)' = Csp + tpics)*-1^)*.

Such a C-space structure on 5 will then be called an admissible C-space struc-

ture. We say that two such regular extensions of A by T are equivalent if there

exists a restricted Lie algebra isomorphism a of 5 onto 5' which leaves the

elements of A fixed and for which <j>'a=<f>.

If B is a simple finite dimensional algebra with center F and containing

C then the commutator algebra A of C in B is simple and has center C. Let 5

be the set of all elements sGP for which sc — cs^C whenever c&C, and let

<f>is) denote this derivation c—>sc — cs of C. Then it is easily seen (using Lemma

1 of [4] in order to verify condition (ii)) that (5, <b) is a regular extension of

A by T.
In order to deal adequately with regular extensions we require the follow-

ing auxiliary notion. A simple finite dimensional algebra A with center C may

be regarded as a full matrix algebra DH where D is division algebra with

center C. There exists a separable extension field Z of C which is a maximal
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commutative subring of D. Let R denote the subring of A which consists of

all those matrices whose diagonal entries lie in Z and whose other entries are

0. Then R contains C and is C-isomorphic with the direct sum of ra copies of

Z. Thus R is a separable commutative algebra over C. Furthermore, R is a

maximal commutative subring of A. Generally, if R is any maximal com-

mutative subring of A which contains C and is separable over C, we shall say

that R is a regulator of A. We have then CR"=R, and if F is a subfield of C

as above, FRP is separable over F.

Theorem 1. Let F be afield of characteristic pj^O, C a finite algebraic ex-

tension field of F such that CPGF, T the derivation algebra of C/F. Let A be a

simple finite dimensional algebra with center C, and let (S, <f>) be a regular exten-

sion of A by T. Then, for any regulator Rof A and any admissible C-space struc-

ture of S, there exists a C-linear Lie algebra isomorphism \p of T into S such that,

for any tGT, 4^(1) =t> the inner derivation D+u) effected by \f/(t) maps R into

itself, and \l/(t)p-}p(tp)GRp.

Proof. Let 5' be the restricted subalgebra of S which consists of all those

elements sGS for which Dt(R) GR- Since R is separable over C, every deriva-

tion / of C can be extended (uniquely) to a derivation t' of R. Let s£S and

consider the restriction to R of D,; call this 5„. Then 8,—<b(s)' is a derivation

of R into A which annihilates C. Since R is a semisimple subalgebra of A,

we can apply a well known result of Jacobson's(1) to conclude that there is

an element aGA such that 8,—<t>(s)' coincides with 8a. Now 8,-a=<b(s)' and

therefore maps R into itself, which means that s — aGS'. Hence (b(S')=T,

and if <b' denotes the restriction of <b to S' then (S', <p') is a restricted Lie

algebra extension of AC^S' by T. Since R is commutative, every derivation

of R annihilates R". Hence every element of AC^S' commutes with every

element of Rp, and therefore also with every element of CRP=R. Hence

AC\S'=R, so that (S1, <p') is a regular extension of R by T. Now the proof

of Theorem 4 of [4] applies without any changes to this extension (S', <j>')

and gives the desired result.

Furthermore, one can now proceed exactly as in that proof to obtain:

Theorem 2. Let (S, <f>) and (S', <j>') be any two equivalent regular extensions

of A by T. Then, for any given admissible C-space structures of S and S', there

is a C-linear equivalence isomorphism of S onto S'.

Let (5, <b) be a regular extension of A by T, and let Us denote the re-

stricted universal enveloping algebra of the restricted Lie algebra S(2). Let

Us denote the ideal of Us which is generated by the canonical images 5' in

Us of the elements sGS. Now equip S with an admissible C-space structure,

(>) See Theorem 7 of [5], or Theorem 3 of [4].
(*) For this notation, and for the results we take from the theory of restricted Lie algebras

(due to Jacobson) and their cohomology groups, see [2].
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and let J be the ideal of Us which is generated by the elements of the form

c's' — ics)', with c<EC and s(E.S. Put Vs = Us/ '/. Then Vs is a finite dimen-

sional associative algebra over F. It is clear from Theorem 2 that, although

the construction of Vs involves the choice of an admissible C-space structure

on S, Vs is determined up to an isomorphism by the equivalence class of the

extension (5, <b). More precisely, if a is a C-linear equivalence isomorphism of

(5, <b) onto (5', <f>'), then a induces an isomorphism a* of Vs onto Vs>, such

that if p and p' are the natural maps of 5 into Vs and of S' into Vs>, respec-

tively, we have a*p=p'. We are now in a position to prove the following

generalization of Theorem 5 of [4].

Theorem 3. Let (5, <p) be a regular extension of A by T. Then the canonical

map of S into Vs is 1 — 1, and its restriction to A is an associative algebra iso-

morphism by means of which we identify A with a subalgebra of Vs. Vs is then

a finite dimensional simple algebra with center F, and A is the commutator alge-

bra of C in Vs- Furthermore, the canonical image of S in Vs coincides with the

set of all elements v£.Vs for which P,(C)CC, and the corresponding regular

extension of A by T is equivalent with (S, <p) by the canonical map of S into Vs-

Conversely, if B is a finite dimensional simple algebra with center F and contain-

ing C, if A is the commutator algebra of C in B, and if (5, <p) is the resulting

regular extension of A by T, then the homomorphism of Us into B which extends

the injection S—>B induces an isomorphism of Vs onto B.

Proof. We have C = F[ui, • ■ • , uk] and corresponding derivations

h, • • • , h of C such that <,-(«,-) = 8„m,-, whence t4j=tjti and tv = ti. (Cf. §1 of

[4]). Let R be a regulator of A, and let ^bea C-linear Lie algebra isomor-

phism of T into 5 such as is given by Theorem 1. Write \piti)=S{. Then

St =Si+ri, with ri(E.Rv- Put FRP=R0, and construct the commutative poly-

nomial ring Po[*i, • • ■ , Xk\ in elements x< which are algebraically independ-

ent over Po- Let 7 be the ideal of this polynomial ring which is generated by

the elements af — xt — rt. Then R0[xi, - • • , xk]/I = Ro[yu • • • , yk], where yt

is the coset of xit so thaty£=y,-f-r,-. Put V = A®RoR0[yi, • ■ ■ , y*], this tensor

product being taken for the natural structure of A as a right Po-module

and the natural structure of Po[yi, • • • , yk] as a left Po-module. We regard

V as a left ^-module in the natural fashion. Since the inner derivation effected

by Si maps R into itself, it must annihilate Pp and hence P0. It follows that

there is a unique additive endomorphism z,- of V such that, for aG-4 and

yGPo[yi, • • • , yk], s»(a®y) = [5,-, a]®y+a<g>yiy. We may identify the ele-

ments of A with the module operations they effect in V, and it is easy to

check that we have then z,-a — aZi= [si, a], and zf = z,-r-r,-. Also, we evidently

have ZiZj = ZjZi. Let M be the ring of endomorphisms of V which is generated

by the z,- and the elements of A. Then it is easily seen that the monomials

z[l • • • zekk, with 0^d<p, are (left) A -independent in M and span M over A.

Now consider an element of M, writing it in the form m =m0-\-miZi-{- ■ ■ ■
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-\-mqz\, where q<p and the mT are A -linear combinations of monomials in

the Zj withjF^i. Then the mT commute with «,-, and it follows that mUi — U{m

= qmquiz\~1+m', where m' is of degree less than q — 1 in z,-. It is easily seen

from this that if m commutes with every element of C then mGA. Hence

the commutator algebra of C in M coincides with A. At the same time we see

that the center of M is contained in A, and hence also in the center C of A.

Since a central element commutes with every z,-, and since an element of C

which is annihilated by each U must belong to F, it follows that the center

of M coincides with F. Finally, by repeatedly forming mui — uim (with suita-

ble choices of the index i at each stage), starting with any nonzero element

m, we eventually find a nonzero element of A which belongs to the ideal

MmM. Since A is simple, we conclude then that \GMmM, whence MmM

= M. Thus M is simple.

Now every element of 5 can be written uniquely in the form

k

S  =  a +   Z CiSi<
1=1

where aGA and ctGC. We define a C-linear map a of 5 into M by setting

a(s) =a+ Z*-i c»'2». ̂ we regard M as a restricted Lie algebra over F in the

usual way, we see from the regularity conditions (*) and (i) that a is a Lie

algebra isomorphism, and from the regularity condition (ii) that a is even a

restricted Lie algebra isomorphism. Hence a can be extended uniquely to a

homomorphism of Us into M which is evidently onto and annihilates the

ideal / by means of which we have defined Vs. Hence the canonical map of 5

into Vs, which is a right factor of a, must be 1-1. Clearly, the ordered mono-

mials in the canonical images of the s,- in Vs, with non-negative exponents

less than p, span Vs over the canonical image of A in Vs- Hence we have the

dimensionality relations [Vs:F]^pk[A:F]=[M:F]. It follows that the

homomorphism of Vs onto M which is induced by a is actually an isomor-

phism. Hence we may identify A with its canonical image in Vs, and Vs is a

simple algebra with center F which contains A as the commutator algebra of

C. Furthermore, if m is an element of M such that mc — cmGC, for every

cGC, our above computation of mui — uim shows that «6«(5). Hence 5

may be identified with the set of all vGVs for which DV(C)GC, and then the

corresponding regular extension of A by T evidently coincides with (S, <b).

There remains only to prove the last part of Theorem 3. It is evident that

the canonical homomorphism of U$ into B which extends the injection

S—*B annihilates J and therefore induces a homomorphism of Vs into B

which evidently leaves the elements of A fixed. Since we know already that

Vs is simple, we may conclude that this homomorphism is an isomorphism of

Vs into B. Also, we know that [Vs:F]=pk[A:F] = [C:F][A:F], and since

A is the commutator algebra of C in B we have [C: F] [A: F] = [B: F]. Hence

[Fs:P]= [-8:P], whence our isomorphism must map Vs onto B. This com-
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pletes the proof of Theorem 3.

Now let A be a simple algebra with center F which contains a purely in-

separable extension field C of F as a maximal commutative subring. We can

insert a sequence of fields P=C(e)CC(e~1)C • ■ • CC(0) = C such that

p(C<r-1))p = C(r), for each r. Let A(r) be the commutator algebra of CCr) in A,

and let Sw be the set of all elements a^A for which 7)0(C(r))CC(r). If P(,)

denotes the derivation algebra of C(r)/C(H_l), we have in the natural way the

regular extensions (5(r>, #(r)) of AM by TlrK It follows at once from Theorem 3

that Vs(T) is isomorphic with A(r+l) by the map which extends the injection

of S(r) into -4(r+1). In particular, we conclude that the subalgebra of A which is

generated by the elements of 5Cr) coincides with ^4(r+1). Moreover, it is now clear

how A can be built up from C by a sequence of regular extensions. If CVCF

we have e = l, and we know from [4] that our construction establishes an

isomorphism between the group of similarity classes of the simple algebras

split by C and the group of equivalence classes of the regular extensions of

C by T. It is therefore of interest to generalize the composition of regular

extensions of C by T to a composition of our present more general regular ex-

tensions. This is the purpose of the next section.

2. Composites of regular extensions. Suppose we are given two regular

extensions (5, <p) and (5', <j>') of simple algebras A and A', with the common

center C, by the same derivation algebra T of C/F. We shall define a com-

posite regular extension of A®cA' by T. Let D be the restricted subalgebra

of the direct sum (5, S') of 5 and S' which consists of all elements (5, s') in

which $(s) =<f>'is'). Corresponding to each element d = is, s') of D, there is a

unique derivation 5d of A®cA' such that Sdia®a') = [s, a]®a'-\-a® [s', a'].

The map d-*Sd is clearly a restricted Lie algebra homomorphism of D

into the derivation algebra of A®cA', relative to F. Now we regard A®cA'

as a restricted Lie algebra over F and use 5 for defining the semidirect sum

U=iA®cA', D)s. The commutation in U is given by the formula

[(*ii di), ixi, d2)] = (*ia;2 - *2*i + Sdlixi) — Sd,(*i). [di, d2]),

where Xi(E.A®cA' and dt(ED. It is known from the elementary theory of

restricted Lie algebras that there is one and only one p-ma.p in U which

coincides with the given £-maps on the ideal A®cA' and on the comple-

mentary subalgebra D. When equipped with this />-map, U is a restricted Lie

algebra containing A ®cA' as a restricted ideal in such a way that the regu-

larity condition (*) is satisfied. Now let V be the subspace of U which is

spanned by the elements (a®l, —(a, 0)), with aG-4, and the elements

(1 ®a', — (0, a')), with a'E.A'. It is easily verified that V is a restricted ideal

in U. We put E = U/V. The canonical map of A ®CA' into E is evidently an

isomorphism by means of which we shall identify A®cA' with a restricted

ideal of E. The homomorphism <p (or <f>') induces a restricted homomorphism

\f/ of E onto T whose kernel clearly coincides with A ®cA'. Hence (P, ip) is a
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restricted extension of A®CA' by T which evidently satisfies the regularity

condition (*). Furthermore, any admissible C-space structures on S and S'

induce a C-space structure on U, and hence on E, which evidently satisfies the

regularity condition (i). In order to see that the regularity condition (ii) is

also satisfied, we must make a precise analysis of the p-map. We must show

that (ce)p=cpep+D^1(c)e, for all cGC and all eGE. This holds clearly if

eGA ®cA', and also if e is the canonical image in E of an element of D. Hence

it suffices to prove that if the formula holds for e = ex and for e = ez then it

holds also for e = ei+e2. In order to do this, we consider the ordinary universal

enveloping algebra Re of E. Let / be the ideal of Re which is generated by

the elements c'e' — (ce)', for eGE and cGC, where e—*e' denotes the canonical

isomorphism of E into Re- If «i is any other element of E, we have

ei'(eV - (ce)') - (c'e' - (ce)')e{ = eic'e1 - Je'el + [ce, ex]'

= c'[ex, e]' - (c[ex, e])' + [eu c]'e' - ([ex, c]e)'.

Hence I actually coincides with the right ideal which is generated by the

elements c'e' — (ce)'. Hence we see easily that 7f>\£' = (0), so that we may

identify the C-space E with a subspace of Re/I- Now let us momentarily

indicate the p-map in E by e—>e[p], and let ep stand for the pth. power of e

as an element of Re/I, i.e., ep now denotes the coset mod I of (e')p. Observe

that, by our definition of I, we have clpi=cp, for every cGC. It follows at

once from the definition of a p-map in a restricted Lie algebra that the map

e—>ep — e[pl of E into Re/I is additive. If we apply Lemma 1 of [4] in Re/I

we find that (ce)p = cpep+D%~1(c)e, for all cGC and all eGE. Now suppose

that ei and e2 are elements of E which satisfy our regularity condition (ii),

i.e., in our present notation, (ce,)tpl =cpe^]-\-Dp^.1(c)ei. In Re/I, we have

(c(ei + «2))Ipl = (c(ei + e2))p - (cex)p - (cez)p + (cex)™ + (ch)W.

If we expand the first three terms on the right by using the regularity of

Re/I as noted above, and the last two terms by using our hypothesis that

(ii) holds for ex and e2, we find, on recombining the terms, that (ii) holds for

ex+ez. Hence (E, \p) is a regular extension of A ®cA' by T.

Theorem 4. Let (E, \p) be the composite of two regular extensions (S, <f>)

and (S', <j>'). Then VB is similar to Vs®pVs>

Proof. Let V% be the algebra of the right multiplications in Vs, and regard

Vs as a module for Fs®jrF$ in the natural fashion. Since Vs is simple with

center F, Vs®pVs is thereby faithfully represented as the algebra of all

F-linear transformations of Vs. Now let A be the kernel of <f>, so that A is

the commutator algebra of its center C in Vs- Then our representation of

Vs® fVs maps A®FVs isomorphically onto the algebra of all C-linear trans-
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formations of Vs, where we regard Vs as a vector space over C, with C oper-

ating by left multiplication on Vs- Similarly, we represent A'®FV%' as the

algebra of all C-linear transformations of Vs>. Now let IF be the tensor prod-

uct, relative to C, of the C-spaces Vs and Fs-; thus, W is obtained from

Vs®fVs' by reducing mod the subspace spanned by the elements. cv®v'

—v®cv', with c<E.C, kGFs, and v'(E.Vs>. The corresponding tensor product

of our representations of A®FVs and A'®FVs- defines the structure of a

module for iA®FVs)®ciA'®FVs>) on W, and represents this algebra faith-

fully as the algebra of all C-linear transformations of W. We can write our

tensor product in the form iA®cA')®FiVs®FV%') and accordingly regard

W as a module for Vs®FVs>. This gives an imbedding of A ®cA' in the alge-

bra B of all Vs®FV*S' endomorphisms of W, whereby A®CA' is identified

with the commutator algebra of Cm B. By a standard result of the theory of

representations of simple algebras, B is similar to Vs®FVs>. Hence it will

suffice to prove that Ve is isomorphic with B. In doing this, we shall use the

notation of the definition of (P, yp). An element is, s') of D determines a unique

element of B which sends an element v®v' of W into sv®v'-\-v®s'v'. If this

map of D into B is augmented by the canonical injection of A®cA' intoP,

there results a restricted Lie algebra homomorphism of U into B whose kernel

is easily seen to coincide with V. Hence we obtain a restricted Lie algebra

isomorphism 0 of E into B which leaves the elements of A ®cA' fixed. Since

A®cA' is the commutator algebra of C in B, the regular extension cor-

responding to the pair CCP is a regular extension (P, p) of A ®cA' by T, and

we have evidently /3(P)CP and p0=ip. This is enough to conclude that 0 is

an equivalence isomorphism of (P, ^) onto (P, p). Hence Ve is isomorphic

with Vr, which is isomorphic with B, by Theorem 3. This completes the proof

of Theorem 4.

Now let BF denote the group of similarity classes of the simple algebras

with center P, and similarly define Be, where C is an extension field of P

with CPCP. The map A—*A ®FC induces a homomorphism y of BF into Be

whose kernel is the group BFiC) of the similarity classes of those simple

algebras with center P which are split by C. We shall show in the next section

that yiBF) =BC. For the moment, we merely recall the well known fact that,

quite generally, the similarity class of an algebra A with center C belongs to

yiBF) if and only if there exists a simple algebra U with center F such that A is

contained as the commutator algebra of C in U. In fact, suppose first that such

an algebra Uexists. We may regard U as a module for C®FU* in the natural

way. Then we see that A may be identified with the algebra of all C®FU*-

endomorphisms of U, whence it follows that A is similar to U®FC. Con-

versely, let us suppose that there is a simple algebra V with center F such

that A is similar to A' = V®FC. Put [C: F] =n. Then we can imbed C in the

full matrix algebra P„ over P so that it coincides with its own commutator

algebra in P„. Hence we can identify A' with the commutator algebra of C
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in V®pFn. Since A is similar to A', there are positive integers m and m' such

that the full matrix algebra Am over A is isomorphic with A'm>. Since A' is the

commutator algebra of C in V®pFn = Vn, A'm> may be identified with the

commutator algebra of C in (Vn)m>= Vnm'- Since A'm> is isomorphic with Am,

it contains a copy of Fm, and therefore Vnm' contains a copy of Fm. Hence we

may write Vnm- = U®pFm, where U is the commutator algebra of this copy

of Fm in V„m>. Since A is the commutator algebra of Fm in Am, our isomor-

phism of Am into F„m' (via Am>) must map .4 into U. Finally, since A is the

commutator algebra of Cm in Am, the image of A in U®FFm is the commutator

algebra of C®FFm in the image of .4m, i.e., in the commutator algebra of C

in U®FFm which, in any case, must contain the commutator algebra of

C®pFm. Hence the image of A is the commutator algebra of C®pFm in

U®FFm, i.e., the commutator algebra of C in U. This completes the proof of

the characterization of y(Bp), in the general case.

Now let A be a simple algebra with center C, and suppose that the

similarity class of A belongs to y(BF). By the above, every similarity class

in Bp which maps into the similarity class of A has a unique (to within iso-

morphisms) representative U such that A is contained in U as the com-

mutator algebra of C. Hence, by Theorem 3, the preimage in Bp of the similar-

ity class of A is in one to one correspondence with the set of equivalence classes of

the regular extensions of A by T. The coset structure of this preimage, with

respect to the subgroup Bp(C), is reflected in the set of equivalence classes of the

regular extensions of A by T by their composition with the regular extension

classes of C by T, as follows at once from Theorem 4. Furthermore, if A' is a

second simple algebra with center C, then the preimage in Bp of the similarity

class of A®cA' is represented by the composites of the regular extensions of A

by T with the regular extensions of A' by T.

Next we observe that an algebra A with center C is of the form U®pC,

where U is a simple algebra with center F if and only if there exists a trivial regu-

lar extension of A by T. Indeed, it is evident that U®fC has a trivial exten-

sion by T. Conversely, suppose that (S, <b) is a trivial extension of A by T.

This means that there exists a restricted Lie algebra isomorphism \p of T

into 5 such that <jnp is the identity map of T onto itself. Then ip(T)-\-C is a

restricted subalgebra of 5 which, together with the restriction of <b to yp(T)

+ C, constitutes a trivial regular extension of C by T. The corresponding

simple algebra with center F is evidently a subalgebra of Vs- On the other

hand, we know from [4] that it is the full matrix algebra Fn, where w = [C: F].

Hence we may write Vs=U®pFn, where U is the commutator algebra of

Fn in Vs. Now C is contained in Fn and coincides with its commutator algebra

in Fn, while A is the commutator algebra of C in Vs. Hence A = U®pC, and

clearly U is simple with center F.

3. Existence of regular extensions and related questions. It is clear from

the above that the following result implies the existence of regular extensions.
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Theorem 5. Let F be afield of characteristic p, and let Cbe a finite algebraic

extension of F which is purely inseparable over F. Then every finite dimensional

simple algebra A with center C is similar to a tensor product B®FC, where B

is a simple algebra with center F.

Proof. The algebra A is similar to a tensor product U®cV, where the ex-

ponent of U (in the group of algebra classes over C) is not divisible by p,

while the exponent of V is a power p" of p. Furthermore, we may take U to

be a crossed product, and it suffices to prove Theorem 5 in the two cases

A = U, or A = V. The case A = U is quite easy. We write U = ZiG, /), where

Z/C is a normal extension with Galois group G, and / is a factor set for G in

Z. Let u denote the exponent of U. Then /" is a trivial factor set. Let e be the

exponent of C relative to F, so that CptQF. Since p does not divide u, we can

find integers a and b such that au-\-bp' = \. Then the factor set/6"* is equiva-

lent to / and takes its values in Zv'. Since CP'QF, and Z is separable over C,

Z is isomorphic with FZP' ® FC. Furthermore, FZP' is normal over F, and the

restriction map sends G isomorphically onto the Galois group of FZP'/F,

which we may therefore identify with G. But then we can form the crossed

product FZp\G, fhp') = U', say; and clearly U is isomorphic with U'®FC.

Now consider the more difficult case A — V. Since V has exponent pn, V has a

cyclic normal splitting field of degree a power of p. This is shown in Chap.

VII of [l]. Actually, it suffices to use the easier result that V is similar to a

tensor product of cyclic crossed products of degree a power of p. In any case,

it suffices to dispose of the case where V is a crossed product of a cyclic ex-

tension field Z of C, with [Z:C] = p*. The case t=0 being trivial, we have to

dispose of the case OO. But then it is known from Albert's theorem on cyclic

extensions of ^-power degree of a field of characteristic p that there exists a

cyclic extension Y/C such that ZQ Y and [F: C] =p'+e. Let a be a generator

for the Galois group of Y/C, and let a' be the restriction of a to Z. Then o'

is a generator for the Galois group of Z/C, and we have V = Zia', c), with

c€£C. Now ZC F and [Y:Z]=pe. Hence, by a well-known result on cyclic

algebras, V is similar to the crossed product F(<r, c"'). (See Lemma 11, Chap.

VII of [l]; this result is due to Albert, and Hasse). Since cp'(£F, we can now

make the same argument as above (for U) to conclude that V is similar to

FYp\o, cp')®FC. This completes the proof of Theorem 5.

Theorem 5 implies that every derivation of C/F can be extended to a

derivation of A. Actually, a more general result on derivations holds over

arbitrary fields (also in characteristic 0) and can be proved in a completely

elementary fashion. Our result extends Jacobson's result, which we have

already used in the proof of Theorem 1, that if A is a finite dimensional simple

algebra with center C, and if B is a semisimple subalgebra of A containing C,

then every derivation of B into A which annihilates C can be extended to an

inner derivation of A.
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Theorem 6(3). Let Abe a simple algebra of finite dimension over its center C,

and let B be a semisimple subalgebra of A containing C. Then every derivation

of B into A which maps C into itself can be extended to a derivation of A.

Proof. We observe first that it will suffice to prove that every derivation

of C can be extended to a derivation of A. Indeed, let t be a derivation of B

into A which maps C into itself, and let tc be the restriction of t to C. Suppose

that tc can be extended to a derivation s of A, and let sb be the restriction

of ^ to B. Then t — sB is a derivation of B into A which annihilates C, and

hence, by the result of Jacobson's cited above, can be extended to a derivation

u of A. Now s+u is a derivation of A whose restriction to B coincides with t.

The extend ability of a derivation of C to a derivation of A depends only

on the similarity class of A. For, suppose that a given derivation t of Ccan

be extended to a derivation t' of a simple algebra A' which is similar to A.

There are positive integers m and m' such that Am is isomorphic with Am>.

Let t'm< be the map of A'm> into itself which sends the matrix with entries a\j

into the matrix with entries t'(a'ij). Then t'm> is evidently a derivation of Am>

which extends t. The isomorphism between Am and A'm> transports tm> into

a derivation 5 of Am which extends t. On the other hand, / can be extended

to the derivation tm of Cm (defined in the same way as t'm> was defined above).

Let scm be the restriction of s to CmGAm. Then scm — tm is a derivation of Cm

into Am which annihilates C, and can therefore be extended to a derivation

« of Am. Now consider the derivation s — uoi Am. Its restriction to Cm coin-

cides with tm, whence s — u maps Cm into itself. Since A is the commutator

algebra of Cm in Am=A ®cCm, it follows that s — u must also map A into it-

self, and therefore provides the desired extension of t to a derivation of A.

Hence we may now assume that A is a crossed product Z(G, /), where

Z is a normal extension field of C, G is the Galois group of Z/C, and / is a fac-

tor set, i.e., a map of GXG into the multiplicative group of the nonzero ele-

ments of Z such that, for all p, <r, t in G, p(f(a, r))f(pa, T)-Xf(p, o-t)/(p,ct)-1 = 1.

More explicitly, Z(G, f), as a left vector space over Z, has a basis u, in one

to one correspondence with the elements a of G such that u„uT =/(<r, t)u„, and,

for zGZ, u„z—a(z)u„. Since Z is separable over C, there is one and only one

derivation of Z which coincides with the given derivation t of C. We shall

denote this extended derivation of Z by the same letter t. Clearly, the map

ot<j~l is also a derivation of Z which extends our given derivation of C, whence

ota~1=t. In other words, the extended derivation t to Z is also a G-endo-

morphism of Z. Now we define a map h of GXG into Z by setting h(a, r)

= i(/(<r, r))f((T, t)~1. Using that t is a derivation and a G-endomorphism, we

(*) In the case where C is finite over the subfield annihilated by the given derivation (and

hence is of characteristic 9*0 and purely inseparable of exponent 1 over that subfield), this

theorem was already proved by Jacobson in [5]; one merely has to combine (in [5]) Theorem 7

with the part of §10 that precedes Theorem 13, using the argument of the first paragraph of our

proof below. The rest of our proof is quite different from that of Jacobson.
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derive from the above multiplicative identity for/ the corresponding additive

identity for its logarithmic derivative, h, i.e., pihi<r, r))—hipo-, r)+hip, ar)

— Kp, a) =0. It is a well-known result (due to Witt) that such an additive

factor set must be a transformation set, i.e., that there is a map g of G into

Z such that aigir))— giar)-\-gi<r) — Ko~, t). Indeed, there is an element ZiGZ

whose trace is 1, i.e., ^,gC <r(zi)=l. Define gip) = zZ°£Q P°~izi)hip, a).

Then it is easily verified that g satisfies the above requirement. Now we de-

fine the additive endomorphism t* of ZiG, f) by the formula

t*(zZ z„u,)=  zZ Viz*) + z,gi<T))u„
„Go «€o

where the z, are elements of Z. It is easy to check directly that t* is a deriva-

tion of ZiG, f) which coincides with / on C. This completes the proof of

Theorem 6.

We shall now indicate briefly how Theorem 5 can be obtained from

Theorem 6 and the theory of restricted Lie algebras. It is evidently sufficient

to prove Theorem 5 in the case where CPQF. In view of Theorem 3, it suffices

then to show that there always exists a regular extension (S, <p) of A by the

derivation algebra T of C/F, where C is the center of A. As in the proof of

Theorem 3, we write C=P[wi, • • • , «*], and consider the derivations

h, • ■ • , tk of C/F such that /,-(«,-) = 5,;%. If T0 is the subspace of T which is

spanned, over P, by these elements ti then T0 is a restricted abelian Lie

algebra over F, the p-map in To is nondegenerate in the sense that the image

of To under the p-map spans Po over P, and we have T = CT0. The key re-

sult for our proof is that the restricted cohomology groups of T0 are trivial.

This was shown in §1 of [4]. Before we can make use of this fact, we must

modify the p-map in A. Let a—>a' be any p-semilinear of A into F such that

c' =cp, for every c£zC. (The phrase p-semilinear means that, for a, b in P and

u, v in A, we have iau+bv)' =apu'+bpv'.) We define a new p-map by setting

aljj] =ap — a'm With this p-map, and the usual commutation, A is a restricted

Lie algebra, which we shall denote by Ao- Our new p-map annihilates the cen-

ter C of Ao. By Theorem 6, every element of Po can be extended to a deriva-

tion of the associative algebra A, and such a derivation is then also a restricted

derivation of the restricted Lie algebra ^40- Since the extension of a derivation

of C to a derivation of A is unique up to an inner derivation of A, we thus

have the structure of a restricted P0-kernel on .40, in the sense of [3]. Since the

p-map m Ao annihilates the center of Ao, and since the restricted 3-dimen-

sional cohomology group for P0 in C is (0), it follows from Theorem 3.1 of [3]

that the kernel Ao is extendable, i.e., that there exists a restricted Lie algebra

extension (S0, <po) of A0 by Po which induces our kernel structure on Ao, and

in particular satisfies the regularity condition (*). Now we extend the map

a—»a' to a p-semilinear map of So into P and then redefine the p-map in So

by s—>slp]+s' =sp, where s—k?1''1 is the original p-map in S0. There results a
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restricted extension (Si, <pi) of A by T0, where A is now again regarded as a

restricted Lie algebra in the usual way, Si is the same as So except for the

changed p-map, and <bi is the same map as <po. The regularity condition (*)

continues to hold in Si, of course. The same argument which gave the proof

of Theorem 2 (which uses the vanishing of the 2-dimensional cohomology

groups of T0; cf. [4]) shows that there is an ordinary Lie algebra isomorphism

^ of T0 into Si which is inverse to <j>i. Now we enlarge Si to a Lie algebra S

whose space is A-{■ C® f^(To), and where the commutation is that extension

of the commutation in Si which results from enforcing the regularity condi-

tion (i), with the natural C-space structure of S. There remains to define a

P-map in S. For Si=yf/(ti) and cGC, define (c®si)p=cpsv+(cti)p-l(c) ®s{.

Then the inner derivation effected by (c®si)p coincides with the pth

power of the inner derivation effected by c®s,-. Indeed, this holds on A, by

Lemma 1 of [4], and since C®f^(T0) is isomorphic with T, this holds also

on C®f^P(To). Now it follows from the elementary theory of restricted Lie

algebras that there is one and only one p-map on S which coincides with the

map a—>ap on A and which maps the elements c®Si into (c®Si)p. Clearly,

this p-map is an extension of the given p-map on Si. Furthermore, the

analysis of the regularity condition (ii) which we made immediately before

stating Theorem 4 shows that S satisfies the regularity condition (ii). Finally,

<pi can be extended in one and only one way to a C-linear map 0 of S onto T,

and it is clear that (S, <p) is a regular extension of A by T. This completes our

proof for the existence of regular extensions.
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