
AUTOMORPHISMS OF THE SYMPLECTIC
MODULAR GROUP

BY

IRVING REINER

1. Introduction. Let fi„ denote the unimodular group consisting of all

raXra integral matrices of determinant +1, and let J(b) be the identity

matrix in Qn. We shall use 0 to denote a null matrix whose size is determined

by the context, X' for the tranpose of X, and X+ Y for the direct sum of X

and Y. We call an integral matrix primitive if the greatest common divisor

of its maximal size minors is 1.

Define

and let the symplectic group Spzn consist of all rational 2raX2ra matrices

TI satisfying

(2) W%W - g.

We define the symplectic modular group T2n to be the group of integral mat-

rices in Spzn- Although we shall not do so in this paper, it is sometimes more

convenient to work with the factor group of r2n over its center +3; see

[l; 2; 3](x). We may also define an extended group A2n consisting of all

integral matrices 9W for which 9D?g9fl' = ± g.

The automorphisms of Spt„ (over any field) have previously been deter-

mined [5], as have the automorphisms of T2 (see [4]). The object of this

paper is to determine all automorphisms of T2„. Let us call a homomorphism

of r2n into { +1} a character. Then we shall prove that every automorphism

t of r2„ is given by

& = *(Daxa-1 for an a- e r2n,

where \p is a character, and 2KEA2n. We may remark at this point that the

mapping a defined by

X" = X'-1 for all 36 G T2n

is obviously an automorphism. As we shall see, however, it is an inner auto-

morphism.

Let us set
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(A     B\
(3) m-(c  d)-

where A, B, C, D are integral nXn matrices. Then 9JZ£r2,, if and only if the

following conditions are satisfied:

(4) AB' symmetric, CD' symmetric, AU-BC'^I.

We single out for future use certain types of elements of r2n:

(1) Translations:

£ = L      J    or    I        J, 5 symmetric.

(2) Rotations:

/U    0     \

(3) Semi-involutions:

/   /       7- 7\
© = l ], J diagonal with diagonal elements O's and l's.

Further, if 2ft given by (3) is in r2n, then

/    D'    -B'\

<5) **-(-c     a)-

Finally, if

/At   BA
2ft, = L    Jer^ W-1.2),

\Ci    Dj

we define the symplectic direct sum 2fti * 2ft2Gr2(„,+ni) by

~Ai   0     Pi   0 _

0     At   0     P2
2fti*2ft2 =

Ci    0     Di   0

_0      C2    0     7ft_

We may remark that as 2ft ranges over all elements of r2n, the matrix

[ —7(B)+7(n)]2ft ranges over all elements in A2„ = {3£GA2n:3£$r2n}. Thence

9WiGA^,. (i = l, 2) implies 2fti» 2ft2GA2'(„,+„„. However, 2ftiGrs„I and

2J?2GA2nj implies 2fti* 2ftGA2(«,+«,).
2. Involutions in r2n. It is known [4] that as x, y, and z range over all

non-negative integers such that 2x+y-\-z = n, the matrix
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(6) W(x, y, z) = (j  _i) + • • • +(|  _j)+ (~ W* + Iic)

(where x 2X2 blocks occur) gives a complete set of nonconjugate involutions

in fi„. By an [x, y, z] involution in fl„ we mean any conjugate of W(x, y, z) in

fl„. Now define

SB(*, y, z) = W(x, y, z) + W'(x, y, z) G r2n.

Theorem 1. The matrices 9B(x, y, z) with 2x-\-y-\-z=n give a complete set

of nonconjugate involutions in r2n.

Proof. We use induction on ra. The result is trivial for ra = l, so now let

X be an involution in r2n, ra > 1. From 3E2 = I<2n) we conclude that the char-

acteristic roots of X are l's and — l's. Let e be a characteristic root of H;

then there exists a primitive row vector f such that r£ = ej. We can then find

[6] a matrix §)Gr2„ whose first row is 5. In that case the first row of £i=§)£§)-1

is (e 0 • • • 0). Since Hi is an involution in r2„, we obtain

"e     0 • • • 0   0   0 • • • 0-

0

Ax        '■        Bx'* 6
£1 =

* •

Cx Dx

_* * _

where

/Ax   Bx\

\Cx   Dx)

is itself an involution in r2cB-i)- Continuing this procedure, we see that X is

conjugate in T2n to a matrix of the form

(A     0\

From the fact that & is an involution in r2„, we deduce at once that A is an

involution in Q„, and D=A'~1. However,

/U 0     W.4    0\/£/-'  Q\_/UAU~l       0     \

\o   zy'-y\c  d)\o     u')~\   c    u'-wu')'
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and so by choosing Z/G^n properly, we find that 3E is conjugate to & given by

= /W(x, y,z) 0       \

3      \       C W'(x,y,z))

with a new C. Since 3£sGr2n is an involution, we have

(7) CW symmetric,       C skew-symmetric.

The proof now splits into two cases:

Case 1. If either y^O or z^O, we may set W(x, y, z) = Wi-\-(e), e= +1.

From (7) we find that

~Wi    0 0 0"

0 e 0 0

*3=    Ci   -r' Wi' 0    »

_f 0 0 €_

and that

*    \Ci     Wi')

is an involution in r2(„_i). By the induction hypothesis there exist integers

Xi, yi, Zi with 2xi+yi+Zi=n — l, such that & is conjugate to SB(iCi, yi, Zi).

For the moment set P = W(xu yi, z{). Then in r2n, Xj is conjugate to &, where

~P    0     0     0-

0     e      0     0
J. =

0 -5'    P'    0

_f      0      0      e_

with a new f. But then

~P    0     0     0-] r-/(n-i)    0 0 0"

r      1      0     0 0       0 0 1
£5 = ©X4©"1 = ,      ,     where © = ,   „ •

0     0      P'    r' 0       0     7<"~«      0

_0      00ej LO-1 0 0_

Since & is now a direct sum W-\-W, where Wis an involution in Qn, the re-

sult follows upon transforming & by a suitably chosen rotation in r2n.

Case 2. If both y and z are 0, we write W(x, y, z) =L+Wi, where
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Then, as before, % is conjugate to & given by

~     L      0     0     0-

0        Wx 0     0

*'*   _?S   *   »  o     '
_-5'       0     0      Wi'_

However,

"   0 0 7<2>      0       If        /(») 0    -
0     Pn~»      0 0

-7<2>      0 0 0

o       o       o     Pn-v   J Lo + b 4- o<--2> /<">_

and we have

(L'    B \  .  (L     0    \

\0     WV      \B'    WV/

The result then follows as in the previous case.

We have thus shown that any involution £Gr2n is conjugate to some

5E8(:k, y, z). On the other hand, if 3S(x, y, z) and iEB(x0, yo, z0) were conjugate

in r2n, they would certainly be conjugate in Skn. This implies [4] that #=#0,

y=yo, and z=zo.

The conjugates of SB(x, y, z) in r2n will be called (x, y, 2) involutions.

3. Characterization of the ± (0, 1, ra — 1) involutions. In Spin, every involu-

tion is conjugate to one of the form 7<2') * —7(2a), with p+q=n. Any involu-

tion in the class of 7(2p) * —7<2«> is said to have signature {p, q) (see [5]). One

easily proves that any (x, y, z) involution in T2n has signature {a;+z, x+t} ,

and that the negative of an (x, y, z) involution is of type (x, z, y).

It is known that an abelian set of involutions of signature {p, q} in S£2„

cannot contain more than Cn,P elements (see [5, Theorem 2; 7, §19]). We shall

use this fact in proving the following basic result:

Theorem 2. Under any automorphism of T2n, the image of a (0, 1, w —1)

involution is either a (0, 1, ra —1) involution or a (0, ra — 1, 1) involution.

Proof, (i) An abelian set of involutions in r2n, each of type (x, y, z), we

shall call an (x, y, z) set. Let f(x, y, z) be the number of elements in an

(x, y, z) set of largest size. The above-quoted result shows that

f(x, y, Z)   g Cn.z+z,

sofor(x,y,z) = ±(0,0,n), +(0, l,ra-l), +(1, 0, ra-2) we have/(x, y, 2) ̂ n.
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We now show that/(x, y, z)>n except for the 6 cases given above.

From an abelian set 3C of [x, y, z] involutions in fi„, one obtains an

(x, y, z) set in r2n by taking the set of matrices U+U'~l, 1/G3C- We know,

however, that there exist abelian sets of [x, y, z] involutions in fl„ containing

more than « elements, except for the 6 cases listed above (see [8, §§12 and

13]).
(ii) The +(0, 0, n) involutions in r2n are ±J(2b), so that certainly a

(0, 1, n — 1) involution cannot be mapped onto a + (0, 0, n) involution by an

automorphism of r2n. It remains to prove that the image cannot be of type

+ (1, 0, n — 2). To begin with, a simple calculation shows that two rotations

U-\-U'~l and V+V'-1 are conjugate in r2„ if and only if U and V are con-

jugate in fln. For n>2, there are at least two nonconjugate [l, 0, n — 2] sets

in ii„, each containing n elements; on the other hand, there is a unique (up

to conjugacy) abelian set of n [0, 1, n — l] involutions in Q„ (see [8, §12]).

Hence for w>2, the image of a (0, 1, n— 1) involution in r2„ must be of type

+ (0,1, «-l).
(iii) The case n = l is trivial, and so we are left with » = 2. Now we have

'">•-*•> = ("■>•(_" J))'.
so any (0, 1, 1) involution in T4 is the square of some element of T4. We show

that the (1, 0, 0) involutions in T4 are not squares. For suppose that

(A    B\2      (L   0\ (A    B\ /l     0\
( 1   = I I, where ( ) G T4 and L = ( ].
\C   D)       \0   V) \c   d) \1 -1/

From (5) we then have

/A    B\ _ /L   0 \ /   D' -PA

\C    D/ = V0    L') \-C      A') '

This implies that

a 0               0               0       _

/A    B\         (a - d)/2 d               0               b

\C    D/ ~             c -2c             a        (a + d)/2

_    -2c 4c             0            -d

Using AD'-BC' = I, we find that

-<f2 - 46c = 1,

whence J*= —1 (mod 4), since a, b, c, d are integers. This is impossible, and

so the theorem is proved.

4. Automorphisms of T4. As is usually the case with determination of
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automorphisms of a group of matrices, the lower the dimension the more

difficult the proof. We begin by stating in (i) some earlier results (see [4])

which will be needed.

(i) The group A2 coincides with i22, and T2 is the subgroup 12^ consisting

of all elements of fl2 with determinant +1. For the remainder of this paper

we let

<8) s-(-i J>  r"C !)•
Then S and T generate r2, and in any relation SmlTniSm*Tn* •• • =7 the

sum mi-\-nx-\-mz-\-nz-{- • • ■ is always even. Hence the elements XGT2 can

be classified as even or odd according to the parity of the sum of the ex-

ponents when X is expressed as a product of powers of 5 and T. The only

nontrivial character of T2 is defined by

(I, X even,
<X) =  \1-1,      Xodd.

Then every automorphism t of r2 is given by

X* = \(X)AXA~* for all X G r2,

where X is a character, and A Gft.

(ii) Now let r be any automorphism of IV After changing r by a suitable

inner automorphism, we may assume that tyT = +^fj, where

$ = /<*> , -/<*>.

Since $ and — ty are conjugate in Tt, assume in fact that $T = 'ip. Then any

element of I\ which commutes with ty maps into another such element, so

that

(Yx*ZxY = Yz*Z2,

where Yx, Y2, Zx, ZzG.Tt. Let us set

(7*7)* = Y'.Y' forFGr2,

(i*zy = zv*z* forZGrv

Then a, /3, y, 5 are all homomorphisms of T2 into itself, since

(Yx* Zi)(Yz* Zz) = YxYz* ZxZz.

Further, since Y*I and I*Z commute, so do Y" and Z"* for all pairs of ele-

ments Y, ZGr2; also, every element of Tz is a product YaZ~> for some such

pair. Since SGr2, there exists an element XGTz such that S-X^'GIl! and

XETl. But then X commutes with SX~l, whence X= +1 or +S. Therefore

either 5Gr? or SGTl
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Suppose now that SGI1?; since every element of TJ commutes with S,

we see that T|C { ±7, ±S}. However, SGr2 would imply the finiteness of

r2, whence r^Tjrj could not be true. Therefore TJC { +7}, and then cer-

tainly r2 = T2. Similarly, one of r2, T| is r2, and the other is included in { + 7}.

Now we use the fact that ( — $)T= — $, that is

(-7*7)' = - /*/.

Therefore (-7)°= -7; but if T^C { ±7}, the fact that -7 = S2 would imply

(-!)«=!. Hence Y$ = Yi, YIC{ ±l), and therefore itC { ±7}, T| = r2.
Next we prove that a is an automorphism; we need merely prove that

F° = 7 implies F = 7. But if F" = 7, then (F*7)T = 7* +7. Since (7*7)r
= 7* 7 and (7* — I)T = I * —I, this implies that F=7. By the same reasoning,

S is also an automorphism.

(iii) Now define

"0     ai   0     h~

/«i    b{\    /o2    bi\ a2   0     bi    0
FioF2 = I )o( ) =

Vi    dif    \ci    dif 0     Ci    0     di

_c2    0     di    0 _

Then Fi o F2Gr4 if and only if Fi, F2Gr2. The elements of T4 which anti-

commute with $ are of the form Fi o F2, and we have

G4*P)(Co£>) = ACoBD,

(AoB)(C*D) = ADoBC,

(AoB)(CoD) = AD*BC.

Suppose now that (7 o T)T=Vo V. Since (7o7)2 = 7*7, we have

(77 o V)2=UV*VU = I*I, so V=U~\ But now let

I' = (U-l*I)fr(U*I).

Then 93" = ^. °~ and t differ by an inner automorphism, and (7 o 7)" =7 o 7.

Changing notation, we henceforth assume liPT = ^ and (7 o 7)T = 7o7. From

(7o7)(F*Z)(7o7) = Z*Y

we deduce

(7o7)(Z?F«*F<JZs)(7o7) m Y-iZa*Z»Y\

Therefore

Z->Ya = Z»Yh

for all F, ZGr2. Hence 0=y, a = 8. We have thus shown that for any Y,

ZGr» we have
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(Y*Z)r = \(Z)Y"*\(Y)Z°,

where X is a character, and a is an automorphism of T2.

(iv) From the discussion in part (i) of this section, we know that there

exists a character /* and an element A GA2 such that X" =p(X)AXA~1 for all

XETt. We remark next that if 23GA2n, the map <j> defined by X* = 93XS3-1 for
each 2EGr2„ is clearly an automorphism of rs„. In particular, let us define an

automorphism a of I\ by

X* = (A-1*A~1)fr(A*A) for all H G T4.

Calling this new automorphism r instead of a, we then know that

(Y*zy = \(Z)n(Y)Y *\(Y)p(Z)Z

for each pair Y, ZGIY and further that

(7o7)T = (A-l*A-1)(IoI)(A*A) = 7o7.

Thence we have

(YoZ)- = (Y*Z)r(Ioiy = \(Z)n(Y)Y o\(Y)ii(Z)Z.

(v) We apply the above results to the 4 generators of T4, which are given

by (see [3])

5Ri = 7o7,       % = T + J"-1,       ©o = 5*7,       Zo = 7*7

(where 5 and 7" are defined by (8)). We have at once

5Ri = SRi,      @J = ± S* + I,        £0 = ± T* + I,      ©Jjo = @o£o,

(the last equation holding because ©0S0 is a square).

We use now (and again later) an argument due to Hua [5] to find the

possible images 9fJ. Observe that

[/(2)        2ra 0~| rr(!1)        0   0
0   0       and      l 0    2m

0 7<2> J |_0 /<2)

are elements of T4 which are invariant under f; their product is also invariant.

Hence the group of all elements of T4 which commute element-wise with the

set of matrices of the form

/(2) ^1   0
0   ^2   , Xi, X2 even integers,

_0 7<2>  _

is mapped onto itself by r. This group is readily found to consist of all ele-

ments of T4 of the form
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(E    B\ /±1      0\
( ), where E = [ I and EB' = BE.
\0    Ej' \   0 ±1/

The squares of these elements are the matrices of T4 given by

c f)-
where M is symmetric and all elements of M are even. Hence

(o f)'~(o D
for even symmetric M, and Afi is also even and symmetric.

Next observe that

U X f)C>U D
Since

(_° ^' = (s.sy = ± 5* ± s,

we see that for even symmetric N we have

with A7! even and symmetric.

Now let 2 be the group of matrices of the form (9) with M even and sym-

metric, and let 2' be the group of matrices given by (10) with even symmetric

N. Then r maps both 2 and 2' onto themselves, and so any element com-

muting with both 2 and 2' maps into another such element. However, these

elements are precisely the rotations in T4. Hence for each f/G^t we have

/U     0 V _ /U°       0    \

\o  u'-1)  = \o   (wy-y

The map U—*U' is an automorphism a of Q*i, and we already know from

$r=$ and 9?I = $fti that S° = 5. Consequently (see [4]) there are only 4 pos-

sibilities for T°, given by

CD- Ci-D- (-:> C!->
(vi) We next apply t to both sides of the equation
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-10      0      0"

/T*    0     \ 0      10      0
(5.7)( )(S*I)-1 =

\o     r-y 0-210

_-2     0     0      1.

and use equation (10). This shows that

/l  ±2\

(n- = (o   ,),

and so either

T' = T or ̂ -("J _j) = r,(say).

Now we show that ©5 = ±©0, 25 = +£<>• For, ft2 and I0 commute; hence

so do ft2 and 23- However, ft^ft, or ^tl — Ti+Ti'1, and it is easily verified

that ±(T* —I) does not commute with either of these two possible images

of 3?2. Therefore £5= ±(T*I), whence ®J= ±(5*7).
Next suppose that t^-ri+TY-1; then define n by I^^X^*-1. Then

©? = @o, $? = £o, and ft? = -fti, ft? = -ft,. We have therefore shown that

apart from an "inner" automorphism by an element of A4, every automorph-

ism t of T4 can be described by

(ftl,ft2,@0, £<))'  =   (+ftl,   ±ft2,   +©0,   ±£«),

and the signs must satisfy

ftlft, - ftifts,        ©o2o = ©0&

Thus every automorphism r is given by

X'-flOOaXH-1 forallXGr*.

where 3IGA4 and 0 is a character of T4.

(vii) It will be shown in a future note by the author [9] that T4 has exactly

one nontrivial character 6, where 0 is the map of T4 into { ± 1} induced by

0(fti) = 0(ft2) = 0(©o) = *(Io) = -4-

This fact, together with the preceding discussion, settles the question of

automorphisms of T4. It will also be shown in the same note that r2n, w>2,

has no nontrivial characters. This result will be needed in finding all auto-

morphisms of r,„.

5. Automorphisms of r,», n>2. We are now ready to prove, by induction

on n, the following result:

Theorem 3. For n>2, every automorphism r of Ytt, is given by



46 IRVING REINER [September

where 3lGA2n depends only on r.

Proof, (i) Let ra ̂  3; by the induction hypothesis and our previous results,

we may assume that every automorphism a of r2(n_i) is given by

X' = 6(X)-AXA-\

where 4GAj(„_d and 6 is a character of IVb-d. Let t be an automorphism of

r2n, and set

<P = — 7(2>*72(n-1>.

We see from Theorem^ that after changing r by a suitable inner automor-

phism, we may take tyT= +fy. The elements of r2„ which commute with fy

are of the form Yx*Zx, FiGr2, Zx^Y2{n-\), so that we have

(Yx*Zxy = Yz*Zz.

Again we set

(Y*I)r = Y"*Y» for FGr2,

(i*zy = z?*z8 for z g r,(«_i,.

Then T2 and F^n-i) commute elementwise, and T2 is their product. As in §4,

part (ii), we deduce that one of Tf, TJtn-i) is r2, and the other is contained

in {±7}.
(ii) For the moment set zA=T2, B =r|(n_i). Then zA and B commute ele-

mentwise, and their product is r2(„_i). This shows that <B is a normal sub-

group of r2(n_i). We shall show that zAC. { ±1}, <B=IY„_i), and that 8 is an
automorphism.

For each involution W<E.Yz<n-D we have (IF8)2 = 7* = 7. Suppose that

WS=±I for every involution JFGIVn-n; since the involutions in r2(n_n

generate all of r2(„_i) (this follows readily from [3]), this would mean that

BC { + 7}, and so P would map T2 homomorphically onto r2(B-n. We may then

show that P is an isomorphism; for, suppose that Y9 = I, Y^I. Then

(Y*I)r =Y°*I.

Since tBC.{±l), certainly rj(„_D is not contained in {±7}, and so Tf

C { +7}, that is, or is a character. Therefore Ya—±I. But Ya = 7 is impos-

sible, since then (F*7)r = 7(2n) and F=7. On the other hand, Y"-— I is

impossible, since in that case (7*7)T = $, so (Y*I) = ±fy. Therefore we

would have Y— —I, and this gives a contradiction because — 7 = 52, and a a

character together imply ( — 7)"=7. Therefore P is an isomorphism. How-

ever, this is itself impossible because T2 has no involutions other than ±7,

whereas r2(tl_D has such involutions for ra>2.

We conclude from the above that there is at least one involution TFGFjc-i)
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for which Wl^±I. However, <B is a normal subgroup of r2(n_i), and TF8G®-

Therefore <B contains all of the conjugates of Wh in r2(n_i). It is not difficult

to see that if Ws7* +1, the only elements of r2(„_i) which commute element-

wise with all conjugates of Wl are ±1. Hence zACL { ±l\, and tf} = r2f„_i).

Consequently

(Y*Zy = B(Z)Y"*\(Y)Zi,

where 6 and X are characters, a is a homomorphism of T2 onto itself, and S a

homomorphism of r2(n_i) onto itself. We deduce readily that a and S are

automorphisms, whence incidentally tyT = 2*.

By the discussion at the beginning of the proof, we know that there exist

matrices CG^2, TJ>GA2(n-i), and characters p., v such that

Y" - p.(Y)CYC~1,       Z5 = v(Z)DZD~l.

If C*DGA2„, define ri by

J" = (C*D)~W(C*D),

so that

(Y*Z)" = 6(Z)p.(Y)Y *\(Y)v(Z)Z.

However, possibly C*7?GA2n. In that case, if K = ( — l)-j-(l), then CK*D

GA2n, and we define t2 by

£"= (CK*D)~W(CK*D).

Thus, changing notation, we may assume that

(11) (Y*Zy = 6(Z)p(Y)HYH-U\(Y)v(Z)Z,

for any Y^Yi, ZGr,(n-i), where 6, p., X, v are characters, and where either

H=P*> or H=K.

(iii) Suppose now that FGr2, ZGr2(t,_i) are given by

r-C "),   z-(A \
\c    dj \C    D)

Then define Y*'Z to be the 2nX2n matrix 2ft obtained by placing the ele-

ments of Y at the intersections of the ith and («+i)th rows and columns,

filling in the remaining places in those rows and columns with O's, and letting

the matrix obtained from 2ft by deleting the ith and (»+i)th rows and

columns be identical with Z. Then Y *'Z is a generalization of the previously

defined symplectic direct sum, and in fact F*JZ= Y*Z.

Now set

fy =  - /(2).i/«n-l) = p2)tQit Say.

Then Q( is a square in r2(n_D (since — 7 = 52), and so from (11) we have
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As before it then follows for FGr2, ZGr2(„_i) that

(12) (YSZy = (F,(^)/<(F)^,F4r1)*i(g<(F)GJ(Z)5<Z5r1)1

where -4,-G^2, -B<GA2f„_i), and F<,/,-, g,-, G< are characters.

(iv) Next let X and FGr2, ZGr2(„_S). Applying t to both sides of the

equation

X*(Y*Z) = Y*\X*Z)

and using (12), we obtain

[Fi(Y*Z)fx(X)AlXAr1h [gi(X)Gi(Y*Z)Bi(Y*Z)Br1]

= [F2(v*Z)/2(F)^2F^2-i]*2[g2(F)G2(X*Z)52(X*Z)Br1].

In particular for X = — I, F = 7, Z = 7 this yields

Bz(-I*I)Bzl = - 7*7,

so that

Bz — i -4i*C2

and further

Bx= ± Az* ± C2.

We use these expressions for Bx and Bt in (13) and obtain

Fx(Y*Z)fx(X) = g2(F)G2(**Z),

f2(Z*Z)/2(F) = ^(X^F.Z),

gjpOGx^Z) = gz(Y)Gz(X*Z).

These imply that/i=gi and/2 = g2.

Continuing in this way we see that each 2?,- decomposes completely, and

in fact if

35 = Ax*A2* • ■ • *An,

then Bt is obtained from 35 by deleting A{ and possibly changing signs of

some of the remaining A's. Furthermore, if any j4,GA2 , then every At(EA2',

since each 25jGA2(„_d. Therefore 35GA2n. After a further inner automorphism

of r2n by a factor of 35_1, we may assume hereafter that

(14) (YSZ)* = MY) [FiWYSGiWBiZBr1]

for FGIY ZGr2(n-i), where/,-, Ft and G, are characters and each J3< is of the

form ( + 7)* • • • *(±7), and in fact we may take B\ = 7.

(v) Define
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~0    0 • • • 0    1"

1    0- •-0    0

0    1 •••0   0
Ui= Hi = T + 7<B~2>,

_0   0 • • ■ 1    0_

where T is given by (8). Then the generators of r2n are (see [3]):

fti - Ui + Ui'~\       ft2 = Ui + Ui'-\       20 = T* I,       @o = 5*7.

From (14) we find at once that

Zl - + 2o,       ©J = ± ©o,   and   ©j2o = @o2„.

Next, the rotations of r,„ map onto rotations under t, since the rotations

are generated by the elements Y^Z, i = l, • ■ ■ , n, where Fand Z have the

forms

K-(o°>     z = (o   °d)-

and the image of any such Y*{ Z is of the same kind. Therefore r induces an

automorphism a on the group fl„, where

/V    0   y _ (v°        °   \

\0    F'-V    " \0      (V)'-1)

We then know [4] that there exists HG.Qn such that

V = HVH-1 for all F G ft.,

where either V=V for all V or F" = F'"1 for all V.

We know furthermore that r maps every rotation ^jS* onto itself, from

which we see that H is diagonal, with diagonal elements +l's. Replace r

by ti defined by

& = (H + H)&(H + 77)

and change notation. We again have 25= +2o, ©5= ±©o, and ©525 = ©o20,

but now V'= V" for each F£Q„. The argument given in §4, parts (Hi) and (iv)

shows that Ti^T'^+T is impossible, so V'=V for all FG8„. Therefore t
is given by

(ftl, ft2, 2o, ©o)r =  (ftl, ft,,   ±2o,   ±©0).

However, as we have already mentioned, r,„ has no nontrivial character for

k^3. Hence 2J = 2o, ©o = ©o- This completes the proof of the theorem.
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6. We remark finally that if SfJiGI^,, is given by (3), then

so the automorphism a: 2ft* = 2ft'-1 is inner.

Furthermore, any element of A2n can be written as the product of an ele-

ment of T2n and — 7(n)-f-7(n), so every automorphism of r2„ can be obtained

by using inner automorphisms by elements in T2n, coupled with the auto-

morphism

/A    B\      /-I   0\/A    B\/-I   0\      /   A  -B\

\C   D/~*\   0   l)\C   D/\   0   i)~\-c     d)'
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