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1. Introduction. The subject of this paper is the derivation of asymptotic

solutions for a class of differential equations of the type

(1.1) w'" + \hi(z, \)w" + \2h2(z, \)w' + \*h3(z, \)w = 0,

in which X is a large complex parameter, and the coefficients hj(z, X) are ex-

pressible as power series in 1/X,

A   hj,„(z)
(1.2) ^(2,X) = Z-^' i= 1,2,3.

Every such differential equation has associated with it a so-called character-

istic or auxiliary equation

(1-3) X8 + hx,0(z)x2 + hz.o(z)X + A3,0(2) = 0.

This has three roots Xi(z)\ J = l» 2, 3. Differential equations (1.1) can be

classified into categories having solutions of quite distinct functional forms

upon a basis of the configuration of these roots Xi(z) m the domain of z under

consideration. To some extent this can be seen even in the elementary case

of an equation (1.1) with constant coefficients. For, such an equation is

completely solved by the functions eXx>* if the roots Xj are all simple, whereas

this set is incomplete if multiplicities among the xi occur.

A substantially complete body of theory exists for the forms of the solu-

tions of a differential equation (1.1) in a region of z in which the roots Xi(z)

are everywhere distinct [l]. Such is also the case if the z-region is one in

which there are multiplicities among the roots Xj(z). provided these multi-

plicities all maintain identically over the region [2; 3]. The matter stands

differently for a region in which a multiplicity among the roots Xi(z) occurs,

but does so only at an isolated point. It is the purpose of the present paper

to give a theory for a class of differential equations (1.1) in such a region of z.

The place of this theory, and its potential importance, can easily be made

clear by referring to the analogous differential equation of the second order,
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(1.4) w" + \hiiz, \)w' + \2hiz, \)w = 0.

This has the auxiliary equation x2+^i.o(2)x+^2,o(z) =0, of which there are

two roots, xi(z) and X2(2)- The equation (1.4) is transformable by the removal

of its first derivative term into the form

(1.5) u" + {XVOO + X*(«, X)}« = 0,

and in this <p2iz), the coefficient of the highest power of X, is found to be

— iXi(z) — X2(z)} 2/4. The existing theories referred to above are therefore

those that apply to an equation (1.5) either in a z-region in which #2(z) has

no zero, or in one over which <£2(z) vanishes identically. The theory presently

to be given, on the other hand, is an extension to a class of differential equa-

tions of the third order of that which is applicable to an equation (1.5) in a

region in which 02(z) vanishes at just a point. Such a point has come to be

known as a turning point, or a transition point.

The theory of differential equations (1.5) in regions containing a turning

point has important applications in quantum mechanics. It also has im-

portant applications in other physical theories, among them that of micro-

wave propagation [4]. Certain differential equations of the fourth and sixth

orders with turning points are important in hydrodynamics, where they fea-

ture the onset of turbulence. They have been studied in that connection

[3; 5; 6; 7].
The presence of a turning point materially complicates the problem of

describing a differential equation's solutions. For these solutions are then of

different functional forms in different sub-regions of z, rather than of forms

which persist over the whole region. As a rule their descriptions must be

made in terms of branches of multiple-valued functions, even though the

solutions themselves are single-valued.

The method of the present paper is based upon the use of a related differ-

ential equation. By this is meant a differential equation that fulfills two pri-

mary specifications, namely, (i), that its coefficients agree with those of the

given equation to terms of some prescribed degree in 1/X, and (ii), that it be

explicitly solvable, namely that its solutions be known. The construction of

such an equation is the objective of a major part of the analysis. It is followed

by reasoning through which the forms of the solutions of the given equation

are inferred from the known solutions of the related equation. This method

was developed in connection with differential equations of the second order

[8]. The present analysis extends it to a class of differential equations of

higher order.

The hypotheses upon which the following discussion will be specifically

based are the following.

1. The parameter X (complex) is large in absolute value. Thus |X| >iV,

with some large constant N.
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2. The domain of the variable z is a closed bounded region of the complex

z-plane.

3. The series (1.2) have coefficients hj.n(z) that are analytic over the given

z-region. Along with their term by term derivatives, these series are con-

vergent when | X | > N.

4. The roots of the auxiliary equation (1.3) are distinct over the given

z-region, except at a single point (the turning point) where just two of them

are equal.

5. At the turning point the zero of the discriminant of the auxiliary equa-

tion is of the first order.

By way of normalization, we shall suppose, as we may without loss of

generality, that the origin of z is at the turning point. We shall denote by

Xi(z) and x*(z) the roots of the equation (1.3) that coincide there. The re-

maining root xs(z) is therefore simple over the z-region. Some limitations upon

the periphery of the z-region will have to be imposed in the course of the dis-

cussion. These cannot well be stated here, and are of only minor significance.

2. The normalization of the given differential equation. The analytic

forms that are to be obtained for the representation of solutions of the equa-

tion (1.1) will involve certain factors that consist of polynomials in 1/X of a

degree (r — 1), together with remainder terms of the order of 1/Xr- The poly-

nomials will be determined, the remainder terms not so. The degree of ex-

plicitness of the representations will thus depend upon the integer r, a larger

r signifying a more explicit result. We may prescribe r, and shall henceforth

suppose that to have been done. This particular significance will be reserved

to r throughout the discussion.

Let r(z, X) be a polynomial in 1/X,

(2.1) r(z,X) = i:^,
»-o    X"

of which the coefficients Tn(z) are analytic, but otherwise, for the moment,

unspecified. The substitution

(2.2) w = uexpl\ j    r(z,\)dz\

transforms the differential equation (1.1) into

(2.3) «'" + 2\px(z, \)u" + X2pz(z, A)«' + \sp3(z, \)u = 0,

with

2px = hx + 3t,

(2.4) p2 = h2 + 2hir + 3t2 + 3r'/X,

pz = h3 + h2T + A,r2 + r3 + (hn' + 3tt')/\ + T"/X2.
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By setting

(2.5) Liiu) m u" + 2\piu' + {x2/>2 - 2\p{ }»,

we may write (2.3) as

(2.6) Li («) + X3 {ps - pi A + 2*f A2}« - 0..

The pjiz, X) are evidently expressible as power series in 1A, namely

A    Piniz)
(2.7) ^,X) = Z^' j= 1,2,3,

n=0 X"

and the same is therefore true of the function

(2.8) {pt-pi/\ + 2p{>/\*\.

We propose now to remove as large an initial segment from the series for

(2.8) as may be possible by suitably specifying the coefficients r„iz) in (2.1).

The equation (1.3) has a simple root Xs(2)> and this root, because it is

simple, is analytic. By taking

(2.9) T0(z) = xiM,

we make the leading term of pz, and hence the leading term of (2.8), vanish.

With this choice the leading term of pi is
2

pt.oiz) = hi.oiz) + 2Ai,0(z)x3(z) + 3xa(z),

and this is nowhere zero because xs(2) is everywhere simple. Thus

(2.10) Pi,oiz) ^ 0

over the given z-region. Now for « = 1, 2, • • • , r, the coefficient of the term

in 1A" in the series for (2.8) has the form

(*2.0(z)t. +/»(«)},

where/„(z) is determined by the values of t,- only forj=0, 1, ■ • • , (« — 1).

It follows that we may successively specify the coefficients r„ to make all

these terms vanish. As a result, the function (2.8) is of the form X~r-1£(z, X),

with piz, X) a power series in 1A- The given differential equation is thus

reducible to the form

piz, X)
(2.11) £l'(„)+£i_i« = o,

namely to

u"' + 2\piiz, \)u" + \2piiz, \)u' + \\2piiz, X) - 2X^f (z, X)

(2'12) +piz,\)/\'~2}u = 0.



1955] SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 97

We shall refer to this as its normal form.

3. Miscellaneous matters. Since X3 is a root, the equation (1.3) is divisible

by (x~Xi)- The quotient, by use of the formulas (2.4), is

(x - X3)2 + 2pxM(x - x3) + pz.o(z) = 0.

Hence

Xi(z) = Xs(z) - px,o(z) + i<p(z),
(o. 1)

Xz(z) = Xs(z) - px,o(z) - i(t>(z),

with

(3.2) <p2(z) = p2,t(z) ~ plo(z).

At z = 0 we have xi = X2» and Xi^X3- It follows that 0(0) =0, and

(3.3) px.«(0)*0.

It also follows from (3.1) and (3.2) that

2 2 2 2 2

(Xi — X2) (X2 - xi) (Xs — Xi)   = - 4/>2,o(z)0 (z).

Since this discriminant has, by hypothesis, a zero of the first order at z = 0,

it is to be concluded from (2.10) that the zero of <£2(z) is simple.

Let

C' $1/6(z)
(3.4) *(z) =  I   <f(z)dr, *(z) = -^7T> *o - X#(«).

•/ 0 *1/2(z)

The function <p(z) is of the form zU2<px(z) with <fo(z) analytic and bounded from

zero. Therefore <£(z) is of the form z3/2#i(z), with $i(z) analytic and bounded

from zero in some neighborhood of z = 0. We shall reduce the given z-region,

if necessary, so that 4>i(z) is bounded from zero within it. The function ^(z)

is now seen to be analytic (if defined to be continuous at z = 0), and to be

bounded and to have a bounded reciprocal.

By the substitution

u = exp( —X j   pi(z, \)dz) U,

the form (2.5) is replaced by one that lacks the first derivative term, thus

(3.5) Li(u) =exp(-\f px(z, X)dzjL0(U),

with

(3.6) L0(U) m U" + {X^2 - pi) - 3\p[\ U.



98 R. E. LANGER [September

Because of (3.2) it is evident that

(3.7) LoiU) m U" + {X2<*>2(z) + Xw(«, X)} U,

with w(z, X) a power series in 1A namely

(3.8) Mf>fX)-f;^.
n—o    Xn

We observe from (3.4) that

d   x2/Y„/s d

(3.9) — =---
dz       *2(z)    <Zg0

4. The construction of a certain solvable differential equation of the

second order. We propose now to find a pair of functions 77i(z), t?2(z), that

fulfill a differential equation approximating the equation L0iU)=0. Under

the relation (3.5) these will correspond to a pair of functions yi(z), ytiz), that

fulfill a differential equation approximating the equation Li(m)=0. Later

we shall associate with these a function yo(z) that is so deiermined as to make

the differential equation of which y,(z), j=0, 1, 2, are solutions approximate

the equation L{ (w) =0, namely, by (2.11), approximate the given differential

equation.

If & and C2 are any cylinder functions (Bessel functions) of the order 1/3

so that

iZ£i+t.*$> + \£-±-\ca»-o.       j-t.2.
d?0 d£0 L 9 J

it is readily found, by the use of (3.9), that the functions

(4.1) v,iz) = VWcJtXW

fulfill the equations

(4.2) ./ (z) + {X2*2(z) + 0iz)} Viiz) = 0,

with

e(z) = - ¥"(*)/¥(*).

Thus the functions i»i(z), viiz), fulfill a differential equation that approximates

L0iU) =0 to the extent that the most significant terms (in the highest power

of X) are the same in the two equations. We can do better with the functions

Ai
(4.3) m = Aovj + —vj, j = 1, 2,

A
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if the coefficients A0(z, X), -4i(z, X) are appropriately determined. Preparatory

to showing that, we shall derive the differential equation of which the func-

tions (4.3) are solutions.

A differentiation of (4.3), followed by the elimination of »/' through the

use of (4.2), yields

(4.4) nj = [-X#*;li + Ai - BAx/\]vj + [At + A{/\]vj.

In a similar manner it is found that

f                                                                                2BA{ + d'Ai]
r," =    -XVMo - 2\4>2A{ - 2\d»j>'Ax + Ai' - 0Ao-vt

+ [-X20Mi + 2\Al + A{' - 6Ax\ — •
A

From (3.7) we therefore see that

(4.5) 70(j/,) = Sovj - XSiVj,

with

AC - 9Ax
So = 2A0' + uAx -\-,

(4.6)
AC -6Ao     26A{ +d'Ax

Sx = 2<p2A{ + 2<M>'Ax - coAo-1-
X X2

By the elimination of v, and »/ from the equations (4.3), (4.4), and (4.5)

we obtain a relation that is fulfilled by rjj for both 7 = 1, and j = 2. This is the
differential equation

V A0 Ax/\

(4.7) n'      -\<p2Ax + Ai - dAx/X A0 + A{/\    =0.

L0(v) — X5i 50

For the convenient expansion of this, let

D(z, X) = ,
-M2Ax + Ai - 6Ax/X    AB + A{/\

-M*Ax + A0' - 6Ax/\   A0 + A{/\
7>*(z,X) =

—AOl Oo

It is then easily verified that

(4.9) D'M-|    *      Af   ,—AOl Oo

and hence that the equation (4.7) is
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(4.10) D(z, X)L0iv) - D'iz, \)v' + D*(z, \)v = 0.

This is the differential equation of the functions (4.3). Its actual form de-

pends, of course, upon the coefficients Aoiz, X) and -<4i(z, X), which have thus

far not been specified.

5. The determination of Ao and Ai. Let A0 and .4i be polynomials in

1A, thus

(5.1) Afa\) = £ ^L, i = 0, 1,
„=o      X"

with undetermined coefficients ay.n(z) that are analytic. The functions S0 and

Si as given by (4.6) are then evidently expressible as power series in 1A-

We propose to remove from each of these series as large an initial segment

as may be possible, by appropriately choosing the coefficients a,-,„(z) in the

polynomials (5.1)(2).

The leading terms of the series (4.6) are respectively the left-hand mem-

bers of the equations

2<x0,o + "offli.o = 0,

(5.2) i ,
2<t> ai,o + 2<fxj> ai.o — woflo.o = 0.

We shall make these terms vanish by choosing Co,o and <zi,0 as a solution of

the system of equations (5.2). To find this solution we multiply the equations

respectively by a0,o and ai,0, and then add them. The resulting equation is

ial,0+<t>2a2lfi)'' = 0. We therefore take

2 2   2

(5.3) ao.o + <t> fli.o = 1.

On substituting the value of ai.o from this into the first equation (5.2) and

making the integration, we find that

0b,o = COS   I     — az,
J o   2<f>

(5.4)
1      .      r'at

ai,o = -sin    I    — dz.
<b(z) J o  2<j>

The integral involved in these formulas is improper, because $(z) vanishes

like z1'2 at z = 0. It is, however, convergent, and the values (5.4) are seen

to be in fact analytic in z (with proper definition of fli,o(z) at z = 0).

For n = l, 2, • • • , (r — 1), the coefficients of lAn in the series (4.6) are of

the forms of the left-hand members of the equations

(!) The method is essentially that which was given by the author, in a somewhat different

formulation, in The asymptotic solutions of ordinary linear differential equations of the second

order, with special reference to a turning point, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 461-

490.
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20o,n + WoOl.n _ /o,n = 0,

(5.5) 2   , ,
2<t> ax.n + 2(j»p ax,n — WoflO.n — fl.n = 0

with/o,n and/i,„ denoting expressions that involve the functions aaj and axj

only for 7 = 0, 1, 2, • • ■ , (ra —1). Thus (5.5) is a system of nonhomogeneous

differential equations for a<>,n and Ci,„. To solve it we proceed as follows.

Multiply the equations (5.2) and (5.5) respectively by #2ai,„, — a0,n, —<p2ai.o,

and a0,o, and add them. Again, multiply them respectively by a0,n, ai.n, ffo.o,

and ai,o, and add them. The equations thus obtained are

2#2(ao,o0i,n — fli.oflo.n)' + 2<b<b'(a0,oai,„ — ai,oa0,n) = /i,».ao,o — /o,»</>2*i,o,

2(02Ol,O^l.n)'  +  2(ao,O0O,n)'   = /o.nflo.O + /l,n<*1.0,

and these are easily integrated to give

1         P * /l.nflO.O — fo,n4>2ax,0
^O.oOl.n —  01,oOo,n   — I- <fe,

<b(z) Jo 2<t>

f Z   /o.nOo.O + /l.nffll.O
<t> tfl,0«l,n + Oo,0fl0,n =    I        -~-«Z.

•/ o 2

As a system in the unknowns a0.n and a1>B these equations have, by (5.3), a

determinant whose value is 1. They may, therefore, be solved to give

/' *  /o.r.00,0 + /l.nffll.O                                T * /l.nOo.0 ~ /o.n^l.O
-az — <£ai,o I     -dz,

o                   2                                    «/ o                   2<£
(5.6)

/"   /o.nflO.O + /l.i.ai.0                 «0,0   /* * /l.ndo.O —  /'o.n^fll.O
-az H-I     -dz.

o                  2                           </>  J o                  20

These values are seen to be analytic despite the improper integrals in terms

of which they are expressed. By the evaluations (5.6) the terms in the succes-

sive powers of 1A in the functions (4.6) are removed, and these functions are

thus reduced to be of the order of 1/Xr.

With the polynomials A0 and Ax thus determined, the expression D(z, X),

as given by (4.8), is a polynomial in 1/X the initial term of which is 1. The

equation (4.10) may therefore be divided by D(z,X) when |X| is sufficiently

large. Under the substitution

(5.7) r, - exp (\f'pi(z, X)dz\ D"\z, \)y,

the equation assumes the form

(5.8) y" + 2\piy' + {\2p2 - 2\p{ - q(z, X)/X-1}y = 0,

with
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qiz, X)Ar_1 = (3/4)£>'2/7>2 - D"/D + DJD.

Since, with S0 and Si of the order of X~r, the values D' and Z>* are respectively

of the orders of X~r and X~r+1, it is clear that q(z, X) is a power series in 1 A-

The equation (5.8) has the explicitly known solutions

yy = exp (-\j piiz, \)dz\ D-"2iz, X) h0(z, \)vj + —Ai(z, \)vj\ ,

3 = 1, 2.

By setting

(5.10) Liy) m y" + 2\piy' + {\2p2 - 2\f{ - q/X^y,

we may write it Liy) =0. In an obvious sense the operator L approximates

the operator Z,i of (2.5).

6. The "related" differential equation. We shall now determine a function

y0(z) in such a way as to make the three functions yjiz), j =0, 1, 2, be a funda-

mental set of solutions of a differential equation that approximates the given

differential equation.

Let yo(z, X) be the polynomial in 1A given by the formula

(6.1) y0(z, X) = z^ —:-'
»-o      X"

with coefficients yo,n(2) that remain to be specified. By direct formal sub-

stitution into the form (5.10) it is found then that

(6.2) L(y0) = X2/>2,oyo.o + X, -—-1- 2^ —->
n—1 A n—r   «

with each/n denoting an expression that depends upon the functions yo,y(z)

only for j<n. Since pt,o(z) 5^0, by (2.10), we may choose the functions yo.n(2),

for successive values of n, so that

#2,o(2)yo.o(2) = I,

p2.oiz)y0.niz) +/»(z) =0,        n = 1, 2, • • • , (r - 1).

These functions yo.n(2) are analytic, and give to (6.2) the form

I       go(z, X)")
(6.3) L(y0) = X2|l + ^r^|,

with g0(z, X) a power series in 1 A- By virtue of this, then,

(6.4) L'(y„)/L(y0) = g(z, X)Ar,

g(z, X) also being a power series in 1A with coefficients that are analytic in z.

The differential equation
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(6.5) L'(y) - (g(z, \)/\')L(y) = 0

is obviously solved by the function yo(z), and by any solution of L(y) =0.

Therefore it is solved by yi(z) and y2(z). To show that this set of solutions

is complete we consider the Wronskian

yo(z)     yi(z)     y2(z)

(6.6) IFo.i,2(z) =    yo'(z)    y{(z)    yi(z)    .

yo"(z)   yi"(z)   yi'(z)

In this we may replace each element y/' by the respective L(y,), since that

amounts only to adding multiples of other rows to' a certain row of a deter-

minant. Then since L(yi) =0, and L(y2) =0, it follows that

(6.7) Wo.x.2(z) = L(y0)Wx,2(z).

If yx and y2 are linearly independent, which, by (5.9), is so if vx and v2 are in-

dependent, the right-hand member of (6.7) is different from zero over the

z-region. The equation (6.5) is therefore completely solved by y,(z), j = 0, 1, 2.

Now by (2.5) and (5.10)

q
Lx(u) = L(u) H-u.

X^1

The given differential equation (2.11) is thus expressible as

L(u) =-u->
X-2 X-1

and this we may write as

g(z, X)

with

.. n. n,      s      X2/-« + \(qu)' + g(z, X)L(ra)
(6.9) Q(u, z) =-

-Xr

The reduced form of (6.8), namely the equation obtained from it by replacing

the right-hand member by zero, is the solvable equation (6.5). It is evident

that these equations have coefficients that are the same to terms in 1/Xr-2.

We shall call (6.5) the related differential equation.

7. The forms of some solutions of the related equation. Of the solutions

yo, y\, and y2, of the related equation (6.5), y0(z) has been given explicitly by

the formula (6.1). The others may be variously chosen as independent solu-

tions of the equation (5.8). It is important to consider the forms of these,

since they will be found to be typical of the solutions of the given differential
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equation when | X | > N. The related differential equation is, after all, merely

a particular equation of the type we are considering.

From (4.1), with the cylinder functions Cj taken successively to be the

Bessel functions /_i/3 and Jm we obtain the two functions(3)

(7.1) v*,, - *ml'%u*ito).

These functions can be differentiated. By use of the formula (3.7), together

with the known relations, cf. [9, p. 46],

— ti'oJMSo)} = ± £o>±(,-i)(£o),
o£o

it is found that

(7.2) »;,,(*) = ^W'/Ti/.tt.) + —- £%*/*&).
¥(z)

The relation (5.9) now yields as solutions yi and y2 the particular ones y„,j,

where

y*,i(z) = expf-Xj   piiz,\)dz\ <£o(z)£oVV:fi/3(£o) + —i—il*J±*nili»)> ,

(7.3)

y'*,iiz) = exp( -X |    piiz, \)dz\\<G<,iz)h -7?i/3(£o) + T^So -/±2/3(£o)> ,

with

X^o^ + ^i*'
£o = ->

XT)1'2

(7.4) *      ^T?1'2'

Go = - piE0 - -*2<p2Ei + E'o/\,

E0
Gi= - P1E1 + —-+ E{/\.

\jr2

The functions of £0 that are involved in (7.3) are given by the familiar

expansions

(7.5) &±M = 1Z    J    "*       i|)
„=o «ir(» + 1 + y) \ 2/

(3) It is to be understood in all that follows that when a double sign and the index j occur in

a formula or equation, the upper sign is to be taken with j = l and the lower sign with j = 2.
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These are useful especially when z is in the immediate neighborhood of the

turning point, namely when |£o| is moderate or small. In particular, we find

from (7.3) and (7.5) the evaluations

2™E0(0) fM      22'IE1(0)
y*,i(0) =->      y*,2(0) =->
y T(2/3) y x»'3r(i/3)

(7.6)
21»XGo(0) , 22"X2'3Gi(0)

y*,i(0) =->     y*.2(0) =-•
y r(2/3) y r(i/3)

Now it can be verified from (7.4) and (4.8) that

E0(z)    Ex(z)
(7.7) W    -1.

G0(z)    Gx(z)

From this, and the fact that T(l/3)r(2/3) =2tt/31/2, it follows that the

Wronskian of y*,i and y*,2 has at z = 0 the value 31/2X2/8/tt. Since the differ-

ential equation for these functions is (5.8), the formula for the Wronskian

for general z is

(7.8) JF(y*.i, y*.2iz) =-expt - 2X J    px(z, \)dz\.

8. The forms of some other solutions of the related equation. The solu-

tions y*j described in §7 have advantageous forms when |£0| is small or

moderate. They are, however, not of the optimum simplicity when |£0| is

large. In fact that advantage does not attach to any single pair of solutions,

except in suitable sub-regions of X and z. We therefore divide the Jo-region,

and therewith the z-region, into parts, within each of which an especially

associated pair of solutions is distinctively simple. For the representation of

these solutions we shall use the Hankel functions H® (Bessel functions of the

third kind, cf. [9, p. 73]).
For each integer k, a sector E* of the complex Jo-plane is defined by the

relations

(8.1) S*:    (k - 1)tt < arg £0 < (k + 1)tt.

In the z-domain each St corresponds to a sub-region having the origin upon its

boundary. Its location beyond that depends upon X, since £0 does so. Let z

be in such a sub-region. The integer k is thereby determined. With this, and

with j taking the values 1 and 2, we shall use the abbreviations

a = e~kTi,

(8.2) (1, if y + £is odd,
n — \

\2, if j + k is even.

In accordance with the relation (4.1), with suitable choices of the cylinder

functions, we now set
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(8.3) Vk.jiz) - (cnr/2)1'2 exp (± -^\ n^B^e'"").

These functions can be differentiated. By the use of (3.9), and the known

relations, cf. [9, p. 74],

of

it is found that

»*.i(») = ( —)    exp( ±—— l-j¥(z)&,  ffi/sfoe      )
(8.4) V/ V /l

+ T7T^°   #-2/a(£oe      )f •
*(z) J

The formulas (5.9) and (7.4) therewith yield as solutions y,- the particular ones

(<nr\1/2         /      57rtcr t" \ ( i/8    o»)       -*™
— J    expl + —-XI    piiz, \)dz\ <7}0(z)£0 77i/3(£0e      )

<rEliz)     2/8      0.) -*«l|

(8.5)
, /W\1/2       /    5irffi /• * \     C i/3   oo      -*».•

yi.j(*) = (y]    exP( ± -^ - XJ    M*. X)&U |Go(*)6>  77i/3(?0e      )

<*Gi(z)   2/8O.) ,    -*»S\
+ -rjjj- £0  #-2/3(£oe      )>   ■

The Hankel functions admit of the asymptotic representations

(i) /2X1'2        /       T        yx       ir-|\   "      (*, »)

with

r(, + » + 1/2)
iv, n) =->

nWiv - n + 1/2)

when |fI is large, provided — x<arg f <ir, cf. [9, p. 201]. These conditions

upon t are fulfilled by £0e~*T< when £0 is in the sector (8.1) and |£o| is large.

The forms (8.6) then give

/<rx\1/2        /     5irio\    d.)     -k,t i/2±i£0A   (1/3, n)
1 — 1    exp I + —— 177i,3(£0e      ) ~ £0    e       2^.,_-.>x  '
\2/ \       12 / n_ol(-r-2^o)"
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'It)    expl +-—-)ff_2/3(f0e      ) ~ ± «£o    e       2^  ,-„...w   -
\2 / \       12 / „_o (+27f0)n

Hence, by (8.5),

Jk,j(z) ~ Jo      exp  ( ± *Jo — X J    #i(z, X)<feJ0o./z, Jo, X),

(8.7)

y'k,j(z) ~ XJ0      exp ( + *'J0 - X I    /»i(z, X)dz J 0i,,(z, Jo, X),

with

A    (1/3, ra) "   (-2/3, ra)

n=0    (+2lJ0)" n=0     ( + 2tJ0)"

A   (1/3, «) -   (-2/3, ra)
e,., - Go(z) z v/   ; ± i&i\z)Gx(z) z ; "■ •

„=o  ( + 2tJ0)n «-o   ( + 2tJo)"

The related differential equation therefore has in each sector (8.1) a pair of

solutions having the asymptotic forms (8.7).

It is known that

0O -**> 2 T<rW/12, 2/3   T.rx./S »
H1/3(J0e      ) =   ... ,    « [J-i/»(Zo) - <r    e        /i/s(Jo)},

31/Zg.l/l

cf. [9, p. 75]. The solutions (7.3) and (8.5) are thus connected by the relations

(8.9) ykJ(z) = (j\    <r»'«e*'*/»{?*.!(*) - ff*'«eT-"/»y,„(s)},

of which the inverses are

tlZT)1'*

(8-10)

?*•*(*) = TTTT i«"""y*.i(«) ~ e-*i°>12yk,2(z)}.
t(2ir)lli

On the basis of these we readily infer from (7.8) that

(8.11) W(yk.x, ykl2; z) - - 2iX2" exp (-2X f px(z, \)dz\

and from (6.7) and (6.3) that

(8.12) W(y0, yk,x, y*,2;z) = - 2iX8'3exp(-2X j ''Px(z, \)dz\ |l + ^p4 •
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Finally, the values which the y*,j(z) take on at z = 0 are obtainable from (8.9)

and (7.6).
9. Abbreviations, and some simple appraisals. The explicitness of the

formulas of §7 and §8 extends effectively to the order of 1 A'- This will insure

results that also have that degree of explicitness. For the derivation of these

results, however, less exact, and therefore simpler, formulas will to a con-

siderable extent suffice.

By way of abbreviations, let

(9.1) Piz) = f pi,oiz)dz,
J 0

and set

(9.2) £,= ±£0+iXP(z), j = 1,2.

Also let the symbol &(z) be interpreted thus

.0_. ...       /I, when  |fo(«)|   £N,

l£o  (z), when   | £0(z) |   > N,

and let the relations

_ , , Wiyk,i, y*,2; z)
Oo(z) =-'

IF(y0, y*.i, yky, z)

(9.4)
n ..       +Wjy0, yk^j\ z) .
OX*) = —.-:> J = i. 2-

IF(yo, y»,i, y*,2; z)

define their left-hand members. The constant N shall always be understood to

be large enough to make the asymptotic representations (8.7) usable. The

precise value of N is never significant. Finally, let B be adopted as a generic

symbol to signify a function that is bounded when |x| >N. This boundedness

shall be uniform as to any other variables that may be involved, as when the

symbol used is 5(z, X) or B(z, t, X), and relative to such other variables any

function B shall be understood to be analytic, or at least so in piecewise

fashion over certain sub-regions. Since the region of z has been taken to be

bounded and closed, any function that is analytic in it is also bounded.

When $o is in the sector E* and |£0| >N, the representations (8.7), (8.8)

show that

y*,j(z) = £o     exp ( ± i|0 — X I    piiz, \)dz\Biz, X),

y'*,,-(z) = X£0     exp ( ± *£0 — X I    piiz, \)dz\ Biz, X).
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On the other hand, since the functions e±iio and &H±\il-o) with v>0 are

bounded when | £0| ^N, whereas for all z

exp (+X f  piiz, \)dz\ = e±xp<*>£(z, X),

we see from (8.5) that

yk,iiz) =  exp (±*{0 - XP(z))5(z, X),

y'kjiz) = X-exp ( + t£o - XP(z))7*(z, X), when   [ f„ |   ^ N.

We may combine these appraisals by the use of the relations (9.2) and (9.3)

into the forms

e^Biz, X)
yUz)=      \    >^

£ (z)      m •
(9.5) ° fa

X««'B(«,X)
y*.y(z) =-—-» when £0 is in E*; ./ = 1, 2.

!*(«)

For use along with these, the formula (6.1) gives

(9.6) y„(z) = Biz, X),        y0'(z) = 5(z, X).

The relations (6.3), (8.11), and (8.12) yield

Wiyk,i, yk,i; z) = \2'*e-2™Biz, X),

1
-= \-aih2XP<»Biz, X),
Wiyo, yk,i, yk.t; z)

whereas (9.5) and (9.6) show that

\e*iBiz, X)
Wiy0, yk.,-; z) =-——-

£(*)

We thus find for the functions (9.4) the appraisals

Oo(z) = '

(9.7) X
<r<«<3(z, X)

Oj(z) =-'> j = 1, 2.

Finally, with Q defined by (6.9), the evaluations (6.3), (9.5), and (9.6), to
gether with the fact that Liyk,,) =0, lead to the relations

,     x Biz,\) e^Biz,\)
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10. The given and related equations. With the forms of the solutions of

the related equation now at hand, it remains to infer from them the forms of

the solutions of the given equation. We shall show how this may be done.

If, in the equation (6.8), u is thought of as any particular solution u(z),

the right-hand member of the equation is accordingly a specific function of z,

namely Q(u(z), z). Upon denoting this by/(z), the function u(z) in question

is seen to be also a solution of the non-homogeneous equation

f (». X)
L'(u)-^^L(u)=f(z).

Now the reduced companion of this is the related equation (6.5). Hence m(z)

is expressible in terms of the functions y0, y*,i, and yk,2, thus

u(z) = c0y0(z) + ciyk,x(z) + c2yk,2(z)

yo(z) y*,i(z) y*,2(z)             ....

/* f(t)dt
yo(t) yk.x(t) yk,2(t) —--i

'i.\ > (t\ > i.\ w(y°' y^1' yky< l>
yo(t)   yk,x(t)   yk.2(t)

namely, by virtue of (9.4), by a formula

(10.1) u(z) = T,cnyk,n(z) + Eyfc.„(z) f  0.(0/(0*.
n—0 n—0 J

wherein yt.o—Jo- The lower limits of integration, which have not been in-

serted in (10.1), may be taken at arbitrary fixed points of the z-region.

When that has been done, the constants c0, C\, c2 are determined for the func-

tion u(z). The formula (10.1) may be differentiated twice as though the

integrals were independent of z, since the sum of terms that arise from differ-

entiation of these integrals vanishes. Thus

2 2 n  z

u'(z) = Z cny'k,n(z) + Z y'k.»(z) J   O»(J)/(0#,
n=0 n=»0 J

(10.2)

«"(z) = zZc»y",n(z) + T,y'Uz) f \in(t)f(t)dt.
n—0 n—0 J

From (10.1) and (10.2) we may construct the expression Q(u, z), and since

this is precisely what was denoted by/(z) we find thus that

2 S V.I

(10.3) /(*) = Z cnQ(yk,n, z) + Z G(y*.». z) j   0.(0/(0*.
n=0 n—0 "

This deduction was based upon the assumption of a particular solution u(z).

Its character is therefore heuristic. We shall use it merely as a guide to the

following deduction ab initio, which is effectively its reverse.
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With a suitably chosen set of lower limits of integration and constants c„,

the integral equation (10.3) will be shown to have a solution/(z). The form

of this solution will be determined, and in terms of it a function «(z) will be

defined by the formula (10.1). The formulas (10.2) follow, and if Q'u, z) is

formed from these, it is found, by a comparison of the result with (10.3), that

Qiu, z) is precisely/(z). In the relations (10.1) and (10.2) we may therefore

replace fit) by Qiu, t). If the expression L(w) is then formed from (10.1) and

(10.2) it is found that

Liu) = Co7.(y0) + Z,(y0) f  Go(0(?(«, 0*.

whereas it follows from this, since y0 fulfills the equation (6.5), that

L'iu) - i^-L{u) = £(y0)Oo(«)G(«. *).
X

But this is the given differential equation, by (6.7) and (9.4). The function

uiz) as thus defined by (10.1) is therefore a solution of the given equation.

From (10.1) its form will be determinable.

11. Associated regions of X and z. Since <£2(z) has a simple zero at the

turning point, the functions 0(z) and <J>(z) are double-valued. To account for

this we shall henceforth consider the z-region to be a two-sheeted domain,

namely a Riemann surface with a branch point at its origin. The formulas

£o = X*(«),

(H.l) fc = «A{P(«) - »*(*)),

£2 = ik{Piz) + »*(«)},

which have already been set forth as (3.4) and (9.2), define £0, £i, and £2 as

complex variables, and determine maps of the z-region upon respective £,-

regions. These latter are likewise Riemann surfaces with branch points at

their origins, the £0-region being three-sheeted because near z = 0 the function

$ has the character of z3/2, and the regions of £i and £2 being two-sheeted be-

cause P has the character of (z1/2)2.

In each £;-region let 7?(£y) denote the largest sub-region that is star-shaped

with respect to the origin. These regions 7?(£,), for j = 0, 1, 2, have images in

the domain of z under the mappings (11.1), and these images have a common

part (intersection). This common part we shall denote by 7?(z). It may be

noted, in particular, that any sufficiently small neighborhood of z = 0 is in

Ri»).
Since each of the variables (11.1) depends upon X, each region 7?(&) like-

wise does so. The dependence is, however, simple, for any change in X merely

changes the scale of 7?(£,) in the ratio of the change in |X|, and rotates 7?(£,)
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by the amount of the change in arg X. The region R(z) is clearly independent

ofX.
Let z(c) be any chosen point of R(z), and Xw any chosen value of X for

which |X(c)| is large. These values together determine j}e) for each j. Now for

any j we can enclose jjc) within a polygon that lies in i?(Jy), that is convex,

that has no horizontal side, and that also encloses the origin. This polygon,

since it encloses a branch point, has a perimeter that extends several times

around this point. It therefore has a number of uppermost vertices and a

number of lowermost ones, namely certain vertices at which the ordinate is

a relative maximum or minimum. With one such uppermost vertex, and with

one such lowermost one, the point Jyrt can be connected by respective straight

line segments. We shall denote these vertices by Jy,M and Jy,m respectively.

Now under rotations of the polygon which are suitably limited in range, the

vertex Jy,M will retain its property of being an uppermost one, and Jy,m will

retain its property of being a lowermost one. Such a range of arg X defines a

sector of the X-plane which we shall designate by A. The point X(c) is in this

sector.

In i?(Jy) we now define a sub-region i?(c)(Jy) by the following specifications:

(a) it contains the point jje); (b) every point of it can, for every X in A, be

connected with Jy.af by a curve along which the ordinate is nondecreasing; and

(c) every point of it can, for every X in A, be connected with Jy,m by a curve

along which the ordinate is nonincreasing. The regions i?(c)(J,), for j = 0, 1, 2,

have images under the mappings (11.1), and these images have a common

part. We denote this common part by R&(z), and we shall say that the sector

A and the region Ri(z) are associated regions.

We have shown that any pair of points z and X of which the former is in

R(z) can be enclosed in associated regions. Any region i?(c)(Jy) is easily seen

to be a sector bounded by two lines on which arg Jy is constant. Also any re-

gion J?(e)(J0) necessarily lies in some sector S*. Every region Ra(z) therefore

has the point z =0 upon its boundary, and is one within which a relation (8.1)

maintains. Finally, each pair of regions A and Ra(z) has associated with it a

set of points, namely the points z,-,m and zy,m, j=0,1, 2, that are the images

of the vertices Jy.Af and J,,m. These points are fixed, namely do not vary with

X, so long as X remains in the sector A. The points Zj,m and Zy,m are in R(z), but

not necessarily in R\(z).

12. Paths of integration. When z and X are confined to a pair of associated

regions, we shall choose the lower limits of integration of the relations (10.3)

and (10.1) at the points zitu and Zy,m thereby determined. The paths of inte-

gration from these points to z may be chosen at pleasure, since the integrands

are analytic. We shall choose them so as to facilitate appraisals of the

integrals.

With j as any one of the indices 0, 1, 2, and with y. standing for either

M or m, let Ty,. denote the path from Zy,M to z. We describe this path with
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reference to its appearance in 7?(£,) as follows. It is the straight segment from

£j,n to £y, provided this lies wholly in i?(£;); otherwise it is the broken line con-

sisting of the segments from £yiM to the origin, and from there to &. On every

such path the ordinate of (•/, and hence the real part of *£,-, varies monoton-

ically. Thus

e-iti(*)+it)(t) is bounded when / is on T.-m, and
(12.1)

e»£y(*)-»{/(*)    is bounded when / is on Tj,m.

We may now establish the following lemma.

Lemma. An integral of the form

(I2-2) L\B(",MmT-
is bounded uniformly in z, when | X | > N.

Consider this first when j = 0. Then, by (3.9),

[£o(0]2      I      L £'„(/) J /x>«^'

and since the function within the brace is bounded the integral (12.2) is a

bounded multiple of

(12.3) f     L«L_.

If the path r0lM passes through the origin of i?(£0), it consists of segments upon

which |d£0| = +<2|£o|. Hence (12.3) is no greater than

(3/|x|i/«) {\^^+ |fo|wi},

which is bounded. If the path does not pass through the origin, let £*,0 be

its nearest point to the origin. Then since rf£o =<2(£o —£* ,o) and along the path

|£o| > |£o— £*,o|, the integral (12.3) is less than

C    |   <*(£o — £*.o)

Jr0.M'*H:o-l:*.o)11* '

Inasmuch as the path is now one on which |<f(£o—£*,o)| = + rf|£o—£*,ol, we

may again reach the previous conclusion.

When j = 1, 2, the relation (11.1) yields

«-   ,    d('—r,
iMPi.tit) T **(<)}
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and by (3.2) this is
=  jPUt) + W))   rfJy

*>2.o(0 X

Since also

l       (iP(t) ± HtWn  X1'8

w~ \   **"   /  w
we see that

.1/3 . l/«   2 _ 1/2

X   dt  =   pi.o + i<j>\ |Jo\    liP + 4>)        d£j

[j"o(0]2_  t    *t?».o   / tjo/    I   «>2/3   J      X1'^'2'

The functions within braces are all bounded. Hence the integral (12.2) is a

bounded multiple of

Jtu I x»/2jy2'

The boundedness of this can be established by the reasoning applied to the

case j=0.

Corollary. An integral of the form

(12.4) I      \B(z,t,\)——,
Jrj.„ I 6(0

is bounded, uniformly in z, when |X| >N.

Since JS(0 A1" is bounded, this integral is in fact of the form (12.2).

13. A solution «*,o(z). When X and z are confined to a pair of associated

regions, the variable Jo is confined to a region that lies in some sector (8.1).

If it lies in just one such sector the integer k is thereby determined. If it lies

in each of two consecutive sectors (8.1), as it may, k may be chosen as either

one of the relevant integers, for the results to be obtained from the alternative

choices are then asymptotically equivalent for the X and z in question.

Let the functions Fy,0(z) be defined by the formulas

F0,0(z) = Xr_2~1/8J„*(z)e(yo, z),

Fy.o(z) = X^&OrV* Q(ykj, z), j = 1, 2.

It follows from (9.8) that these functions are bounded, namely that with a

suitable constant M

(13.2) |Fy,0(z)|   <M, i = 0, 1, 2,

when |X| >N.
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Consider the equation (10.3) when the lower limits of integration are

taken at z2,m, Zi.m, and Zt,m respectively, and the constants are given the

values co = l, ci=c2=0. If the/(z) is then specifically denoted by/0(z), the

equation is

/o(z) = <?(yo, z) |~1 +   f     Q0it)Mt)dt\ + zZQiyx.i,z) f     Qiit)Mt)dt.
L        Jr2.n J       j^i Jrjtm

Let this be multiplied by Xr_2_1/6&(z). It can then be written as

(13.3) Fo(z) = Fo.o(z) + — f Koiz, t, X)F0it)dt,

with

(13.4) F0iz) = Xr_2_1/S£o'(z)/o(2),

and

fX2Fi,o(z)ei«i(')Qi(0
-m-,onri-

(13.5) K0iz,t,\)=\
X2+1/«F0.o(z)I2o(0      X2F2.„(z)e«a('>n2(0
-1-1 on r( ..
I      £o« r.w

The relation (13.3) is an integral equation. Its kernel (13.5) has, by (9.7) and

(13.2), the form

X1'»e'«iC')-«i(')5(g,/,X)

!*.»--m'-'°°r""'
° X1'65(z, t, X)      X"V*»<'>-«.<'>B(z, /, X)

\   m    +       Isool5       'on r,~

The exponentials in this are all bounded on the respective paths, by (12.1).

Hence the respective integrals of |7£0(z, t, X)dt\ are of the type (12.2). By

the lemma of §12, therefore, there is a constant M0 for which

(13.6) f | Koiz,t,\)dt\   < Mo.

The relation

(13-7) F„(z) = zZ(-PfYoAz),

in which
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(13.8) Fo,„(z) =  f K0(z, t, \)Y0.n-i(t)dt,    ra = 1, 2, 3,- • •.

is formally obtainable by the repeated iteration of the equation (13.3). It

yields a solution of that equation when the series involved in it converges

uniformly. Now because of (13.2) and (13.6) an induction upon the basis of

(13.8) shows that

| Fo.„(z) |   < MMl

Hence when |x| >N the series in (13.7) does converge uniformly. F0(z) ac-

cordingly exists and is bounded, and it follows from this by (13.4) that

B(z, X)
(13.9) /o(z) =- •

Following the argument set forth in §10, we now define w*,o(z) by the

formula (10.1) with the same lower limits of integration and constants as

were used above. This and its derived formulas (10.2) are specifically

2

Uk,o(z) = y*,o(z) + Z ao.n(z)y*,„(z),
n—0

2

(13.10) «A,o(z)   =   y*,o(z)  +  Z ao,n(z)y*,n(z),
n—0

2

«*',o(z)   =   y'*',o(z)  +  Z <*0,n(z)y*'n(z),
n=0

with

ao.o(z) =   f     Uo(t)Mt)dt,       a0,}(z) =   f     Oy(0/o(0*. j = 1. 2.
•/r2m «'r>„»

The evaluations (9.7) and (13.9) show that

1   r       WB^, X)
«o,o(z) = — I        -—-*,

X'^r2,„       Jo(0

\lHg-itfW   /.        \U*emU)-HiittB(t, X)
«o,y(z) = -—- I -TZ7ZT,-dL

Xr        •>?,,„ Uo(0]2

By the lemma of §12 it follows that

, ,      B(z, X)
ao.oW = -'

Xr

(13.11)
X1'«e-i«'(«)JB(z, X)

ao.y(z) =-—-> j = 1, 2.
A

The relations (9.5), (9.6), and (13.11), as applied to (13.10), now yield the
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following result, that while X and z remain in their original associated regions

X1'6j5(z, X)
«m(z) = yk.oiz) H-        —>

Xr£S(z)

X1'«S(z, X)
(13.12) «*|0(s) = y*,o(s) +   ,    ■„,. ,   >

X^^0(z)

XW«B(,,X)
«m« = yUz) + -^^- ■

Finally, it may be seen from (13.10), since L(y*,y) =0 for j = l, 2, that

Z(M*,0)=L(yo){l-|-ao.o(2)}. Hence, by (6.3) and (13.11),

(       Biz, \))
(13.13) Liuk,o) = \2<l+ >•

Since every z-region of an associated pair includes the origin upon its

boundary, the evaluations (13.12) and (13.13) are valid in every case when

z = 0. The values of y*,o(z) and its derivatives are obtainable from the formula

(6.1).
It should be observed that different pairs of associated X and z-regions may

all yield £0-regions that lie within a single sector 2*, and may therefore have

the same value of k associated with them. Within each of these pairs of

regions some solution has the form (13.12). The solution uk,oiz) for one such

pair of regions need not, however, be the same as the solution m*,o(z) for an-

other pair.

14. The solutions ukjiz), forj = l, 2. The procedure of §13 leads also to

the forms of a further pair of solutions. Let/(z) be designated by/i(z) when

the equation (10.3) is taken with the lower limits of integration at Zi.m,

z0,m, and z0,m respectively, and the constants are given the values c0 = 0,

ci = 1, c2 = 0. Then, after it has been multiplied by Xr_2£o(z)e-<f»(*>, the equation

can be written as

(14.1) Fiiz) = F,,0(z) +— f Kiiz, t, \)Fiit)dt,

with

(14.2) Fiiz) = \r~Yoiz)e~iU(z)fiiz),

and
X2Fi.0(z)ni(0ci{l(')      X2F2,o(z)e-2i«'<*)+«l(')fi2(0
-1-> on To.jif,

K^z, t, X) =
X2+1/«F0,o(z)e-<«l(*>+«1(') 0,(0
-—-> on Ti,M.

By virtue of the evaluations (9.7) we see that
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X1"^, I, X)      X1'V,*<«>+,*«£(«, t, X)
-;-;-1-r-;-' on IVaf,

rf ,,,       tewl1 [Jo(o]2
Kx(z, t, X) =

X«,<-*w+*<»5(8,/,X)
-> on Tx.m-
I Jo(0

The exponentials here involved are bounded on the respective paths, and,

because the integrals are of the forms (12.2) or (12.4), it follows that

j | Kx(z, t, \)dt\   < Mx,

with some constant Mx. This relation, together with (13.2), insures the uni-

form convergence of the series that results from the repeated iteration of the

equation (14.1). Therefore Fx(z) exists and is bounded, and, by (14.2),

eii^B(z, X)
(14.3) /i(z) =-^^•

X-2J0(z)

A solution uk,i(z) and its derivatives are now given by the formulas (10.1)

and (10.2), namely

2

M*.l(z)  =  y*.l(z) + Z «l.n(z)y*,n(z),
n=0

2

(14.4) «'t,i(z) = yi.i(z) + Z «i..(z)y*..(z).
n—0

2

«",l(z)   =  y*',l(z) +  Z «l.n(z)y*'.n(z).
*-0

with

«i.o(z) = f    o,(0/i(0*.    «i.X«) = f    oX0/i(0*. j = i. 2.
J ri.M J r0.M

By virtue of the evaluations (9.7) and (14.3), and the lemma of §12, it follows

that

e«»<*>J3(z, X)

»!•»(«) =        Xf+1/8       '

B(z, X)
(14.5) ax.x(z) =-^—"'

A

e2>i»MB(z,\)
ax.2(z) =-—-

A

Therewith the relations (14.4) yield the forms
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e^^B(z, X)
«*,i(z) = yt.i(z) H-r-777—'

xrJS(z)

, , eW*B(z, X)
(14.6) uk,x(z) = yk,i(z) -\- >

X^2Jo(z)

«W>3(,, X)

«mM = y,,(z) +     xr_igw     •

From (14.4) and (14.5) it is also to be seen that

(14.7) L(uk,x) = XV*w.B(*f X)/X^1'6 •

Let/(z) be designated by/2(z) when the equation (10.3) is taken with the

lower limits of integration at z2,m, z0,m, and Zo,m respectively, and the con-

stants are given the values co=Ci=0, c2 = l. The equation, after it has been

multiplied by Xr-2JS(z)c_*'{j(*), may then be written as

Fz(z) = F2,o(z) + — f Kz(z, t, \)Fz(t)dt,

. . . r—2 *. .   —if2(«). , N
with F2(z) = X    Jo(z)«        Mz), and

X2Fi,o(z)e2if»(l)+<«'<')01(0      X2F2l0(z)e«»<'>02(0

K<    ,K        -•»-+ _-■»-">"IV*'K2(z, t, X) =
X2+1/6F0>o(z)e-i£s<i)+^(')0„(0
-:-> on Tt.lt.

I Jo(0

From this we find in the manner now familiar that

/,(*) = tmwB(fi x)/x-2j;(z),

and that in the relation

2

(14.8) uk,z(z) = yk.2(z) + Z «s.n(z)yt,.(z) >
n—0

the coefficients a2,.(z) are of the forms

ei(*^B(z, X)
<*2,o(z)   =  ->

e-iii*MB(z, X)
(14.9) az,i(z) --^,

Xr

, ,      5(z, X)
«2.2(Z)   =  ——-

A
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The equation (14.8) and its derivatives therefore yield the forms

««»<»>£(*, X)
«*.2(z) = Vk.tiz) -\->

xr£S(2)

«*c'f(j, X)
(14.10) «'*>2(z) = y'Uz) +     ,   1M/ .     >

e<i2(*)^(z, X)
«*.s(0 = y*.»(0 H-————>

x^2£S(z)

and
XV«»<«>£(z, X)

(14.11) L(M,2)=__-

The representations (14.6) and (14.10) maintain, like (13.12), in a pair

of associated regions for which £0 lies in the sector 2*. They are, in every case,

valid at z = 0. The values of yk,, and their derivatives at z = 0 may be obtained

from the relations (8.9) and (7.6).

15. The general solution identified at z = 0. Since z = 0 is an ordinary

(nonsingular) point of the given differential equation, any solution m(z) is

identified by its values

(15.1) «(0),       «'(0),       «"(0).

When any X for which |X| >N, and any z in 7?(z) are given, the sector (8.1)

which contains £o is identified. For these values of X and z the solutions

Mt.y(z), j = 0, 1, 2, accordingly have the forms given by the formulas (13.12),

(14.6), and (14.10). Now the right-hand member of the relation

«t,o(z)     Uk.iiz)     uk,iiz) 0

2)     u(z) =_^_   M*'°(0)    M*'l(0)    M*'2(0)    "(0)

Wiukl0,uk.i,Uk,i;0)   «i.0(0)    «i.i(0)    «i.,(0)    «'(0)

«".o(0)    «i'i(0)    «".2(0)    «"(0)

is a linear combination of the functions w*,,(z), and is therefore a solution. It

is readily seen to assume the values (15.1), whereby the formula (15.2) is

established.
For the Wronskian that appears in this formula the relations (13.10),

(14.4), and (14.8) yield

(15.3) IF(«*,o, w*.i, uk,i; z) = JF(y*,0, y*,i, y*,2; z)A(z),

with
1 + ao,o(z)       «i,o(z) a2,o(z)

(15.4) AGO = «o.i(z) l + ai,i(z)        a2.i(z)

ao,2(z) «i.2(z) 1 + ai.iiz)
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From the evaluations (13.11), (14.5), and (14.9) it follows that

A(z) = 1 + B(z, X)/X'.

This, taken with (8.12), yields the result

(15.5) W(uk,0,uk,x,uk,2;z) = - 2iX8" exp (-2\ j  px(z, \)dr\ jl + —-j .

In this we have written 5(X) instead of B(z, X), since a dependence of this

function upon z is precluded by the form of the given differential equation

(2.3). The formula (15.2) is thus more explicitly

«*.o(z)     uk,x(z)     uk,z(z) 0

/te ^        ,, *    L   ,  B(\)\    «*.o(0)    «t,x(0)    «*,2(0)    w(0)
(15.6) u(z) =-<1 H->      , , , , .

2X8"l X' f   «i.0(0)    u'k.i(0)    «*.2(0)     «'(0)

«".o(0)    u'UO)    u'UO)    u"(0)

The relation (15.6) is of the form

u(z) = C0(X)m*,o(z) + Ci(X)«t,i(z) + C2(X)«i,2(z),

with coefficients Cy(X) that are explicitly determinable to the terms in 1/Xr.

To that extent the form of w(z) is thus given when z and X are such that Jo

lies in the sector S*. This result remains deficient in the case that the explicit

part of the coefficient of the dominant member of the set ukj(z) turns out to be

zero, for it then remains ambiguous whether this coefficient is nonvanishing

of the order of 1/Xm with some m>r, or whether it is actually zero. This am-

biguity is inherent in asymptotic representation. It is because of this that

the forms for the solutions ukj(z) for different indices k, not merely for a sin-

gle k, have been determined. Within the limitation described, the formula

(15.6) can, of course, be applied to any solution ukii(z) with any index k,

since the values of this solution at z = 0 have been asymptotically determined.

16. A comparison with the case of no turning point. In any closed bounded

z-region in which the roots of the auxiliary equation (1.3) are distinct, and

hence, in particular, in any closed part of our region R(z) that does not in-

clude the turning point, classical procedures may be applied to derive the

forms of the solutions of the given differential equation (1.1). By substituting

for w an expression

(16.1) exp(xjx/z)dr)z^,

in which Xi(z) is anY ro°t of (1.3), and the coefficients sy,„(z) are undeter-

mined, the differential equation is given the form



122 R. E. LANGER [September

(16.2) exp (x j Xiiz)dr\ X2 £ ^£ = 0.

In this the functions 5,-,„(z) are all expressible in terms of the coefficients

sy.n(z), the leading one being

5y,0(z) = Oo.iiz)s'j.o + Ol,iiz)Sj,o,

with

2

0o,y = 3xy +'2Ai,oXy + ^2,0,

(16.3) , 2
0i.j = [3xy + Ai.ojxy + Ai.iXy + *2,ixy + ^3.1-

For n = l, 2, 3, • • ■ , it is found that

Sj.niz)   = 00,/Sy.n + Ol.jSj.n + /j,n(2),

with /y,„ standing for a function that involves the coefficients sy,m only for

w<«.

The equation (16.2) is formally fulfilled if each function 5y,„(z) is identi-

cally zero. This can be assured by choosing s/.oCO as a solution of the differ-

ential equation

(16.4) 0o.y(z)*y.o + 0i.y(O*y.o = 0,

and then choosing the sy,„(z) for « = 1, 2, 3, • • • , in turn as solutions of the

respective differential equations

(16.5) 0o.y(z)*'y.» + *i./C0*/.. + //..GO = 0.

Although the expression (16.1) thus obtained formally fulfills the differential

equation, it fails to give a solution, because the series involved in it diverges.

However, it can be shown that in appropriately defined sub-regions of X and

z there are solutions w>/(z) that have the forms

(16.6) Wjiz) = exp (X J  xii*)dz) | £ -^ + -~^j ,      j = 0, 1, 2.

If, before this deduction is applied, the given differential equation is put

into the normal form (2.12), the roots of its auxiliary equation are explicitly

XoOO —0, Xy(z) = —pi.oiz) ±i<i>iz), j = 1, 2. The forms (16.6) are then

!=» SoAz)      Biz, X)
«o(0 = Zu —— + ———'

»-o    X" Xr

(16.7)
^ ^y.n(z)      e't'Biz, X)

«y(z) = e* zZ "^ +-~Lj-« i = 1, 2.
»-o     Xn Xr
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These are the analogues of the forms which, in the presence of a turning

point, we have derived as (13.12), (14.6), and (14.10).

The way in which the classical procedure fails when the z-region contains

a turning point is now readily discerned. A turning point is by definition one

in which a multiplicity among the roots of the auxiliary equation occurs. It

is therefore a point in which at least two of the functions 0o,y(z), as given by

(16.3), vanish. The differential equations (16.4) and (16.5), from which the

coefficients of the forms (16.6) or (16.7) must be determined, are therefore

singular at this point. Hence the coefficients Sj,n(z), and therewith the whole

explicit parts of the formulas (16.7), become infinitely discontinuous. Near a

turning point, therefore, the forms yielded by the classical theory cannot be

used.
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