MONOMIAL GROUPS

BY
RALPH B. CROUCH

Introduction(!). Let U be a set with # elements, where # is a finite cardinal.
Let H be a fixed group. A monomial substitution y is a transformation that
maps every x of the set U in a one-to-one fashion into an x of U multiplied
by an element £, of H. If an operation is defined between monomial substitu-
tions by successive applications, the set of all monomial substitutions over H
is a group which we denote by Z,. Ore [1](?) has studied this complete
monomial group or symmetry over H. Among the results of the study are
those of the following paragraph.

The subset V of elements of 2, that map each x of U onto an element of
H multiplied by the same x form a normal subgroup of Z,, the basis group.
The subset S of elements of 2, that map each x of U onto an x of U multi-
plied by the identity e of H form a subgroup of Z,, the permutation group.
The symmetry splits over the basis group; Z,=VUS, VNS=E where E is
the identity of Z,. A complete solution to the problem of finding all represen-
tative groups in the splitting over the basis group is presented. All of the
normal subgroups of Z, and all of the automorphisms of =, are determined.
The investigation is concluded with the study of imbedding an arbitrary
group in a monomial group.

This paper generalizes the monomial group by removing the requirement
that U be a finite set. Furthermore, the group H is arbitrary throughout the
entire paper. If o(U)=B=WN,, 420, where o(U) means the number of ele-
ments of U, then a monomial substitution over an arbitrary fixed group H is
defined as for the case where o(U)=#n<N,. With an operation between
monomial substitutions again defined as successive applications, the set of all
monomial substitutions over H forms a group Z3.

The splitting of Zp over the basis group is discussed, and a complete
solution for the determination of all representative groups in a very general
case has been found. Corresponding theorems for various subgroups of =5 are
also found. All of the normal subgroups of various subgroups of the symmetry
have been determined. Some progress toward the determination of the auto-
morphisms of the general monomial group has been made by showing that
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the basis group is characteristic for some subgroups of Z3.

In addition, the subgroup 2, 4 of Z, that has elements which can be writ-
ten as the product of elements of the basis group multiplied by elements from
the alternating group on U is discussed. The problem of describing all repre-
sentative groups in the splitting over the basis group is completely solved.
All of the normal subgroups for # = 5 are determined.

Since Zp splits over the basis group with a group isomorphic to the infinite
symmetric group on U, some discussion of infinite permutation groups is given
in Chapter I. In addition, the more elementary topics such as transforma-
tion, center, centralizer, etc. are discussed in Chapter I. The center of the
symmetry is found; a normal form for elements of the symmetry is deter-
mined; and the centralizer of any element of the symmetry is found.

In Chapter II all representative groups for the splitting over the basis
group are determined. Necessary and sufficient conditions for the symmetry
to split regularly are found. In addition, the splitting of 2,,4 over the basis
group is discussed, and a complete solution for constructing representative
groups is given. For this group also, necessary and sufficient conditions for
the group to split regularly are given.

In Chapter III all of the normal subgroups of various subgroups of Zg
are determined. In one case the normal subgroups are less complicated than
for the case where o(U) =#n. All of the normal subgroups of 2,,4 are deter-
mined for #n=5.

The final chapter is devoted to showing that the basis group is a char-
acteristic subgroup for some of the subgroups of Z3. It is also shown that the
basis group is a characteristic subgroup for =, 4.

The paper leaves unanswered some questions corresponding to known re-
sults when o(U) =n.

The method of procedure used, in particular in Chapter III and Chapter
IV, is similar to that used by Ore [1].

CHAPTER I. THE SYMMETRIES

1. Definitions. Let d be the cardinal of the set of integers. Let B be an
infinite cardinal; B+, the successor of B; U, a set such that o(U) =B, where
o(U) denotes the number of elements in U; and let C be such that d < C< B+.
Let s be a one-to-one transformation of U onto itself and let U(s) be the set of
x belonging to U such that s moves x. Denote by { U, C} the set of s such
that the number of elements x of U that s moves is less than C. The product
of two transformations s and s’ in { U, C} is defined to be that transformation
resulting from successive application of s and s”in the given order.

The groups S(B, C) are called the infinite symmetric groups. Let I denote
the identity of the groups. _

If o(U(s)) is finite, then s may be considered as an element of the finite
symmetric group on those objects. Let 4 { U, d} be the subset of { U, d} con-
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sisting of those elements s which are in the alternating group A(U(s)) of
U(s).

The groups A(B, d) are called the infinite alternating groups.

Every s of S(B, B*) determines a set of cycles of the form

X1y X2, * * *y Xn—1, ¥n
c = =(xbx2)v"':xﬂ)
X2y X3y * * 'y Xy X1/
or
crcy X1, Xoy Xyttt
c = =("'yx-—lyx01xl,"')'
sty %o, X1y Xy ¢t
A cycle with #» distinct «’s is called an n-cycle; n=1, 2, - - - ; d. Conversely,

a set of disjoint cycles which together contain all x of U determines an s of
S(B, Bt). It is customary to say that s is the “product” of its cycles and use
corresponding notation. It must be remembered that this cyclic decomposi-
tion may involve an infinite number of cycles, however.

Now let H be some group, finite or infinite. Denote by e the identity of
H. Let U be a set of order B=N, for =0. For convenience the set U is well
ordered.

A monomial substitution over H is a transformation of the form

(1) (...’ x"...)
y= RN PR
where the mapping x.—x;, is a one-to-one mapping of U onto itself and k.

belongs to H. The k. will be called factors of y.
If v is given by (1) and ¥, is given by

(2) (...’ xe’...)
n= N TR

then the product yy, is defined by

] ( cee, Xe v
@) Iy '.'!hfk"ex‘je’..')'

By this definition of multiplication the set of monomial substitutions is
a group that will be denoted by Z(H; B, B+, B+) and called the monomial
group of H of degree B or, more simply, the symmetry of H. The reason for
the complexity of the notation for the menomial group is t6 provide an
adequate notation for various subgroups to be discussed later. The identity
of the symmetry will be denoted by E.

If H consists only of the identity element, then Z(H; B, B+, B+) is the
symmetric group on a set of elements of order B.
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A permutation in Z(H; B, B+, Bt) is a substitution of the form
o o o N x‘ y LIS LRI y e y DY
@ = )- (L)
...,ex""’.. --o’z"ooo
The set of permutations forms a subgroup of Z(H; B, B+, B*) which we
will denote by S(B, Bt) and call the permutation subgroup of Z(H; B, B*, BY).

This is in conformity with earlier notation.
A multiplication in Z(H; B, B*, B*) is a substitution of the form

(5) v=("" x)={h}

N T

The set of multiplications forms a normal subgroup of Z(H; B, B, Bt),
denoted by V(B, Bt), called the basis group.

The basis group is isomorphic to the strong direct product of B groups,
each of which is isomorphic to H.

A scalar in Z(H; B, B*, B*) is a multiplication with each factor the same.
Scalars will be denoted by v={k}. A brief computation shows that scalars
are the only elements that commute with all permutations.

The center Z(Z(H; B, B+, B*)) of Z(H; B, B+, B*) is the set of all scalars
v= {f} where f belongs to the center of H. Z(Z(H; B, B+, B*)) is isomorphic
to the center of H.

A group G splits over a normal subgroup N if there exists a subgroup M
of G such that G=NUM, NNM=E. The group M may be replaced by any
of its conjugates and the relations will still hold. If for every subgroup T
such that G=NUT, NNT =E it follows that T is conjugate to M, then G
splits regularly over N.

Any substitution y of Z(H; B, B*, Bt) can be factored into a multiplica-
tion multiplied by a permutation. If y is as in (1), then

o s . , x‘ , .« o o
y={"‘,hu"'}( )
.« o o y xie, o o @
This shows that

(6) =(H; B, B+, BY) = V(B, B*) U S(B, Bt), V(B, BY) \S(B, B*) = E.

Let B, C, D be infinite cardinals such that d<C=<Bt*, dSD=<B*. Let
Z(H; B, C, D) be the set of all y=vs where v belongs to V(B, B*), s belongs to
S(B, B+), and v has less than C nonidentity factors, s moves less than D of the
x's. Then Z(H; B, C, D) is a subgroup of Z(H; B, B*, Bt) that splits over its
basis group.

The set 24(H; B, C, d) of all y=uvs of the form v has less than C non-
identity factors and s belongs to A (B, d) forms a subgroup of Z(H; B, B+, BY)
that splits over its basis group.
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Let o(U) =n, where #» is a finite cardinal. Denote by Z(H; n, n+1, n+1)
=2,(H) the symmetry over H and U. Then the set 2,(H; n, n+1, n+1)
=2, 4(H) of elements of Z,(H) of the form y=vs, where s belongs to
A(n, n+1)=A4,, is a subgroup that splits over its basis group, V(n, n+1)
=V.,.

2. Cycles, transformations, and centralizers. Let y be an arbitrary ele-
ment of Z(H; B, B, B*). It has been shown that y has a unique decomposi-
tion y =vs, where v belongs to V(B, B*), and s belongs to S(B, Bt). Permuta-
tions may be decomposed uniquely into disjoint, commutative cycles of length
n where n=1, 2, - - - ; d. This decomposition induces a decomposition of v
such that to each cycle ¢, of s there corresponds a multiplication v, with all
factors e in those positions corresponding to x that s does not move and fac-
tors the same as in v for the x that s moves. Thus v, has one of the two forms

xl’ o o o y xn
VeCe = ( when # < d
hlx29 A ’huxl
or
R X—1 Yo, Xy **
VeCe = ( when n = d.
tt h—lxo ] hoxly hlx2| st

Therefore, y can be decomposed into the “product” of disjoint commuta-
tive cycles v.c.. It must be remembered that this decomposition may yield
an infinite number of the v.c..

Ore [1, p. 19] has investigated the result of transforming a finite cycle of
an element of a monomial group. If ¢ is a cycle of length # and of the form

c_(xly Koy ** xn)

s, hats, - - -y haxt)’

then the nth power of ¢ is {61, < e ., 8,.} where 81=h, - - - by, Sa=hy - -
huhi, - - -, 8n=Hhahy - - - By These §; are called the determinants of c. Since
the d; are conjugate, there exists a unique determinant class for each cycle. A

necessary and sufficient condition for two finite cycles to be conjugate is that
they have the same length and determinant class.

THEOREM 1. 4 necessary and sufficient condition that two cycles of length d
be conjugate is that they leave the same number of x fixed.

Proof. The condition is clearly necessary. Conversely, let
e o o , x_ , x y x , LY
o = ( 1 0 1 )
sy bz, hox, Mgy, - - -

and



192 R. B. CROUCH [September
(8) (;/ — ( t ey xi—p xl‘oy xip‘ tte )
Ct TGy, oy, T1%iy,

where ¢, ¢’ leave the same number of x fixed. There exists a y of Z(H; B, B*,
B+) such that y has a cycle ¢; given by

. . . N x_ x x , « o .
(9) - ( 1, 0y 1 )

) k—lxi_p koxio, klxiu ot
where ko is arbitrary in H and the remaining k; satisfy

)
1

k_z = h_zk_.lf:z,

k_y, = h—lkofj,

k= h;lkofo,
-1

ky = Iy kl'l,

But y~ley=c'.
From the theorem just proved and the corresponding theorem proved by
Ore [1, p. 19] it follows that:

THEOREM 2. Two monomial substitutions y and y, are conjugate if and only
if in their cyclic decomposition the finite cycles can be made to correspond in a
one-to-one manner such that corresponding cycles have the same length and
determinant class and the cardinal of the set of infinite cycles is the same for
both y and ..

Any infinite cycle ¢ as in (7) can be trasfornmed into the normal form
_(""x—thyxl."'>
Tty %o, X1y Xy vt
by a proper choice of the factors of ¢, as given by (9). One sees that a trans-
formation of cycles of length d into normal form is possible using a substitu-

tion involving only those x which the cycle moves. Ore [1, p. 20] has shown
that any finite cycle can be transformed to the normal form

(x;, Ctty Xne1y ¥ )

c =

Xoy ***y ¥n , Gy

where @ is any element of the determinant class of ¢. This transformation
involves only those variables which ¢ moves. Therefore, all of the cycles of

any substitution may be put in normal form by one transformation. This
shows that any substitution y is conjugate to a “product” of cycles without
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common variables where each cycle is in normal form.
Ore [1, pp. 20, 21] has found the centralizer of a substitution which has
only a finite number of finite cycles in its decomposition. Let

(xl, cy Xp—1y In )

Co = .

Xoy ***y Xn , XY

The centralizer F,, of c, in the symmetry involving only the variables that ¢,

moves will be determined. Let D be the centralizer of ¢ in H. Any element
y of F., is of the form

( X1 "y Xa—jtn Xn—jit+2y * Xn )

kxj, -, kxn , kax , o, kaxigy

where % is any element of D. The element y can be written y={k}c™
=c, '{k}. Therefore, since c;={a} and @ is in D, F,, is isomorphic to a
cyclic extension of degree # of a group isomorphic to D.

It has already been demonstrated that a d-cycle ¢ may be transformed

such that
("'1x—11x01x19°">
¢ = -
oty Xo oy X1y X, vt
It is clear that one need consider only the symmetry involving the variables
that ¢ moves. When ¢ is transformed by

Tty X-1y, %o, %1, "
y= )
tt ity k-—lxi_ly koxio) klxip tte
a computation shows that

oy = ( cee 1 Xi_y Xigy 1 Xip )
= _ a _ .
R k—xkoxso y ko klxip k1 kaip e
If v is to belong to F, the x’s of this result must be the same as the ones that
¢ moves, and this gives a condition on y such that y has the form

(.'.: X_1, Xo, xl)".)

y= .

sy kaxg, ko, Raxgg, -

The factors of y may now be obtained. A computation of y~!cy using the new
form shows that

y-lcy=('“' Tl i x}“'”.).

-1 -1 -1
sy koakox; ko k1x5+1, ky Boxjypo, - -

In order for this result to be ¢ let 2, be arbitrary in H and it follows that
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ki=kofori=1, —1,2, —2, - - - . The final form for y to belong to F. is then

given by
(..., %_1, %o, %1 ’>
y = .
cee kxR kX, - -

A computation shows that y={k}ci=ci{k} where {k} is not a true scalar
but is a multiplication with & as factor in the positions corresponding to x
that ¢ moves and e as factor elsewhere. This shows that F, is isomorphic to
the direct product H X Z where Z is the infinite cyclic group, and this is inde-
pendent of ¢ (up to an isomorphism).

The centralizer F, of y= [Jaca, Where c. are cycles of length d in the
symmetry of degree corresponding to the number of x involved, is now de-
termined. Let o run over a set of cardinal C where 1 £ C=<B. Then the num-
ber of variables that appear in y is (dC). Any permutation of the ¢, among
themselves belongs to F,. An element y; of F, will have the form y, = (][« fa)s
where s is an element of the symmetric group S(C, C*) and f, belongs to F._,
the centralizer of ¢, in the symmetry on its variables. It is clear that all of the
F._ are isomorphic since each is isomorphic to HXZ. So F, is isomorphic to
the symmetry Y (F.,; C, C+, C*) where F._ is the same for all a.

Consider y = []a ca where the c, are finite cycles of the same length # and
which have the same determinant class. Let « run over a set of cardinal C
where 1 < C< B. In a manner similar to that used by Ore [1, p. 21], one finds
that F, is isomorphic to the symmetry Z(F.; C, C*, C*).

This proves:

THEOREM 3. Let y be conjugate to vy, written in the normal form y,= 11« car
Ca= Hﬂ(a) Ci(ar, Where for a fixed o the cg(ay are the normalized cycles of the same
length L., and the same determinant class aa if La<d. Let B(a) run over a set of
cardinal Cgay where 0 < Cgay < B. Then the centralizer Fyof yin Z(H; B, B+, BY)
s tsomorphic to the strong direct product of symmetries

+
Fy 22 JT (Z(F epwrs Cocars Coians Coar))

where ng » 15 the centralizer of a single cycle ¢& in Z(H; LsCpay, (LsCoiay)t,
(LCoia) ™). The group Fo,, consists of all elements y, of the form y,= {ka} (et)i
where k belongs to the centralizer of a. in H (k belongs to H if Cp s a d cycle).

For elements of the group Z(H; B, B*, C) where d £ C< B the result is the
same. When y is written in its cyclic decomposition, the cycles are still of
length # or d and all the previous argument is valid including a revised state-
ment of the theorem with Z(H; B, B*, B*) replaced by Z(H; B, B*, ().

The elements of certain subgroups of Z(H; B, Bt, B+), which are dis-
cussed in detail later, have only finite cycles in their decomposition and the
corresponding theorem, not stated here, is somewhat simpler.
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CHAPTER II. SPLITTING OF THE SYMMETRY

1. The splitting of Z(H; B, B*, C). Let H be a given fixed group, B a fixed
infinite cardinal, and let C be such that d < C< B+, It has already been seen
that 2(H; B, B*, C)=V(B, B*)\US(B, C), V(B, B*)"\S(B, C) =E, and hence
that 2 splits over V. The problem of finding all groups T such 2(H; B, B+, C)
=V(B, B*Y)UT, V(B, BY)T =E will now be considered.

If there exists such a T, it is isomorphic to S(B, C). Denote by 6 the natu-
ral isomorphism such that s =vs =t¢.

The group S(B, C) contains B elements of the form s=(1, a) where
a=2,3, .. Thus T must contain B elements of the form

te = (1, a)0 = {hl,m hoay v, hc,a: e }(11 a)-

In the same way as was used by Ore [1] one sees that there exists a
multiplication v such that the group 7’/=vTv~! has elements ¢/ whose first
factors are e.

Iftd = {e, hoa, * * s Beay * ° * }(l,a),then,since (td)2=E, it follows that

(i) ha,a=e)

(ii) h2.=e for ex1, exa.

If s belongs to S(B, C) and moves x;, then s can be written uniquely as
s=(1, a)s; where s, leaves x; fixed. The image of (1, a) under 0 has already
been partially described. To find the image of any element of S(B, C) it is
sufficient to discuss those elements that leave x; fixed before returning to
elements of the form (1, a).

Denote by Si(B, C) that subgroup of S(B, C) whose elements have the
property that they do not move x;. Let s; belong to Si(B, C) and be such that
XeS1 =%, for some x,, a1. Then s;=(1, a)s=s(1, ), where s sends x; into

X4, Xq into x;. Let sO= {kl, kay - ¢ - ket o - }s. Since
(11 a)0= {8, h2,m°°'1e""yke,m"' }(lya),
where e occurs as a factor in the first and ath positions,
x , DRI N xa' o« o
510 = (1, )85 = ( ' )
kaxly R klxa’ R
xl) . .. , xa’ RIS
$10 = 80(1,(1)0 = ( ).
1X1, * 0 0, kaxav tee

This shows that if s; belongs to S,(B, C) then the factors of v, where 5,0 =wvs,,
in the positions corresponding to those x which s; leaves fixed are equal to the
first factor of v.

LEMMA. Let s belong to S(B, C) and have the following properties: s moves x;,
s sends at least one x into itself. Denote by xg the x which s sends into x,. Then s
has the following form:
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(xl’...'xﬂ’.-.’xa'...)

S =

x&y"',xh"°)xay"'

where 67%1. Let s0=vs where v is some element of V(B, B*). Then the factors

which occur in the first and Bth positions of v are equal.

Proof. It is possible to write the s as described above in the following two

ways:
Xy, Xay oy Ky
s = o ) = @ o,
Xy, e, Xay o, Xay ot
s = s1(1, 9).
But s, is of the form discussed earlier. Therefore,
50 = {h,,,-~,hp,-u,h,,,-n,h;,»-- }sl,
1,8)6 = {6,"',8,"',ha,p,"‘,h5,p,"' }(1,3),
(1,86 = {e,"',h,s,a,"'.ha,a,"'.e, }(1,5),

Using the decomposition of s indicated above and the fact that 8 is an iso-
morphism, a computation shows that

( X1, o, xﬂ’ PR )
s6 = ,
hﬂxay e, hax!‘ PN
x , LRI y x N o o o
s8 = < ! # )
Bas, - - -, hgxy, - - -
This establishes-that ko, =hs.
It will now be shown that if s, is any element of S1(B, C) leaving %, fixed,
a1, and s,0=ws;, then v is a scalar. It is sufficient, in view of what has

already been established, to show that the factors occupying positions cor-
responding to x which s; moves are the same as the first factor of ». Let

Xy, c oty Xay o, Xgy oo
S1 =
Xyttt Xay t o, Xgy oo

=<x"""x“""’x”"”)(l,a)=s(1,6),

Xgy ** g Xay *° 5 X1y " *
where 83, 61. By the lemma, s0={k1, v Ray e, Ry }s. Fur-
thermore, (1, §)0= {e, ceykagy e }(1, 6), where e occurs in the

first and 6th positions. Using the decomposition of s, and the fact that 6 is
an isomorphism,

x,;.-, x,.-.
510=s0(1,6)0=( ! s )

klxly Ty klx51 tee
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This shows that if s; belongs to Si(B, C) and s, leaves some x, fixed, a1,
then s,0 =vs,, where v is a scalar.
If 51 belongs to Si(B, C) but moves all other %, then

xhxz’..-,xﬁ,...
$1 =
xl’xﬂ,.--’xa’o.o

x’x'o-c’x,c-o
= ﬂ)(‘ ’ g )=sls{,

xl’xa’...,xs’...

where §, s{ belong to Si(B, C). Therefore, s:0=350s{0=%35w{s{ =v{ fis{
=yps;. It has already been established that %, v{ are scalars. Since scalars
commute with all permutations, v is a scalar.

Define a homomorphism between Si(B, €) and a subgroup of H by
516 =hy, where 5.0 = {h,,}s1.

A computation shows that if

(1,0()0:{e,"',hﬂ,a,"‘,e,"’}(l,a),
(lﬁﬂ)o={en""ha.ﬁr'°':el"'}(lvﬁ)v
then

Xyt 0, Loy * * * xﬂ,...
(@t )1, )1, )0 = (a0 = ( )
ha,Bxl, Tty hﬂ.axﬂr MRS hﬁmxa’ et
where a#1, 81, a7#B. On the other hand (a, )0 = {g.,,g} (e, B). Therefore,
the Bth factor of (1, @)f =v(1, a) is simply the homomorphic image of (3, @)
under ¢.
This leads to the following theorem:

THEOREM 1. The symmetry Z(H; B, B*, C) splits over the basis group,
2(H; B, B*, C)=V(B, BY)JUT, V(B, BYYNT=E. Any such group T 1is the
conjugate of some group T' obtained by the following construction. Let G be a
subgroup of H that is the homomorphic image of Si(B, C) where d< C<B*. Let
s¢ =g, indicate the homomorphism. In particular, (o, B)p =ga.5. Then the ele-
ments of T’ are obtained from the elements of S(B, C) by the isomorphism defined
as follows:

s+ ={g} for s belonging to Sy(B, C),

(lﬁ a)‘ = {6, 82,y ° "y Beray * 5, 6 0 0" }(lr a)
where e occurs in the first and ath positions.

It has already been shown that any group T, after suitable transforma-
tion, must have the form indicated in the correspondence above. It remains
to show that the set of substitutions defined by the correspondence above
actually forms a group isomorphic to S(B, C).
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Any element s of S(B, C) may be written uniquely in the form s=(1, a)s
where s, belongs to Si(B, C) (e may be 1).

The correspondence of the theorem defines a unique substitution s * cor-
responding to each s of S(B, C) by

s = (1, a)*s1*
= {8, 82,0y " " "y Beyay Tt 6 0 }(lra){gtl}sl
= {gsv 82,081y " * ) Be,afayy 70 "y Bepy t " " }S.

Let §=(1, B)5 be another element of S(B, C) that has been written in
the normal form with 5 belonging to Si(B, C). To establish that the cor-
respondence preserves multiplication it must be shown that

(1) (s5)* = s%35+.

By the same argument used by Ore [1, p. 25] it follows that it is sufficient
to prove that

(2) (s(1,8))x = s«(1,8) .

This will follow if it can be established that

(2.1) (1, )1, 8)+ = (1, 0)+(1, B) «

and

(2.2) (s1(1, B))+ = s1+(1, B)+ for any s, of Si(B, C).

The verification of (2.1) is immediate in the case a =8 when the fact that
¢ is a homomorphism is used. If a0, let
1, )+ = {e,...,gem...,g,...,gﬁm... }(l,a),
(1, B)+ ={e, - 8o " v Baty "y 6> 1@, g).
A computation shows that
(1, 0)« (1, 8)¢ = {gaisr "~ » BevaBests = = 46~ * 5 Bom * -+ } (1, @)(1, B).
On the other hand, since (1, @)(1, 8) =(1, B)(«, B),
(1, (L, B« = (1, B)* {gais} (2, B)
= {fay s GesBasr o Gad s Basr oo J (L @)(1, B).

By comparison of the two computations, one sees that the factors in the first
and Bth positions are the same. But g2 g=e since (a, 8)?=1I, ge,ac.8=gc.68a.8
since (e, a) (¢, B) = (¢, B) (e, B) and ¢ is a homomorphism.

The verification of (2.2) is also discussed in two cases, namely, when s
moves xg and when s; does not move xg. If x,, does not move xg, s1* (1,8) * is
computed and (si(1, B)) * is computed using the fact that si(1, 8) =(1, B)s
in this case. Factors of the two computations are compared and, again using
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the fact that ¢ is a homomorphism, it can be shown that they are the same.
If 51 does move x5, then (s1(1, B)) + cannot be computed directly. However,

xl’...’xﬁ,...’xs’..-

st ) = )ct.0) = (1,9

xl,..',xa’...’xﬂ,...
and (1, 8)s; may be computed. If

six = {ga}sn
1,B8)s = {e,~--,e,~~-,g;,g,~--,gg,g,---}(l,ﬂ),
1,8 = {e,---,gp,;,---,e,u-,g,,a,--' }(1,5),
then

xl,oon, xﬂ,o.o’ x"'.., x"...
S1#* (1) 6) * = ’
'lxﬂ' ey, g‘lga'ﬁxa’ e, g‘lxl’ sy, g‘lg‘.e'ﬁxit, “ e
(51, (1, B))+ = ((1, &)s)*» = (1, 8)» 51+
(gxh...’ X8yt X5yt * 0, xe’...)
8 %X8 * * * y 88,8861%ay * £ X1y 0, gz.&gnxie) ¢
The proof that factors of the two computations are the same again follows
from the fact that ¢ is a homomorphism.
This concludes showing that the correspondence defined in the theorem
preserves multiplication. The images of the elements of S(B, C) form a group
isomorphic to S(B, C) which we shall now call T It is also clear that V(B, B*)

NT=E. Furthermore, V(B, B*)UT=2(H; B, B*, C), since all y=uvs be-
longing to 2 may be written y=v07"v1s =vyf, where s* =v;5=¢.

THEOREM 2. A necessary and sufficient condition for Z(H; B, B+, C), where
d*+ < C< B+, to split regularly over the basis group is that H contain no subgroup
isomorphic to S(B, C).

Proof. If Z splits regularly over the basis group, T’ can be transformed by
an element y into S. This element may be assumed to be a multiplication;
y={k, - - - }. Consider the element = { gq}s1 of T'. When yty—! is com-
puted, since s, leaves x; fixed, kig.f7 ' must be e. Therefore, g,=e for all g of
G. This means that H contains no proper subgroup homomorphic to Si(B, C),
and, since for C>d the group Si(B, C) is isomorphic to S(B, C) and has no
proper normal subgroups, H contains no subgroup isomorphic to S(B, C).

Conversely, assume H contains no subgroup isomorphic to S(B, C) and
that 2 does not split regularly. Then H contains a group G which is the
homomorphic image of Sy(B, C). Scott(3) has shown that this implies that G
contains a subgroup isomorphic to S(B, C), contradicting the hypothesis.

(®) Scott, W. R., oral communication.
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Therefore Z splits regularly.

THEOREM 3. 4 necessary and sufficient condition for Z(H; B, B*, d) to split
regularly over its basis group is that H contain no element of order 2.

Proof. If Z splits regularly, then by the method used in the proof of Theo-
rem 2 it can be shown that H contains no subgroup homomorphic to S,(B, d).
Baer [2, p. 16] has shown that the only proper normal subgroup of S(B, d)
which is isomorphic to Si(B, d) is A(B, d). H contains no element of order 2,
since the quotient group S(B, d)/A4(B, d) is of order 2.

Conversely, if H contains no element of order 2, it does not contain a
cyclic group of order 2 or a subgroup isomorphic to Si(B, d). Therefore, H
contains no subgroup which is homomorphic to Si(B, d). The group T’ con-
structed in Theorem 1 is simply S(B, d) and X splits regularly.

COROLLARY. For every group H there exists a group Z(H; B, B+, B*) such
that the monomsial group splits regularly over the basis group.

Procf. This follows from Theorem 2 if the cardinal B is chosen such that
o(S(B, B*))>o(H).

2. The splitting of =, 4(H). The problem of finding all groups T such that
2. A(H)=V,IT, V.N\T=E will now be considered.

If there exists such a group T, T is isomorphic to 4,. The natural iso-
morphism, denoted by 8, may be taken such that sf =vs=t.

The elements s;=(1, ¢, 2), ¢=3, - - -, n, generate the group 4,.. T must
contain elements ¢;, =3, - - -, n, such that sf#=¢;. Let ;= {hu, hesy + ¢ -,
Rji, + v - ,h,.;}(l, 1, 2), fori=3, - - -, n. If T is transformed by v = {kl, ce e,
k,}, then T'=vTv! contains elements of the form

o= ot = {kahuks  kohackn oo - i, 4, 2).
Let k; be an arbitrary fixed element of H and choose k;=kiky;fori=3, - - -, n.

Choose ks =FEihg'. Then T contains
t5 = {e, e gas -, gns} (1, 3, 2),
t = {e, g2, - -+, gni} (1,4, 2)
for =4, - - -, n. The equations s} = (ss5;)2=1 for 45 imply
(1) (#1)* = (#1t})* = E, 1% §,4,7=234,-",n
The first position factors of (¢/)? and (t.;)? are
(2) g1igiig2i = €,
(3) 81i8:i8iif25 = 6

where 1, j are distinct integers between 3 and #. Noting that gi;=g1;=gu=¢
and writing g; for gs; we have from (2) and (3)
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-1

(4) 8i = 82i = Lis, L33 = L3 = 6,
-1 -1 -1 -1
(5) gii = (giig2s) = 8; 8i = B4 Bis = & = Lsi.
Thus ¢! has the form
(6) to= {e g €5 s 85 80"+ 1 B En)s where g3 = e.
If £>2 and k54, k] the kth position factors of (¢/)® and (¢{¢/)? are

3 -1 3 2
(7 gri = (8 gr) =¢  (guigrs)) = e
Hence for k=3, we find
3 2 .. ..
©) g = (g:g) =e 454,55 mi%j

Therefore, the g;, =3, - - -, n generate a group homomorphic to 4,;.
This leads to the following theorem:

THEOREM 1. The group Z, .(H) splits over the basis group, Z. a(H)
=V, IT, V.N\T=E. The group T is conjugate to some group T’ obtained as
follows. Let G be a subgroup of H which is the homomorphic image of Aa-i.

Let g4, - - -, gu be generators of G, satisfying the following relations:
(a) g?=er i=47 R ()
(B) (gigj)2=e where 15£].
Let s;=(1, 1, 2) for =3, - - -, n generate the group A,. Then the elements of

T’ are obtained from the elements of A, by the isomorphism 0 defined by
s =1s5={e,e,e g4, g 11, 3, 2),
50 = 1i = {e, 8 g6 8186 - - » EiBicr, 86 EBist, -+ » Biga} (1, 4, 2)
fori=4, - - - n.

It has already been shown that any group T after proper transformation
must have the form indicated by the theorem.

It will now be shown that (¢!)*=(¢#;)2=E, ¢¥j, 4, j=3,4, - - -, n. The
1st, 2nd, and sth factors of (¢{ )® and (¢/¢/)? and the jth factor of the latter are

3 3 3
(9) 8iy 8ir &

2 2 2 2 2 2 2 2
(10) 8i8i88ir 8i8ig i€ 8iB Bk Bi§ i -
These factors are e by a. If 2>2, ks%4, kj the kth position factors of (¢/)3
and (t{t])? are
2 3 2 2 2

(11) (g:g) ,  (gigrgige)
and these are seen to be ¢ by « and 8.

Thus we have #—2 elements which generate a group that is the homo-
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morphic image of 4,. Since the permutation part of the elements of T run
through A,, the group T’ is actually isomorphic to 4,.

Since T is isomorphic to 4, by s@=vs=¢, VNT'=E. Furthermore, if
y=uvs is any element of Z, 4(H), then y=vv]'vis =1y, where s§=uv:s. This
shows that 2, 4(H)=V,JIT.

CoOROLLARY. The group Zs,a(H) splits regularly over its basis group.

Proof. Since s3=(1, 3, 2) generates Az and ¢t = {e, e, e} (1, 3, 2) =s;3 gener-
ates T, it follows that T’ is 4.

Theorem 1 describes the splitting of the group Z4 4(H); however, it is
interesting to note that another and perhaps more pleasing construction for
the group T’ can be given by a slightly different approach.

If, instead of discussing the images of (1, ¢, 2), the images of (1, 2)(3, 4),
1, 3)(2,4),and (1, 4)(2, 3) are first considered, the following theorem may be
proved in a similar fashion.

THEOREM 2. The group 24, 4(H) splits over the basis group, Z4.(H) = V,JIT,
ViNT=E. Any group T in this decomposition is conjugate to some group T’
obtained as follows. Let G be a subgroup of H which is the proper homomorphic
image of A4 Denote this homomorphism by s¢ =g, for s in A4. The elements of
T’ are obtained from those of A4 by the isomorphism

s = {g.}s
for s belonging to A..
The general group 2, 4(H) will now again be discussed.

THEOREM 3. A necessary and sufficient condition for the group Z, 4(H) to
split regularly over the basis group is that H contain no subgroup, except e, which
is the homomorphic image of A,_,.

Proof. If H contain no-subgroup which is the homomorphic image of
A,_;, then the group T’ constructed in Theorem 1 is simply A4.,.

Conversely, if =, 4(H) splits regularly, then T’ can be transformed into
A.. Such a transformation need only be by a multiplication v = {k,, kay o - o,
k.}. Consider

vt;vml = {kxka—l, k2k;11 k3k;1: k4g4k:lf R kngnkrjl}(lr 3! 2)-
If this is a permutation then k.gki'=e for =4, - - -, n. Therefore, gi=e for
1=4, - - -,n,and G=e.

COROLLARY 1. A necessary and sufficient condition for Z, 4(H), for n=4, 5,
to split regularly over the basis group is that H contain no element of order 3.

COROLLARY 2. A necessary and sufficient condition for =, 4(H), for n=6,
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to split regularly over the basis group is that H contain no subgroup isomorphic
to A,,_l.

3. The splitting of Z,(H; B, B*, d). The group 24(H; B, Bt, d) splits over
the basis group. Any group T such that Z,(H; B, B+, d)=V(B, B*)UT,
V(B, BY)MT =E is isomorphic to 4 (B, d). The natural isomorphism  may
be taken such that s@=wvs=t. The elements s.=(1, «, 2), =3, 4, - - -,
generate A(B, d).

By a process almost identical with the one used in §2, Chapter III, the
following theorem may be established.

THEOREM 1. The group Z4(H; B, B*, d) splits over the basis group,
2Z4(H; B, B*,d)=V(B, BY)UT, V(B, BY)\T =E. The group T is conjugate
to some group T’ obtained as follows. Let G be a subgroup of H which is the
homomorphic image of A(B, d). Let gs, - - - , ge, - * + be generators of G, satisfy-
ing the relations, (i) (g.)®=e and (ii) (ggs)2=e when e==d. Let sa=(1, , 2),
a=3, . - -, denote the generators of the group A(B, d). Then the elements of T’
are obtained from the elements of A(B, d) by the isomorphism 0 defined by

s = 13 = e,e,e,g4,---,g,,---}(1,3,2),
2 2 2 2
sa0=t:x= {e;ga,ga;gagh"'1g1"’rgage"'° }(lya; 2).

THEOREM 2. A necessary and sufficient condition for Z,(H; B, B+, d) to
split regularly over the basis group is that H contain no subgroup isomorphic to
A(B, d).

Proof. Since Baer [2, p. 16] has shown A(B, d) is simple, if H contains
no subgroup isomorphic to 4(B, d), then H contains no subgroup, except e,
which is the homomorphic image of A(B, d). Therefore, the group T con-
structed in Theorem 1 is simply 4 (B, d).

Conversely, if Z splits regularly over the basis group, T may be trans-
formed into A(B, d). By the method used to prove Theorem 3 of §2 of this
chapter it can be shown that G=e.

COROLLARY. For every group H there exists a group Z.(H; B, B*, d) such
that the monomial group splits regularly over the basis group.

Proof. This follows from Theorem 2 if the cardinal B is chosen such that
o(A(B, d))>o(H).
CHAPTER III. NORMAL SUBGROUPS OF THE SYMMETRY

In this chapter all of the normal subgroups of the groups Z(H; B, d, d),
Z4(H; B, d, d), and Z,, 4(H) for n25 are found. The method of investigation
is that employed by Ore [1] for Z.(H).

1. Normal subgroups of Z(H; B, d, d). Before the normal subgroups of the
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symmetry can be determined we must first solve a preliminary problem.

A subgroup of the symmetry 2 is called a permutation invariant subgroup
if it is transformed into itself by all permutations s of the symmetric group.

The first problem to be solved is that of finding all permutation invariant
subgroups of Z(H; B, d, d) contained in the basis group.

1.1 Permutation invariant subgroups of Z(H; B, d, d) contained in the
basis group. Let N be a fixed permutation invariant subgroup of Z contained
in the basis group. All elements g, of H which occur in the ath position of
multiplications in N will form a subgroup of H. Since N is permutation in-
variant, this subgroup G will be the same for all indices a.

The set S; of all the multiplications in N that have every factor k.=e for
a>1 forms a normal subgroup of N.

The factors that occur in the first position of multiplications of S; form
a normal subgroup G; of G.

If g, belongs to Gy, then v= {gl, e ---,€ - } belongs to S;. Since N
is permutation invariant, N must contain v, = {e, cee,e 81,8 0 }

The preceding shows that if v is an arbitrary element of N, then any of
the nonidentity factors of v can be multiplied by an arbitrary g; of Gi, and
the multiplication v’ so obtained will again be in N. Thus the relations be-
tween the factors of v can only be determined modulo G;. It is, therefore, no
limitation if we consider the quotient group G/G; in the following and assume
Gl =e.

The set of elements S; of N which have every factor k,=e for a>2 forms
a normal subgroup of N. The first factors of elements of S, run through a
normal subgroup G; of G. Since N is permutation invariant, the second fac-
tors of elements of S; also run through G;.

The result of Ore [1, Theorem 1, p. 29] in regard to elements S; may be
applied, and v; belongs to S; implies

vz={g,,g,0,e’...’e’...}

where 0 is some automorphism of order two of the group G..
Since N is permutation invariant, when N contains v;={gs, g:f, ¢, - - -,

e - - - }, it must also contain v, = {gg, e gb,e -, - } The element
vorl= {e, gab, (g0t e -, - } also belongs to N. Again using the
fact that N is permutation invariant, N must contain vs={ 240, (g20)71,
e,---,e - }. This shows that gf=gi'. A group that has an automor-

phism changing every element into its inverse is Abelian. This establishes the
following:

THEOREM 1. Let N be a fixed permutation invariant subgroup of Z(H;
B, d, d) contained in the basis group. Then the set G of H consisting of all of the
factors that occur in a fixed ath position of all the multiplications in N forms a
subgroup of H. This group is the same for all a. The set S of all multiplications
of N which have h.=e for a>1 forms a normal subgroup of N. The set Gy, con-
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sisting of first factors of multiplications of S, forms a normal subgroup of G.
Assume Gi=e. The set of elements Sz of N that have ho=e for a>2 forms a
normal subgroup of N. The set G, of first factors of elements of S: forms a normal,
Abelian subgroup of G. The elements of Sz are of the form

793 = {g.g,“,e,---',e,--- }
where gs runs through Ga.

When the factors ge, gi'! in v, are permuted into all possible positions, the
corresponding substitutions generate a normal subgroup R of N which is also
permutation invariant. It follows that if v is an element of R, since all but a
finite number of factors of any element of Z are e, then the nonidentity factors
Py * - -, 1i, satisfy rg, - - - rg =e.

In a manner similar to that used by Ore [1, p. 30] for Z,(H) the following
theorem may be proved.

THEOREM 2. The group R, generated by the substitutions obtained by all pos-
sible permutations of elements of S, consists of elements of the form

= {e,... ’e”‘.ve'...’e'r'.”-ve,... ’e' (f‘.l..- f..'-l)“l,q,... }
where the ri; run through the Abelian group G, independently.

The final step in the determination of the permutation invariant sub-
groups of T that are contained in the basis group is now reached. Let v be
an arbitrary element of N and let the nonidentity factors occur in the
%1, * * *, 4, positions. Since N is permutation invariant, it must contain v
transformed by (41, o) where « is different from each of the indices 4y, - - - , tn.
Let v;= (41, @)v(41, @). Then v, differs from v only by having the factor g, in
different positions. Now

-1 -1
={e,"',e,g-’,,%'",‘,gig.ey"’}

where g, is in the 4;th position and g;' is in the ath position. This shows that
gi, belongs to G,. A similar procedure shows that all the factors of v are in Gs
and this means that N is simply R.
It has now been shown that if N is permutation invariant and contained
in V, with Gi=e, then N must be of the form of the group R of Theorem 2.
Conversely, any group R whose elements are of the form

v={e,"‘,e,f.‘"e,“‘,3,’.‘,._1,3,"‘,6,(’{1"' r‘._‘)*-l'e’..o}

where 75, runs through an Abelian subgroup G: of H is permutation invariant.
This establishes the following result:

THEOREM 3. Let an Abelian subgroup G be chosen in H. The group N consist-
ing of all elements of the form
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v = {e,...'e,g'.ve'...,e’gi”_l,e’...'e’(g‘.l...g..n_l)—l,e'...},

where the gs; run through G independently, is a permutation invariant subgroup
of Z(H; B, d, d).

One recalls that for convenience the subgroup G, was assumed to be e. The
results obtained may, therefore, be generalized by working with G, a normal
subgroup of G=G.. Such a consideration leads to a determination of all
permutation invariant subgroups of Z(H; B, d, d) contained in the basis
group. This result is stated in the following theorem.

THEOREM 3'. All permutation invariant subgroups N of Z(H; B, d, d) that
are contained in the basis group may be obtained by the following construction.
A subgroup G of H is chosen. In G a normal subgroup G, is chosen such that the
quotient group G/Gy is Abelian. Then let N consist of elements of the form

v={e!""e,givey"'vg"me:".}

where the nonidentity factors run through G subject to the condition that g;, - - - gs,
belongs to G,. Conversely, any such N is permutation invariant.

1.2 Normal subgroups of (H; B, d, d) contained in the basis group. A
necessary and sufficient condition for a subgroup N of the basis group to be
normal in 2 is that N be permutation invariant and normal in V.

It is now necessary to find those normal subgroups of the basis group
which are permutation invariant. The same notation as in the previous sec-
tion will be used. Let N be a normal subgroup of Z contained in V. Now the
group G =G, must be a normal subgroup of H, and the group G; is also normal
in H. Since N is permutation invariant, an element v of N must have the form
described in Theorem 3’. For convenience, for the moment again assume that
Gi=e. Then any nonidentity factor of an element of N is uniquely deter-
mined by the other nonidentity factors. Let v; = {e, c--,e h,e - } be an
element of V(B, d) that has & as its only nonidentity factor. Furthermore, let
k occupy the position occupied by g, of v and let k be arbitrary in H. The ele-
ment

vlvvrl = {e' ey, e, hg‘.lh—l’ e’ sty e’ (gil o e . g'."_l)—l' e' “ .. }

must be in N since N is normal in V(B, d). This means that hg;h~!=g;, and,
since this is true for all & of H and all g of G, G belongs to the center of H.
Conversely, if Gi=e, Ga=G belongs to the center of H and N is permuta-
tion invariant, then N is normal in 2(H; B, d, d).
This establishes the following theorem:

TuEOREM 4. If N is as given by Theorem 3 and the additional requirement
that G belongs to the center of H is met, then N is normal in Z(H; B, d, d).

The generalization of th's theorem gives all of the normal subgroups of
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Z(H; B, d, d) contained in the basis group. This result is stated in

THEOREM 4'. The normal subgroups of Z(H; B, d, d) that are contained in
the basis group are obtained from the construction of Theorem 3’ with the addi-
tional conditions that G\CG are normal in-E and G/G, belongs to the center of
H/G,.

1.3 Other normal subgroups of Z(H; B, d, d). The problem of finding all
of the normal subgroups of Z will now be solved by finding those normal sub-
groups M of 2 not contained in V. Let M be such a normal subgroup of Z.
Then N=MNYV is normal in 2 and of the form described in Theorem 4.

Let y be a substitution of M and let ¢ be a cycle of y,

Xip ** Xip
c= , where n = 2.
hlx"p Tt hnxﬁ
Let v={Fi, ks, - -+, ke, - - - } be an element of the basis group. Since M is

normal in Z, the multiplication defined by the commutator y~%—yv is in M.
The factor that appears in the position occupied by «x, is ki '%; 'kaks,. The
element v is arbitrary so it may now be chosen such that it has factors in the
positions corresponding to x; and x;, such that the factor above is any ele-
ment of H. But y~%~!yv is in M and is a multiplication, so it is also in N.
This means that the group G is H for N=MNV.

This establishes the following:

THEOREM 5. Let M be a normal subgroup of Z(H; B, d, d) not contained in
the basis group. The multiplications contained in M form a normal subgroup N
of Z(H; B, d, d) in which G=H, i.e., the factors in any fixed position run through
the whole group and H/G, for N is an Abelian group.

The group P=MMS is a normal subgroup of Z, hence a normal subgroup
of S. By the result of Baer [2, p. 16], P is e, A(B, d) or S(B, d).

Since M is not contained in V, M contains an element y with a cycle ¢
in its decomposition of length # = 2. Then y is conjugate toy’ which contains a

cycle
o = (xl, Tt x,.).
X2y * **, QX1
Since M is normal in Z, M must contain y’. Every element of £ maps an
infinite number of x into themselves with factors of e. Let x., x5 be two of
these, where «, (8 are each different from each of 1, - - -, n. Let s=(1, , B).

Then M must contain the commutator (y')~!sy’s—1=(1, 8, 2).
This establishes:

THEOREM 6. Every normal subgroup M of Z(H; B, d, d) not contained in the
basis group contains permutations.
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The normal subgroups of Z(H; B, d, d) will now be constructed. The
quotient group Z/V is isomorphic to S. Since MUV is the union of two nor-
mal subgroups of Z, it is normal in £ and (M\UV)/V=M/N. This means
that M/N is isomorphic to S(B, d) or A(B, d). P is also one of these groups.

The case where P 2M/N, and hence M = NUP, will be discussed first.

THEOREM 7. Let P be a normal subgroup of S(B, d) and let N be a normal
subgroup of the type discussed in Theorem 5. Then M =N\JP is a normal sub-
group of Z(H; B, d, d).

Proof. The group N is normal in 2 by assumption, and hence it is sufficient
to show that an element in P is transformed into an element in M. Since P is
normal in S, it is sufficient to show that a permutation s in P is transformed
into an element of M by a multiplication. The commutator s—'v~!sv is a multi-
plication. Although it cannot be said what factors occur in which positions,
it can be said that the product of the factors is in G, since H/G, is Abelian.
Therefore, the commutator is in NC M which implies that v—sv is in M, and
M is normal in 2.

It remains to discuss the case where (M\UV)/V=M/N=S(B, d) and
P=A(B, d). Since PC M it follows that (V\UA) C(M\JV). It follows readily
that M must contain an element y of the form y=wvs where v belongs to V,
s belongs to S, and s does not belong to 4. Now s leaves an infinite number of
x fixed. Let x; and x; be two of these. The permutation s~!(1, 2) belongs to
A=PCM. So ys7(1, 2) =vss~1(1, 2) =v(1, 2) must belong to M by the fact
that M is closed under multiplication. It has been shown that M must con-
tain an element y;, which has the cycle

X1, X2
c= )
a1X2, G2%1
in its cyclic decomposition and which maps all other x into themselves with
only a finite number of factors different from e. According to Theorem § the
factors of any element of N may be taken arbitrarily in H except for one of
them, so an element v of M from N is chosen such that all the factors of

v(1, 2)v; are e except those of x; and x,. The element v(1, 2)v; may be trans-
formed so that M must contain an element of the form

X1, X2
y= .
X2, AX)

Since y2E N, a? belongs to G;. The following can now be proved:

THEOREM 8. Let M =N\UA(B, d) be a normal subgroup of Z(H; B, d, d)
defined by the procedure of Theorem T and let L be the cyclic subgroup generated
by
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X1, X2
y =
X2, G%1

where a* belongs to Gy. Then My=L\JM is a normal subgroup of Z(H; B, d, d).

Proof. Since M is normal in Z, it is sufficient to show that (vs)y(vs)—!
belongs to M, for all vs of Z because y2 belongs to N. It is, therefore, sufficient
to show that sys—! and vyv~! belong to M.

It will now be shown that, if s is any element of S(B, d) and

X1, X2
y= ’
X2, G%1
then sys—! belongs to M,. One can write
x. x ., DY . .
s=< v ) where 7 # j.
X1, Xg, * °

Then
X5 X5
sys! = ( ’).
X;j, AX;,
The group 4 (B, d) must contain an element of the form
(x'.’ xj' “ e )
S1 =
X1, X2, ¢
since the mapping of the x’s not shown may alwaysbe chosen in such a way
that s; belongs to 4 (B, d). Now consider

Xi Xj
s;ysr‘ = )
Xjy AXs
The element syysi!=sys~1is in A\JLC M, for all s belonging to S(B, d). This
implies that sys—! belongs to M.
It remains to show that vyv~! belongs to M, for any v of V. Let v= {h,

hey -+, hey - - - }, where all but a finite number of the % are e. The com-
mutator

yloyr! = {a“hzahrl, hihil e - ,e - }

belongs to NC M C M, if a~‘hahi'hihi'=a"'hsahs;! belongs to G;. But since
H/G, is Abelian the desired result follows.
This section establishes:

THEOREM 9. The normal subgroups of Z(H; B, d, d) are given by Theorems
4,7, and 8.
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2. Normal subgroups of 2,(H; B, d, d).

THEOREM 1. The normal subgroups of Z4(H; B, d, d) are precisely those
normal subgroups of Z(H; B, d, d) which are contained in Z,(H; B, d, d).

Proof. Let N be a normal subgroup of Z(H; B, d, d) contained in Z,(H;
B, d, d). Then N is certainly normal in Z,(H; B, d, d).

Conversely, let N be a normal subgroup of Z.(H; B, d, d). If N is not nor-
mal in 2(H; B, d, d), then there exists an element y of N such that (1, 2)y(1, 2)
does not belong to N. The element (1, 2)y(1, 2), like all elements of Z(H;
B, d, d), maps an infinite number of x into themselves with e as a factor.
Let x., x5 be two of these with tke additional property that 1, 2, a, 8 are dis-
tinct. Then the element

(a’ B)(lr 2))’(1» 2)(“1 B) = (lu 2)3’(1: 2)

will not belong to N. But this contradicts the normality of N in Z,(H;
B, d, d) since (o, 8)(1, 2) belongs to A(B, d).
This establishes:

THEOREM 2. The normal subgroups of Z4(H; B, d, d) are (i) those described
by Theorem 4’ of §1, and (ii) the union of a group N, as described by Theorem 5
of §1, and A(B, d).

3. Nermal subgroups of =, 4(H) for n=5. All of the normal subgroups of
Z..4(H) will be found using the methods of §1.

3.1 Permutation invariant subgroups of =, 4(H) contained in the basis
group. In almost the identical way that was used .in §1 the following theorems
can be established:

THEOREM 1. Let N be a fixed permutation invariant subgroup of 2. 4(H),
for n=5, contained in the basis group. Then the set G of H, consisting of all the
factors that occur in a fixed ith position of all multiplications of N, forms a
subgroup of H. This group is the same for all 1. The set Sy of all multiplications
of N which have k;=e, for i>1, forms a normal subgroup of N. The set G, con-
sisting of all first factors of multiplications of S, forms a normal subgroup of G.
Assume Gy=e. The set Sz of elements of N that have h;=e, for 1>2, forms a
normal subgroup of N. The set Gs of first factors of elements of Sz forms a normal
Abelian subgroup of G. The elements of S, are of the form

v = {gﬁ»gflvc""re}
where g2 runs through G..

THEOREM 2. The group R, generated by the substitutions obtained by all
possible permutations of elements of Sa, consists of elements of the form

v = {flv LETIRIR ('1 cre rﬂ—l)_l}
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where the r; run through the Abelian group G, independently.

The nature of the permutation invariant subgroups of 2,,4(H) contained
in the basis group is the same as that of those of =,(H) found by Ore [1].

Letv={hi, - - -, ka} be an arbitrary element of N. Let s;=(1, 4, j) where
i runs over the set 2, - - -, # and j#1, j#4. The element
v = sus7l = {hi, coyhiyy By By, oo By By B, e e e hn}
must belong to N. The element
92 = o7l = {Mhil, -+ - ¢ hihil e, - -+, ¢ hihil e, -+, e}

must also belong to NV. Since # =5 there exist natural numbers &, m such that
each is different from 1, 4, 5. Then N must contain

U3 = (1’ k, m)v2(11 m, k)

= ie"'°»ey hlhi_l)ey'°'1evh€hj_l;ey""erhjhl—l’er"° }0
The element vavs~'= { k7L, e, - - -, €, (A7)~ Y, ¢, - - - } also belongs to N.
This shows hki! belongs to Ge, for i=2, - - - , n. Therefore, the elements of

N are of the form

v={rg rg, -+, rag}

where the r; are elements of G: and g runs through G. In exactly the same way
as that used by Ore [1, p. 31] the following theorem can be proved.

THEOREM 3. All permutation invariant subgroups N of =, 4(H), for n=35,
that are contained in the basis group may be obtained by the following construc-
tion. A subgroup G of H is chosen. In G two normal subgroups GiCGa are

selected such that the quotient group Go/G, is Abelian. Then let N consist of ele-
ments of the form

v = {kl,kz,"'pkn}
where the k; runs through G subject to the conditions
1) ki=rik,i=1.-+,n—1,
mod Gl,
(2) k= (r1- - ra1)72(R6),

where the r; are arbitrary elements of Gs. Furthermore, 0 is an endomorphism of
G/Gy multiplying each element of G/Gy by an element of Ga3/Gy. In particular,
(2)0=g=Y mod G, for any element of Gs.

3.2 Normal subgroups of =, ,(H) contained in the basis group. Tt is now
necessary to find those normal subgroups of the basis group which are per-
mutation invariant. The same notation as in the previous section will be used.
Let N be a normal subgroup of 2 contained in V,. The groups GiCG:CG
are normal in H. Since N is permutation invariant, an element v of N must
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have the form described in Theorem 3. For convenience assume G;=e. Then
any factor of an element of N is uniquely determined by the other factors.
Let v, = {h, e -, e} be an element of the basis group that has only one
nonidentity factor occurring in the first position. The element £ is arbitrary
in H Letv={rg, rg, - - -, (r1 - - - 7._1)"%(gf) } be any element of N. Then

oot = {hrigh™, rag, - -+, (11 -+ 7a))"2(gh) ).

This shows that hrigh—!'=rg. Therefore, ;g belongs to the center of H. The
following has been shown:

THEOREM 4. Let N be a normal subgroup of Z, 4(H), for n=5, contained in
the basis group. Then N is permutation invariant and must meet the requirements
of Theorem 3. Assume Gi=e. The groups GaCG are normal in H and G belongs
to the center of H. Conversely, if N is as given by Theorem 3 and the additional
requirements that Gi=e, GaCG are normal in H and G belongs to the center of
H are met, then N is normal in 2, 4(H), for n=5.

THEOREM 4'. For n =5 the normal subgroups of 2, 4(H) are obtained by the
construction of Theorem 3 with the additional conditions

(1) GiCG2:CG are normal in H,

(2) G/G, belongs to the center of H/G,.

3.3 Other normal subgroups of Z, 4(H). By the method used to prove
Theorem 5 of §1.3 the following can be proved:

THEOREM 5. Let M be a normal subgroup of Z.,4(H) not contained in the
basis group. The multiplications N = MMV form a normal subgroup of 2., 4(H)
in which H=Gi.e., the factors in any fixed position run through the whole group
H and the quotient group H/G, for N is an Abelian group.

Let P be the subgroup of M consisting of permutations only; P=MMNA4.
Since M is normal in Z, it follows that P is normal in 4. Hence, P=4, or P
is the identity. That P=A4, is now proved.

THEOREM 6. Every normal subgroup M of Z,,4(H) not contained in the basis
group contains permutations.

Proof. Since M is not contained in the basis group, there exists an element
y=vs where s#I. It is convenient to consider several cases.

Cask 1. If y contains a cycle ¢ in its cyclic decomposition of length #n =4,
it is seen in Chapter I that y is conjugate to an element y’ containing a cycle

c, _ (xly X2, xs.v Tt xa)
X2, X3, X4, * * * , A%} )
Since M is normal in 2, M must contain y’. Let s=(1, 2, 3) and M must con-
tain (y’)~isy’s"1=(1, 3, 4).
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Cask 2. If y contains a cycle ¢ of length 3 and some other cycle of length
greater than 1, then M contains an element y’ conjugate to y of the form

y, — (xl' X2, xﬂ) (xb et ) .
X2, X3, G%1 Xgy * ° °
Let s=(1, 4, 2) and M must contain (y")~1sy’s~1=(1, 2, 5, 3, - - - ) which re-
duces to Case 1.
It may happen that y contains one 3-cycle and the remainder are 1-cycles.
This case will be discussed later.

CasE 3. If y contains only 1 or 2 cycles in its cyclic decomposition and at
least four 2-cycles, then M must contain an element y’ conjugate to y of the

form
X1, X3, X7, X3
y =
%2, 6%1/) \%4, bxs xs, x5/ \xs, dxz

Let s=(1, 3)(5, 7). Then M must contain
(") 1s~ty's = (1, 3)(2, 49)(5, 7)(6, 8).

CAsE 4. It may now be assumed that y contains at the most two 2-cycles
in its cyclic decomposition. M contains an element y’ conjugate to y of the

form
(xx, xz) (xa, x4>( Xgy )
y = .
X3, %1/ \%x4, bx3/ \cxs5, - - -
Let s=(1, 3, 5). Then M must contain

sy = (

X1, X2, X3, %4, xs)

X5, %4, X1, CX3, C_Ixz

which reduces to Case 1.
CasE 5. If y has one 3-cycle and the remainder 1-cycles, then M must con-
tain an element y’ conjugate to ¥ of the form

y = <x1, Xa, xa) ( X4y Xs - )
xs, %5, a%1) \bxy, c5, -+ )’
Let s=(1, 2, 4). Then M must contain

(y)1sy/st = (xx, %3, %3, xc)

%4, X3, bxs, b2y

which reduces to Case 4.
This concludes the proof of Theorem 6.

THEOREM 7. The elements of the group N= MMV, where M is a nérmal sub-
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group of 2, 4(H) and is not contained in the basis group, are of the form
0= {h, -, I}

where the h; runs through H subject to the condition hy - - - h, belongs to Gi.
Here Gy is a normal subgroup of H such that H/G, is Abelian.

Proof. By Theorem 6, M contains s=(1, 2, 3). Let v= {h;, e, hn} be
an arbitrary element of the basis group. Then M must contain the com-
mutator s~ lsy= {h{lhl, hiths, hilhs, e, - - -, e}. Choose hy=hs and
hi=hsh, where £ is arbitrary in H. Then M contains {h, le .-, e}.
This shows G, =H.

That &, - - - k, belongs to G, follows from the nature of N is given by
Theorem 4’.

The normal subgroups of Z,,4(H) will now be constructed. The quotient
group Z/V is isomorphic to A. Furthermore, M/N is isomorphic to 4.

THEOREM 8. Let N be a normal subgroup of S, 4(H) contained in the basis
group of the type described in Theorem 1. Then M = N\JUA, is a normal subgroup
of Z.,4(H). Conversely, if M is a normal subgroup of 2. 4(H) not contained in
the basis group, then M =N\JA,, where N is of the type described in Theorem 7.

Proof. N is normal in 2 by assumption, and hence it is only necessary to
show an element of A4, is transformed into an element of M. Furthermore, it
is only necessary to show an element s of 4, is transformed into an element
of M by a multiplication. Let v={ki, - - - , .} be any element of V,. The
commutator vsv—ls~'={hik;", - - -, hahi'} belongs to V.. Since H/G is
Abelian the product of the factors is in Gi, so the commutator belongs to
NC M. Therefore, M is normal in Z.

Conversely, if M is normal in £ and is not contained in the basis group,
then M contains A, by Theorem 6. Now let y =vs be any element of M. M
contains ys—!=v. This shows the multiplication part of any element of M is in
N as given by Theorem 7. It follows that M =N\UA,.

CHAPTER IV. THE BASIS GROUP AS CHARACTERISTIC SUBGROUP

As has been the case in all previous discussions, no assumptions about the
order of the group H are made.

THEOREM 1. The basis group of Z(H; B, d, d) is a characteristic subgroup of
the symmetry.

Proof. Deny the theorem. Then there exists some automorphism 6 such
that VOE V. There also exists some normal subgroup M of 2 such that
MO=YV. Therefore, VE V6= M.

The quotient group Z/V is isomorphic to S. Furthermore, Z/M=S
=Z/V.

Consider the two normal groups K and N of 2 given by K=VUM,
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N=VNM. The quotient group K/M is a normal subgroup of /M. Since
V& M, the group K/ M is not the identity. Since K/M is isomorphic to a nor-
mal subgroup of S, by the result of Baer [2], previously referred to, K/ M is
isomorphic to S or 4. Therefore, in any case, K/ M is non-Abelian. On the
other hand, from the second isomorphism law, it follows that K/M=V/N.
By Theorem 5 of §1, Chapter III, V/N is Abelian, a contradiction.

THEOREM 2. The basis group of Z4(H; B, d, d) is a characteristic subgroup
of the symmetry.

The proof of Theorem 2 is similar to that of Theorem 1.

THEOREM 3. The basis group of Z,,4(H), for n=35, is a characteristic sub-
group of the symmetry.

The proof of Theorem 3 is similar to that of Theorem 1.
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