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Introduction^). Let U be a set with n elements, where n is a finite cardinal.

Let 77 be a fixed group. A monomial substitution y is a transformation that

maps every x of the set U in a one-to-one fashion into an x of U multiplied

by an element hx of 77". If an operation is defined between monomial substitu-

tions by successive applications, the set of all monomial substitutions over 77

is a group which we denote by 2n. Ore [l](2) has studied this complete

monomial group or symmetry over 7P Among the results of the study are

those of the following paragraph.

The subset V of elements of 2n that map each x of U onto an element of

H multiplied by the same x form a normal subgroup of 2„, the basis group.

The subset S of elements of 2n that map each x of U onto an x of U multi-

plied by the identity e of H form a subgroup of 2„, the permutation group.

The symmetry splits over the basis group; 2„ = VKJS, VC\S = E where P is

the identity of 2n. A complete solution to the problem of finding all represen-

tative groups in the splitting over the basis group is presented. All of the

normal subgroups of 2n and all of the automorphisms of 2„ are determined.

The investigation is concluded with the study of imbedding an arbitrary

group in a monomial group.

This paper generalizes the monomial group by removing the requirement

that U be a finite set. Furthermore, the group H is arbitrary throughout the

entire paper. If oiU)=B=\bu, m^O, where o((7) means the number of ele-

ments of U, then a monomial substitution over an arbitrary fixed group 77 is

defined as for the case where o(t7)=«<^o- With an operation between

monomial substitutions again defined as successive applications, the set of all

monomial substitutions over H forms a group 2b.

The splitting of 2B over the basis group is discussed, and a complete

solution for the determination of all representative groups in a very general

case has been found. Corresponding theorems for various subgroups of 2b are

also found. All of the normal subgroups of various subgroups of the symmetry

have been determined. Some progress toward the determination of the auto-

morphisms of the general monomial group has been made by showing that
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the basis group is characteristic for some subgroups of 2b.

In addition, the subgroup 2„,a of 2n that has elements which can be writ-

ten as the product of elements of the basis group multiplied by elements from

the alternating group on U is discussed. The problem of describing all repre-

sentative groups in the splitting over the basis group is completely solved.

All of the normal subgroups for w^5 are determined.

Since 2B splits over the basis group with a group isomorphic to the infinite

symmetric group on U, some discussion of infinite permutation groups is given

in Chapter I. In addition, the more elementary topics such as transforma-

tion, center, centralizer, etc. are discussed in Chapter I. The center of the

symmetry is found; a normal form for elements of the symmetry is deter-

mined; and the centralizer of any element of the symmetry is found.

In Chapter II all representative groups for the splitting over the basis

group are determined. Necessary and sufficient conditions for the symmetry

to split regularly are found. In addition, the splitting of S„,x over the basis

group is discussed, and a complete solution for constructing representative

groups is given. For this group also, necessary and sufficient conditions for

the group to split regularly are given.

In Chapter III all of the normal subgroups of various subgroups of 2 b

are determined. In one case the normal subgroups are less complicated than

for the case where o(U) =ra. All of the normal subgroups of Sn,^ are deter-

mined for ra ̂  5.

The final chapter is devoted to showing that the basis group is a char-

acteristic subgroup for some of the subgroups of 2b. It is also shown that the

basis group is a characteristic subgroup for 2n,^.

The paper leaves unanswered some questions corresponding to known re-

sults when o(U) =ra.

The method of procedure used, in particular in Chapter III and Chapter

IV, is similar to that used by Ore [l ].

Chapter I. The symmetries

1. Definitions. Let d be the cardinal of the set of integers. Let B be an

infinite cardinal; B+, the successor of B; U, a set such that o(U)=B, where

o( U) denotes the number of elements in U; and let C be such that d^C^B+.

Let 5 be a one-to-one transformation of U onto itself and let U(s) be the set of

x belonging to U such that 5 moves x. Denote by { U, C\ the set of 5 such

that the number of elements x of U that s moves is less than C. The product

of two transformations s and s' in { U, C\ is defined to be that transformation

resulting from successive application of 5 and s' in the given order.

The groups S(B, C) are called the infinite symmetric groups. Let I denote

the identity of the groups.

If o(U(s)) is finite, then 5 may be considered as an element of the finite

symmetric group on those objects. Let A { U, d] be the subset of { U, d) con-
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sisting of those elements 5 which are in the alternating group AiUis)) of

Uis).

The groups AiB, d) are called the infinite alternating groups.

Every 5 of 5(P, B+) determines a set of cycles of the form

(Xi, Xi, ■ ■ ■, tf„_i, Xn\

C = [ J  =  (*i, Xi, • • •  , Xn)
\xi, x3, ■ • ■ ,x„,    xi)

or

(• • • , X-i, Xo, Xi, ■ ■ ■ \
I =(•••, x-i, xo, xu ■ ■ • ).

• • • , xo , xu xi, ■ ■ • /

A cycle with n distinct x's is called an w-cycle; w = l, 2, • • • ; d. Conversely,

a set of disjoint cycles which together contain all x of U determines an 5 of

5(P, B+). It is customary to say that s is the "product" of its cycles and use

corresponding notation. It must be remembered that this cyclic decomposi-

tion may involve an infinite number of cycles, however.

Now let H be some group, finite or infinite. Denote by e the identity of

H. Let U be a set of order B = K„ for u ^ 0. For convenience the set U is well

ordered.

A monomial substitution over 77 is a transformation of the form

a) '-('"'»*"")
\ • • • , h.Xi,, • • • /

where the mapping xt-^xif is a one-to-one mapping of U onto itself and ht

belongs to 77. The h, will be called factors of y.

If y is given by (1) and yi is given by

(2) »-('"\*"'")'\ ■ ■ ■ , k,xJt, • • • /

then the product yyi is defined by

\ '  ■  *   ,   fleKieXijt,   '  '  '  /

By this definition of multiplication the set of monomial substitutions is

a group that will be denoted by 2(77; B, B+, B+) and called the monomial

group of 77 of degree B or, more simply, the symmetry of 77. The reason for

the complexity of the notation for the monomial group is to provide an

adequate notation for various subgroups to be discussed later. The identity

of the symmetry will be denoted by P.

If H consists only of the identity element, then 2(77; B, B+, B+) is the

symmetric group on a set of elements of order B.
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A permutation in 2(77; B, B+, B+) is a substitution of the form

(4) .-(•■■•*••••)-("■■•.•-).
\ • • • , exit, ■ ■ ■ /       \ ■ • • , t„ • • • /

The set of permutations forms a subgroup of 2(77; B, B+, B+) which we

will denote by S(B, B+) and call the permutation subgroup of 2(77; B, B+, B+).

This is in conformity with earlier notation.

A multiplication in 2(77; B, B+, B+) is a substitution of the form

(5) .-('    '■/"'    ')={•••,*.,•}.
\ • • • , htx„ • ■ ■ /

The set of multiplications forms a normal subgroup of 2(77; B, B+, B+),

denoted by V(B, B+), called the basis group.

The basis group is isomorphic to the strong direct product of B groups,

each of which is isomorphic to 77.

A scalar in 2(77; B, B+, B+) is a multiplication with each factor the same.

Scalars will be denoted by v = {h}. A brief computation shows that scalars

are the only elements that commute with all permutations.

The center Z(2(77; B, B+, B+)) of 2(77; B, B+, B+) is the set of all scalars

v~ {/} where / belongs to the center of 77. Z(2(77; B, B+, B+)) is isomorphic

to the center of 77.

A group G splits over a normal subgroup N if there exists a subgroup M

of G such that G = NVJM, N(~\M = E. The group M may be replaced by any

of its conjugates and the relations will still hold. If for every subgroup T

such that G = N^JT, NC\T = E it follows that T is conjugate to M, then G

splits regularly over N.

Any substitution y of 2(7?; B, B+, B+) can be factored into a multiplica-

tion multiplied by a permutation. If y is as in (1), then

,-{....*„...}(■    '•*"■••).
\ • • • , x{„ ■ ■ • /

This shows that

(6) 2(77; B, B+, B+) = V(B, B+) \J S(B, B+), V(B, B+) P\ S(B, B+) = E.

Let B, C, D be infinite cardinals such that d^C^B+, d^D^B+. Let

2(77; B, C, D) be the set of all y =vs where v belongs to V(B, B+), s belongs to

S(B, B+), and v has less than C nonidentity factors, s moves less than D of the

*'s. Then 2(77; B, C, D) is a subgroup of 2(77; B, B+, B+) that splits over its

basis group.

The set 2^(77; B, C, d) of all y=vs of the form v has less than C non-

identity factors and 5 belongs to A(B, d) forms a subgroup of 2(77; B, B+, B+)

that splits over its basis group.
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Let oiU) =n, where n is a finite cardinal. Denote by 2(77; n, n + 1, w + 1)

=2„(P0 the symmetry over 77 and U. Then the set 2^(P7; n, n + 1, ra + 1)

= 2n,^(77) of elements of 2„(77) of the form y=vs, where 5 belongs to

Ain, n + 1)—An, is a subgroup that splits over its basis group, F(w, w + 1)
= F„.

2. Cycles, transformations, and centralizers. Let y be an arbitrary ele-

ment of 2(77; B, B+, B+). It has been shown that y has a unique decomposi-

tion y =vs, where v belongs to F(P, B+), and 5 belongs to 5(P, B+). Permuta-

tions may be decomposed uniquely into disjoint, commutative cycles of length

n where n = l, 2, • • • ; d. This decomposition induces a decomposition of v

such that to each cycle c, of s there corresponds a multiplication vt with all

factors e in those positions corresponding to x that 5 does not move and fac-

tors the same as in v for the x that s moves. Thus vfcf has one of the two forms

/   *i, • • • ,    *»\
vtct = I I when n < d

\hiXi, ■ ■ ■ ,hnxi/

or

/ • • • ,       x-i,     Xo,     Xi, ■ • ■ \
vtc, = I 1 when n = d.

\ • • • , h-iXo , h0Xi, hiXi, • - ■ /

Therefore, y can be decomposed into the "product" of disjoint commuta-

tive cycles vtct. It must be remembered that this decomposition may yield

an infinite number of the vfcf.

Ore [l, p. 19] has investigated the result of transforming a finite cycle of

an element of a monomial group. If c is a cycle of length n and of the form

(Xl,       Xi, *  •  •   ,        Xn\

hiXi, hix3, • ■ ■ , hnxj'

then the rath power of c is {8\, ■ • • , 5„} where 5i=Ai • ■ ■ h„, 52 = Zt2 • • •

hnhi, • • ■ , S„ = k„hi ■ • ■ hn-i- These 5,- are called the determinants of c. Since

the Si are conjugate, there exists a unique determinant class for each cycle. A

necessary and sufficient condition for two finite cycles to be conjugate is that

they have the same length and determinant class.

Theorem 1. A necessary and sufficient condition that two cycles of length d

be conjugate is that they leave the same number of x fixed.

Proof. The condition is clearly necessary. Conversely, let

(7) '-('"•      X~U    *°'     *U")
\ • • • , h-ixo , hxi, hiXi, • • • /

and
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(8) c' = (""'      Xi~V    **"    **"')

where c, c' leave the same number of x fixed. There exists a y of 2(77; B, B+,

B+) such that y has a cycle Ci given by

(9) *-(*"'       *-1*     *'     *'"')
\ • • • , fe_i*<_„ &o*.0> £i*u. • • • /

where ko is arbitrary in 77 and the remaining ki satisfy

>

k-z = A-2&_ir_2,

k-i = A_i*0r-i,

&i = ho kor0,

k2 = hi kiri,

But y_1cy = c'.

From the theorem just proved and the corresponding theorem proved by

Ore [l, p. 19] it follows that:

Theorem 2. Two monomial substitutions y and yi are conjugate if and only

if in their cyclic decomposition the finite cycles can be made to correspond in a

one-to-one manner such that corresponding cycles have the same length and

determinant class and the cardinal of the set of infinite cycles is the same for

both y and y\.

Any infinite cycle c as in (7) can be trasfornmed into the normal form

/ • • • , x-x, x0, *i, ■ • • \

V ■ • • , x0 , xi, x2, ■ ■ ■ )

by a proper choice of the factors of ci as given by (9). One sees that a trans-

formation of cycles of length d into normal form is possible using a substitu-

tion involving only those x which the cycle moves. Ore [l, p. 20 ] has shown

that any finite cycle can be transformed to the normal form

(Xi, ■ ■ ■ , Xn-i, xn \

Xz, ■ ■ ■ , xn   , axj

where a is any element of the determinant class of c. This transformation

involves only those variables which c moves. Therefore, all of the cycles of

any substitution may be put in normal form by one transformation. This

shows that any substitution y is conjugate to a "product" of cycles without
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common variables where each cycle is in normal form.

Ore [l, pp. 20, 21 ] has found the centralizer of a substitution which has

only a finite number of finite cycles in its decomposition. Let

(Xl, • • ■  , Xn-i, Xn \

xi, ■ • • , xn   , axil

The centralizer F^ of ca in the symmetry involving only the variables that ca

moves will be determined. Let D be the centralizer of a in 77. Any element

y of P,0 is of the form

(Xl,  '  ' '  ,      Xn— j+1, Xn—j+1,  '  *  '   , Xn    \

kxj, • • • , kx„      , kaxi      , ■ • • , kaxj-j

where k is any element of D. The element y can be written y={k\c£~l

= c'a~1{k}. Therefore, since cj|={a} and a is in D, Fea is isomorphic to a

cyclic extension of degree w of a group isomorphic to D.

It has already been demonstrated that a cf-cycle c may be transformed

such that

/ • • ■ , x-i, xo, xi, ■ ■ ■ \

\ ■ • ■ , Xo , Xi, xi, • ■ ■ )

It is clear that one need consider only the symmetry involving the variables

that c moves. When c is transformed by

(• • • , X—i ,       Xo ,       Xi,  • • •   \

•  •  •   ,   k-iXi_v  k0Xh,  kiXiv  ■ ■ ■  /'

a computation shows that

, / '        '        '      J "^l-l, X^, Xiy, \
y~lcy =1 _i _i _i J.

\ • • ■ , k-ikoXiQ  , ko   kiXiv ki   k2xh, • • • /

If y is to belong to Fc the x's of this result must be the same as the ones that

c moves, and this gives a condition on y such that y has the form

(• • • ,        X-i ,      Xo, X\, • ■ • \

• • •  ,  k-iXj-i,  koXj,  kiXj+i,  ■ ■ ■  )

The factors of y may now be obtained. A computation of y~lcy using the new

form shows that

, / ' " "  > X3+h Xj    , Xj+i, • • ■ \y~xcy = 1 _i _i _i 1.
\ • • ■ , k-ikoXj   , k0 kiXj+i, ki kiXf+i, • • • /

In order for this result to be c let ko be arbitrary in 77 and it follows that
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k{ = k0 for i = l, — 1, 2, —2, ■ • • . The final form for y to belong to Fc is then

given by

(• • • ,   x-i ,    xo,   xi   , ■ • • \

,  RXj—i, RXj,  RXj+i, . * ' /

A computation shows that y= {&}c' = c'{&} where {k} is not a true scalar

but is a multiplication with k as factor in the positions corresponding to x

that c moves and e as factor elsewhere. This shows that Fc is isomorphic to

the direct product HXZ where Z is the infinite cyclic group, and this is inde-

pendent of c (up to an isomorphism).

The centralizer F„ of y = H<,ca, where ca are cycles of length d in the

symmetry of degree corresponding to the number of x involved, is now de-

termined. Let a run over a set of cardinal C where 1 ̂  C^B. Then the num-

ber of variables that appear in y is (dC). Any permutation of the ca among

themselves belongs to Fv. An element yi of Fy will have the form yi = (n<*/a)s

where s is an element of the symmetric group S(C, C+) and fa belongs to Fc<t,

the centralizer of ca in the symmetry on its variables. It is clear that all of the

FCa are isomorphic since each is isomorphic to HXZ. So Fy is isomorphic to

the symmetry ^2(FCa; C, C+, C+) where FCa is the same for all a.

Consider y = JTa ca where the ca are finite cycles of the same length ra and

which have the same determinant class. Let a run over a set of cardinal C

where 1 ̂  C^B. In a manner similar to that used by Ore [l, p. 21 ], one finds

that Fy is isomorphic to the symmetry 2(FCa; C, C+, C+).

This proves:

Theorem 3. Let y be conjugate to yi written in the normal form yi = Jl a ca,

ca= XIs(<») Cp(a), where for a fixed a the c^a) are the normalized cycles of the same

length La, and the same determinant class aa if La <d. Let /3(a) run over a set of

cardinal Cpia) where 0 £ C/j(<r) f=B. Then the centralizer Fv of y in 2(77; B, B+, B+)

is isomorphic to the strong direct product of symmetries

Fy = H (S(Fc/5(<>);C/3(„), Cp(a), C,3(a)))
a

where Fc is the centralizer of a single cycle c" in 2(77; LpC$(a), (LpCp(a))+,

(LffCg(a))+). The group FCg(a} consists of all elements yi of the form yi= {ka\ (<%)*

where k belongs to the centralizer of aa in 77 (k belongs to 77 if Cgw is a d cycle).

For elements of the group 2(77; B, B+, C) where d^C^B the result is the

same. When y is written in its cyclic decomposition, the cycles are still of

length ra or d and all the previous argument is valid including a revised state-

ment of the theorem with 2(77; B, B+, B+) replaced by 2(77; B, B+, C).

The elements of certain subgroups of 2(77; B, B+, B+), which are dis-

cussed in detail later, have only finite cycles in their decomposition and the

corresponding theorem, not stated here, is somewhat simpler.
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Chapter II. Splitting of the symmetry

1. The splitting of 2(77; B, B+, C). Let H be a given fixed group, B a fixed
infinite cardinal, and let C be such that d^C^B+. It has already been seen

that 2(77; B, B+, C) = F(P, B+)US(B, C), F(S, B+)C\SiB, C) =E, and hence
that 2 splits over V. The problem of finding all groups T such 2(P7; B, B+, C)

= ViB, B+)\JT, ViB, B+)C\T=E will now be considered.

If there exists such a T, it is isomorphic to 5(B, C). Denote by 6 the natu-

ral isomorphism such that sd = vs=t.

The group S(B, C) contains B elements of the form s = (l, a) where

a = 2, 3, • • ■ . Thus T must contain B elements of the form

ta  =   (1, Ct)6  =   {hi,a,   hl,a,   • "  ,   he,a,   ' '  '   } (1, «).

In the same way as was used by Ore [l ] one sees that there exists a

multiplication v such that the group T'=vTv~l has elements t« whose first

factors are e.

If /„' = {e, hi,a, • • • ,ht,a, ■ ■ ■ } (1, a), then, since (/„')2 = P, it follows that

(i) ha,a = e,

(ii) h\a=e for e^l, e^a.

If 5 belongs to 5(P, C) and moves Xi, then s can be written uniquely as

i = (l, a)si where sx leaves Xi fixed. The image of (1, a) under 6 has already

been partially described. To find the image of any element of 5(P, C) it is

sufficient to discuss those elements that leave xi fixed before returning to

elements of the form (1, a).

Denote by 5i(P, C) that subgroup of 5(P, C) whose elements have the

property that they do not move X\. Let si belong to Si(P, C) and be such that

xaSi=xa for some xa, a^l. Then Ji = (l, a)s=sil, a), where 5 sends xi into

xa, xa into Xi. Let sd= {klt kt, • • • , k„ • • • }s. Since

(1, a)d = {e, hi,a, ■ ■ • , e, ■ ■ ■ , h,,a, ■ ■ ■ }(1, a),

where e occurs as a factor in the first and ath positions,

)'

sie = sdii,a)d=(  Xl'\  ''    Xa''   ').
\ rllXl, ,   RaXct, /

This shows that if Si belongs to 5i(P, C) then the factors of v, where s$=vsi,

in the positions corresponding to those x which si leaves fixed are equal to the

first factor of v.

Lemma. Let s belong to S(P, C) and have the following properties: s moves Xi,

s sends at least one x into itself. Denote by x$ the x which s sends into Xi. Then s

has the following form:
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_ /Xi, ■ ■ ■ , Xfi, ■ ■ ■ , Xa, ■ ■ ■ \

\X&, ,   Xx,  •  "  '  ,   Xa,   '   '   '   /

where 8?*1. Let sd = vs where v is some element of V(B, B+). Then the factors

which occur in the first and fith positions of v are equal.

Proof. It is possible to write the 5 as described above in the following two

ways:

(Xi, ■ • ■ , Xg, ■ ■ ■ , xa, • ■ ■ \
)-(l,0)*l.

s = sx(l,8).

But sx is of the form discussed earlier. Therefore,

Sid = [ha, • ■ • , hp, • • ■ , ha, • • • , ht, • • • \sx,

(l,/3)0 = {«, • • • , e, ■ ■ ■ , ha,e, ■■■ , h,g, ■ ■ ■ }(1, |S),

(1, 8)8 = \e, ■ ■ ■ , hfi,i, • • • , hati, • ■ ■ , e,  ■ ■ ■ }(1, 5).

Using the decomposition of 5 indicated above and the fact that 8 is an iso-

morphism, a computation shows that

/    xx,---,     a,,--.\

\hgXs, ■• ■ , haxx, ■ ■ ■ /

\haxs, • • • , hffXx, ■ ■ ■ /

This establishes that ha = hp.

It will now be shown that if Si is any element of Si(B, C) leaving xa fixed,

a7^1, and Sx8—vsx, then v is a scalar. It is sufficient, in view of what has

already been established, to show that the factors occupying positions cor-

responding to * which Si moves are the same as the first factor of v. Let

_ /xi, ■ ■ ■ , xa, • • • , xB, • • • \

(%h   '   '   '   i   xa, i   %Pt \
1(1,5) = 5(1,5),

Xi,   ■   -   ■   ,   Xa,   •   ■   •   ,   Xx,   ■   ■   ■   /

where 5^/8, 5^1. By the lemma, s6= {ki, ■ • - , ka, • ■ • , h, ■ ■ ■ }s. Fur-

thermore, (1, 8)6= [e, • ■ • , ka,t, • • • , e, • ■ ■ } (1, 8), where e occurs in the

first and 8th positions. Using the decomposition of Sx and the fact that 6 is

an isomorphism,

Sle = se(i,8)8 = („**'"'*'").
V*!*!,   •   ■   •   ,   kiXi,   •   ■   •   /
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This shows that if si belongs to SiiB, C) and si leaves some xa fixed, a^l,

then Si6 = vsi, where v is a scalar.

If si belongs to SiiB, C) but moves all other x, then

(Xl, Xi, ■ • • , XB, ■ • • \

Xl, Xfl, ■ ■ ■ , xa, ■ ■ ■ )

= (2, 0)1 ) = sis{,
\Xi, xa, ■ ■ ■ , Xg, • • ■ /

where h, s{ belong to Si(B, C). Therefore, Si6 = Si6s{6 = SiSi»i s{ = Viv{ Sis{

=vsi. It has already been established that v\, v{ are scalars. Since scalars

commute with all permutations, v is a scalar.

Define a homomorphism between SiiB, C) and a subgroup of 77 by

si<b = hn, where s$= {htl]si.

A computation shows that if

(l,a)0 = {e, ■ ■ ■ , hB.a, ■ ■ ■ , e, ■ ■ • }(1, a),

(1,0)0= {«,-•• ,ha,/,, •■■ ,e,--- }(1,/J),

then

(*i, • • • ,        *a, • ■ • ,        xa, • • • \

\ )'
ha.aXi, • • • , na.aXa, • • • , ns,axa, ■ ■ ■ /

where a^l, 09*1, aj£0. On the other hand (a, 0)8= {ga,e} (a, /3). Therefore,

the (3th factor of (1, a)0=n(l, a) is simply the homomorphic image of (/3, a)

under <p.

This leads to the following theorem:

Theorem 1. The symmetry 2(Pf; B, B+, C) splits over the basis group,

2(77; B, B+, C) = ViB, B+)UT, ViB, B+)C\T=E. Any such group T is the
conjugate of some group T' obtained by the following construction. Let G be a

subgroup of 77 that is the homomorphic image of 5i(P, C) where d^C^B+. Let

s<f>=g, indicate the homomorphism. In particular, (a, 0)<p=ga,a- Then the ele-

ments of T' are obtained from the elements of SiB, C) by the isomorphism defined

as follows:

s * ={g>\ for s belonging to SiiB, C),

(1, a)*  = {e, gi,a, ■ ■ ■ , g„a, ■ ■ ■ , e, ■ ■ ■ }(1, a)

where e occurs in the first and ath positions.

It has already been shown that any group T, after suitable transforma-

tion, must have the form indicated in the correspondence above. It remains

to show that the set of substitutions defined by the correspondence above

actually forms a group isomorphic to 5(P, C).
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Any element j of S(B, C) may be written uniquely in the form s = (l, a)sx

where sx belongs to Si(B, C) (a. may be 1).

The correspondence of the theorem defines a unique substitution s * cor-

responding to each 5 of S(B, C) by

5*  = (1, a) * Si*

= {«, gi.a, ■ ■ ■ , gt.a, ■ ■ ■ , e, ■ ■ ■ )(\, 0L)[gtl)si

=    \g*v  gz.agu, ,  gc.agsi, , gui,      '  '   j S.

Let 5 = (1, 0)5i be another element of S(B, C) that has been written in

the normal form with Si belonging to Si(B, C). To establish that the cor-

respondence preserves multiplication it must be shown that

(1) (ss)*  = s*s*.

By the same argument used by Ore [l, p. 25] it follows that it is sufficient

to prove that

(2) (*(1,|8)).  -5.(1,0)..

This will follow if it can be established that

(2.1) ((1, a)(l,0))*  = (1,«).(1,0).

and

(2.2) (si(l, 0))* = 5i*(l, 0).  for any sx of Si(B, C).

The verification of (2.1) is immediate in the case a=0 when the fact that

<f> is a homomorphism is used. If a 5^0, let

(1, a)*  = {e, ■ ■ ■ , gt,a, ■ • • , e, • ■ ■ , ga,a, • • • }(1, a),

(1, 0)*  = [e, ■ ■ • , gt,g, ■ ■ ■ , ga.a, ■ ■ ■ ,e, ■ ■ • }(1, 0).

A computation shows that

(1, a)* (1, 0)*    =   {ga.a,  • • •   . g,.ag..fi,  ■  ■ ■  ,e,  ■ ■  ■   , gg.a,  • ■ ■   }(1, a)(l, 0).

On the other hand, since (1, a)(I, 0) = (1, 0)(a, 0),

((1,«)(1,0))*  = (1.0).{f«^}(a,0)

= {g«j, • • - . g*fig«.»> • • • . g°.i>< • • " . g<*.e> • • • }(!> «)(!> £)•

By comparison of the two computations, one sees that the factors in the first

and 0th positions are the same. But gatB = e since (a, 0)2 = 7, gt,agi,a=gt,aga,»

since (e, «)(«, 0) =(«, 0)(«, 0) and <p is a homomorphism.

The verification of (2.2) is also discussed in two cases, namely, when sx

moves xa and when si does not move xg. If x„ does not move xp, sx * (1,0) * is

computed and (si(l, 0)) * is computed using the fact that sx(l, 0) = (1, 0)si

in this case. Factors of the two computations are compared and, again using
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the fact that <j> is a homomorphism, it can be shown that they are the same.

If si does move xa, then («i(l, 0)) * cannot be computed directly. However,

*(i.0) - (Xu' •■*••••*•; ; Vi,0 - a,d*

and (1, 5)5i may be computed. If

*i*  = {f»i}Ji>

(1, 0)*  = {e, ■ ■ ■ , e, ■ ■ ■ , gi,a, • • • , g,.a, • • • }(1, 0),

(1, 8)* = {e, • • • , &,,,, • ■ • ,e, ■ ■ ■ , g,,t, • • ■ }(1, 5),

then

.,    . /    Xi, ■ ■ • , xa, ■ • • ,      Xi, • • • , x,, ■ ■ ■ \
si»(l,/3)* = I 1,

\g<ixi), ■ • ■ , gngcBXc, • • • , gnxi, ■ ■ ■ , gngitjiXit, • • • /

(51,(1,(8))* = ((1, 8)si)*  = (1, 5)*si*

Cxi, ■ ■ ■ , xB, ■ ■ ■ ,      xs, ■ ■ ■ , xf, ■ ■ ■ \

«1*/Ji   -  -  -   >  gB.tgliXa,   •   •   •  ,  gsiXl,   ■  •   ■   ,  gi,ig,iXit,   ■  ■  •  /

The proof that factors of the two computations are the same again follows

from the fact that <j> is a homomorphism.

This concludes showing that the correspondence defined in the theorem

preserves multiplication. The images of the elements of 5(P, C) form a group

isomorphic to 5(P, C) which we shall now call T. It is also clear that F(P, B+)

C\T = E. Furthermore, F(B, B+)Ur = 2(P7; B, B+, C), since all y=vs be-
longing to 2 may be written y =Wi1ViS=Vit, where s* =ViS = t.

Theorem 2. A necessary and sufficient condition for 2(77; B, B+, C), where

d+^C^B+, to split regularly over the basis group is that H contain no subgroup

isomorphic to SiB, C).

Proof. If 2 splits regularly over the basis group, T' can be transformed by

an element y into S. This element may be assumed to be a multiplication;

y={ki, • ■ ■ }. Consider the element ^{g.Jsi of T'. When yty-1 is com-

puted, since si leaves Xi fixed, kiggk^1 must be e. Therefore, gB = e for all g of

G. This means that //contains no proper subgroup homomorphic to 5i(P, C),

and, since for C>d the group SiiB, C) is isomorphic to 5(P, C) and has no

proper normal subgroups, 77 contains no subgroup isomorphic to 5(P, C).

Conversely, assume H contains no subgroup isomorphic to SiB, C) and

that 2 does not split regularly. Then 77 contains a group G which is the

homomorphic image of S^B, C). Scott(3) has shown that this implies that G

contains a subgroup isomorphic to SiB, C), contradicting the hypothesis.

(') Scott, W. R., oral communication.
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Therefore 2 splits regularly.

Theorem 3. A necessary and sufficient condition for 2(77; B, B+, d) to split

regularly over its basis group is that 77 contain no element of order 2.

Proof. If 2 splits regularly, then by the method used in the proof of Theo-

rem 2 it can be shown that 77contains no subgroup homomorphic to Si(B, d).

Baer [2, p. 16] has shown that the only proper normal subgroup of S(B, d)

which is isomorphic to Si(B, d) is A(B, d). 77contains no element of order 2,

since the quotient group S(B, d)/A(B, d) is of order 2.

Conversely, if 77 contains no element of order 2, it does not contain a

cyclic group of order 2 or a subgroup isomorphic to Si(B, d). Therefore, 77

contains no subgroup which is homomorphic to Si(B, d). The group T' con-

structed in Theorem 1 is simply 5(75, d) and 2 splits regularly.

Corollary. For every group 77 there exists a group 2(77; B, B+, B+) such

that the monomial group splits regularly over the basis group.

Procf. This follows from Theorem 2 if the cardinal B is chosen such that

o(5(73, 73+)) >o(77).
2. The splitting of 2„,a(77). The problem of finding all groups T such that

2„,x(77) = Vn\JT, Vnr\T = E will now be considered.

If there exists such a group T, T is isomorphic to An. The natural iso-

morphism, denoted by 9, may be taken such that s6=vs=t.

The elements 5;=(1, i, 2), i = 3, ••-,«, generate the group An. T must

contain elements ti, i = 3, ••-,«, such that s,-0=/,-. Let /,= [hu, h2t, • • ■ ,

ha, ■ ■ ■ , h„i} (1, i, 2), for i = 3, •••,». If T is transformed by v= {ki, • • • ,

kn}, then T'—vTv-1 contains elements of the form

U  = vhv    = [kihuki , kzhziki,.}(1, *, 2).

Let ki be an arbitrary fixed element of 77 and choose ki = kxhxi fori = 3, ■•-,«.

Choose k2 = kih2~31. Then T' contains

tz  = {e, e, g33, • • • , g„j}(l, 3, 2),

ti  = {e, g2i, • • • , gn.}(l, i, 2)

for i = 4, • • • , ra. The equations 5? = (siSj)2 = 7 for i^j imply

(1) (tlY = (tUj)2 = E, i* j, i, j = 3, 4, • • • ,«.

The first position factors of (//)' and (tj-j)2 are

(2) gxigagii = e,

(3) gugijgagi} = e,

where i, j are distinct integers between 3 and ra. Noting that gu = gij=g23 = e

and writing g,- for g2i we have from (2) and (3)
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(4) gi = gn = gu , ga = gz = e,
-l -l —l -l

(5) ga = igiigtj)    = gj gi = ga, gi» = gi = gu ■

Thus ti has the form

(6) t'i = {e, gi, gi , gi ,g4, • • • , gi gn], where g3 = e.

H k>2 and £y*i, &?*/ the Mi position factors of (//)* and (*/*/)' are

(7) g*< = (g< g*)   = e,        igkigk,)   = e.

Hence for k=3, we find

3 2

(8) g,- = (fig/)   = e 4 £»,/£«, t & j.

Therefore, the gi, i = 3, ■ ■ • , n generate a group homomorphic to -*4„-i.

This leads to the following theorem:

Theorem  1.  The group 2n,x(77)  splits over the basis group, 2„,x(77)

= Vn\JT, Vn(~\T = E. The group T is conjugate to some group T' obtained as

follows. Let G be a subgroup of H which is the homomorphic image of A„-j.

Let gt, • ■ ■ , gn be generators of G, satisfying the following relations:

(«) g\=e, «=4, • • • , w,

i0) igig,)i=e where i?±j.

Let st = (1, *, 2) for i = 3, • • • , n generate the group An. Then the elements of

T' are obtained from the elements of A „ by the isomorphism 6 defined by

s39 = <i = {e, e, e, git ■ ■ ■ , g„}(l, 3, 2),

/ t 22 2 22 2
sfi = U = {e, gi, gi, gig*, • • • , g,g,_i, gi, gigi+i, • ■ • , gign]il, i,2)

for i=4, •••,«.

It has already been shown that any group T after proper transformation

must have the form indicated by the theorem.

It will now be shown that (<,?)* = (i.^)2 = P, **•/, i,j = 3, 4, • ■ • , w. The

1st, 2nd, and ith factors of (//)' and (// tj)2 and the jth factor of the latter are

.   . 3       3      3

(9) gi, gi, gi

.... 22 222222

(10) gjgigigj,  gigigjgj, gigjgigi,  gigjgjgi-

These factors are e by a. If k>2, ky*i, k^j the &th position factors of (<,')'

and itltj)2are

(11) igigk) ,        igigkgjgk)

and these are seen to be e by a and 0.

Thus we have w —2 elements which generate a group that is the homo-
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morphic image of An. Since the permutation part of the elements of T' run

through An, the group T' is actually isomorphic to An.

Since T is isomorphic to An by sd=vs=t, VC\T' = E. Furthermore, if

y=vs is any element of 2„,a(77), then y =w1~1v1s=v2t, where sd = vis. This

shows that 2n,A(77) = VX>T.

Corollary. The group 23,a(77) splits regularly over its basis group.

Proof. Since s3 = (l, 3, 2) generates A3 and t{ = [e, e, e) (1, 3, 2) =s3 gener-

ates T', it follows that T' is A3.

Theorem 1 describes the splitting of the group 24,^(77); however, it is

interesting to note that another and perhaps more pleasing construction for

the group T' can be given by a slightly different approach.

If, instead of discussing the images of (1, i, 2), the images of (1, 2)(3, 4),

(1, 3)(2, 4), and (1, 4)(2, 3) are first considered, the following theorem may be

proved in a similar fashion.

Theorem 2. The group 24,a(77) splits over the basis group, 24|B(77) = V^JT,

ViC\T = E. Any group T in this decomposition is conjugate to some group T'

obtained as follows. Let G be a subgroup of 77 which is the proper homomorphic

image of A4. Denote this homomorphism by s<p=gsfor s in A4. The elements of

T' are obtained from those of A 4 by the isomorphism

s0= {g.}s

for s belonging to At.

The general group 2„,a(77) will now again be discussed.

Theorem 3. A necessary and sufficient condition for the group 2n,A(77) to

split regularly over the basis group is that H contain no subgroup, except e, which

is the homomorphic image of An-i-

Proof. If 77 contain no subgroup which is the homomorphic image of

.4„_i, then the group T' constructed in Theorem 1 is simply An.

Conversely, if 2„,a(77) splits regularly, then J" can be transformed into

An. Such a transformation need only be by a multiplication v= {ki, kt, • • • ,

kn}. Consider

Vt3V      =   [klk3   , &2&1   , k3k2  , k4giki  , ■ • ■ , kng„kn   }(1, 3, 2).

If this is a permutation then kigikT1 = e for i = 4, ••-,«. Therefore, gi = e for

i = 4, • • • , ra, and G=e.

Corollary 1. A necessary and sufficient condition for 2„,a (77), for ra =4, 5,

to split regularly over the basis group is that 77 contain no element of order 3.

Corollary 2. A necessary and sufficient condition for 2„,x(77), for n = 6,
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to split regularly over the basis group is that H contain no subgroup isomorphic

to An-V

3. The splitting of 2A(77; B, B+, d). The group 2X(77; B, B+, d) splits over
the basis group. Any group T such that 2^(77; B, B+, d) - F(P, B+)KJT,

ViB, B+)r\T = E is isomorphic to AiB, d). The natural isomorphism 6 may

be taken such that sd=vs=t. The elements sa = (l, a, 2), a = 3, 4, • • • ,

generate AiB, d).

By a process almost identical with the one used in §2, Chapter III, the

following theorem may be established.

Theorem 1. The group XA (77; B, B+, d) splits over the basis group,

2A(77; B, B+, d) = ViB, B+)\JT, ViB, P+)DP = P. The group T is conjugate
to some group T' obtained as follows. Let G be a subgroup of H which is the

homomorphic image of AiB, d). Let gi, • • • , gt, ■ ■ ■ be generators of G, satisfy-

ing the relations, (i) igt)3 = e and (ii) igfgi)2 = e when e^S. Let s„ = (l, a, 2),

a = 3, ■ ■ ■ , denote the generators of the group AiB, d). Then the elements of T'

are obtained from the elements of AiB, d) by the isomorphism 6 defined by

SzO = t'z - {e, e, e, gi, ■ ■ ■ , gt, ■ ■ ■ }(1, 3, 2),

' ( 2       2 2 2 j
Sa0 = ta =   [e, ga, ga, gagi, • • • , g, • • • , gagt, • ■ •  }(1, a, 2).

Theorem 2. A necessary and sufficient condition for ~La (77; B, B+, d) to

split regularly over the basis group is that H contain no subgroup isomorphic to

AiB,d).

Proof. Since Baer [2, p. 16] has shown AiB, d) is simple, if 77 contains

no subgroup isomorphic to AiB, d), then 77 contains no subgroup, except e,

which is the homomorphic image of AiB, d). Therefore, the group T con-

structed in Theorem 1 is simply AiB, d).

Conversely, if 2 splits regularly over the basis group, T may be trans-

formed into AiB, d). By the method used to prove Theorem 3 of §2 of this

chapter it can be shown that G = e.

Corollary. For every group H there exists a group 2^(77; B, B+, d) such

that the monomial group splits regularly over the basis group.

Proof. This follows from Theorem 2 if the cardinal B is chosen such that

oiAiB,d))>oiH).

Chapter III. Normal subgroups of the symmetry

In this chapter all of the normal subgroups of the groups 2(77; B, d, d),

2,1 (77; B, d, d), and 2n,^(77) for w^5 are found. The method of investigation

is that employed by Ore [l ] for 2„(77).

1. Normal subgroups of 2(77; B,d,d). Before the normal subgroups of the
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symmetry can be determined we must first solve a preliminary problem.

A subgroup of the symmetry 2 is called a permutation invariant subgroup

if it is transformed into itself by all permutations s of the symmetric group.

The first problem to be solved is that of finding all permutation invariant

subgroups of 2(77; 73, d, d) contained in the basis group.

1.1 Permutation invariant subgroups of 2(77; 73, d, d) contained in the

basis group. Let N be a fixed permutation invariant subgroup of 2 contained

in the basis group. All elements ga of 77 which occur in the ath position of

multiplications in N will form a subgroup of 77. Since N is permutation in-

variant, this subgroup G will be the same for all indices a.

The set 5i of all the multiplications in N that have every factor ha=e for

a> 1 forms a normal subgroup of N.

The factors that occur in the first position of multiplications of 5i form

a normal subgroup Gx of G.

If gi belongs to Gx, then v={gx, e, • ■ ■ , e, ■ • • } belongs to 5i. Since N

is permutation invariant, N must contain va= {e, ■ ■ • , e, gx, e, ■ • • }.

The preceding shows that if v is an arbitrary element of N, then any of

the nonidentity factors of v can be multiplied by an arbitrary gx of Gx, and

the multiplication v' so obtained will again be in N. Thus the relations be-

tween the factors of v can only be determined modulo Gx. It is, therefore, no

limitation if we consider the quotient group G/Gx in the following and assume

Gx=e.
The set of elements 52 of N which have every factor ha = e for a > 2 forms

a normal subgroup of N. The first factors of elements of 52 run through a

normal subgroup G2 of G. Since N is permutation invariant, the second fac-

tors of elements of 52 also run through G2.

The result of Ore [l, Theorem 1, p. 29] in regard to elements 52 may be

applied, and v2 belongs to 52 implies

»2 = {gi, gtO, e, • ■ • , e, • • • }

where 6 is some automorphism of order two of the group G2.

Since N is permutation invariant, when N contains Vx= {g2, gzO, e, • • • ,

e, ■ ■ • }, it must also contain v2= {gz, e, gzf), e, • • ■ , e, • • • }. The element

vxvr1== \e, g28, (g26)~x, e, ■ ■ ■ , e, • ■ ■ ) also belongs to N. Again using the

fact that N is permutation invariant, N must contain v3={g28, (g20)_1,

e, ■ • • , e, ■ • ■ }. This shows that g20 = g2"~1. A group that has an automor-

phism changing every element into its inverse is Abelian. This establishes the

following:

Theorem 1. Let N be a fixed permutation invariant subgroup of 2(77;

B, d, d) contained in the basis group. Then the set G of 77 consisting of all of the

factors that occur in a fixed ath position of all the multiplications in N forms a

subgroup of 77. This group is the same for all a. The set Si of all multiplications

of N which have ha=e for a>l forms a normal subgroup of N. The set Ci, con-
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sisting of first factors of multiplications of Si, forms a normal subgroup of G.

Assume Gi=e. The set of elements 5» of N that have h„ = e for a>2 forms a

normal subgroup of N. The set Gi of first factors of elements of Si forms a normal,

Abelian subgroup of G. The elements of Si are of the form

"2 = {g, g2_1, e,---,e,--- }

where gi runs through Gi.

When the factors g2, gr1 m vi are permuted into all possible positions, the

corresponding substitutions generate a normal subgroup R of N which is also

permutation invariant. It follows that if v is an element of R, since all but a

finite number of factors of any element of 2 are e, then the nonidentity factors

riv • ■ • , rin satisfy r,-, • • • rin = e.

In a manner similar to that used by Ore [l, p. 30 ] for 2„(77) the following

theorem may be proved.

Theorem 2. The group R, generated by the substitutions obtained by all pos-

sible permutations of elements of Si, consists of elements of the form

v — \e, • • • , e, r»i, e, • • • , e, rjn_„ e, • • • , e, (fi, • • •  TiK_x)   ,e, • • • )

where the rtj. run through the Abelian group Gi independently.

The final step in the determination of the permutation invariant sub-

groups of 2 that are contained in the basis group is now reached. Let v be

an arbitrary element of N and let the nonidentity factors occur in the

tii • • • , in positions. Since N is permutation invariant, it must contain v

transformed by (*i, a) where a is different from each of the indices ii, • ■ • , *'».

Let vi = iii, a)viii, a). Then vi differs from v only by having the factor g,-, in

different positions. Now

wi   ={«,•••,«, giv e, • • ■ ,e,gilte, • • • }

where g,-, is in the tith position and g^1 is in the ath position. This shows that

gi, belongs to G2. A similar procedure shows that all the factors of v are in G2

and this means that N is simply P.

It has now been shown that if N is permutation invariant and contained

in V, with Gi=e, then N must be of the form of the group P of Theorem 2.

Conversely, any group P whose elements are of the form

8 = {e, • ■ • , e, riv e, ■ ■ • , e, rin_v e, ■ • • , e, (rf, • • •  fi..,)-1, e, • • ■ }

where riy runs through an Abelian subgroup Gi of 77 is permutation invariant.

This establishes-the following result:

Theorem 3. Let an Abelian subgroup G be chosen in H. The group N consist-

ing of all elements of the form
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" = i e, ' ' ■ > e, giv e, • • • , e, g«„_i> e, • • • , e, (g^ • • • gi^-i)   , e, • • • J,

where the g,y run through G independently, is a permutation invariant subgroup

of?(H;B,d,d).

One recalls that for convenience the subgroup Gx was assumed to be e. The

results obtained may, therefore, be generalized by working with Gx a normal

subgroup of G = G2. Such a consideration leads to a determination of all

permutation invariant subgroups of 2(77; B, d, d) contained in the basis

group. This result is stated in the following theorem.

Theorem 3'. All permutation invariant subgroups N of 2(77; 73, d, d) that

are contained in the basis group may be obtained by the following construction.

A subgroup G of H is chosen. In G a normal subgroup Gx is chosen such that the

quotient group G/Gx is Abelian. Then let N consist of elements of the form

v = {e, • ■ • , e, gh, e, • • • , g,„, e, • • • }

where the nonidentity factors run through G subject to the condition that gtl • ■ • gi„

belongs to Gx. Conversely, any such N is permutation invariant.

1.2 Normal subgroups of 2(77; 73, d, d) contained in the basis group. A

necessary and sufficient condition for a subgroup N of the basis group to be

normal in 2 is that N be permutation invariant and normal in V.

It is now necessary to find those normal subgroups of the basis group

which are permutation invariant. The same notation as in the previous sec-

tion will be used. Let N be a normal subgroup of 2 contained in V. Now the

group G = G2 must be a normal subgroup of 77, and the group Gx is also normal

in 77. Since N is permutation invariant, an element v of N must have the form

described in Theorem 3'. For convenience, for the moment again assume that

Gx = e. Then any nonidentity factor of an element of N is uniquely deter-

mined by the other nonidentity factors. Let i>i = {e, ■ ■ ■ , e, h, e, ■ • ■ } be an

element of F(73, d) that has h as its only nonidentity factor. Furthermore, let

h occupy the position occupied by gtl of v and let h be arbitrary in 77. The ele-

ment

viwr1 = {e, • • • , e, hg^hr1, e, ■ ■ - , e, (gti ■ • ■ gi,_j)-1, e, ■ ■ ■ }

must be in Nsince N is normal in F(73, d). This means that hgi,h~l=gil, and,

since this is true for all hoi 77 and all g of G, G belongs to the center of 77.

Conversely, if Gx = e, G2 = G belongs to the center of 77 and N is permuta-

tion invariant, then N is normal in 2(77; 73, d, d).

This establishes the following theorem:

Theorem 4. If N is as given by Theorem 3 and the additional requirement

that G belongs to the center of 77 is met, then N is normal in 2(77; B, d, d).

The generalization of th;s theorem gives all of the normal subgroups of
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2(77; B, d, d) contained in the basis group. This result is stated in

Theorem 4'. The normal subgroups o/2(77; B, d, d) that are contained in

the basis group are obtained from the construction of Theorem 3' with the addi-

tional conditions that G1C.G are normal in—H and G/Gi belongs to the center of

H/Gi.

1.3 Other normal subgroups of 2(77; B, d, d). The problem of finding all
of the normal subgroups of 2 will now be solved by finding those normal sub-

groups M of 2 not contained in F. Let M be such a normal subgroup of 2.

Then N = MC\ V is normal in 2 and of the form described in Theorem 4'.

Let y be a substitution of M and let c be a cycle of y,

c = J '        "), where n = 2.
\hiXiv • • ■ ,  hnXiJ

Let v= {ki, ki, • • • , kt, • • • } be an element of the basis group. Since M is

normal in 2, the multiplication defined by the commutator y-h^yv is in M.

The factor that appears in the position occupied by x(l is h^k^hnk^. The

element v is arbitrary so it may now be chosen such that it has factors in the

positions corresponding to #,-, and Xin such that the factor above is any ele-

ment of 77. But y~lv~lyv is in M and is a multiplication, so it is also inJV.

This means that the group G is 77 for N=MC\V.

This establishes the following:

Theorem 5. Let M be a normal subgroup 0/2(77; B, d, d) not contained in

the basis group. The multiplications contained in M form a normal subgroup N

o/2(P7; B, d, d) in which G = H, i.e., the factors in any fixed position run through

the whole group and H/G\ for N is an Abelian group.

The group P = MP\S is a normal subgroup of 2, hence a normal subgroup

of S. By the result of Baer [2, p. 16], P is e, AiB, d) or SiB, d).
Since M is not contained in V, M contains an element y with a cycle c

in its decomposition of length w^2. Theny is conjugate toy' which contains a

cycle

/*i,--,   *A

\*2, • • • , axi)

Since M is normal in 2, M must contain y'. Every element of 2 maps an

infinite number of x into themselves with factors of e. Let xa, xa be two of

these, where a, 0 are each different from each of 1, • • • , w. Let s = (l, a, 0).

Then M must contain the commutator (y')-1sy's-I = (l, 0, 2).

This establishes:

Theorem 6. Every normal subgroup M of 2(77; B, d, d) not contained in the

basis group contains permutations.
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The normal subgroups of 2(77; 73, d, d) will now be constructed. The

quotient group 2/ V is isomorphic to 5. Since M\J V is the union of two nor-

mal subgroups of 2, it is normal in 2 and (M*UV)/V^M/N. This means

that M/N is isomorphic to S(B, d) or A(B, d). P is also one of these groups.

The case where P^M/N, and hence M=N\JP, will be discussed first.

Theorem 7. Let P be a normal subgroup of S(B, d) and let N be a normal

subgroup of the type discussed in Theorem 5. Then M = N\JP is a normal sub-

group of 2(77; B, d, d).

Proof. The group N is normal in 2 by assumption, and hence it is sufficient

to show that an element in P is transformed into an element in M. Since P is

normal in 5, it is sufficient to show that a permutation 5 in P is transformed

into an element of Mby a multiplication. The commutator s_1v_1sv is a multi-

plication. Although it cannot be said what factors occur in which positions,

it can be said that the product of the factors is in Gx since 77/Gi is Abelian.

Therefore, the commutator is in NQM which implies that v~lsv is in M, and

M is normal in 2.

It remains to discuss the case where (M\JV)/V= M/N^S(B, d) and

P=A(B, d). SincePCMit follows that (VKJ A) G(MKJ V). It follows readily
that M must contain an element y of the form y=vs where v belongs to V,

s belongs to 5, and 5 does not belong to A. Now s leaves an infinite number of

x fixed. Let Xx and Xz be two of these. The permutation s-1(l. 2) belongs to

A =PCM. So ysrl(l, 2)=vss~1(l, 2) =»(1, 2) must belong to M by the fact

that M is closed under multiplication. It has been shown that M must con-

tain an element yi, which has the cycle

/    Xx,      x2\

\aiXz, azxj

in its cyclic decomposition and which maps all other x into themselves with

only a finite number of factors different from e. According to Theorem 5 the

factors of any element of N may be taken arbitrarily in 77 except for one of

them, so an element Vi of M from N is chosen such that all the factors of

v(\, 2)vx are e except those of Xi and x2. The element v(l, 2)vx may be trans-

formed so that M must contain an element of the form

/*!,       Xz\

\xz, axj

Since y2GN, a2 belongs to Gx. The following can now be proved:

Theorem 8. Let M=N\JA(B, d) be a normal subgroup o/2(77; 73, d, d)

defined by the procedure of Theorem 7 and let L be the cyclic subgroup generated

by
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, = (*"    *\
\xi, axj

where a2 belongs to Gi. Then Mi = L\JM is a normal subgroup o/2(77; B, d, d).

Proof. Since M is normal in 2, it is sufficient to show that ivs)y{vs)~1

belongs to Mi for all as of 2 because y2 belongs to N. It is, therefore, sufficient

to show that sys-1 and vyv~l belong to Mi.

It will now be shown that, if 5 is any element of SiB, d) and

(xi,    as2\

y = [ ),
\xi, axj

then sys~l belongs to Mi. One can write

s = ( ) where i ^ j.
\xi, x2, ■ ■ ■ /

Then

(Xi,     Xj\
sys'1 = 1 ).

\Xj, axj

The group AiB, d) must contain an element of the form

I Xi, Xj, \
Si- I )

since the mapping of the x's not shown may always be chosen in such a way

that si belongs to AiB, d). Now consider

I Xi,     x\
siysr1 = [ ).

\xj, axi/

The element siysrl=sys~l is in AVJLCZMi for all.? belonging to SiB, d). This

implies that sys~l belongs to Afi.

It remains to show that vyv-1 belongs to Mi for any v of V. Let v= {hi,

hi, ■ ■ ■ , ht, ■ ■ ■ }, where all but a finite number of the h are e. The com-

mutator

y~h>yv~l = {a^hiahr1, AiArS e, • ■ ■ , e, • • • \

belongs to NCZMCZMi if arxhiahixhihix =a~1hiahrl belongs to Gx. But since

77/d is Abelian the desired result follows.

This section establishes:

Theorem 9. The normal subgroups o/2(77; B, d, d) are given by Theorems

4', 7, and 8.
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2. Normal subgroups of 2^(77; 73, d, d).

Theorem 1. The normal subgroups of 2^(77; 73, d, d) are precisely those

normal subgroups o/2(77; B, d, d) which are contained in 2^(77; 73, d, d).

Proof. Let TV be a normal subgroup of 2(77; 73, d, d) contained in 2a(77;
73, d, d). Then N is certainly normal in 2^(77; B, d, d).

Conversely, let N be a normal subgroup of 2^(77; B, d, d). If TV is not nor-

mal in 2(77; 73, d, d), then there exists an element yoiN such that (1, 2)y(l, 2)

does not belong to N. The element (1, 2)y(l, 2), like all elements of 2(77;

B, d, d), maps an infinite number of x into themselves with e as a factor.

Let xa, xa be two of these with the additional property that 1, 2, a, 0 are dis-

tinct. Then the element

(a,0)(l, 2)y(l, 2)(<*,0) = (1, 2)y(l, 2)

will not belong to N. But this contradicts the normality of N in 2^(77;

73, d, d) since (a, 0)(1, 2) belongs to 4(73, d).

This establishes:

Theorem 2. The normal subgroups o/2a(77; 73, d, d) are (i) those described

by Theorem 4' of §1, and (ii) the union of a group N, as described by Theorem 5

of §1, and .4(73, d).

3. Normal subgroups of 2„,a(77) for ra^5. All of the normal subgroups of

£„,a(77) will be found using the methods of §1.

3.1 Permutation invariant subgroups of 2„,a(77) contained in the basis

group. In almost the identical way that was used in §1 the following theorems

can be established:

Theorem 1. Let N be a fixed permutation invariant subgroup of 2„,a(77),

for n = 5, contained in the basis group. Then the set G of 77, consisting of all the

factors that occur in a fixed ith position of all multiplications of N, forms a

subgroup of 77. This group is the same for all i. The set Si of all multiplications

of N which have hi = e, for t> 1, forms a normal subgroup of N. The set Gx, con-

sisting of all first factors of multiplications of Si, forms a normal subgroup of G.

Assume Gi=e. The set 52 of elements of N that have hi = e, for i>2, forms a

normal subgroup of N. The set Gz of first factors of elements of S2 forms a normal

Abelian subgroup of G. The elements of S2 are of the form

» = {gt, gt1, «,•••.«}

where g2 runs through G2.

Theorem 2. The group R, generated by the substitutions obtained by all

possible permutations of elements of 52, consists of elements of the form

v - {ru ft, • • • , (rt • • •  r„_i)-]}
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where the ri run through the Abelian group Gi independently.

The nature of the permutation invariant subgroups of 2n,^(77) contained

in the basis group is the same as that of those of 2n(77) found by Ore [l ].

Let v= {hi, • • • , hn\ be an arbitrary element of N. Let s, = (l, i,j) where

i runs over the set 2, • • • , n and jVl, j¥-i. The element

Vi = sfisT1 = {hi, ■ ■ ■ , hi-i, hj, hi+i, • • ■ , hj-i, hu h^i, • • • , ha\

must belong to N. The element

Vi = vivr1 = {hihi1, ■ • ■ , e, hihj1, e, ■ ■ ■ , e, hjhr1, e, ■ ■ • , e]

must also belong to N. Since w^5 there exist natural numbers k, m such that

each is different from 1, i, j. Then N must contain

v3 = (1, k, m)viil, m, k)

= {e, ■ ■ ■ , e, hihr1, e, • • • , e, hihj1, e, ■ ■ ■ , e, hjhr1, e, • • • }.

The element zw1= {hihr1, e, ■ • • , e, (Ai^r1)-1, e, • ■ • ] also belongs to N.

This shows hihr1 belongs to G2, for i = 2, ■ • ■ , n. Therefore, the elements of

N are of the form

v = {rig, r2g, • • • ,rng]

where the r,- are elements of C72 and g runs through G. In exactly the same way

as that used by Ore [l, p. 31 ] the following theorem can be proved.

Theorem 3. All permutation invariant subgroups N of 2„,^(77),/or n^5,

that are contained in the basis group may be obtained by the following construc-

tion. A subgroup G of H is chosen. In G two normal subgroups GiCGt are

selected such that the quotient group Gi/Gi is Abelian. Then let N consist of ele-

ments of the form

v = {ki, k2, • • ■ , kn\

where the ki runs through G subject to the conditions

(1) ki = rtk, i = 1, •••,»— 1,
mod Gu

(2) *. » (n • • • rn-i)-\kd),

where the ri are arbitrary elements of Gj. Furthermore, 8 is an endomorphism of

G/Gi multiplying each element of G/Gi by an element of Gt/Gi. In particular,

(g)0—g-0*-1' mod Gifor any element of Gt-

3.2 Normal subgroups of 2n.^(77) contained in the basis group. It is now

necessary to find those normal subgroups of the basis group which are per-

mutation invariant. The same notation as in the previous section will be used.

Let N be a normal subgroup of 2 contained in Fn. The groups GiCGiCG

are normal in 77. Since Af is permutation invariant, an element v of N must
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have the form described in Theorem 3. For convenience assume d=e. Then

any factor of an element of N is uniquely determined by the other factors.

Let vi= {h, e, • • • , e\ be an element of the basis group that has only one

nonidentity factor occurring in the first position. The element h is arbitrary

in 77. Let v= {rxg, r2g, ■ • • , (rx • • • rn-x)~1(gd)} be any element of N. Then

vxvvr1 = {hriglr1, r2g, • • • , (n ■ ■ ■  u-^-^gB)}.

This shows that hrigh~1 = rig. Therefore, rig belongs to the center of 77. The

following has been shown:

Theorem 4. Let N be a normal subgroup of 2„,a(77), for n = 5, contained in

the basis group. Then N is permutation invariant and must meet the requirements

of Theorem 3. Assume Gi=e. The groups GzGG are normal in 77 and G belongs

to the center of 77. Conversely, if N is as given by Theorem 3 and the additional

requirements that Gi=e, GzGG are normal in 77 and G belongs to the center of

77 are met, then N is normal in 2„ ,A (77), for n = 5.

Theorem 4'. Forn = 5 the normal subgroups o/2n,A(77) are obtained by the

construction of Theorem 3 with the additional conditions

(1) GiGGzGG are normal in 77,

(2) G/Gi belongs to the center of H/Gi.

3.3 Other normal subgroups of 2„,a(77). By the method used to prove

Theorem 5 of §1.3 the following can be proved:

Theorem 5. Let M be a normal subgroup of 2n>vi(77) not contained in the

basis group. The multiplications N = MC\V form a normal subgroup o/2„,a(77)

in which H = G; i.e., the factors in any fixed position run through the whole group

H and the quotient group H/Gifor N is an Abelian group.

Let P be the subgroup of M consisting of permutations only; P = MC\A.

Since M is normal in 2, it follows that P is normal in A. Hence, P=A„ or P

is the identity. That P = An is now proved.

Theorem 6. Every normal subgroup M o/2„,a(77) not contained in the basis

group contains permutations.

Proof. Since M is not contained in the basis group, there exists an element

y=vs where st*I. It is convenient to consider several cases.

Case 1. If y contains a cycle c in its cyclic decomposition of length rag:4,

it is seen in Chapter I that y is conjugate to an element y' containing a cycle

, _ /Xx, Xz, x3, • • ■ ,   xn\

\x2, x3, xK, • ■ ■ , axxJ

Since M is normal in 2, M must contain y'. Let s = (l, 2, 3) and Mmust con-

twn.(y0-'iy'«-l-(l,3,4).
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Case 2. If y contains a cycle c of length 3 and some other cycle of length

greater than 1, then M contains an element y' conjugate to y of the form

, _  /Xi, Xi,     Xz\ /Xi, • • • \

\xi, x3, axj \xit • ■ • )

Let 5 = (1, 4, 2) and M must contain (y')-1sy's-1 = (l, 2, 5, 3, • • • ) which re-

duces to Case 1.

It may happen that y contains one 3-cycle and the remainder are 1-cycles.

This case will be discussed later.

Case 3. If y contains only 1 or 2 cycles in its cyclic decomposition and at

least four 2-cycles, then M must contain an element y' conjugate to y of the

form

t _ /Xi,   x2\ /x3,   Xi\ /xs,   *«\ /x7,   xs\

\xi, axj \Xi, bxz/ \xt, cxj \xg, dxj

Let s = il, 3)(5, 7). Then M must contain

iy')-is-Ws = (1, 3)(2, 4)(5, 7)(6, 8).

Case 4. It may now be assumed that y contains at the most two 2-cycles

in its cyclic decomposition. M contains an element y' conjugate to y of the

form

f _  /Xi,    Xi\ /X3,    Xi\ / xit ■ ■ ■ \

\X2, axj \x4, bxz) \cxs, • • • )

Let s = (l, 3, 5). Then M must contain

/ a  ,    ,    ■       (x* X2< x*>   Xi>      Xi\
iyThy's-1 = I )

\xt, Xi, xi, cxz, crlxi/

which reduces to Case 1.

Case 5. If y has one 3-cycle and the remainder 1-cycles, then M must con-

tain an element y' conjugate to y of the form

f _   /Xi,  Xi,     Xz\ / Xi,    x&, ■ ■ • \

\xi, x3, axj \bxi, cXi, • • • )

Let 5 = (1, 2, 4). Then M must contain

/ A_i    / _i      /*»» *•» *»' x*\iy') *sy's~i = ( 1
\a;4, xz, bxi, b~lxi/

which reduces to Case 4.

This concludes the proof of Theorem 6.

Theorem 7. The elements of the group N = MC\ V, where M is a normal sub-



214 R. B. CROUCH [September

group o/2„,a(77) and is not contained in the basis group, are of the form

v = {hx, ■ • ■ , hn]

where the hi runs through 77 subject to the condition hx ■ ■ ■ hn belongs to Gx.

Here Gx is a normal subgroup of 77 such that H/Gx is Abelian.

Proof. By Theorem 6, M contains s = (l, 2, 3). Let v={hx, - • • , hn] be

an arbitrary element of the basis group. Then M must contain the com-

mutator s~1v~1sv={h3~1hx, hrlhz, hzlh3, e, ■ ■ ■ , e\. Choose h2 = h3 and

hx=h3h, where h is arbitrary in 77. Then M contains {h, h~1, e, • • • , e\.

This shows G2 = H.

That hx ■ • • hn belongs to Gx follows from the nature of N is given by

Theorem 4'.

The normal subgroups of 2„,a(77) will now be constructed. The quotient

group 2/F is isomorphic to A. Furthermore, M/N is isomorphic to A.

Theorem 8. Let N be a normal subgroup of 2n,A(77) contained in the basis

group of the type described in Theorem 7. Then M = NVJA nis a normal subgroup

of 2r,A(77). Conversely, if M is a normal subgroup of 2„,a(77) not contained in

the basis group, then M=NKJAn, where N is of the type described in Theorem 7.

Proof. N is normal in 2 by assumption, and hence it is only necessary to

show an element of An is transformed into an element of M. Furthermore, it

is only necessary to show an element 5 of A „ is transformed into an element

of AT by a multiplication. Let v={hx, • • • , hn} be any element of F„. The

commutator vsv~xs~x= {hxh^1, ■ ■ • , hjt^] belongs to F„. Since 77/d is

Abelian the product of the factors is in Gx, so the commutator belongs to

NGM. Therefore, M is normal in 2.
Conversely, if M is normal in 2 and is not contained in the basis group,

then M contains An by Theorem 6. Now let y=vs be any element of M. M

contains ys~1=v. This shows the multiplication part of any element of M is in

N as given by Theorem 7. It follows that M = N\JAn.

Chapter IV. The basis group as characteristic subgroup

As has been the case in all previous discussions, no assumptions about the

order of the group 77 are made.

Theorem 1. The basis group o/2(77; B, d, d) is a characteristic subgroup of

the symmetry.

Proof. Deny the theorem. Then there exists some automorphism 6 such

that V6 3! V. There also exists some normal subgroup M of 2 such that

MB = V. Therefore, F£ V8~l = M.

The quotient group 2/F is isomorphic to 5. Furthermore, 2/M=5

2&/V.
Consider the two normal groups K and AT of 2 given by K=V\JM,
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N= VC\M. The quotient group K/M is a normal subgroup of 2/M. Since

FCJjM, the group K/M is not the identity. Since K/M is isomorphic to a nor-

mal subgroup of S, by the result of Baer [2], previously referred to, K/M is

isomorphic to S or A. Therefore, in any case, K/M is non-Abelian. On the

other hand, from the second isomorphism law, it follows that K/M=V/N.

By Theorem 5 of §1, Chapter III, V/N is Abelian, a contradiction.

Theorem 2. The basis group of 2^(77; B, d, d) is a characteristic subgroup

of the symmetry.

The proof of Theorem 2 is similar to that of Theorem 1.

Theorem 3. The basis group ofSn,A(H),for «^5, is a characteristic sub-

group of the symmetry.

The proof of Theorem 3 is similar to that of Theorem 1.
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