AUTOMORPHISMS OF THE SYMPLECTIC
MODULAR GROUP

BY
IRVING REINER

1. Introduction. Let Q, denote the unimodular group consisting of all
nXn integral matrices of determinant +1, and let I™ be the identity
matrix in Q,. We shall use 0 to denote a null matrix whose size is determined
by the context, X’ for the tranpose of X, and X+ Y for the direct sum of X
and Y. We call an integral matrix primitive if the greatest common divisor
of its maximal size minors is 1.

Define

(257

and let the symplectic group Sp.. consist of all rational 2#2X2n matrices
IM satisfying

2) MM = .

We define the symplectic modular group I's, to be the group of integral mat-
rices in Spsa. Although we shall not do so in this paper, it is sometimes more
convenient to work with the factor group of I's, over its center +&; see
[1; 2; 3](*). We may also define an extended group As. consisting of all
integral matrices M for which MFM' =+ §.

The automorphisms of Sps, (over any field) have previously been deter-
mined [5], as have the automorphisms of T, (see [4]). The object of this
paper is to determine all automorphisms of I'y,. Let us call a homomorphism
of Iy, into { +1 } a character. Then we shall prove that every automorphism
7 of I's, is given by

£ = y(H)AXA for all ¥ € T,

where ¢ is a character, and A€A,,. We may remark at this point that the
mapping ¢ defined by

X0 = ¥1 forall X € 'y,
is obviously an automorphism. As we shall see, however, it is an inner auto-
morphism.

Let us set
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e (t 2)

where 4, B, C, D are integral nXn matrices. Then MET,, if and only if the
following conditions are satisfied:

4 A B’ symmetric, CD' symmetric, AD’— BC'=1.

We single out for future use certain types of elements of I's,:

Et P , S S t C.

(2) Rotations:

Uu o
=0 U"‘)’ v E
(3) Semi-involutions:
J I-—
& = (j I J J), J diagonal with diagonal elements 0’s and 1’s.
Further, if M given by (3) is in I's,, then
D —PB
) e
Finally, if
0 (As B; cr (=12
i = n t=1, ’
C: D e
we define the symplectic direct sum My + MaE2(ny1ne by
A, 0 B, O
Ds M 0 A4, 0 B,
TR T e 0 Do
0 C, 0 D,

We may remark that as IR ranges over all elements of I';,, the matrix
[—I™4I™]M ranges over all elements in A}, = { £EAs,: ¥ s.}. Thence
M, EAén‘ (1:=1, 2) implies DM = 9)226A£<,,,+,,,). However, P13 GI‘,,,, and
M2 EAzy, implies My + MaEA2(nyng)-

2. Involutions in I'y,. It is known [4] that as x, ¥, and z range over all
non-negative integers such that 2x+4y+2z=mn, the matrix
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6 W(x,y,2) = (i _(;) F ... -i-(i _(1)).[. (=D 4 I

(where x 2 X2 blocks occur) gives a complete set of nonconjugate involutions
in Q.. By an [x, y, 2] involution in 2, we mean any conjugate of W(x, y, 2) in
Q.. Now define

BW(x, y, 25) = W(x, y, 2) + W(x, 3, 3) € Tsn.

THEOREM 1. The matrices W(x, vy, 2) with 2x+y+2=n give a complete set
of nonconjugate involutions in I's,.

Proof. We use induction on n. The result is trivial for n =1, so now let
¥ be an involution in I's,, #>1. From ¥2=171(" we conclude that the char-
acteristic roots of ¥ are 1's and —1’s. Let ¢ be a characteristic root of %;
then there exists a primitive row vector g such that ¥ =¢x. We can then find
[6] a matrix  ET's, whose first row is . In that case the first row of ¥, =9%¥%!

is (¢ 0 - - - 0). Since ¥, is an involution in I's,, we obtain
~¢ 0---0 0 0---0"
» 0
. A - B
. 0
h= * x « € 0---0]
* *
. ¢ - D
_. . N
where

@ »)

C: D,

is itself an involution in I's(,—y. Continuing this procedure, we see that % is
conjugate in I';, to a matrix of the form

3':""4 0)
*=\¢c )

From the fact that ¥, is an involution in TI's,, we deduce at once that 4 is an
involution in €,, and D=A4'-1. However,

(UO )(A 0>(U-10) (UAU—l 0
o v-tJ\¢c p/\o v/ \ T U"“DU’)'
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and so by choosing UERQ, properly, we find that ¥ is conjugate to ¥; given by
(W(x, 9y, 2) 0
%, = )
C W'(x, 9, 2)
with a new C. Since ¥;EI';, is an involution, we have
) CW symmetric, C skew-symmetric.

The proof now splits into two cases:
CasE 1. If either y20 or 250, we may set W(x, y, 2) = Wi+ (¢), e= +1.
From (7) we find that

W, O 0 0
x 0 € 0 0
P Cl - Il Wl' 0 ’

and that

3=( )

is an involution in I's,—1). By the induction hypothesis there exist integers
%1, 31, & with 2a+yn+z=n—1, such that 3 is conjugate to W(x1, y1, 21).
For the moment set P = W(x1, y1, z1). Then in I'y,, ¥; is conjugate to %, where

P 0 O O
0 e 0O o0
B=lo_y P o
r 0 0 e
with a new . But then
P 0O 0 O I~ 0 0 0
I—z e 0 O 0 0 0 1-|
% =CGX&! = LO o Py where & = o o 1 ol
0 0 O e 0 -1 0 O_I

Since ¥5 is now a direct sum W+ W’, where W is an involution in Q,, the re-
sult follows upon transforming ¥s by a suitably chosen rotation in I's,.
Cask 2. If both y and z are 0, we write W(x, ¥, £) =L+ W,, where

=)
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Then, as before, ¥; is conjugate to. ¥ given by

L 0 0 0 7
0 wW,0 O
to= 2 B Lo
—B 0o 0 Wyl
However,
0 0 I 0 I™ 0
0 I==» 0 0
M= € T'an,

-I® 0 0 0
0 0 0 ItD 0+ b5+ 02 m

mear - (Y 2 )4 (5, © )
0 w B Wy

The result then follows as in the previous case.

We have thus shown that any involution ¥€T}, is conjugate to some
LB(x, y, 2). On the other hand, if W(x, y, 2) and W(xo, yo, 20) Were conjugate
in Tya, they would certainly be conjugate in Q. This implies. [4] that x =x,,
¥y =%o, and Z2=2.

The conjugates of BW(x, ¥, 2) in T's, will be called (x, y, 2) involutions.

3. Characterization of the +(0, 1, » — 1) involutions. In Sps,, every involu-
tion is conjugate to one of the form I?») « —J?9, with p+g=n. Any involu-
tion in the class of I¢?® «+ — 29 is said to have signature {p, g} (see [5]). One
easily proves that any (x, y, 2) involution in Ty, has signature {x+3, x+y},
and that the negative of an (x, y, 2) involution is of type (x, 3, ).

It is known that an abelian set of involutions of signature {p, q} in Sps.
cannot contain more than C,,, elements (see [5, Theorem 2; 7, §19]). We shall
use this fact in proving the following basic result:

and we have

THEOREM 2. Under any automorphism of T's., the image of a (0, 1, n—1)
involution is either a (0, 1, n—1) involution or a (0, n—1, 1) involution.

Proof. (i) An abelian set of involutions in I's,, each of type (x, ¥, 3), we
shall call an (x, y, 2) set. Let f(x, v, 3) be the number of elements in an
(%, 3, 2) set of largest size. The above-quoted result shows that

f(x: y; z) é Cn,z+:;
so for (x,y,2)=+(0,0,7n), £(0,1,n—1), +(1,0,n—2) we havef(x, y, 3) <n.
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We now show that f(x, v, 2) >n except for the 6 cases given above.

From an abelian set 3 of [x, v, g] involutions in Q,, one obtains an
(x, ¥, 2) set in Ty, by taking the set of matrices U+ U'-!, UE 3. We know,
however, that there exist abelian sets of [, ¥, z] involutions in , containing
mo]re than n elements, except for the 6 cases listed above (see [8, §§12 and
13)).

(i) The +(0, 0, ») involutions in Iy, are +I®" so that certainly a
(0, 1, n—1) involution cannot be mapped onto a + (0, 0, #) involution by an
automorphism of T's,. It remains to prove that the image cannot be of type
+(1, 0, n—2). To begin with, a simple calculation shows that two rotations
U+ U'-! and V4 V'-! are conjugate in I'y, if and only if U and V are con-
jugate in Q,. For n>2, there are at least two nonconjugate [1, 0, n—2] sets
in Q,, each containing n elements; on the other hand, there is a unique (up
to conjugacy) abelian set of # [0, 1, #—1] involutions in Q, (see [8, §12]).
Hence for n>2, the image of a (0, 1, n—1) involution in T'y, must be of type
+(0, 1, n—1).

(iii) The case n=11is trivial, and so we are left with n =2. Now we have

(- (L4 )
I®e —J@ = [ 1D, ,
-1 0

so any (0, 1, 1) involution in I'y is the square of some element of I'y. We show
that the (1, 0, 0) involutions in I'y are not squares. For suppose that

A 2 L 0 A 1 0
< =( ),where( &Iy andL=( )
C D 0o L C D 1 -1

From (5) we then have

(A B)__Lo (D’—B’
c b/ \o L’) -C A’)

This implies that

a 0 0 0
A B (a — a)/2 d 0 b
(c D) B ’ ~2 ¢ (a+ d))2
-2 4c 0 —d
Using AD'—BC’'=1, we find that
—d? — 4bc = 1,
whence d?=—1 (mod 4), since a, b, c, d are integers. This is impossible, and

so the theorem is proved.
4. Automorphisms of I'y. As is usually the case with determination of
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automorphisms of a group of matrices, the lower the dimension the more
difficult the proof. We begin by stating in (i) some earlier results (see [4])
which will be needed.

(i) The group A coincides with Q, and I'; is the subgroup €4 consisting
of all elements of 2, with determinant +1. For the remainder of this paper
we let

o () ()

Then S and T generate I's, and in any relation S™m7T™SmT»2 . . . =] the
sum mi+n1+me+n.+ - - - is always even. Hence the elements XET'; can
be classified as even or odd according to the parity of the sum of the ex-
ponents when X is expressed as a product of powers of S and T. The only
nontrivial character of T'; is defined by

1, X even,
«x - {
—1, X odd.
Then every automorphism 7 of I'; is given by
X7 = NMX)AXA? for all X € Ty,

where A is a character, and 4 €.
(ii) Now let r be any automorphism of I'y. After changing 7 by a suitable
inner automorphism, we may assume that Pr= + P, where

P =IO . —JO,
Since P and — P are conjugate in I'y, assume in fact that Pr=P. Then any

element of I'y which commutes with P maps into another such element, so
that

(Y1%Z1)" = Vo Zs,
where Y1, Vs, Z), Z,ETs. Let us set
(YsI)r=You VP for Y € Ty,
(I+2)7 = Zve28 for Z € T..
Then e, B, 7, 6 are all homomorphisms of I's into itself, since
(Y12 Z1)(Yax Za)=V1Y2+ Z1Z,.

Further, since ¥+ I and I+ Z commute, so do Y= and Z~ for all pairs of ele-
ments Y, ZET,; also, every element-of T'; is a product Y=Z~ for some such
pair. Since SET,, there exists an element X&', such that SX-1&€I'¢ and
X €TY. But then X commutes with SX—!, whence X = 4TI or +S. Therefore
either SET'5 or SETY.
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Suppose now that SET%; since every element of I' commutes with S,
we see that I'J C{ +I, +S } However, SEI'J would imply the finiteness of
T's, whence I': =T¢I"J could not be true. Therefore I'y C{ +1I }, and then cer-
tainly I's =T. Similarly, one of T'§, I'} is I's, and the other is included in { +1I } .

Now we use the fact that (—PB)*= —B, that is

(—=I+I)T= —I+1.

Therefore (—I)*=—1I; but if T§C { £ I}, the fact that —I =35? would imply
(=I)*=I. Hence Tg =Ty, TJC{ + I}, and therefore T§C{ +I}, I} =T\.
Next we prove that « is an automorphism; we need merely prove that
Ye=] implies Y=1I. But if Y*=1I, then (Y«I)'=I=+ +1I. Since (I+I)*
=Jx+Iand (I+ —I)"=I+ —I, this implies that Y=1I. By the same reasoning,
d is also an automorphism.
(iii) Now define

0 ay 0 b]

YioV, = (01 bl) o(az bz) _ a; 0 by O
C1 dl Co dz 0 c1 0 d1

Ca 0 dz 0

Then Y, 0 Y:&€T, if and only if V1, Y&l The elements of I'y which anti-
commute with P are of the form ¥, o V2, and we have

(A*B)(CoD) = ACoBD,
(AoB)(C +D) = ADoBC,
(AoB)(CoD) = ADs BC.

Suppose now that (JoI)"=Uo V. Since (I o I)?=I«I, we have
(Uo V)2=UV«VU=Ix+1,s0o V=U"' But now let

X = (U« DX(U=1I).

Then P° =SB, ¢ and 7 differ by an inner automorphism, and (I o I)°=Io I.
Changing notation, we henceforth assume Pr=9P and (I o I)*=Io I. From

(IoD(Y*+Z)IolI) =2+Y
we deduce
(IoI)(Z Y+ YFZ¥)(I o I) = YZ*+ZFY?.
Therefore
ZvYe = Z8y5

for all ¥, ZET,. Hence =%, a=8. We have thus shown that for any Y,
Z&Ts we have
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(Y+2)r = M2)Y s N(Y)Z",

where A is a character, and « is an automorphism of T.

(iv) From the discussion in- part (i) of this section, we know that there
exists a character u and an element 4 €A, such that Xe=u(X)4XA-! for all
X €T's. We remark next that if 8E€A,,, the map ¢ defined by X¢=BX8! for
each X&Ty, is clearly an automorphism of I's,. In particular, let us define an
automorphism ¢ of I'y by

¥= (A1 A )X (A« A) forall X € T
Calling this new automorphism 7 instead of &, we then know that
(Y+Z)" = MY« NY)u(2)Z
for each pair Y, Z&ET, and further that
ToD)"= (A4 A)YIoI)(A+A) =10l
Thence we have
(YoZ) = (Y+Z)"(IoI)" = M2)u(Y)Y o NY)u(Z)Z.

(v) We apply the above results to the 4 generators of I'y, which are given
by (see [3])

ml=IOI: SR2=T+T’—1, @0=S‘I7 S:‘)=T".I
(where S and T are defined by (8)). We have at once

Ri=Ri, Go==4S+ I, To==+Ts+1, STy =Sy,

(the last equation holding because &,Z, is a square).
We use now (and again later) an argument due to Hua [5] to find the
possible images $3. Observe that

. 0 00
0ol jud |7 0 2m
0 @ 0 o

are elements of I'y which are invariant under 7; their product is also invariant.
Hence the group of all elements of I'y which commute element-wise with the
set of matrices of the form

I(g) X], 0
0 2|, A1, Az even integers,
0 o

is mapped onto itself by 7. This group is readily found to consist of all ele-
ments of T'; of the form
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E B +1 0
( ), where E = ( ) and EB’ = BE.
0 E 0 +1

The squares of these elements are the matrices of T'y given by

)

where M is symmetric and all elements of M are even. Hence

(I Lﬁ’ (I M 1)

o1/ \or

for even symmetric M, and M, is also even and symmetric.
Next observe that

(0l )G 0= o)

0 T
= (§+5)"= £S5« £ 5,
(o) 69

we see that for even symmetric N we have

o G =G 1)

with NV even and symmetric.

Now let Z be the group of matrices of the form (9) with M even and sym-
metric, and let Z’ be the group of matrices given by (10) with even symmetric
N. Then 7 maps both £ and 2’ onto themselves, and so any element com-
muting with both £ and 2’ maps into another such element. However, these
elements are precisely the rotations in T'y. Hence for each UEQ; we have

G ) = )

The map U—U" is an automorphism ¢ of Qs, and we already know from
Br=P and R] =R, that S*=S. Consequently (see [4]) there are only 4 pos-
sibilities for T, given by

G G G G

(vi) We next apply 7 to both sides of the equation

Since
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1 0 0 O
(Se1) (T2 0 )(SaI)—l = L oo
0o 72 0-2 1 0
-2 0 0 1
and use equation (10). This shows that
1 +2
(= (0 1)’
and so either
T°=Tor T’ = (_1 1) = T, (say).
0 -1

Now we show that &= + &, Tj= + Ty. For, N2 and T, commute; hence
so do 93 and 5. However, R;=Rs or R5=T1+ 77!, and it is easily verified
that + (T + —I) does not commute with either of these two possible images
of Rs. Therefore Ty= 1+ (T +I), whence 5= +(S+1).

Next suppose that R7=T,477~!; then define 7, by ¥ =P¥XP-1. Then
St =8y, TR =T, and R = — Ry, R = —R2. We have therefore shown that
apart from an “inner” automorphism by an element of A4, every automorph-
ism 7 of I'y can be described by

(R, R2, So, To)” = (£ Ry, Ny, 1S, £ Zo),
and the signs must satisfy
Rty = Ris, STy = SoT,
Thus every automorphism 7 is given by
£ = 0(X)AXA forallX € Ty,

where €A, and 0 is a character of T's.
(vii) Itwill beshown in a future note by the author [9] that I, has exactly
one nontrivial character 8, where 8 is the map of Ty into { +1} induced by

0(1) = 6(R2) = 6(So) = 6(To) = — 1.

This fact, together with the preceding discussion, settles the question of
automorphisms of I'y. It will also be shown in the same note that I's,, 7#>2,
has no nontrivial characters. This result will be needed in finding all auto-
morphisms of I'y,.

5. Automorphisms of I's,, #>2. We are now ready to prove, by induction
on n, the following result:

THEOREM 3. For n> 2, every automorphism 1 of T's, is given by
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X = AXAY,
where NE A, depends only on .

Proof. (i) Let »=3; by the induction hypothesis and our previous results,
we may assume that every automorphism o of I's(n—1) is given by

X =6(X)-A4XA,

where A €Ay, 1) and 0 is a character of T'y,—y). Let 7 be an automorphism of
T';,, and set

B = — I 2D,

We see from Theorem 2 that after changing 7 by a suitable inner automor-
phism, we may take P = +P. The elements of T'y, which commute with P
are of the form Y1+ Z,, V1€, Z1ETy(n1y, so that we have

(Y1+Z1)" = V3 Zs.
Again we set
(VoI)r = Veu VB for Y € Ty,
(I+2)r = Z7+2% for Z € Ty(n-1y.

Then I's and I'},-;) commute elementwise, and I’ is their product. As in §4,
paxit (ii)}, we deduce that one of I'3, I'J(,_1, is I's, and the other is contained
in{+I;.

(ii) For the moment set o/ =T%, B =T%,_1). Then 4 and B commute ele-
mentwise, and their product is Iy¢—y). This shows that B is a normal sub-
group of I'y¢,_1). We shall show that AC{ +1 }, B=Tsn_1, and that § is an
automorphism.

For each involution W&Ty(,_1y we have (W?)?=I%=1I. Suppose that
Wé= £ 1T for every involution W&I'z(n_n; since the involutions in Tym_n
generate all of I'y,_1) (this follows readily from [3]), this would mean that
BC{ +1I}, and soB would map I'; homomorphically oo 'jcn—1. We may then
show that 8 is an isomorphism; for, suppose that Y?=1I, Y1I. Then

(Y« =You .

Since BC{ +1I}, certainly T},_, is not contained in {+I}, and so I3
C{£1}, that is, a is a character. Therefore Y= +I. But Y==1 is impos-
sible, since then (¥Y+I)*=I®" and ¥Y=1I. On the other hand, Y*=—1I is
impossible, since in that case (YV+I)"=%, so (Y *I)= +P. Therefore we
would have Y= —1I, and this gives a contradiction because —I=S?% and o a
character, together imply (—I)*=1I. Therefore 8 is. an isomorphism. How-
ever, this is itself impossible because I'; has no involutions other than +1I,
whereas I';(,_1y has such involutions for n>2.

We conclude from the abave that there s at least one involution W&Ta -1
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for which W5 + I. However, B is a normal subgroup of I's,—1y, and W€ B.
Therefore B contains all of the conjugates of W? in I's(,—1). It is not difficult
to see that if W% + I, the only elements of I's(,—1) which commute element-
wise with all conjugates of W* are +I. Hence AC{ £}, and B =Ty
Consequently
(Y+2)" = 0(Z)Y =+ NY)2?,

where 8 and \ are characters, a is a homomorphism of I'; onto itself, and é a
homomorphism of I'y,—1) onto itself. We deduce readily that « and & are
automorphisms, whence incidentally P7=B.

By the discussion at the beginning of the proof, we know that there exist
matrices CEQy, D& Ag(a-1), and characters u, » such that

Ye = u(Y)CYCY, Z% = y(Z)DZD.

If C+ DEA;,, define 7, by
X" = (C+D)~%7(C+ D),
so that
(V+Z)m = 0Z)u(Y)Y « N(Y)¥(2)Z.
However, possibly C+ DEA,,. In that case, if K=(—1)+4(1), then CKsD
€A, and we define 75 by
X = (CK+D)"'%"(CK+ D).

Thus, changing notation, we may assume that
(11) (YV+2)" = 0Z)u(Y)HY B+ XN(¥)»(2)Z,
for any YE€Ts, ZETs(,_1), where 6, p, \, v are characters, and where either

H=]I® or H=K.
(iii) Suppose now that Y&T'y, ZET (.1, are given by

W A

Then define ¥ +*Z to be the 27X 2% matrix 9% obtained by placing the ele-
ments of ¥ at the intersections of the sth and (n+%)th rows and columns,
filling in the remaining places in those rows and columns with 0’s, and letting
the matrix obtained from I by deleting the ith and (#-44)th rows and
columns be identical with Z. Then Y +Z is a generalization of the previously
defined symplectic direct sum, and in fact Y+'Z=Y+Z.

Now set

Pi = — IOGA=D = [®,0,, say.

Then Q; is a square in Ty, 1) (since —I=S5?), and so from (11) we have
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Bi = I+Qi = Pu.
As before it then follows for Y&TI's, Z&ETy, 1) that
(12) (Y5 Z) = (F«(2)f«(Y)AYATY) (gi(Y)Gi(Z) BLZ B7Y),

where 4;EQ, B;EAyny, and F;, fs, gi, G; are characters.
(iv) Next let X and YET,, ZET (. Applying 7 to both sides of the
equation

Xs(V+Z) = V+¥(X+2)
and using (12), we obtain
[Fi(Y +2)f1(X) A1 X AT )+ [01(X)Go(Y +Z) B(Y + Z) Bi™!]
= [FoX+Z)fo(V)A:Y A7) 52 [g2(Y)Go(X + Z) Bo(X + Z) B51).
In particular for X = —1I, Y=1I, Z=1 this yields
By(—I+I)Bi' = — I+1,

(13)

so that
By = + 4)»C,
and further
By = £ Ay x % Co.
We use these expressions for B; and B; in (13) and obtain

F\(Y+2)[1(X) = g2(Y)Gx(X +2),
Fy(X+Z)fo(Y) = g1(X)G(Y +Z),
g(X)GU(Y +2Z) = go(Y)Go(X +2).

These imply that fi =g and f;=g..

Continuing in this way we see that each B; decomposes completely, and
in fact if

D = A1+de* -+ - x4,

then B; is obtained from D by deleting 4; and possibly changing signs of
some of the remaining 4’s. Furthermore, if any 4;EA{, then every 4;€A7,
since each B;EAs(n_1y. Therefore D EAs,. After a further inner automorphism
of T'y, by a factor of D!, we may assume hereafter that

(14) (Y+iZ)" = f(¥)[F{(2)Y +*G(2) BZBr!]
for YETs, ZETs(,_yy, where f;, F; and G; are characters and each By is of the
form (+I)« - - - *(%1), and in fact we may take B;=1.

(v) Define
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0 0--:-0 17
0 0 0
0 1..-0 0 .
U, = ) Uy =T+ It~
| 0 0---1 0

where T is given by (8). Then the generators of I'z, are (see [3]):
Ri=U+ U/, Re = Uz + U, To=T+1, So = S+1I.
From (14) we find at once that

To = + T, Go= + o, and ST = SeTo.

Next, the rotations of I's, map onto rotations under 7, since the rotations
are generated by the elements Y+Z,i=1, - - ., n, where ¥ and Z have the

forms
a O A 0
=) =0 b)
0 d 0 D

and the image of any such Y +¢ Z is of the same kind. Therefore 7 induces an
automorphism ¢ on the group ,, where

G v = )

We then know [4] that there exists HEQ, such that
Ve = HV“H™! forall V € Q,,

where either V=V for all V or V= V’~1for all V.

We know furthermore that + maps every rotation P; onto itself, from
which we see that H is diagonal, with diagonal elements +1’s. Replace 7
by 71 defined by

¥n = (H 4+ H)¥(H 4+ H)
and change notation. We again have $f= + T, &= + &,, and S;37=E,T,,
but now V?= V¥ for each VEQ,. The argument given in §4, parts (iii) and (iv)

shows that R5=T"-14-T is impossible, so V?= "V for all VER,. Therefore 7
is given by

R, Rey To, S0)™ = (R, Ry, £To, £&0).

However, as we have already mentioned, I's, has no nontrivial character for
n=3. Hence 4=, &;=&,. This completes the proof of the theorem.
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6. We remark finally that if M ET,, is given by (3), then

- (2 79-(0 D DD

so the automorphism ¢: M*=IM'! is inner.

Furthermore, any element of Az, can be written as the product of an ele-
ment of Ty, and —I™J4-I™ so every automorphism of I's, can be obtained
by using inner automorphisms by elements in I's,, coupled with the auto-

e -
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