A CLASS OF AFFINELY CONNECTED SPACES

BY
HSIEN-CHUNG WANG anpo KENTARO YANO

It is known that the existence of a group G of motions of sufficiently high
dimension in an n-dimensional Riemannian space imposes strong restrictions
on the space [10; 15; 16]. This restriction is related to the fact that the iso-
tropic subgroup, being a “high” dimensional subgroup of the orthogonal
group O(n), is very restricted [12]. Some results of this nature for affine con-
nections have been known [4; 5; 6; 7; 8; 11; 13]; in particular, if an affinely
connected space 9, of dimension # admits a group G of collineations with dim G
=>n?—n+S5, then U, is projectively flat. We know however that, unlike the
Riemannian case, there are numerous non-equivalent, simply-connected,
homogeneous(!) affinely connected spaces with the same local structure. For
example, over the Euclidean space (in the topological sense), many flat and
homogeneous affine connections can be defined such that any two of them are
different in the global sense(?). This tells us that the above class of spaces
A, needs some further clarifications.

In this paper, we give a more detailed study of the symmetric affinely
connected spaces U, having the above property. All the possible curvature
tensors of ¥, as well as the isotropic subgroup of G are determined (Theorem
2, §9). In case G is transitive, we exhibit all the simply-connected U.’s
(Theorem 3, §10). They fall into three individual cases and two classes de-
pending on a non-negative constant. Among them, there are three affinely
flat spaces, two of which are homeomorphic with the euclidean space while
the other one homeomorphic with the product of a line and an (#—1)-sphere,
n>2. As for the nonflat cases, they are all homeomorphic with the euclidean
space. For the transitive case, all the isotropic subgroups given in Theorem 2
are realized; some of them can moreover be realized over nonequivalent
affinely connected spaces.

1. Reducibility of certain linear groups. Let P, denote the special linear
group of n real variables !, - - -, x» In this section and the next, we shall
determine all the closed subgroups of P, with dimension not less than
n?—2n+4. This information plays an important réle in our further discus-
sions. Let us first establish the following
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(*) An affinely connected space is called homogeneous if it admits a transitive group of
collineations.

(?) Let B, be the entire n-space with coordinates x!, x2, « - -, x* and B,(m) the subset of
B, consisting of all the points whose first m coordinates are positive. The affinely connected
spaces {Ba(m); Mip(x) =0} (m=0, 1, 2, - - -, n) are homogeneous, flat, and homeomorphic
with one another. But no two of them are equivalent.

72



A CLASS OF AFFINELY CONNECTED SPACES 73

LEMMA 1. Let G be a proper subgroup of P,. If dim G=n?—2n-+4, then G is
reducible.

Proof. We shall prove it by using the method of contradiction. Suppose G
to be irreducible. Let G denote the same group G when the range of the vari-
ables x!, - - -, x" is extended to the field of complex numbers. Thus G is a
transformation group of the complex vector space of #n-dimensions. Of course,

dim G =dimG = #? — 2n + 4.

If G is reducible, then as a direct consequence of Cartan’s arguments [1, p.
155] we would have dim G'< (n/2)* which is impossible. Thus Gisirreducible,
and thus the complex form I" of G is also irreducible. We know that [1, p. 151]
a complex irreducible linear group is either semi-simple or the direct product
of a semi-simple group and the homothetic group defined by y*=px® where
p is an arbitrary nonvanishing complex number. From our assumption GC P,
no homothetic transformation can appear in I'. Hence T' is semi-simple. Here
we find it convenient to divide our discussion into the following two cases:

Cask 1. T is simple. Since the complex dimension of I which is the same
as dim G is not less than n%2—2n+44, we know that T' cannot be isomorphic
with a complex linear group in less than # variables. Such simple linear
groups have been determined by Cartan. Taking account of the fact dim T’
2n?—2n+4, a survey of Cartan’s table [3, pp. 147-148] tells us at once
that dim I'=#2—1 where dim I" means the complex dimension. Hence dim G
=n?—1. This contradicts our assumption that G is a proper subgroup of P,.

Cask 2. I' is not simple. From representation theory, I" can be written as
a Kronecker product I'y XT's of two nontrivial irreducible linear groups I
and T';. Let r; and n; denote, respectively, the complex dimension and de-
gree(®) of I'; (=1, 2). Then

nine = n, ri+re=dimT = n?2— 2n + 4, n = 2, ne = 2.

Without loss of generality, we can assume r; = (n2—2n+4)/2. Since m; <n/2,
it follows that r,=#n2—1. A contradiction is thus obtained.

The contradiction in both alternatives proves our lemma.

2. Subgroups of the affine groups. Let H, be the general linear group in
n real variables. Then each element of H, can be regarded as a nonsingular
real matrix (a:;), and the special linear group P, becomes the totality of
matrices (ai;) whose determinants det (a:;) are equal to one. For simplicity,
we shall use the following notations throughout:

Hi = {(a,-,-):det (as;) > 0},
K = {(a;,-):a.-; = N8;j, N\ = positive number}(‘),

——

(%) By the degree of a linear group, we mean the dimension of the vector space on which it
acts.
(4) 84, 85 denote the Kronecker deltas.
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L= {(a.-,-):ail =1, @1 = 0,det (a;5) = 1;2a=2,3,---, n},
L' = {(ai):an =1, @1o = 0,det (a;) = 1;2=2,3,---, n},
M = {(8:):011> 0, @a1 = 0,det (@) = 1;@=2,3,---,n},
M = {(8:):a11> 0, 610 = 0, det (ai;) = ;2 =2,3,-- -, n},
where, and in the following, the indices a, b, ¢, - - -, 4, j, k, - - - take the
values in the range 1, 2, 3, - - -, n.

We see at once that they are closed and connected subgroups of H;t, and
dim H; = n? dim K =1,
dimL=dimL =n%—n—1, dim M =dim M’ = n? — n.

LEMMA 2. Let G be a closed and connected subgroup of M with dim G=n?
—2n+4. Then either G=L, or G= M.

Proof. Let
P,,= {(a;,-):au =1, 614 = @1 = 0,det (as;) = 1;0a=2,3,---, n}
Since G, L, and P,_, are all subgroups of M, we have
(2.1) dim (GN Ppy) =dim G+ dim P,y — dim M = #n? — 3n + 4,
(2.2) dim (LN Ppy) =dim L +dim P,y — dim M = n; — 3n + 3.

It is a well known result (due to S. Lie) that the projective group P; has
no proper subgroup with dimension higher than k2— k. Thus P,_; cannot have
proper subgroup with dimension higher than n2—3%-+42. (2.1) then implies
that GN\P,_1=P,_;, or what is the same, P, ;CG. Thus P,_;CGNLCL.
By using matrix multiplication we can easily verify that P,_; is a maximal
subgroup of L. It follows then that GN\L is either P,_; or L. On account of
(2.2), the first alternative cannot happen, and therefore, GNL=L,i.e., LCG.
But we know that the difference between the dimensions of L and M is
equal to one. It follows thén that G is either L or M. Lemma 2 is proved.

THEOREM 1. Let G be a closed and connected subgroup of P,. If dim G=n?
—2n-4, then G is conjugate to one of the groups P,, L, M, L', M.

Proof. If G=P,, our theorem evidently holds. Now, assume G#P,.
Lemma 1 then tells us that G is reducible. In other words, G leaves invariant
a linear subspace of m dimensions with 0 <m <n. Thus dim G=<n?—1
—m(n—m). From the inequality dim G=%n?—2n-+4, it follows that m is
either 1 or n—1. These two cases are dual to each other. Suppose that m=1.
Then G leaves invariant a line. Up to an inner automorphism of P,, we can
assume this invariant line to be

=28 = ... = g7 =0,

Thus G is subgroup of M. From Lemma 2, it follows that G is either L
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or M. By a duality argument, we see that in case m=n—1, G is either L’ or
M’. Theorem 1 is hereby proved.

COROLLARY. For each real number b, let us denote by I(b) the totality of
diagonal matrices of the form:

ettt 0 0O 0:-:0

0 et 0 0---0
0 0 ¢t 0--:0
0 0 0 O0---eb

where t runs through all real numbers. Then each closed and connected subgroup
G of H, with dim G=n?—2n+S5 is conjugate to one of the groups: HF, P,,
KXM, KXM', KXL, KXL', I(b) XL, I(6) XL', L, L'".

Proof. From the connectedness of G, we know GCH,}. Let G¥*=GNP,.
Since H;f =K X P, and dim K =1, it follows that G* is a normal subgroup of
G and dim G*<dim G=<dim G*+1. This tells us that dim G*=n%—2n-}4.
Then on account of Theorem 1, we can assume G* to be one of the groups
P, L, M, L', M'. When G*=P,, G is evidently either P, or H;. We shall
only discuss the cases G*=L and G*=M; the remaining two cases can be
reduced to these two by a duality.

CasE 1. G*=M. Since G* is a normal subgroup of G, G is contained in
the normalizer K XM of M. From the fact that MCGCKNM, dim K=1,
we know that G can only be M or KX M. But M=I(—1/n)XL. Thus our
corollary holds in this case. '

CAsE 2. G*=L. The normalizer of Lin H;} is KX M. Hence LCGCK X M.
Passing from these groups to their Lie algebras, we find by a short calculation
that G is either L or K XL or I(b) XL for a certain b. This completes the
proof of the corollary.

3. Groups of affine collineations. Let ¥, be an z#-dimensional space with
symmetric affine connection I';(x) covered by a system of coordinate neigh-
borhoods (x%). Then the paths of this space are defined to be integral curves
of the differential equations

a*xt i dx? dx*

jk— ——— =

3.1
3-1) ds? ds ds

)

s being the so-called affine parameter on each path. A point transformation
3.2) &= f‘(x)

is called an affine collineation when it carries any path into a path of the space
and preserves the affine character of the parameter s. A necessary and suffi-
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cient condition that (3.2) be an affine collineation is that

(3.3) r @ 9%’ (ax" dx° e + 9%*x® )
. ik\X) = _— X .
* ax°\3zi az* d%iozk

If (3.2) is an infinitesimal transformation
(3.4 & = x° 4 Ei(x)ds,
£i(x) being a vector field and df an infinitesimal, then (3.3) gives

% | oTh  of o o

(3.5) Xr;k = FYRTI Py Py Jk '+' I‘ak + PJa =0

where X is the operator of Lie derivation with respect to (3.4). Equation
(3.5) may be written also in tensor form:

(3.6) XTé = Eju + Réjut’ = 0,

where the semi-colon followed by an index denotes the covariant differentia-
tion with respect to I'i; and Rfj; the curvature tensor formed with I'i;.

The integrability conditions of system (3.6) of partial differential equa-
tions, or those of

3.7 Eie = — Rijuf
are given by a sequence of equations
(3.8)1  XRijm = £Rijtia — E5aR%k1 + £%5iR%m + EuRar + §%uR%ka = 0,
XRijkiim = £ Rijktimia — E:aR%ktim + £%iRkum + kR jatim
+ £%iR%kaim + E%mRijrtia = 0,

............................

(3.8)2

Thus, in order that system (3.7) of partial differential equations be
integrable, it is necessary and sufficient that there exist a positive integer N
such that equations (3.8)1, (3.8)2, - - -, (3.8)x41 are automatically satisfied
by & and §¢;; satisfying equations (3.8)1, (3.8)s, - - -, (3.8)n.

In this case, if N equations (3.8)1, (3.8)z, - - -, (3.8)w give just 7 linearly
independent equations with respect to £ and £%;;, then the space admits a
group of affine collineations with dimension n?+n—r.

Conversely, if the space admits a group of affine collineations with dimen-
sion n2+n—s, then there exist s linearly independent relations between £ and
&i;;and the integrability conditions (3.8),, 3.8s, - - - should be automatically
satisfied by & and &;; satisfying these s relations [9; 15].

Now, when the space admits a group G of affine collineations with dimen-
sion 7, if we take a point P in the space and consider all the transformations
of the group which fix this point P, then such transformations form a sub-
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group Gp, called the isotropic subgroup at P. This subgroup Gp consists of
transformations
T:% = fi(x; @)
such that
x:, = fi(%o; @)
where xj are the coordinates of the points P, and « denotes the parameters.
To each transformation T, in Gp, there corresponds a linear transforma-
tion
(g = LE5 D
ox?
of the tangent space L at the point P. It can be easily proved that this linear
representation 7 of Gp is an isomorphism in the sense of topological groups
[16].

Now consider the matrix (£) (a=1, 2, - - -, 7) of the components of a
basis of the infinitesimal group of G, and denote by ¢ the generic rank of this
matrix. A point is called an ordinary point if, at this point, the matrix assumes
the maximum rank g, and is called a singular point if otherwise.

Let %, be an n-dimensional space with a symmetric affine connection ad-
mitting a group G of affine collineations of dimension greater than or equal to
n?—n-+5. We confine ourselves to an open domain containing only ordinary
points. Let Gp denote the isotropic subgroup at P. Then evidently dim Gp
=dim 7(Gp) 2n2—2n+S5. Thus, by corollary to Theorem 1, the identity
component Ap of 7(Gp) should be conjugate to one of the groups H;, P,
KXM,KXM',KXL, KXL' I(b)XL, I(b)XL', L, L.

4. The case by which A4, is conjugate to H; or P,. In these two cases,
the group G is transitive. Because if G is not transitive, there would be an
invariant subvariety passing through P, and consequently, 4 would leave
invariant a proper linear subspace of the tangent space .Lr at the point P
which is impossible.

1. Case Ap=H,}. In this case, G is of dimension #2+#x. Thus the integra-
bility conditions (3.8); should be satisfied identically by any ¢ and £%;;. Thus
by writing (3.8); in- the form

4.1)  ERipme — B:a(0uR% 8 — 87R%p — 81Re; — 81Rijas) = 0(%,
we obtain

(4.2) Rijkge = 0

and

(4.3 5:R“m — 8;R%; — 83R¥jp — 8iR%iy = 0.



78 HSIEN-CHUNG WANG AND KENTARO YANO [September

From (4.3), we get, by contraction with respect to a and b,
4.4 Rij = 0.

It is evident that if Ri;;=0, then conditions (3.8);, (3.8)s, + - - are auto-
matically satisfied. Thus, in order that Ap=H,, it is necessary and sufficient
that the space is flat.

2. CaseE Ap=P,. In this case, the group 4 p being of dimension 2—1 and
the group G being transitive, we know that dim G=»n2+n—1. Since 4p=P,,
£;; should satisfy

(4‘5) £.=0

and the integrability conditions (3.8) should be satisfied identically by any
& and £4; satisfying (4.5).
Thus comparing (3.8); and (4.5), we see that there should exist functions
Fi;i such that
E°Rijktia — EGaR%m + £% iRk + £%aR a1 + E5iR ke = — E%aFn

become identities in &% and £¢;;. Thus we must have

(4.6) Rijkga = 0
and
4.7) 35R%j1 — 8iRésiy — OxR%jpr — iR jny = 8uF%u.

By contraction with respect to a and b, we find from (4.7)
Fijp = — (2/n)Rijn,
and by contraction with respect to ¢z and b, we get

(4.8) nR%;x — 61“Rj]_¢ + BZR,-z + 8;(sz' — Ru) = — (2/n)R%jx,

where Rj; = R%;,. Contracting again with respect to a and I, we find R;=0
for n>2. Thus we have, from (4.8), Ri;;=0.

5. The case in which Ap is conjugate to KX M, KX M', KXLor KXL'.
In these cases, the group G is transitive. We shall prove this by method of
contradiction.

We first suppose that 4 p =K XM or K XL and that the group G is intran-
sitive. Then the invariant subvariety passing through P should be one-
dimensional, because the linear manifold tangent to this subvariety at P is
left invariant by K X M or K X L which fixes one and only one direction. Thus
the rank of the matrix (£) is equal to 1 at P and, consequently, is equal to
1 at every point of the domain under consideration. It follows that through
every point of *his domain there passes one and only one invariant curve.

Now take an invariant curve passing through a point Q which is not on
the invariant curve passing through P and which is in the domain under
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consideration, and consider all the paths joining P to the points on the in-
variant curve passing through Q. These paths constitute a two-dimensional
surface. This surface is left invariant by the isotropic subgroup Gp. Conse-
quently, the corresponding linear group 4p must fix the two-dimensional
plane tangent to this surface at P which contradicts our assumption.

We next suppose that Ap=K XM’ or KXL' and that the group G is
intransitive. The invariant subvariety passing through P should be (n—1)-
dimensional, because the linear manifold tangent to this subvariety at P is left
invariant by K X M’ or K X L’ which fixes one and only one hyperplane. Thus
the rank of the matrix (&) is equal to z—1 at P and, consequently, is equal
to n—1 at every point of the domain under consideration. It follows that
through every point of the domain there passes one and only one invariant
hypersyrface.

Now, consider a path through P which intersects these invariant hyper-
surfaces; then the points of intersections can be transformed by K into one
another (except the point P, of course), which is a contradiction.

Thus, in these cases, the group G is transitive, and consequently two iso-
tropic groups at any two ordinary points in the domain under consideration
are conjugate to each other.

The groups KX M, KXM', KX L, KXL'being respectively with dimen-
sion n2—n+1, n?—n-+1, n2—n, n2—n, and the group G being transitive, the
group G is respectively with dimension n2+1, n241, n2, n2,

Now, at the point P of the domain, we choose the normal coordinates x*
whose origin is P, then the space admits a one-parameter group of affine
collineations

(5.1) it = etxt,

In this coordinate system, the vector £ defining the infinitesimal trans-
formation of this one-parameter group is given by

(5.2) £ = xi
Thus, the integrability condition (3.8); becomes
3R".
x® i + ZR‘,'],; =0
dIx°

which shows that Ri;; are homogeneous functions of degree —2 of xi.

But we know that the components Riéj; of the curvature tensor are well
defined at the origin of the normal coordinates system. Thus the components
Rt must vanish at P and consequently at any point of the domain. Thus, in
these cases, the space is affinely flat.

6. The case in which A p is conjugate to I(b) X L or L. In these cases, the
group G is transitive. This can be proved by the same argument as that used
at the beginning of §5.
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The group G being transitive, the isotropic groups at any two points of
the domain under consideration are conjugate to each other. On the other
hand, the isotropic group Gq at an ordinary point Q fixes one and only one
direction which we denote by #q. Thus, at every point Q of the domain
under consideration, there is associated a direction ug.

Consider a path which passes through a point Q and tangent to ugq; then
the isotropic group Gg, being an affine collineation, fixes this path. We take
a point R different from Q on this path and consider the transformations of
Ggq which fix this point R. These transformations form the group L.

Now, we consider an affine frame at Q whose first axis is in the direction
uq and transport it parallelly along the path to the point R. Then we have at
R an affine frame whose first axis is tangent to the path. The parallelism of
vectors along a curve being preserved by an affine collineation, the trans-
formation of Gq fixing the point R gives the same effect on the affine frame
at R as on that at Q. This shows that the subgroup of Gq fixing R coincides
with the subgroup of Gr fixing Q. The subgroup of G fixing Q fixes the tan-
gent to the path and ug, and consequently the tangent must coincide with
ug, which shows that the path is the trajectory of the field of directions u.

Now, the isotropic groups I(b) XL and L being respectively with dimen-
sion n2—n and n?2—n—1, and the group G being transitive, the group G is
respectively with dimension #2 and n2—1.

Now, the group G of affine collineations being transitive, we denote by T
a transformation of G which carries a point Q into a point R. Then, by the
same method as in [16], we can prove that

Tuq = ug

and that uq is a parallel vector field.
If we denote this vector field by u¢(x), then we have

(6.1) Xui = aut,
(6.2) wiy = u'\,

where « is a certain scalar and \; a certain covariant vector field. From (6.2),
we find

(63) ufR"j“ = u‘)\“
where
(6.4) Akt = Az — Mgk

We first suppose that Ap=1I(b) XL. Then equations (3.8), should be
satisfied by any £/ and £%;; satisfying

(6.5) (1 4+ nb) Xt = (1 + b)&4;.ut.

We see that conditions
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(6.6) Xut = $%us,, — E,u° =0
and
6.7 £2..,=0

put together are stronger than (6.5). Hence any &% and £%;; satisfying (6.6) and
(6.7) must satisfy (6.5) and hence satisfy (3.8):.

The group being that of affine collineations, the covariant differentiation
and the Lie derivation are commutative and consequently, from (6.2) and
(6.6), we find X\ =0. But the group Gp does not fix a hyperplane and con-
sequently we should have A\, =0. Consequently we have

(6.8) w'r =0 and %R =0.

Thus the integrability conditions (3.8); should be satisfied by any & and
£i;; satisfying

(6.9) Eaut=0 and £%45,=0

and consequently there must exist functions Féy; and Giuy such that
(6.10) Réjkgia =0

and

(6.11) 85R%ja; — 8;Réusy — 3pRéjp — 81R% 1k = 85F% 11 + 4G iazs.

From (6.11), after some calculation, we can deduce Réj;;=0.

The case Ap=L is characterized by (6.6) and (6.7) and consequently the
above discussion shows that when 4 =L the space is also affinely flat.

7. The case in which A4 p is conjugate to I(b) X L’ or L’ and G is transitive.
The group G being transitive, two isotropic groups at any two ordinary
points in the domain under consideration are conjugate to one another.

On the other hand, the isotropic group Gq at an ordinary point Q fixes
one and only one hyperplane which we denote by vq. Thus with every point
Q of the domain under consideration, there is associated a hyperplane vg.

The isotropic groups I(b) X L’ and L’ being respectively with dimension
n?—n and n?—n—1 and the group G being transitive, the group G is respec-
tively with dimension 72 and n2—1.

By exactly the same method as in [16], we can prove that

Tvq = g,

where T is an arbitrary transformation carrying a point Q into a point R.
Furthermore, if we represent this hyperplane by a covariant vector v,(x),
then we can prove that

(7.1) Xv; = Bvj,

(7.2) Vjik = aVlk,
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where «a is a certain scalar. From (7.2), we find

(7.3) — %R = vjan,
where
(7.4) Akl = V01 — Nk

We first suppose that Ap=1I(b) XL’. Then equations (3.8); should be
satisfied by any & and &4;; satisfying

(7.5) (1 + nb)Xo; = (1 + b)§%0v;.
We see that conditions

(7.6) Xv; = Eavjvs, — £%0a = 0,

(7.7) £, =0

put together are stronger than (7.5). Hence any & and &%;; satisfying (7.6)
and (7.7) must satisfy (7.5) and hence satisfy (3.8):.

The group being that of affine collineations, the covariant differentiation
and the Lie derivation are commutative, and consequently, from (7.2) and
(7.6) we find Xa=0, which shows, the group G being transitive, that « is a
constant.

Thus the integrability conditions (3.8); should be satisfied by any &* and
£; satisfying (7.6) and (7.7) and consequently there must exist functions
Fiyand G¥y® such that

(7.8) Rijiiia = — oGijnioc0,
and
(7.9) 6;R“,~k; — 8;R% — 81R% 51 — 8iR% iy = 83F% i + 06 int®.
From (7.9), after some calculation, we can conclude that
(7.10) Riju = kvj(vidy — v8%),
where & is a constant. Thus equations (3.8); become
XRtjr = BRYjia,

where 8 is given by Xv;=py,.

When 1450 there exists X such that 80 and thus we have R';;=0.
When 1+5=0 then Xv;=0 and thus (3.8), is really satisfied by all the
infinitesimal transformations X of the group G.

8. The case in which A4p is conjugate to I(b) X L’ or L’ and G is intransi-
tive. Let us consider the invariant variety through P. All the points on this
invariant variety being equivalent under the group G, isotropic groups at
points of this invariant variety are conjugate to each other. Thus the in-
variant variety should be (n—1)-dimensional, because the hyperplane tan-
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gent to this invariant variety at a point should be left invariant by the iso-
tropic group I(b) XL’ or L’ at this point which fixes one and only one hyper-
plane.

Take a point Q not on this invariant variety. If the isotropic group at Q
is one of the groups hitherto examined except I(b) XL’ and L’, then the
group G should be transitive. Thus the isotropic group at Q should be also
I(d)XL' or L' .

Consequently, passing through every ordinary point on the domain under
consideration, there exists an (n—1)-dimensional invariant variety whose
tangent hyperplane is fixed by the isotropic group at the point of contact.
We denote’this hyperplane at Q by v,.

The isotropic group I(b) XL’ and L’ being respectively with dimension
n?—n and n2—n—1, and the invariant varieties being (#—1)-dimensional,
the group G is respectively with dimension #2—1 and n2—2.

Thus if we denote by

(8.1) f(x) = constant
the family of invariant varieties and put
8.2) Av; = 3f/dxi,

then, using the so-called adopted frames, we can prove that
(8.3) (v = Avj)pr + (Avi)p;,

pi being a certain covariant vector.
On the other hand, we know that

Xf=0, X(\v;) =0, X)) =0
and consequently, from (8.3), we find
Xpe = 0.

But the hyperplane represented by v; is the only one hyperplane fixed
by the isotropic group and consequently, we should have

pr = (1/2)ame

where a is a certain function of f.
Thus substituting this into (8.3), we get

(8.4) (Avy)sk = alXo;)(Avs)
from which
(8.5) ¥R =0,

* We first suppose that 4p=1I(b) XL'. Then equations (3.8), should be
satisfied by any £¢ and £%;; satisfying
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(8.6) (1 4+ nb)Xv; = (1 + b)£%.0;.
We see that conditions

8.7 Xf = Mgt =0,

(8.8) Xv; = £%;50 + £%50, = 0,

(8.9) £.=0

put together are stronger than (8.6). Hence any & and £%;; satisfying (8.7),
(8.8), and (8.9) must satisfy (8.6) and hence satisfy (3.8);.

Equations X(A\v;) =0 and Xv;=0 show that XA =0 and consequently that
\ is a function of f. Thus, from (8.2), we can see that we can suppose A =1.
Thus equation (8.8) can be written as

(8.10) Xv;=§8%0,=0

by virtue of (8.4) and (8.7).

Thus the integrability conditions (3.8); should be satisfied by any &* and
£3;; satisfying (8.7), (8.9), and (8.10) and consequently there must exist func-
tions Ety;, Fiy and Gige such that

(8.11) Rijiia = Efjrp,
(8.12) 85R%j1; — 83R%par — 0kR%jsr — 8iR% ks = 85F% it + G¥jrpvs.

From (8.12) we can conclude that the curvature tensor R*;; should be
of the form

(8.13) Riju = kv 081 — o)

But since we have XRij3;=0, Xv;=0, we find from this Xk =0, which shows
that k is a certain function of f.
Thus equations (3.8); become

XRijk = BRYjy,

where 8 is given by Xv;=8v;, When 14530, there exists X such that 30
and thus Rij;=0. When 145=0, then Xv;=0 and thus (3.8); is really
satisfied by all the infinitesimal transformations X of the group G.

The case Ap=L' is characterized by (8.7), (8.8), and (8.9) also and con-
sequently the above discussion shows that when Ap=L’, the space has also
the curvature tensor of the form (8.13).

9. Theorems. Gathering all the results in §§3-8, we have

THEOREM 2. If an n-dimensional space with a symmetric affine connection
admits a group of affine collineations with dimension greater than n*—n—+S5,
then the isotropic group Gp at a point P, the dimension of Gp, the groups of
affine collineations G, the dimension of G, and the structure of the space should
be one of those on the opposite page:



1955] A CLASS OF AFFINELY CONNECTED SPACES 85

ésr%g;pGiﬁ» din;ff’ncs;i:n li?l :&gﬁfb d‘itgf?;sim structure of the space
H, n? transitive  n?*4n affinely flat
H, n? “ ni4n “
P, nt—1 “ n+n—1 “
KXM n?—n+1 “ n?+1 “
KXM' n*—n+1 “ n*+41 “
KXL n—n “ n® “
KXL' n—n “ n? “
I(B)XL n—n “ n? “
L nf—n—1 “ nt—1 “
I(B)XL' n—n “ n? (i) 14550,
Riy=0.
(i) 14+d=0,
Vjik = aV;V,
Réj= ko (mdi—nids),
a, k: constants.
intransitive #n?—1 (i) 1450,
Ri;z=0.
(ii) 14-5=0,
Uik = ViV,
of
(”i = a—xf ’
Réa=koy(ndi—idy),
a, k: functions of f.
L n—n—1 transitive n?—1 Vjsk = QV;V,
R = kv;(v;,&;‘-— v¢8:),
a, k: constants.
intransitive n2—2 Dy3k = Q;Tg,

(=229
vi=—1
‘ oxi

- ‘ ‘
Riyy=kvj(0d1— v;6y),

a, k: functions of f.
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10. Determination of %, when G is transitive.

THEOREM 3. Let A, be a simply-connected, n-dimensional manifold with a
symmetric affine connection. Suppose that N, admits a group G of affine collinea-
tions with dim G=n2—n+5. Let B, denote the entire coordinate space with co-
ordinates x', x2%, - -+, x*, and let 1, j, k, - - - be indices running from 1 to n
while «, B indices running from 2 to n. Then N, is equivalent to one of
those on the following page. Moreover, the affinely connected spaces listed above
are nonequivalent.

Before proving the theorem, we shall firstly give three remarks and estab-
lish a lemma.

REMARK 1. Let G* be the group of all affine collineations of N,. Then with
respect to a suitable topology, G* forms a Lie group(®). Thus the closure of
any subgroup of G* is a Lie group. For this reason, we can always assume the
group G in Theorem 3 to be a connected Lie group, for otherwise, we can take
the identity component of the closure of G instead of G. This does not effect
the transitivity and the dimension restriction.

REMARK 2. Let G, be the isotropic subgroup of G at a point p, and G, G,
be the Lie algebras of G, G, respectively. Since U, is simply-connected, the
space U, as well as the action of G on ¥, is uniquely determined by the pair
(G, Gy).

REMARK 3. Let E be the quotient G/G, in the sense of linear space, and
¢:G—E the natural linear mapping. Denoting respectively by “Ad” and
“ad” the linear adjoint representations of G and G over G, we have

Ad (G1)(Gy) C Gy, ad (G1)(Gp) C Gy

Thus Ad and ad induce linear representations ¥ and ¥ of G, and G, over E
respectively. In fact,

Y(u)(b) = ¢ Ad (w)¢72(b),  Y(x)(b) = ¢ ad (x)¢~(d),
u € Gy, x € Gy, b&E E.

On the other hand, there is a natural 1-1 linear correspondence between E
and the tangent space ., of %, at p. Up to this correspondence,
¥(Gy) = 7(Gy)-
11. A lemma.
LEMMA. Let P, denote the Lie algebra of the real special linear group of de-
gree t,and S a semi-simple Lie algebra containing P, as a subalgebra. If dim S

Sr24-2r+2, r=4, then the least ideal S, of S such that P,CSn is either P,
itself or a P,y..

(®) Cf. S. Kobayashi: Groupe de transformations qui laissent invariante une connexion infinité-
simale, C. R. Acad. Sci. Paris vol. 238 (1954) pp. 644-645.
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|
Types 1 2 3
Spaces B, LB,-origin B,
1 8
‘ i Tu(x)=2, I‘ﬂ.,, X) = a,
Connections Tj(x)=0 Tx(x)=0 u() ()

others=0

Maximal group

{ 3 i k i ik 1 1.1 8
G* of colline- | ¥ =Co+Cix,| 3y =Cix,  ly=2+Co, |Ca| =0,
% s a 1 a B
ations | Ci| =0 | Cx| =0 y =Co+Cix +Csx
dim G* n+n n? n?
R 0 0 55(810s— 848
Completeness complete not not
Types 4 5
Spaces B, B,
. I‘L=2k, Ty=Fkd, Mn=—z" Ty =2k, Tip=kds, Thi=x |
Connections

others =0, k=constant=0

others=0, k=constant=0

Maximal group

G* of colline-

y =x+Co, | Cs| =0
y =Cj cosh x1+C: sinh «'

y'=x+Cs, |C5| =0
a a a . 1
y =Cq cos % +Cs sin x

ations +Cod +Cod
dim G* n? n?
Rig #' = 1)5(615— 55 (B +1)8(0101— 5:8)
Completeness complete when k=0 complete when k=0
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Proof. Evidently S, is semi-simple and dim S,<72+2r+42. Let S; be
the complex form of S,,, and P}* the subalgebra of S} which corresponds to
P,. We know that (1) S} is semi-simple, (2) P* is the complex simple Lie
algebra of class A and rank r—1, (3) no proper ideal of S}, can contain P*.
Suppose that S, is not simple. Then we can write it as a direct sum

X x x

Sm = Sl (5] Sz
of two semi-simple nontrivial ideals. The intersection Si*/MN\ P must be zero,
for otherwise, we obtain from the simplicity of P;* that P*C.S* which is im-

possible. Similarly, SN P*=0. It follows then that m(P}*)= P}, m(P)
~ P*, where m:S;—S*, m:S;—S;* are the projections. Thus

dim S* = dim P* =72 — 1,  dim S;* = dim P* = #2 — 1,
whence
2r* — 2 < dim S} + dim Sy = dim S, < 72 + 27 + 2.

But this contradicts our hypothesis that » =4. Hence S), must be simple.
Since P*CS}, we know that

—1<dimSL<r+2+2  rank (S5) =7 —1, r= 4.

A survey of the list of complex simple Lie algebras tells us that Sj, has only
three possibilities: (i) Sk is of class A and rank r—1; (ii) S} is of class A and
rank r; or (iii) Sk is of class B or C and of rank 3 and 7 =4. But it is well known
that the complex simple Lie algebras of class B and C of rank 3 cannot con-
tain Pg*. Therefore, only cases (i) and (ii) can happen.

Now we return to the real Lie algebras P, and S,.. In case (i),

dim S, = dim S, = 72 — 1 = dim P,

whence S,. = P,. In case (ii), Sn is one of the real forms of the complex simple
Lie algebras of class A and rank r. These real forms have been completely
determined by Cartan [2]. We can see immediately from the list that Py,
is the only such real form which can contain P,. The lemma is thus proved.

12. Proof of Theorem 3. Firstly, we observe that the maximal group G*
of collineations of the five types of spaces listed in Theorem 3 are not iso-
morphic. The G* corresponding to the first two types can be easily distin-
guished from the other. As for the G* corresponding to the spaces of types
3, 4, 5, we can distinguish them by comparing the radicals of their Lie alge-
bras. Thus two spaces belonging to different types in Theorem 3 are not
equivalent. However, in each of the later two types, there are infinitely many
spaces depending on k. We find, by a direct calculation,

Rijpgim = — 4k5fnR‘jkl-
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From these equalities and the expression for Rij,, it follows that the absolute
value of k is a local scalar invariant. Thus two spaces of the type 4 or 5
with different & (k =0) are not equivalent. The last sentence in Theorem 3 is
proved.

Now we shall show that each ¥, satisfying the hypothesis of Theorem 3
is equivalent to one of the listed spaces. Let p be a point of ¥,, and let
G, Gy, G, Gp, E, 7,%,y have the same meaning as in §10. Since ¥, is simply-
connected and G connected, G, must be connected. Therefore, 7(G,) =4,.
We have determined all the possible linear groups 4,. The discussions for the
various cases are similar. We select only three cases to study as patterns.

1. 7(G,) =A,=H; or P,. In this case, 7(G,) is transitive over the nonzero
tangent vectors at p, and thus G is transitive over the nonzero 1-elements of
A.. It follows that ¥, is complete in the sense of affine connection. From
Theorem 2, ¥, is affinely flat. We know that a complete, simply-connected,
homogeneous affinely connected space is uniquely determined by its local
properties [9, p. 50]. Hence %, must be equivalent to the space B, with
Th(x) =0.

II. 7(G,)=A,=L. In this case, dim G=n2—1. The hypothesis dim G
=n?—n+5 then implies #=6. Since 7 is a faithful representation, G, has a
Levi-decomposition of the form

Gy = P,y + Ry, R, = radical of G,, dmR, =n—1

where P,_, is the Lie algebra of the real special linear group of degree n—1.
Choose a maximal semi-simple subalgebra S of G such that P, ;CS. Let
Sw be the minimal ideal, of S, which contains P,_;. By the Lemma in §11,
either S,,= P, or S»= P,_1. We shall discuss these two cases separately.
Casg II,. S,=P,. Then dim S,=#%%?—1=dim G whefice S,=P,=G.
Passing the results in Theorem 1 to Lie algebras, we know that, up to an
automorphism of P,, P, has only two subalgebras of dimension n?2—n—1,
i.e., the Lie algebras L, L’ of L and L’ respectively. If G,=L’, then it is
easy to see that Y(G,) and hence ¥(G,) does not have any invariant vector.
This contradicts the fact that ¥(G,) =7(G,) has an invariant vector. There-

fore, G,=L.
The real special linear group P, acts transitively on the space N, =B, —
origin. Its isotropic subgroup at the point (1, 0, - - -, 0) is the subgroup L.

Since > 2, M, is simply connected. By Remark 2 in §10, we can regard ¥,
to be M, and the group G to be P,. Using the coordinates x?!, - - -, x" in-
herited from B,, we find, by a direct calculation, that the only affine con-
nection over M, invariant under P, is given by I'y(x) =0. This gives us the
space of type 2 in our theorem.

CasE II,. S,,=P,_;. Here we shall be a little brief and omit the tedious
Lie algebra arguments. Taking account of the fact ¥(G,) =7(G,) =L, we first
show that S=P,_;, R, belongs to the radical R of G and that G, is reduc-
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tive(®) in G. Then, by rather elaborate Lie algebra arguments, we can prove
that G has a basis

2 n 3 n n-1 a« 1 1 «a
€3 — €n, €3 — €n, * * * , €n_1, €8, €a, €0, €0 (a;éﬂ;a,ﬁ=2’3'...'n)

with the multiplication rule

[8:, 6:] = 5':8: - B:e',‘ (s,t, u,9=0,1,2,--+, 1)
such that G, is spanned by
2 n n—-1 a 1
€2 — €ny * * °, €n—1, €8y €a (a # B)'

Now let us consider the group G’ of all transformations of 8B, of the form
1 1 1 a 1 a a B a «
y =% +Cox +Co, 3y =Csx +Cy |Cs| =1

This group G’ is transitive over 8, whose isotropic subgroup G{ at the origin
consists of transformations:
y1 =z + C:x", ya = C;xﬁ.
We see at once that, up to an isomorphism, (G, G,) =(G’, G;). By Remark 2
in §11, we can regard %, =8B,, G=G'. A direct calculation shows that the only
affine connection over ¥, invariant under G’ is given by I'j(x) =0. This is
the space of type 1.

I11. 7(Gp) =A,=L’. In this case, we first show that P,_; is at the same
time a maximal semi-simple subalgebra of G, and then we can show that the
pair (G, G,) has only the following three possibilities:

Cask III;. G has a basis

2 n n—1 n a a «a L3 1
€2 — €p, * **, €a—1 — €y, €3, €9, €1, xea = €o,
a#ﬁ;a,ﬁ=2,3,---,n;)\;é0
such that G, is spanned by
2 n—1 n a
€2 — €n ", a1 — €n, €, €1 (a #= ).

In this case, we can regard %, =B, and regard G to be the group of all trans-
formations of the form:
y1 = — [ ya =Co+ C‘l'x1 + C;xp, | C;[ = exp (n — 1)L

It follows then that the affine connections over B, invariant under G must
be of the form:

(%) A subalgebra L of a Lie algebra G is called reductive if there exists a linear subspace
R of G such that G=L+R, LNR=0, [L, RJCR.
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I‘:-,,. = k(s}af;. + 8:.6;), k = constant.

When k=0, the space is of type 1. When k0, we find that two connections
corresponding to different %’s are affinely equivalent (in the global sense).
Thus we can assume k=1, and obtain the space of type 3.

Cask Ill.. G and G, are spanned, respectively, by

2 n n—1 n a a a 0 1 1 0
€2 — €ny "+, €n_1 — €n, €8, €1, €, Meo + 1) + €0 + ey, a*pB

and
2 n n—1 n a «a
€2 — €y, ** ", €n—1 — €n, €, €1.
We can regard U, to be 8B,, and G to be the group of all transformations of the
form
y1 =z — A ya = C, cosh 2 + Ci'sinh z + C;xﬂ, | C;| = exp (n — 1)L

The invariant affine connections are given by

I‘il(x) = 2k, I‘rp(x) = k&;, I‘rl(x) = -z other I' = 0,
= constant.
But the affine connections corresponding to 2 and —% are equivalent. Thus

we can assume k20, and get the spaces of type 4.
Cask I1l;. G and G, are spanned, respectively, by

2 n n—1 n a a a 0 1 0 1
€2— €n, " ", €n-1 — €n, €5 €1, €0, Mo+ €1) — €1+ e, oa#p
and
2 n n—1 n a a
€2 — €ny * ** 4 €n—1 — €n, €, €1.

We can regard ¥, to be 8B, and G to be the group of transformations of the
form

y1 =z - t, 3y =C,cos x + Cisin % + C:xs, | C:[ = exp (n — 1AL

The invariant connections are given by

I‘:l(x) = 2k, I‘:g(x) = kg, I‘:l(x) =%, otherT' =0, k = constant.

Just as in the above case, the connections corresponding to 2 and —# are
equivalent. Thus we ¢an assume k>0, and obtain the spaces of type 5.

Thus we know that each ¥, satisfying the restrictions in Theorem 3 is
equivalent to one of the five types. The completeness, curvature tensor and
the maximal group of affine collineations of these five types of spaces can be
obtained by a direct computation.
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