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It is known that the existence of a group G of motions of sufficiently high

dimension in an w-dimensional Riemannian space imposes strong restrictions

on the space [10; 15; 16]. This restriction is related to the fact that the iso-

tropic subgroup, being a "high" dimensional subgroup of the orthogonal

group O(ra), is very restricted [12]. Some results of this nature for affine con-

nections have been known [4; 5; 6; 7; 8; 11; 13]; in particular, if an affinely

connected space 2t„ of dimension n admits a group G of collineations with dim G

= n2 — n-\-5, then 2l„ is projectively flat. We know however that, unlike the

Riemannian case, there are numerous non-equivalent, simply-connected,

homogeneous (') affinely connected spaces with the same local structure. For

example, over the Euclidean space (in the topological sense), many flat and

homogeneous affine connections can be defined such that any two of them are

different in the global sense(2). This tells us that the above class of spaces

2ln needs some further clarifications.

In this paper, we give a more detailed study of the symmetric affinely

connected spaces 2I„ having the above property. All the possible curvature

tensors of 2t„ as well as the isotropic subgroup of G are determined (Theorem

2, §9). In case G is transitive, we exhibit all the simply-connected Sin's

(Theorem 3, §10). They fall into three individual cases and two classes de-

pending on a non-negative constant. Among them, there are three affinely

flat spaces, two of which are homeomorphic with the euclidean space while

the other one homeomorphic with the product of a line and an (« —1)-sphere,

n>2. As for the nonflat cases, they are all homeomorphic with the euclidean

space. For the transitive case, all the isotropic subgroups given in Theorem 2

are realized; some of them can moreover be realized over nonequivalent

affinely connected spaces.

1. Reducibility of certain linear groups. Let P„ denote the special linear

group of n real variables x1, ■ ■ ■ , xn. In this section and the next, we shall

determine all the closed subgroups of Pn with dimension not less than

n2 — 2w+4. This information plays an important role in our further discus-

sions. Let us first establish the following
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(L) An affinely connected space is called homogeneous if it admits a transitive group of

collineations.

(2) Let S8n be the entire n-space with coordinates x1, x2, ■ • • , x" and 3s„(m) the subset of

S5n consisting of all the points whose first m coordinates are positive. The affinely connected

spaces {S5n(m); r*,*(x)=0} (m = 0, 1, 2, • • • , n) are homogeneous, flat, and homeomorphic

with one another. But no two of them are equivalent.
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Lemma 1. Let Gbea proper subgroup of P„. If dim G ̂  ra2 — 2ra+4, then G is

reducible.

Proof. We shall prove it by using the method of contradiction. Suppose G

to be irreducible. Let (j denote the same group G when the range of the vari-

ables x1, • • • , x" is extended to the field of complex numbers. Thus Q is a

transformation group of the complex vector space of ra-dimensions. Of course,

dim Q = dim G ^ ra2 - 2n + 4.

If Qis reducible, then as a direct consequence of Cartan's arguments [l, p.

155] we would have dim ^"g(ra/2)2which is impossible. Thus Q is irreducible,

and thus the complex form Y oiQis also irreducible. We know that [l, p. 151 ]

a complex irreducible linear group is either semi-simple or the direct product

of a semi-simple group and the homothetic group defined by y'=px* where

p is an arbitrary nonvanishing complex number. From our assumption GGPn,

no homothetic transformation can appear in T. Hence T is semi-simple. Here

we find it convenient to divide our discussion into the following two cases:

Case 1. T is simple. Since the complex dimension of T which is the same

as dim G is not less than ra2 —2ra+4, we know that T cannot be isomorphic

with a complex linear group in less than ra variables. Such simple linear

groups have been determined by Cartan. Taking account of the fact dim T

^ra2 —2ra+4, a survey of Cartan's table [3, pp. 147-148] tells us at once

that dim T=ra2 —1 where dim T means the complex dimension. Hence dim G

=ra2 —1. This contradicts our assumption that G is a proper subgroup of P».

Case 2. T is not simple. From representation theory, T can be written as

a Kronecker product TiXFj of two nontrivial irreducible linear groups Fx

and T2. Let rf and ra< denote, respectively, the complex dimension and de-

gree(8) ofI\(* = l, 2). Then

rai«2 = ra,       rx + r2 = dim r ^ ra2 — 2ra + 4,       nt ^ 2,       ra2 ̂  2.

Without loss of generality, we can assume ri=s(ra2 — 2ra+4)/2. Since raigra/2,

it follows that ris£»*— 1. A contradiction is thus obtained.

The contradiction in both alternatives proves our lemma.

2. Subgroups of the affine groups. Let Hn be the general linear group in

ra real variables. Then each element of 77„ can be regarded as a nonsingular

real matrix (a,-,), and the special linear group P„ becomes the totality of

matrices (a,-/) whose determinants det (an) are equal to one. For simplicity,

we shall use the following notations throughout:

ff»+= {(o,y):det(otJ) > 0},

K = [(an)'ai) = ^8ij, X = positive number} (4),

(*) By the degree of a linear group, we mean the dimension of the vector space on which it
acts.

(4) *«, 8} denote the Kronecker deltas.
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L = {ia{j):an = 1, aaX = 0, det (0,7) = 1; a = 2, 3, • • • , n\,

V = {(o,,):an = 1, aia = 0, det (a*/) = 1; a = 2, 3, • • • , n\,

M = {(o,-,):an > 0, aai = 0, det (a,7) = 1; a = 2, 3, • • ■ , «},

M' = {(a,v):oii > 0, aia = 0, det (a«) = 1; a = 2, 3, • • • , n\,

where, and in the following, the indices a, b, c, ■ • • , i, j, k, ■ • ■ take the

values in the range 1, 2, 3, • ■ ■ , n.

We see at once that they are closed and connected subgroups of 77„+, and

dim 77b4" = n2,       dim K = 1,

dim L = dim I! = n2 — n — 1,       dim Af = dim Af = »2 — n.

Lemma 2. Le/ G be a closed and connected subgroup of M with dim G = n2

— 2w+4. Then either G = L, or G = M.

Proof. Let

P„_i = {(a,-,):an = 1, aia = aai = 0, det (a,,) = 1; a = 2, 3, • • • , n).

Since G, L, and P„_i are all subgroups of M, we have

(2.1) dim (G H P„_i) = dim G + dim P„_i - dim Af ̂  n2 - In -f 4,

(2.2) dim (7, H P„_i) = dim L + dim Pn-i - dim M t n2 - 3n + 3.

It is a well known result (due to S. Lie) that the projective group Pk has

no proper subgroup with dimension higher than k2 — k. Thus P„_i cannot have

proper subgroup with dimension higher than n2 — 3w + 2. (2.1) then implies

that GnPB_i = PB_i, or what is the same, P„_iCG. Thus Pn_iCGP\LC£.

By using matrix multiplication we can easily verify that P„_i is a maximal

subgroup of L. It follows then that Gf~\L is either PB-i or L. On account of

(2.2), the first alternative cannot happen, and therefore, G(~\L = L, i.e., LCZG.

But we know that the difference between the dimensions of L and M is

equal to one. It follows then that G is either L or M. Lemma 2 is proved.

Theorem 1. Let G be a closed and connected subgroup of P„. If dim G = n2

— 2«+4, then G is conjugate to one of the groups P„, L, M, L', M'.

Proof. If G = Pn, our theorem evidently holds. Now, assume G^Pn.

Lemma 1 then tells us that G is reducible. In other words, G leaves invariant

a linear subspace of m dimensions with 0<m<n.  Thus dim  G^n2— 1

— min — m). From the inequality dim G — n2 — 2w+4, it follows that m is

either 1 or n— 1. These two cases are dual to each other. Suppose that m = \.

Then G leaves invariant a line. Up to an inner automorphism of P„, we can

assume this invariant line to be

x2 = xs = ■ ■ • = x" = 0.

Thus G is subgroup of M. From Lemma 2, it follows that G is either L
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or M. By a duality argument, we see that in case m = ra — 1, G is either 7/ or

M'. Theorem 1 is hereby proved.

Corollary. For each real number b, let us denote by 1(b) the totality of

diagonal matrices of the form:

e(.i+bu   o      0      0 • • • 0

0 ebt   0      0 • • • 0

0 0     ebt    0 • • • 0

,0 0     0      0 • • • ebt.

where t runs through all real numbers. Then each closed and connected subgroup

G of Hn with dim G^ra2 —2ra + 5 is conjugate to one of the groups: Hf, Pn,

KXM, KXM', KXL, KXL', I(b)XL, I(b)XL', L, U.

Proof. From the connectedness of G, we know GC77„+. Let G* = GC\Pn.

Since H£=K~XPn and dim K = l, it follows that G* is a normal subgroup of

G and dim G*gdim Ggdim G* + l. This tells us that dim G*^ra2 —2ra+4.

Then on account of Theorem 1, we can assume G* to be one of the groups

P„, L, M, V, M'. When G*=Pn, G is evidently either P„ or H+. We shall

only discuss the cases G* = L and G* = il7; the remaining two cases can be

reduced to these two by a duality.

Case 1. G* = M. Since G* is a normal subgroup of G, G is contained in

the normalizer KXM of M. From the fact that MCGCKf~\M, dim K=l,

we know that G can only be M or KXM. But M=I( — l/n)XL. Thus our
corollary holds in this case.

Case 2. G* = L. The normalizer of L in H+ is KXM. Hence LCGCKXM.

Passing from these groups to their Lie algebras, we find by a short calculation

that G is either L or KXL or 1(b) XL for a certain b. This completes the

proof of the corollary.

3. Groups of affine collineations. Let Sl„ be an ra-dimensional space with

symmetric affine connection Fjt(x) covered by a system of coordinate neigh-

borhoods (x*). Then the paths of this space are defined to be integral curves

of the differential equations

dixi i   dx' dxk
(3.1) — + r;* —— = 0,

ds* ds    ds

s being the so-called affine parameter on each path. A point transformation

(3.2) *«-/'(*)

is called an affine collineation when it carries any path into a path of the space

and preserves the affine character of the parameter s. A necessary and suffi-
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cient condition that (3.2) be an affine collineation is that

d& (dxh dx"    a d"xa \

If (3.2) is an infinitesimal transformation

(3.4) *< = xi+P(x)dt,

£'(x) being a vector field and dt an infinitesimal, then (3.3) gives

d2p dT)k      dp     a dp    i dp    i
(3.5) XTjk m —f- + {•—!-- r% + — Tak + -1- ry. - 0

dx'dxh dx"       dx" dx1 dxk

where X is the operator of Lie derivation with respect to (3.4). Equation

(3.5) may be written also in tensor form:

(3.6) XT*ik = {';** + R^ttf = 0,

where the semi-colon followed by an index denotes the covariant differentia-

tion with respect to Yiik and R{jki the curvature tensor formed with r*,*.

The integrability conditions of system (3.6) of partial differential equa-

tions, or those of

(3.7) P/sk--*'/**1

are given by a sequence of equations

(3. 8)i XR*m m PR<m;a - PiJt'iH + P-.iR'akl + P-.kR'ial + P.lR'ika  = 0,

XRxjki;m = PR'iMmia ~ PlaR'jkl.m + P;jR*aklim + PikR'ialim

+ PilR'iMm + t'-.mR'ikl,' = 0,

Thus, in order that system (3.7) of partial differential equations be

integrable, it is necessary and sufficient that there exist a positive integer N

such that equations (3.8)1, (3.8)2, • • • , (3.8)iv+i are automatically satisfied

by £*' and p-fj satisfying equations (3.8)i, (3.8)2, • • • , (3.8)jv.

In this case, if N equations (3.8)1, (3.8)2, • • • , (3.B)N give just r linearly

independent equations with respect to p and p-.j, then the space admits a

group of affine collineations with dimension w2+ra — r.

Conversely, if the space admits a group of affine collineations with dimen-

sion ra2+»—s, then there exist 5 linearly independent relations between p and

£*;,and the integrability conditions (3.8)i, 3.82, • • ■ should be automatically

satisfied by p and £*y satisfying these s relations [9; 15].

Now, when the space admits a group G of affine collineations with dimen-

sion r, if we take a point P in the space and consider all the transformations

of the group which fix this point P, then such transformations form a sub-
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group Gp, called the isotropic subgroup at P. This subgroup Gp consists of

transformations

Tlx* = fix; a)

such that

x0 = fix0; a)

where xl0 are the coordinates of the points P, and a denotes the parameters.

To each transformation T« in Gp, there corresponds a linear transforma-

tion

,„.  . .    d/*(*o;«) . .
TiTa):dx* =-dx>

dx]

of the tangent space j£j> at the point P. It can be easily proved that this linear

representation t of Gp is an isomorphism in the sense of topological groups

[16].
Now consider the matrix ((£) (a = l, 2, • • • , r) of the components of a

basis of the infinitesimal group of G, and denote by q the generic rank of this

matrix. A point is called an ordinary point if, at this point, the matrix assumes

the maximum rank q, and is called a singular point if otherwise.

Let 2l„ be an w-dimensional space with a symmetric affine connection ad-

mitting a group G of affine collineations of dimension greater than or equal to

«2 —m+5. We confine ourselves to an open domain containing only ordinary

points. Let GP denote the isotropic subgroup at P. Then evidently dim Gp

= dim r(Gp) ^m2 —2«+5. Thus, by corollary to Theorem 1, the identity

component Ap of riGp) should be conjugate to one of the groups Hf, P,

KXM, KXM', KXL, KXL', Iib)XL, lib) XL', L, V.
4. The case by which AP is conjugate to 77^ or P„. In these two cases,

the group G is transitive. Because if G is not transitive, there would be an

invariant subvariety passing through P, and consequently, Ap would leave

invariant a proper linear subspace of the tangent space £p at the point P

which is impossible.

1. Case Ap=HJ~. In this case, G is of dimension n2+n. Thus the integra-

bility conditions (3.8)i should be satisfied identically by any £' and £*;/. Thus

by writing (3.8)i in the form

(4.1) FRW.* ~ eUslR'm- S'R*W - s'kR'm - 8atR*m) = 0(«),

we obtain

(4.2) R*jklia = 0

and

(4.3) slRam - s'R'hkl - sIR'm - s'tR'w = 0.
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From (4.3), we get, by contraction with respect to a and b,

(4.4) R*m = 0.

It is evident that if Rijki = 0, then conditions (3.8)i, (3.8)2, • • • are auto-

matically satisfied. Thus, in order that Ap=Hj~, it is necessary and sufficient

that the space is flat.

2. Case Ap = P„. In this case, the group AP being of dimension n2— 1 and

the group G being transitive, we know that dim G = »2+»— 1. Since Ap=P„,

£•;,- should satisfy

(4.5) {«;„ = 0

and the integrability conditions (3.8) should be satisfied identically by any

£' and £'y satisfying (4.5).

Thus comparing (3.8)i and (4.5), we see that there should exist functions

F'jki such that

t'R'm;* - e;*Ram + $•;,#<.*, + f.kR'jai + Z'-.tRW = - fa;«F';*i

become identities in £•' and {'y. Thus we must have

(4.6) R'm;a = 0

and

(4.7) s'bR"m - s'jRini - slR'ju - B^m = 5>'y*i.

By contraction with respect to a and b, we find from (4.7)

F*m = - i2/n)Rim,

and by contraction with respect to i and b, we get

(4.8) nR'jkl - 8?Rjk + 5*i?„ + 8°{Rkl - R») = - i2/n)Ram,

where Rjk = Raika. Contracting again with respect to a and I, we find Rjk = 0

for w>2. Thus we have, from (4.8), Rijki = 0.

5. The case in which AP is conjugate to KXM, KXM', KXL or KXL'.
In these cases, the group G is transitive. We shall prove this by method of

contradiction.

We first suppose that AP = KXMor KXL and that the group G is intran-

sitive. Then the invariant subvariety passing through P should be one-

dimensional, because the linear manifold tangent to this subvariety at P is

left invariant by KX M or K XL which fixes one and only one direction. Thus

the rank of the matrix (i£) is equal to 1 at P and, consequently, is equal to

1 at every point of the domain under consideration. It follows that through

every point of "his domain there passes one and only one invariant curve.

Now take an invariant curve passing through a point Q which is not on

the invariant curve passing through P and which is in the domain under



1955] A CLASS OF AFFINELY CONNECTED SPACES 79

consideration, and consider all the paths joining P to the points on the in-

variant curve passing through Q. These paths constitute a two-dimensional

surface. This surface is left invariant by the isotropic subgroup Gp. Conse-

quently, the corresponding linear group Ap must fix the two-dimensional

plane tangent to this surface at P which contradicts our assumption.

We next suppose that Ap = KXM' or KXL' and that the group G is

intransitive. The invariant subvariety passing through P should be (ra —1)-

dimensional, because the linear manifold tangent to this subvariety at P is left

invariant by KXM' or KXL' which fixes one and only one hyperplane. Thus

the rank of the matrix (pa) is equal to ra —1 at P and, consequently, is equal

to ra —1 at every point of the domain under consideration. It follows that

through every point of the domain there passes one and only one invariant

hypersyrface.

Now, consider a path through P which intersects these invariant hyper-

surfaces; then the points of intersections can be transformed by K into one

another (except the point P, of course), which is a contradiction.

Thus, in these cases, the group G is transitive, and consequently two iso-

tropic groups at any two ordinary points in the domain under consideration

are conjugate to each other.

The groups KXM, KXM', KXL, KXL' being respectively with dimen-

sion ra2 — ra+1, ra2 —ra + 1, ra2 —ra, ra2 —ra, and the group G being transitive, the

group G is respectively with dimension ra2 + l, ra2+l, ra2, ra2.

Now, at the point P of the domain, we choose the normal coordinates x'

whose origin is P, then the space admits a one-parameter group of affine

collineations

(5.1) x< = e<x\

In this coordinate system, the vector p defining the infinitesimal trans-

formation of this one-parameter group is given by

(5.2) p=x\

Thus, the integrability condition (3.8)i becomes

dR'm
x"-h 2R*m = 0

dx"

which shows that R'jki are homogeneous functions of degree —2 of x".

But we know that the components Rijki of the curvature tensor are well

defined at the origin of the normal coordinates system. Thus the components

Rtjici must vanish at P and consequently at any point of the domain. Thus, in

these cases, the space is affinely flat.

6. The case in which AP is conjugate to 1(b) XL or L. In these cases, the

group G is transitive. This can be proved by the same argument as that used

at the beginning of §5.
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The group G being transitive, the isotropic groups at any two points of

the domain under consideration are conjugate to each other. On the other

hand, the isotropic group Gq at an ordinary point Q fixes one and only one

direction which we denote by uQ. Thus, at every point Q of the domain

under consideration, there is associated a direction uq.

Consider a path which passes through a point Q and tangent to w<j; then

the isotropic group Gq, being an affine collineation, fixes this path. We take

a point 7? different from Q on this path and consider the transformations of

Gq which fix this point R. These transformations form the group L.

Now, we consider an affine frame at Q whose first axis is in the direction

uq and transport it parallelly along the path to the point R. Then we have at

R an affine frame whose first axis is tangent to the path. The parallelism of

vectors along a curve being preserved by an affine collineation, the trans-

formation of Gq fixing the point R gives the same effect on the affine frame

at R as on that at Q. This shows that the subgroup of Gq fixing R coincides

with the subgroup of Gr fixing Q. The subgroup of Gr fixing Q fixes the tan-

gent to the path and ur, and consequently the tangent must coincide with

ur, which shows that the path is the trajectory of the field of directions u.

Now, the isotropic groups 7(&) XL and L being respectively with dimen-

sion n2 — n and w2 — n — 1, and the group G being transitive, the group G is

respectively with dimension n2 and n2 — 1.

Now, the group G of affine collineations being transitive, we denote by T

a transformation of G which carries a point Q into a point R. Then, by the

same method as in [16], we can prove that

Tuq = Ur

and that Uq is a parallel vector field.

If we denote this vector field by u'ix), then we have

(6.1) Xul = au*,

(6.2) «*:*   = u'\k,

where a is a certain scalar and \k a certain covariant vector field. From (6.2),

we find

(6.3) uWjh = «*X»,

where

(6.4) X*J = X*;» - X,:i.

We first suppose that Ap = Iib)XL. Then equations (3.8)i should be

satisfied by any £' and £'y satisfying

(6.5) (1 + nb)Xu' = (1 + b)^,aU\

We see that conditions
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(6.6) Xu' = Pu\a - P:aW = 0

and

(6.7) P;« = 0

put together are stronger than (6.5). Hence any p and p-.jsatisfying (6.6) and

(6.7) must satisfy (6.5) and hence satisfy (3.8)i.

The group being that of affine collineations, the covariant differentiation

and the Lie derivation are commutative and consequently, from (6.2) and

(6.6), we find X\k = 0. But the group Gp does not fix a hyperplane and con-

sequently we should have X*=0. Consequently we have

(6.8) u{;k = 0    and   u'R{jkl = 0.

Thus the integrability conditions (3.8)i should be satisfied by any p and

p-,j satisfying

(6.9) p-,aua = 0   and    £°:o = 0

and consequently there must exist functions P'yH and Gijkn, such that

(6.10) lP;tn.-0

and

(6.11) 8lRam - 8°Rhkl - slRijH - dlR*Jhh = «>',*, + «"GW

From (6.11), after some calculation, we can deduce Rijki = 0.

The case Ap = L is characterized by (6.6) and (6.7) and consequently the

above discussion shows that when Ap = L the space is also affinely flat.

7. The case in which AP is conjugate to 1(b) X L' or 7/ and G is transitive.

The group G being transitive, two isotropic groups at any two ordinary

points in the domain under consideration are conjugate to one another.

On the other hand, the isotropic group Gq at an ordinary point Q fixes

one and only one hyperplane which we denote by vq. Thus with every point

Q of the domain under consideration, there is associated a hyperplane vq.

The isotropic groups 1(b) XL' and 7/ being respectively with dimension

ra2 —ra and ra2 —ra—1 and the group G being transitive, the group G is respec-

tively with dimension ra2 and ra2 — 1.

By exactly the same method as in [16], we can prove that

Tvq = Vg,

where T is an arbitrary transformation carrying a point Q into a point R.

Furthermore, if we represent this hyperplane by a covariant vector fly(x),

then we can prove that

(7.1) Xvi = pvj,

(7-2) vr.k = aVjVk,
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where a is a certain scalar. From (7.2), we find

(7.3) - ViR'ju = Vjakl,

where

(7.4) aki = vka-,i — Pja;*.

We first suppose that Ap = Iib)XL'. Then equations (3.8)i should be

satisfied by any £* and £*;;- satisfying

(7.5) (1 + nb)Xvt = (1 + »)Pw»<.

We see that conditions

(7.6) XVj = ?aVfla - fifl. = 0,

(7.7) £*;.-0

put together are stronger than (7.5). Hence any £' and £*y satisfying (7.6)

and (7.7) must satisfy (7.5) and hence satisfy (3.8)i.

The group being that of affine collineations, the covariant differentiation

and the Lie derivation are commutative, and consequently, from (7.2) and

(7.6) we find Xa=0, which shows, the group G being transitive, that a is a

constant.

Thus the integrability conditions (3.8)i should be satisfied by any £* and

£'y satisfying (7.6) and (7.7) and consequently there must exist functions

F'jki and Giik? such that

(7.8) R*m;a = - oGw^a

and

(7.9) s'bRam - 5°Rv, - slRijti - «jR<yH = s'tF'm + v&ju'.

From (7.9), after some calculation, we can conclude that

(7.10) TJ'yjfcJ =   kVjiVkSU ~ PlS'jb),

where k is a constant. Thus equations (3.8)i become

XR{jki = BRXjkl,

where 0 is given by Xvt = 0Vj.

When 1+Jy^O there exists X such that 0^0 and thus we have P',*j = 0.

When 1+6 = 0 then Xv, = 0 and thus (3.8)i is really satisfied by all the

infinitesimal transformations X of the group G.

8. The case in which AP is conjugate to lib) X L' or 7/ and G is intransi-

tive. Let us consider the invariant variety through P. All the points on this

invariant variety being equivalent under the group G, isotropic groups at

points of this invariant variety are conjugate to each other. Thus the in-

variant variety should be (»— l)-dimensional, because the hyperplane tan-
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gent to this invariant variety at a point should be left invariant by the iso-

tropic group 1(b) XL' or 7/ at this point which fixes one and only one hyper-

plane.

Take a point Q not on this invariant variety. If the isotropic group at Q

is one of the groups hitherto examined except 1(b) XL' and L', then the

group G should be transitive. Thus the isotropic group at Q should be also

7(6) XL' or U.
Consequently, passing through every ordinary point on the domain under

consideration, there exists an (w —1)-dimensional invariant variety whose

tangent hyperplane is fixed by the isotropic group at the point of contact.

We denote "this hyperplane at Q by vq.

The isotropic group 1(b) XL' and 7/ being respectively with dimension

ra2 —ra and ra2 —ra—1, and the invariant varieties being (ra —l)-dimensional,

the group G is respectively with dimension ra2—1 and ra2 —2.

Thus if we denote by

(8.1) f(x) = constant

the family of invariant varieties and put

(8.2) X»y = df/dx\

then, using the so-called adopted frames, we can prove that

(8.3) f>/);» = Q*j)ph + (X»t)#>.

pi, being a certain covariant vector.

On the other hand, we know that

Xf = 0,       X(\Vj) = 0,       X(\Vj)ik = 0

and consequently, from (8.3), we find

Xpk = 0.

But the hyperplane represented by t;,- is the only one hyperplane fixed

by the isotropic group and consequently, we should have

pk - (l/2)avk

where a is a certain function of /.

Thus substituting this into (8.3), we get

(8.4) (X5y);* m a(X»,)(XD*)

from which

(8.5) f<£'iU>:0,

We first suppose that AP = I(b)XL'. Then equations (3.8)i should be

satisfied by any p and £';,• satisfying
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(8.6) (1 + nb)Xvj - (1 + b)?iaVi.

We see that conditions

(8.7) Xf^\va^ = 0,

(8.8) Xvj = ^vr,a + ^;iva = 0,

(8.9) {«io = 0

put together are stronger than (8.6). Hence any £' and £*"y satisfying (8.7),

(8.8), and (8.9) must satisfy (8.6) and hence satisfy (3.8)i.

Equations X(Kvj) = 0 and Xv, = 0 show that XK = 0 and consequently that

X is a function of/. Thus, from (8.2), we can see that we can suppose X = l.

Thus equation (8.8) can be written as

(8.10) XVj m £*;fla = 0

by virtue of (8.4) and (8.7).
Thus the integrability conditions (3.8)i should be satisfied by any I-* and

£';.,■ satisfying (8.7), (8.9), and (8.10) and consequently there must exist func-

tions E^jki, F'jki and G^tf such that

(8.11) R'm-,,, = E^fla

(8.12) s'tR'jki - S^w - SIR*,*! - 8a,Ri,kb = t'tF*m + GWH-

From (8.12) we can conclude that the curvature tensor R'jki should be

of the form

(8.13) R^ki = kVjivJi - vfii).

But since we have XRiiki = 0, Xvj = 0, we find from this Xk=0, which shows

that k is a certain function of/.

Thus equations (3.8)i become

XR*m = BR*m,

where 0 is given by Xvj=0Vj. When 1+Jt^O, there exists X such that 09^0

and thus RijH = 0. When l+t=0, then Xv/ = 0 and thus (3.8)i is really

satisfied by all the infinitesimal transformations X of the group G.

The case Ap = U is characterized by (8.7), (8.8), and (8.9) also and con-

sequently the above discussion shows that when Ap — L', the space has also

th.e curvature tensor of the form (8.13).

9. Theorems. Gathering all the results in § §3-8, we have

Theorem 2. If an n-dimensional space with a symmetric affine connection

admits a group of affine collineations with dimension greater than n2—w+5,

then the isotropic group Gp at a point P, the dimension of Gp, the groups of

affine collineations G, the dimension of G, and the structure of the space should

be one of those on the opposite page:
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isotropic      dimension      J£?}?p°r        dimension      .♦i_,-«._- „t n,~ „„„..,»
n,.,.^ „f r affine col- _* /- structure or the space
group Gp of GP       lineationsG of G *

Hn                n2                 transitive      ra2-f-» affinely flat

H+n n2 " ra2+ra

P„                 ra2-l                    «             »*-f-ra-l ■

KXM           n2-n+l              "             ra2+l "

KXM' ra2-ra+l " ra2+l

XXI            ra2-»                   "             ra2 "

KXL'            n2-n                    "              ra2 "

1(b) XL         n2-n                   "             ra2 «

7                   ra2-ra-l              "             ra2-l "

1(b) XL'        n2-n                   "             ra2                  (i) 1+S^O,

UVm-0.

(ii) 1+6 = 0,

Riiki = k,»j(vk8i— vt8k),

a, k: constants,

intransitive     ra2—1 (i) l+6?*0,

Rim=0.

(ii) 1+6 = 0,

(*""£)

a, £: functions of/.

7'        ra2 — ra— 1 transitive       ra2—1 »j* = aJ>j»*,

J8*i*« = kvj(vk8t— vi8k),

a, k: constants,

intransitive     w2 —2 V}\k = avjvk,

£'#i=*»i(o*8j— »A),

a, A: functions of/.
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10. Determination of 3l„ when G is transitive.

Theorem 3. Let §I„ 6e a simply-connected, n-dimensional manifold with a

symmetric affine connection. Suppose that 2l„ admits a group G of affine collinea-

tions with dim G^ra2 —ra+5. Let 58„ denote the entire coordinate space with co-

ordinates x1, x2, • • • , xn, and let i, j, k, ■ ■ ■ be indices running from 1 to ra

while a, j3 indices running from 2 to ra. Then SI„ is equivalent to one of

those on the following page. Moreover, the affinely connected spaces listed above

are nonequivalent.

Before proving the theorem, we shall firstly give three remarks and estab-

lish a lemma.

Remark 1. Let G* be the group of all affine collineations of 2l„. Then with

respect to a suitable topology, G* forms a Lie group(6). Thus the closure of

any subgroup of G* is a Lie group. For this reason, we can always assume the

group G in Theorem 3 to be a connected Lie group, for otherwise, we can take

the identity component of the closure of G instead of G. This does not effect

the transitivity and the dimension restriction.

Remark 2. Let Gp be the isotropic subgroup of G at a point p, and G, Gp

be the Lie algebras of G, Gp respectively. Since 2l„ is simply-connected, the

space 2l„ as well as the action of G on 2l„ is uniquely determined by the pair

(G, GP).
Remark 3. Let E be the quotient G/Gp in the sense of linear space, and

<p:G—+E the natural linear mapping. Denoting respectively by "Ad" and

"ad" the linear adjoint representations of G and G over G, we have

Ad (Gp)(Gp) C Gp, ad (Gp)(GP) C GP.

Thus Ad and ad induce linear representations SP and yp of Gp and Gp over E

respectively. In fact,

¥(«)(6) = <p Ad (m)0-1(6),       Hx)(b) = 4> ad (x)4rl(b),

uGGp,        xGGp,       bG E.

On the other hand, there is a natural 1-1 linear correspondence between E

and the tangent space 7^, of 2l„ at p. Up to this correspondence,

HGP) = r(GP).

11. A lemma.

Lemma. Let Pt denote the Lie algebra of the real special linear group of de-

gree t, and S a semi-simple Lie algebra containing Pr as a subalgebra. If dim S

gr2 + 2r+2, r^4, then the least ideal Sm of S such that P,CSm is either PT

itself or a Pr+i.

(6) Cf. S. Kobayashi: Groupe de transformations qui laissent invariante une connexion infiniU-

simale, C. R. Acad. Sci. Paris vol. 238 (1954) pp. 644-645.
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Types                     12 3

Spaces                   9S„                 $B„-origin SB„

i                 i ru(*)=2, rL(*) = sl,
Connections Tjkix)=0 Tjkix)—0

others = 0

Maximal group

G*ofcolline-    ? = Co+C*#,      y =Ckx, y=x+C0,   |Ca|j*0,

ations                     |C*|^0           |C*|^0 ya=c1+C"iX1+Clx

dim G*                «2+m                    »2 «2

-KVaj                       0                           0 sfoWk-sU])

Completeness        complete                  not not

Types                                4 5

Spaces                               SB* 93„

rn = 2A, 1^ = ^, rti=-/ In = 2£, Tai0 = kSl ru = /
Connections

others =0,  k = constant = 0 others = 0, k = constant = 0

Maximal group      y=xX+c\,   \ C"fi\ ̂0 /-sZ+cJ,   | c£| ^0

G* of colhne-      y =C0 cosh a; +Ci smh x y =C0 cos a; +Ci sin x

ations                          +C&«: +C^x

dim G*                                 «2 m2

R'w              i^-iriisisl-sls]) ik2+i)s)isi8l-sls\)

Completeness            complete when k = 0 complete when k = 0
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Proof. Evidently Sm is semi-simple and dim Sm = r2 + 2r-f 2. Let S* be

the complex form of Sm, and P* the subalgebra of Sm which corresponds to

Pr. We know that (1) S*, is semi-simple, (2) Pr* is the complex simple Lie

algebra of class A and rank r — 1, (3) no proper ideal of Sm can contain PT*.

Suppose that Sm is not simple. Then we can write it as a direct sum

s* = s* e s*

of two semi-simple nontrivial ideals. The intersection S?r\P? must be zero,

for otherwise, we obtain from the simplicity of P* that P*QS* which is im-

possible. Similarly, S2*nPr* = 0. It follows then that 7Ti(Pr*) «Pr*, x2(Pr*)

=»P*, where iri:Sm—»S*, ir2:S*,—»S2* are the projections. Thus

dim Si* =■ dim P* = r2 - 1,       dim S2* = dim P* = r2 - 1,

whence

2r2 - 2 = dim 5? + dim S* = dim Sm* = r2 + 2r + 2.

But this contradicts our hypothesis that r = 4. Hence S* must be simple.

Since P*CS*, we know that

r2 - 1 = dim S* = r2 + 2r + 2,        rank iS*m) = r - 1, r = 4.

A survey of the list of complex simple Lie algebras tells us that Sm has only

three possibilities: (i) Sm is of class A and rank r — 1; (ii) S*, is of class A and

rank r; or (iii) Sm is of class B or C and of rank 3 and r = 4. But it is well known

that the complex simple Lie algebras of class B and C of rank 3 cannot con-

tain P4*. Therefore, only cases (i) and (ii) can happen.

Now we return to the real Lie algebras Pr and Sm. In case (i),

dim Sm = dim Sm = r2 — 1 = dim Pr

whence Sm = Pr. In case (ii), Sm is one of the real forms of the complex simple

Lie algebras of class A and rank r. These real forms have been completely

determined by Cartan [2]. We can see immediately from the list that Pr4i

is the only such real form which can contain Pr. The lemma is thus proved.

12. Proof of Theorem 3. Firstly, we observe that the maximal group G*

of collineations of the five types of spaces listed in Theorem 3 are not iso-

morphic. The G* corresponding to the first two types can be easily distin-

guished from the other. As for the G* corresponding to the spaces of types

3, 4, 5, we can distinguish them by comparing the radicals of their Lie alge-

bras. Thus two spaces belonging to different types in Theorem 3 are not

equivalent. However, in each of the later two types, there are infinitely many

spaces depending on k. We find, by a direct calculation,

R'jhllm  —   —  ikSmR'jkl-
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From these equalities and the expression for Rijkt, it follows that the absolute

value of k is a local scalar invariant. Thus two spaces of the type 4 or 5

with different k (k^O) are not equivalent. The last sentence in Theorem 3 is

proved.

Now we shall show that each 3l„ satisfying the hypothesis of Theorem 3

is equivalent to one of the listed spaces. Let p be a point of SI„, and let

G, Gp, G, Gp, E, t,"^, \p have the same meaning as in §10. Since 2l„ is simply-

connected and G connected, Gp must be connected. Therefore, t(Gp)=Ap.

We have determined all the possible linear groups Ap. The discussions for the

various cases are similar. We select only three cases to study as patterns.

I. r(Gp) = Ap = Hnv or P„. In this case, r(Gp) is transitive over the nonzero

tangent vectors at p, and thus G is transitive over the nonzero 1-elements of

2l„. It follows that 2I„ is complete in the sense of affine connection. From

Theorem 2, 3l„ is affinely flat. We know that a complete, simply-connected,

homogeneous affinely connected space is uniquely determined by its local

properties [9, p. 50 ]. Hence 2l„ must be equivalent to the space 5B„ with

I%(*)=0.
II. t(Gp)=Ap = L. In this case, dim G = ra2— 1. The hypothesis dim G

^ra2 —ra+5 then implies ra^6. Since r is a faithful representation, Gp has a

Levi-decomposition of the form

Gp = P„_i + jRi,       Ri — radical of Gv,       dim Rx = n — 1

where P„_i is the Lie algebra of the real special linear group of degree ra —1.

Choose a maximal semi-simple subalgebra S of G such that Pn-iCS. Let

Sm be the minimal ideal, of S, which contains P„-i. By the Lemma in §11,

either Sm = P„ or Sm= Pn-x. We shall discuss these two cases separately.

Case Hi. Sm = Pn. Then dim Sm = ra2—l=dim G whence Sm= Pn = G.

Passing the results in Theorem 1 to Lie algebras, we know that, up to an

automorphism of P„, P„ has only two subalgebras of dimension ra2 —ra —1,

i.e., the Lie algebras L, V of L and L' respectively. If GP = L', then it is

easy to see that^(Gp) and hence *&(GP) does not have any invariant vector.

This contradicts the fact that ^(Gp) =t(Gp) has an invariant vector. There-

fore, GP = L.

The real special linear group Pn acts transitively on the space 9J?n = SS„ —

origin. Its isotropic subgroup at the point (1, 0, • • • , 0) is the subgroup L.

Since ra>2, 5DJ„ is simply connected. By Remark 2 in §10, we can regard 2l»

to be Tin and the group G to be Pn. Using the coordinates x1, • • • , x" in-

herited from S?n, we find, by a direct calculation, that the only affine con-

nection over Tin invariant under P„ is given by T't(x) =0. This gives us the

space of type 2 in our theorem.

Case II2. Sm = Pn-i- Here we shall be a little brief and omit the tedious

Lie algebra arguments. Taking account of the fact ^(Gp) =r(Gp) =L, we first

show that S= P„_i, Rx belongs to the radical R of G and that Gp is reduc-
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tive(*) in G. Then, by rather elaborate Lie algebra arguments, we can prove

that G has a basis

2 n      3 n n—1      alia. .

e2 — en, e3 — en, • • • , e„_i, eg, ea, ea, e0 (a 7± 0; a, p = 2, 3, • • • , n)

with the multiplication rule

r      t ti  l It     t t    Ii

[e„ ev\ = S,ev — 8ve, is, t, u, v = 0, 1, 2, • • • , »)

such that Gp is spanned by

2 n n—1       a      1

ei — en, • ■ ■ , en-i, eg, ea (a ?•* 0).

Now let us consider the group G' of all transformations of 33„ of the form

1 1 la 1 a a   8 at i       cc \

y  = x + Cax  + C0,        y   - C^at + C0, | C, |   = 1.

This group G' is transitive over 33„ whose isotropic subgroup Gq at the origin

consists of transformations:

1 1 1 a a p

y  = at + Ca««,      y   = Qat .

We see at once that, up to an isomorphism, (G, Gp) = (G', Go). By Remark 2

in §11, we can regard 2In = 2Sn, G = G'. A direct calculation shows that the only

affine connection over 25n invariant under G' is given by r]t(ac) = 0. This is

the space of type 1.
III. riGp) =AP = L'. In this case, we first show that P„_i is at the same

time a maximal semi-simple subalgebra of G, and then we can show that the

pair (G, G„) has only the following three possibilities:

Case IIIi. G has a basis

2 n n—1 n      a      a      a a 1

ei      en, ' ~ ' , en—i      en, e$, eo, Ci, Xea      Co,

a 7* 0; a, 0 «■ 2, 3, • • • , n; X 9* 0

such that Gp is spanned by

2 n n—1 n       a      a .

e2 — en, • • • , e„_i — e„, «a, ei (a ?* p).

In this case, we can regard SI„ = SSn and regard G to be the group of all trans-

formations of the form:

11 a a a   1 a fi i      ai . .

y  = x — t,       y=Co + Ci* + CfiX ,        \ Cp \   = exp (» — 1)X/.

It follows then that the affine connections over SS„ invariant under G must

be of the form:

(•) A subalgebra L of a Lie algebra G is called reductive if there exists a linear subspace

R of G such that G=L+R, LnR^O, [L, R]CR.
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T)m = A(8;5m + Slo)), k = constant.

When k = 0, the space is of type 1. When k^O, we find that two connections

corresponding to different k's are affinely equivalent (in the global sense).

Thus we can assume k = 1, and obtain the space of type 3.

Case III2. G and Gp are spanned, respectively, by

2 i> n—1 n       a      a      a ,0 1 1 0 .   -

e2 — e„, • ■ • , e„_i — en, Ca, ex, e0,        \(e0 + ei) + e0 + ei,       a 9^ p

and

2 n n—1 n      a      a

e2      e„, ■ • • , en_i      e„, es, ei.

We can regard 2l„ to be SB„, and G to be the group of all transformations of the

form

y  = x  — t,      y   = Co cosh x + Ci sinh x + Cpx ,      | Cp \ = exp (ra — 1)X/.

The invariant affine connections are given by

rli(x) = 2k,        t"b(x) = k8p,        Tn(x) = - x",        other T = 0,

k = constant.

But the affine connections corresponding to k and — k are equivalent. Thus

we can assume &^0, and get the spaces of type 4.

Case III3. G and Gp are spanned, respectively, by

e2 — e„, • • ■ , e„_i — e„, e^, ei, ea,       X(e0 + ei) — ei + e0, a^p

and
2 n n—1 n      a      a

e2 — eB, • • • , e„_i — e„, eg, ex.

We can regard 2t„ to be 3S„ and G to be the group of transformations of the

form

11 a a 1 a    . 1 a  8 j      a,

y   = x  — I,    y   = Co cos x  + Ci sin x  + C^x ,     | C$ \  = exp (w — 1)X*.

The invariant connections are given by

Tn(x) = 2k,    Tib(x) = k8B,    Tn(x) = x ,    other T = 0,    k = constant.

Just as in the above case, the connections corresponding to k and — k are

equivalent. Thus we can assume kTzO, and obtain the spaces of type 5.

Thus we know that each 2l„ satisfying the restrictions in Theorem 3 is

equivalent to one of the five types. The completeness, curvature tensor and

the maximal group of affine collineations of these five types of spaces can be

obtained by a direct computation.
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