EXACT CATEGORIES AND DUALITY

BY
D. A. BUCHSBAUM

INTRODUCTION

Throughout the book Homological algebra, by H. Cartan and S. Eilenberg,
the authors dealt with functors defined on categories of modules over certain
rings and whose values again were modules over a ring. It will be shown in this
paper that the theory may be generalized to functors defined on abstract
categories, and whose values are again in such abstract categories. An abstract
treatment such as this has several advantages. We list a few:

(1) The dualities of the type

Kernel — cokernel
Projective — injective
Z(4) — Z'(4),

originally suggested by MacLane [4], may now be formulated as explicit
mathematical theorems.

(2) In treating derived functors, it suffices to consider left derived func-
tors of a covariant functor of several variables; all other types needed may
then be obtained by a dualization process.

(3) Further applications of the theory of derived functors are bound to
show that the consideration of modules over a ring A will be insufficient.
Rings with additional structure such as grading, differentiation, topology,
etc., will have to be considered. With the theory developed abstractly, these
generalizations are readily available.

The paper is divided into four parts. Part I deals with basic definitions,
duality, and fundamental lemmas. We make no attempt to prove or even
state many of the necessary trivia which are used throughout.

Part II is rather short, due to the facts that most of the results follow
trivially from Part I, and the definitions are identical with those in [1]. Con-
nected sequences of functors were included in §4 since they are so similar to
homology sequences, and the proof of 4.1 was given to show that it is inde-
pendent of Axiom V, which is not apparent from [1].

Part III is devoted to the abstract treatment of the fundamental concepts
in [1]. Theorem 5.1, however, is proved in its full generality so as to be ap-
plicable in the theory of sheaves.

Part IV contains three applications of a purely algebraic nature. We desist
from giving applications to theory of sheaves as these would be fragmentary.
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The following treatment has some points in common with that of Mac-
Lane [4].

ParT I. Exact CATEGORIES

1. Definition of exact categories. An exact category <A is given by the
following four data:

(i) a collection of objects 4,

(ii) a distinguished object &, called the zero object,

~ (iii) an abelian group H(4, B) given for any pair of objects 4, B in 4.
The elements ¢ € H(A, B) will be called maps. We shall frequently write
¢: A—B insteadof ¢E H(A, B). The zero element of any of the groups
H(A, B) will be denoted by 0;

(iv) a homomorphism H(B, C) @ H(A, B)—H(A, C) given for each triple
of objects 4, B, C&eA. The image of Y ®¢ in H(A, C) will be denoted by
Y¥¢ and will be called the composition of ¢ and ¢.

The primitive terms of (i)—(iv) are subjected to four axioms.

AxioMm I. If a: A—B, 3: B—C, v: C—D, then y(fa) = (vB)a.

Axiom 11. H(, &) =0.

Axiom III. For each 4 €A there is a map es: A—A such that e,8=p for
each 8: B—A and yes =1 for each v: 4A—C.

It is easy to verify that H(4, &) =0=H(J, A) for all AEA and that
the i<dentity map e, of Axiom III is unique.

A map ¢: A— B will be called an equivalence if there exists a map ¢': B—A4
such that ¢'¢ =e4, ¢¢’ =ep. It is easy to see that ¢’ is unique; we write
¢’ =¢~1. Clearly ¢! also is an equivalence and (¢~1)~1=¢. If y: B—C is
another equivalence, then y¢ also is an equivalence and (Y¢)'=¢ L

DEeFINITION. We shall say that the pair of maps

4588 ¢
has property (E) if the following conditions hold

(1) Ba=0.

(2) If o’': A’—B and Ba’=0, then there exists a unique v: A’—4 with
o =ay.

(3) If B’: B—C’ and B'a=0, then there exists a unique 8: C—C’ with
B’ =6B.

We are now ready to state

AxioM IV. For any map a: A—B there exist objects K, I, I’, F and maps
such that

g 7 _ 0 K _w
* K—»A—>I—-»I'—->B—F

such that
(4) a=«br,
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(5) 0 is an equivalence,

(6) K—°A—"T has property (E),

(7) I'->*B—*F has property (E).

LEMMA 1.1. Let A—*B—*8C have property (E), and let D—°A(C—"F) be
such that ac=0 (18=0). Then o =0 (7 =0).

TaEOREM 1.2. If K1—tA— [, 0] 1 B—nF, also satisfy (4)—(7), then
there exist unique maps &, 1, §, w such that the diagram

o T 0 K T
K—A—>1->I—>B-—F

e e o 5 e |

9
34501305805

is commutative. The maps £, 1, ¢, w are equivalences.

Proof. Since x,0,710 =ao =70 =0 implies that 7,0 =0, we know there is a
unique £: K— K, such that o =0,£. Also we know there is a unique 9: I—1I,
such that 7; =9r. Similarly we obtain { and w with k=x¢{ and m, =wr. Now we
must show that 617 =¢{8. But

k1017 = K011 = a = kbt = K1 {07,
Thus k(61 —¢60)7 =0 which, by Lemma 1.1, implies that 6,9 ={6.
It is easy to show that £, 9, {, w are equivalences.
2. Exact sequences. In view of Theorem 1.2, we shall call the pairs
(K, o), (I, 7), (I, ), and (F, w) the kernel, coimage, image and cokernel of o
respectively. The sense in which these notions are uniquely associated with

a is clear from Theorem 1.2.
DEFINITION. A sequence

Qm An—1
Apn—Apg1— - — 4, m+1<n

is exact if Ker ag=Im a,y m<g<n.
We now obtain the crucial

THEOREM 2.1. A necessary and sufficient condition that

42588 ¢

have property (E) is that
g-4388co g
be exact.

Proof. Suppose 4—2B—#fC has property (E). Then we must show that
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F—A—*B, A—*B—8C, B—8C—F are all exact. Let us first consider
A—*B—8C, and show that Ker 8=Im «a. The decompositions of o and 3
can be taken to be

(1) SoaAhata385¢
@ 438l c%c%co g

(Since, as can be easily seen, @—A—%4, C—%C— have property (E)).
Thus Im a=(4, a) =Ker 8.

From (1) we see that Ker a=(, 0) and from (2) we see that Im 8=(C,
ec¢). But it can be trivially verified that Im (g—A4) = (&, 0) and Ker (C— &)
=(C, ec). Thus, we have shown that g—A4—*B and B—#C—J are also
exact, hence the necessity has been established.

For sufficiency, we assume that g—A4—2B, A—*B—#C, B—»C— are
exact. This tells us that Im 3=(C, e¢), Ker a=(&, 0) and Im a=Ker 8.
Hence we can write the decompositions of « and 8 as

€4 0 K m
3) g —A—>A—>D— B—F, k0 = a,
k @ 0 e
4) D—->B—-F —-»C—->C-d, or = 8B.

Now we must verify conditions (1), (2) and (3) of property (E).
Ba = '7’'kd = 0.

Now, suppose a’: A’—B and Boa’=0. Then 6'7’a’ =0 implies 7'a’ =0.

Hence there is a unique v’: A’—D such that ky’'=a’. But y=0"": 4’'—4
and a(0~%') =0~y =ky' =a'. If ¥: A’—A and oy =, then k87 =y’ implies
¥ =6-1'. Hence condition (2) is satisfied. Similarly one verifies (3) and this
completes the proof.

DEFINITIONS. a: A—B is a monomorphism if F—A—=B is exact. 8: B—C
is an epimorphism if B—fC— is exact.

3. G-graded categories. To cover the case when we are dealing with
categories of graded modules over graded rings, we introduce the notion of a
G-graded category (4, G) where G is an abelian group. In most applications,
G is the group of integers Z, or a direct sum of Z's.

A G-graded category is given by the following four data:

(i) a collection of objects {A } ;

(ii) a distinguished object &, called the zero object;

(iii) an abelian group H(A4, B) for any pair of objects 4, B& (A, G),
an abelian group H,(4, B)YCH(A, B) for any pair of objects 4, BE(A, G)
and any g&G. A map ¢ & H, (A4, B) is said to be homogeneous of degree g,
and we still write ¢: 4A—B;
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(iv) a homomorphism H,,(B, C)®H,,(4, B)—H,,(A, C) given for
each triple of objects 4, B, CE(eA4, G) and each pair of elements g, g2E€G.

Five axioms are imposed on these primitive terms.

Axiom 0. H, (A, BINH,,(A, B) =0 if g1g.

Axioms I-III are the same as those for an exact category, applied to
homogeneous maps, Axiom III implying that e, has degree 0.

AxioMm IV is the same as Axiom IV for exact categories applied to homo-
geneous maps, except that o, 7, «, 7 have degree 0, thereby implying that the
degree of @ is the same as the degree of a. (We assume property (E) defined
only for homogeneous maps.)

An exact category is a special case of a G-graded category; G is taken to be
trivial and Ho(4, B) =H(4, B). In the sequel, we may think of the theorems
as being proved for G-graded categories. However, we shall suppress the de-
grees of the maps and in general use the language of exact categories.

4. Duality. For subsequent work, we shall have to deal with the dual
category e4* of an exact category «4. We shall consider a metamathematical
duality theorem afterwards.

The objects of «4* are symbols 4* with 4 EcA; the zero object of eA* is
&*; the group H(A*, B*) is defined as H(B, 4) (for graded categories
H,(A*, B¥)=H_,(B, A)); for each map ¢: B—A4 in <4 we denote by ¢*:
A*—B* the corresponding “dual” map in <4*; the composition in <4* is
given by y*¢* =(¢y)*.

eA* is clearly an exact category; Axioms I and II are trivial to verify. In
Axiom III, define ess to be (eq)*. To verify Axiom IV, we suppose we have
a*: A*—B*. Then a: B—A. We therefore have K—B—"]—]'—t4 —~F.,
But then dualizing we obtain F*—**4*x*['* 0% [* _rxB*_o*K*  Now
T¥0%k* =(kf7)* =a*. 6* is an equivalence for (60-1)*=(er.)* =erx, and
(6-0)* =er*. It is obvious that F*—A4*—I'* and I*—>B*—K* both have
property (E).

Now for the metamathematical duality we replace the primitive term
H(A, B) by H(B, A), i.e., we “reverse arrows.” We also replace H(B, C)
®H(A, B)—#4.8.CH(A, C) by H(B, A)®H(C, B)—t¢-B.AH(C, A).

Making these substitutions, we see that Axioms I-IV are unchanged.
Hence we arrive at the

DuaLiTY THEOREM 4.1. Let S be a statement in A, S* the “dual” statement in
A (i.e., the statement obtained from S by the above-mentioned substitutions).
Then S is true in A if and only if S* is true in A.

Throughout the rest of this paper, we shall state lemmas, but not their
duals, it being understood that the latter are also true.
5. Fundamental lemmas.

LEMMA 5.1. Let a: A—B be a monomorphism. Then there is a mapping B
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and an object C such that &F—A—*B—8C— X is exact. (For graded categories,
B can be chosen to be of degree zero.)

LEMMA 5.2. A necessary and sufficient condition that F—A—*B—EC
be exact is that fa=0 and for every map f: A'—B such that 3f =0, there is a
unique f': A’—A such that f =of".

LEMMA 5.3. 4 necessary and sufficient condition that o be a monomorphism
s that if f is any map such that of =0, then f=0.

THEOREM 5.4. A necessary and sufficient condition that &—A—*B— & be
exact is that 0 be an equivalence.

THEOREM 5.5. Let

111
qulfi?qg
®) IS R Y
PIJ jp Ipz
a B
g—»jl—)i—)(]z——)g
g g J

be a commutative diagram with exact columns. If the bottom two rows are exact,
then so is the top row.

Proof. First we show that u\ =0. keu\ =¢nKx1=0. Thus pA =0.

Next we see that \ is a monomorphism. Suppose Af=0. Then kAf=0
=nKf, which implies f=0. Therefore, we can find a map  and an object N
such that g—A4,—*4—*N—f is exact. We must now show that N is equiv-
alent to A,, i.e., we must produce an equivalence 6: N—A, such that
6w=p. To do this, we apply the first Noether isomorphism theorem (which
holds in an exact category <4), to the following sets of exact sequences:

Q’—)Bll)B —;;Bz—"g:
(1) ﬁ—’Alil’Bl'p—l’Cr‘—’,@r

nK1 T
& — A1 — B —»F(B,4,) > I,
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gd—A4 -:) B £)C—->ﬁ,
A
@ &> a,5 4 5 N— g,
& — 4,5 BLF(B, 4)— &,
and obtain
n my
(D &g —C,—F(B,4,)—> B:— J,
exact with mpy =79, mr={;

ng ms
(Im B —N—-FB,4,)->C—>J
exact with new =7k, mer =p.

We then apply the dual to the Noether isomorphism theorem to
(2] me
&g — N—>F(B,4,)—C - g,
€) goascrtocog,
@R Sr ) Do g,
(21 m
F—Ci—F(B,4)— B;,—
4) ,@*Angz—pz—’Cz—*ﬁ,

&R SFB,4) T g,
and obtain

(II1) -85 rBc»g

exact with ons=mns, ams=mso;

Ny Mmy
(1) F—oCi>R- 4> F

exact with on,=mn;, xam,=mo.

Now we can show that msni=ec,; amsni=meon,=msn,, menpr=mary
=pn =ap which implies msn; =a. amsn,=a implies msn,=e¢,.

Let 0=mms: N—A;. Then Ow=pu for kfw=rKemmsw="m10n30=mnnw
=mirk ={k =kKsp. Hence fw=p. Now we show that 6 is an equivalence.

Let f0=0. Then (fm,)n;=0 implies that fm,=f'ms. Since 0=fmmn,
=f'msn.=f", we see that fm,=0, hence f=0. If 0g=0, then m(ns;g) =0 im-
plies that n;g=n.g’. Since 0=msnsg=msn,g’ =g’, we have mgg=0, hence
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g=0. Thus 8 is both a monomorphism and an epimorphism, hence an equiva-
lence.

We remark here that this proof shows that R is the direct sum of 4, and
C: (see Part III, §1, Remark).

LEMMA 5.6. Let
T
Q_)Alﬂ) Blgcl
all B |7

F—A -P—>B -'—(-)C

be a commutative diagram with exact rows and columns. Then
(a) Ker ay=Ker 3,
(b) There is a monomorphism p: Im ay—Im By,
(c) There is a monomorphism v: Coker py—Coker p,
(d) Coker p;=Coker u.

LeEMMA 5.7. If A1—>*A—*24, can be imbedded in the commutative diagram

in which the columns and bottom two rows are exact, then Ai—**A—34, is
exact.

THEOREM 5.8. Consider the commutative diagram

[+3] Qs
2y —>72' -2 > F
d; |d d,

(H)

,@’—>Zl E'I’Z 52’Zz

with exact rows. Then
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(a) Ker di—Ker d—Ker d; s exact,
(b) Coker d,—Coker d—Coker d; is exact,
(c) There is a map L: Ker de—Coker d, such that

) Kerd — Ker d, ‘—Ce Coker d; — Coker d is exact.

Proof. (a) and (b) are trivial consequences of Lemma 5.7 (and its dual).
Therefore, we need only concern ourselves with (c). We shall use two
dual constructions of the map .(, obtaining a map ., and a map (s, and show
that .0y =.Ca. This will demonstrate the self-duality of .,

We first employ a procedure which is tantamount to taking the counter-
image. Consider the commutative diagram

2] %] ]

Lol

g'—)KQQ:Ka2’__')g_)Q

& K3 2y 5 Idy—

7] [

The three rows and the middle and right columns are exact by definition;
ps and 6, are naturally induced maps and D, =Ker 7sa2. Thus the diagram is
commutative and the left column is exact. Since Bsdys = daoafs = dsg2d2 =0, we
know that dys=p2s where z: Dy—Z;. Now we examine the following exact
sequences

& —Ki, 32 31, — &,
K k 3
B — I, —Zy SFi — g,

& x
& — Kay>Zt = Kay— &,

where 71 =d; and the last sequence is exact due to the exactness of the top
row of (H). Also &# =a.

Now ma=0 for Buwinia =pd1@ =douyd =0. Therefore & =an§ where
&: Koy—K,,. & is, of course, a monomorphism. Thus we have the commuta-
tive diagram
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&y *1
Kay > 2y > Kag > &
o |
o1 1
Kd; -7 l’ -1 d
and therefore an epimorphism 7s: Kas— I, such that ns# =7,. We observe
the following equalities:
Bikma#®1 = Bixyry = P1d1 = day,
Bitsua®s = dPape® = da %1 = da.
Hence k1712 =tsus so we obtain the commutative diagram

o
a2 ﬂDg——’} Kd,‘-)g

N2 t3

K1 1
I;->2,—-F,

and obtain the map Ls: K4—F1 with Lo =mits.
Construction of 3. In this construction we shall only label the diagrams
and maps and not bother with the verification of each step.

g g g

L1

K .
Q_)Idl -—I)Zlf—i F‘l——)g

I e s
&z — I, B—l—)KIZ g’—l)Dl -
Jﬁx .31

g & g
Yrdon =0 so Y1d =uas where u: Z{—D,. Then we have

g’_’Fﬂ; E:Z2 EﬁFﬁg _)gy
g—')Kdz Z?)Z{iz’[dz "’g)

K
g _)Id, —iz, ﬁFd‘ —-)g,



1955) EXACT CATEGORIES AND DUALITY 11

K}fﬁ = d’v 6251 = ﬂz»
Bz = Eims, §1: Fds — FB,,
Kg = Gqm1, m: Id:— FB,,

and mra=pu. Therefore we have a map (y: K4g,— Fy; such that 6. 1 =u0s.
To see that L1 =.s, we observe that

81.La8s = uosds = s = Y1dYs = Y1Bus = dimus = 8;.La0s.

In a G-graded category, we observe that (3, L can be constructed to
have the same degree as d, provided a1, o, f1, B2 have degree zero.

We define L=, =Lz: Koy,—Fa,.

It will now suffice to show that Ker d—** Ker dy—-C, Coker d, is exact, for
the proof of the other exactness is dual to this. We record the fact that
aso =0osws Where a: Ker d—2'.

61.ng = 11023 = L1a0 = t[/ldo' = 0.
Hence Lws=0. We have

& — Koy 2 Ker d -2 I > 2,
XI 141

& — Iwy — Kerds— Fuy — &,

Q’—-»K_cﬁ Kerdz—iil‘c—)ﬁ,

A
,@—»I,C—z»Cokerdle‘C-—rﬁ,

exact with My =ws, Mada=.L. Now ¢aA; =0 since M1 =Lws =0. Thus we
have 0: Iw;— K f with p:f =\,. 0 is a monomorphism.
We must show that 8 is also an epimorphism. To this end, consider the
commutative diagram
z z %)

Lo

ﬁ"’Kﬂg:Kaz—’ g -

ﬂzl } l#z l
& — E, LD,&I -

I

,@'—»K.‘CﬁKer dz?—ﬂl‘c—nﬁ

b b
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with exact rows and columns. Since muafs=0s¥s=Lp:0:=0, we have
w¥s=Ki%u where u: Es—Id,. We claim that # is an epimorphism, for xums
=1yl =laus =Kk172 implies that ufgs=n:. We shall establish a map 7: Ker d
—E, and prove that g—Ker d—"E;—*Id,—J is exact.

Since 73000 =0, 0 =ysr where r: Ker d—Dj;. But 8i\ep202r =yndifar =y1do =0,
hence ¢20:» =0 and » = J»#. Now consider

Oy %
F>Ku—>E,—»Idi—>
exact. Biuf =Ly =dyer =do =0, hence 47 =0 and 7 =0, where Q: Ker d
—Ku. Now we have
4 v
& —Kerd— E;—>F; > &,

,@ - E,ﬂZ’ —’F)’/gl;z b d Q,

J — Ker d—ﬂZ’ —T>Id—>g,

exact with ¢ =y»{»7, hence

n m
BoF—>Id>FYy,— &
is exact with nv =7Js¥s.
KnVoy = x‘nhrhvu = d!ﬁgl;zd’u = Bll.zl;zo'u = ﬁlxlua'., =0

implies that vo, =0, and we obtain @': Ku—Ker d with #Q’ =0y,. It is trivial
to show that Q' =Q!. Thus our assertion that —Ker d—"E,—*Id,—J is

exact is proved.
We next study the commutative diagram

17

@ — Kny — Koy > Ih > &
Jﬁz l "

'ﬁ—-)Kerd—-» E, —-—» Idy— F

Wl T

Q—)KC—-}KC—» -

|

& g o
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and deduce that the left column is exact, in particular, that 357 is an epimor-
phism. We show that 0¢; =0.7:

T2pfh1 = Ty = T2 = @20 = et = TdaPsF = T2p2dof.

Hence 6¢, =87 and @ is thereby an epimorphism.
For the remaining lemmas, we shall make use of the following diagram

0 1
48458458 005 0

V) ¢1l jd’z J‘ﬁ 14’2 1451
AL Ao A0 Al
B,— B;— B — B*— B!
which is commutative and has exact rows.

THEOREM 5.9 (FIVE LEMMA). Let ¢, be an epimorphism, ¢* a monomor-
phism. Then Ker ¢ ~Im poo(¢2) where a(ds): Ker ¢pa—As.

COROLLARY 5.10. Let ¢, be an epimorphism, ¢ and ¢* monomorphisms.
Then ¢ is a monomorphism.

COROLLARY 5.11. Let ¢y be an epimorphism, ¢* a monomorphism, and let
b2 and ¢? be equivalences. Then ¢ is an equivalence.

ParT II. HoMOLOGY IN GRADED CATEGORIES

1. Abstract homology. Throughout this section, we shall be working with
objects and maps in a fixed G-graded category. The degree of a mapping
will take on more significance here than in the last chapter, and will be given
more consideration. Henceforth, we shall write <4 for (A4, G).

DEFINITION. A pair (4, d), A€A, dEH,(A, A), will be called a g-deriva-
tion or an object with differentiation if d*=0.

Let us now consider a g-derivation (4, d) and the consequent factorization
of A—44:

B—ZHA45B—
'
BB

- B —f» A‘-':;'Z"é» .

We recall that o, 7, k, 7 are of degree zero, and 8 is of degree g. We must also
keep in mind the fact that this factorization is unique only up to a transitive
family of equivalences of degree zero (viz. Part I, 1.2).

We can obtain a unique map w: B’—Z of degree zero such that ow=x« for
(x8) (7x) (07) = (k87) (k87) =d? =0 implies 7k =0.

Similarly, we can obtain a unique map ¢: Z'—B of degree zero such that
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¢m=1. Also, we have the map wo: Z—2Z’ of degree zero, and so we have the
sequence

(1) s-85252 %80 4.

LEMMA 1.1. The sequence (1) is exact.

Since 7o is of degree zero, we may choose as its canonical factorization

A
g——)B’—“-’)Z—)H—>Q’,
¢\ = wo.
g-—»H——é-Z'——?B——)Q',

Let us consider the map D =wl¢: Z'—Z. D is a mapping of degree g. It is
quite clear that

@) Ker D = H = Coker D or

¢ D _
3) F—->HSZ'—-Z— H— & is exact.

DEFINITION. The pair (Z, Z’) is called the cycles of (4, d), denoted some-
times by Z(A4), Z'(A). The pair (B, B’) is called the boundaries of (4, d),
denoted by B(A4), B'(4). The object H will be called the komology of (4, d),
denoted by H(A4).

When there is no ambiguity, we shall write Z instead of Z(4), etc.

The self-duality of the definition of H(4) may be stated in terms of the
dual object (A*, d*) in the category «4*. We have

zZ(4a% = [z )], B(4*) = [B'(4)]*,
Z'(4%) = [z )], B'(4*) = [B(4)]*,
H(4*) = [H(A4)]*
DEFINITION. A mapping f: (4, d)—(4, d) of g-derivations is a mapping
fEHL(A, 4) such that fd=df.

It will suffice to consider mappings of degree zero. There is nothing to be

gained by treating the more general case.
Let f: (4, d)—(4, d) be a mapping. Then we have the commutative dia-

grams

K L

B> S-oB 452> F

NI

la

g—)

x

LF—),@, g-»B’-ﬁZ-—»Z’—»,@,

NI <-———N

g
—

g —
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D P
* 4 2 *
L1505
o H>SZ -7 - H->dg,
'}

B — B
bl lb’

y

DEFINITION. We shall say that the sequence of g-derivations

@A d) S 4 DD 4 d) >

is exact if

-4, -(f-) A £> Ad:—> F
is exact. (« and B are assumed to be maps of derivations.)

THEOREM 1.2. Let & —(A,, d1)—2(A4, d)—P(As, d2)— & be an exact sequence
of g-derivations. Then there exists a map d: Hy—H, such that the sequence

a3
(4) 5.58% 80255y,

is exact. The map 0 has degree g.

Proof. This follows from Part I, 5.8 and the obvious exactness of Z{ -2’
—4Z{ »F and F—Z,—nZ—1Z,.

The usual propositions about homology can now be proved easily. How-
ever, for the sake of completeness, we make the following

DEFINITION. f, g: (4, d)—(4, d) are chain homotopic, f~~g, if there exists
a mapping s: A—4 of degree minus (degree of d) such that

ds+sd=f—g

It is well known that chain homotopy is an equivalence relation.
2. Complexes.
DEFINITION. A complex in <A is a sequence

n—1 n
A vi A1 4 4o+l gy ...

with d*d*~!'=0. (We are assuming, now, that we are in an exact category.
Otherwise we would require that the degrees of all the d* be zero.)

As usual, we may define Z*=Ker d», Br=Im d»!, B’»=Coim d*},
Z'»=Coker d».
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For each n, we have the exact sequence

17 Z o B Tl e

and H"=Coker w"=Ker ¢".

DEFINITION. A mapping f: A—4 of one complex into another is a sequence
of maps {f*} where f*: A»—4" and dnfr=fr+idn,

The usual formal facts about homology for complexes may be obtained
here.

3. Construction of graded categories. In this section, we shall give two
constructions of categories. The first will correspond to the category of ob-
jects with differentiation d(c4, G) in a g-graded category (4, G); the second
will be the construction of a g-graded category starting with an exact cate-
gory o4 and an abelian group G; this will correspond to the category of com-
plexes over an exact category.

Let (A, G) be a G-graded category. We define the objects of d(<A4, G) to
be pairs (4, d) where (4, d) is a g-derivation. The zero object is (&, 0).
H,((4,, d), (4s, di)) is the group of all maps f: (41, di)—(4s, ds) of degree k
and th((sz d’)» (Aa, d3)) ®Hh1((A1v dl)r (A2r dﬁ))—')Hhﬁhz((Alv d1)7 (ASy dl))
is the usual composition of maps. It is easy to see that d(eA4, G) is a G-graded
category.

This construction essentially parallels the construction of the category
of modules over the ring of dual numbers I = (A, d) obtained from the category
of modules over the ring A.

For our second construction, we let ¢4 be an exact category, G an abelian
group. Our objects are defined to be functions 4 from G to the objects of 4.
The zero object, &, is the function F(g) = all gEG. For each g’ €G, and
each pair of objects A, B, we consider functions « defined on G such that
a(g) EH(A(g), B(g+g')). We define addition in the obvious way and thus
turn the set of such a’s into an abelian group H,.(4, B). The composition of
two such maps is defined in the natural way.

It is easy to verify that we again have a G-graded category.

The usual case occurs when g is the group Z of integers. In that case, the
1-derivations are precisely the complexes of §2.

4. Functors and homology. Throughout this paper, by the term “functor”
we shall mean an additive functor [1]. We are varying from the standard
use of the term here [2] because of the additional additive structure of an
exact category. In this section we are considering only functors of one vari-
able (see also Part III, §3).

DEFINITION. A connected sequence of covariant fu “tors T={T"} is a
family of functors such that for every exact sequence

FoA"—4->A4" >,
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we have T"(4")—>T"t(4’) such that
o = T™(4) > T™A”) — T (4’) — T (4) — - - -
is of order two, and for every commutative diagram
B—oA4,0A— 4, > F
@ —Bi—B—Bio g
with exact rows,
T™(A") — T(4")
T~(B") — T™i(B)

is commutative.
For contravariant functors, 4’ and 4" should be interchanged.
Let us consider the exact sequence

1) oA At — .- . AP > K, p> 1.

Then we obtain the iterated connecting map T"?(47)—T"1(A4° in the fol-
lowing way. We may consider the exact sequences

BmZrt At 4r > g,
Bo2Zrt o Ar 71—
FoA" > A2 .
We have
Tr2(4?) - Tr (> D(Zr 1) — . . . 5 T 1(49).
The iterated connecting map is defined as the composition of these maps.

PRrROPOSITION 4.1. Consider the diagram (D) of Part 1, 5.5. Assume that all
rows and columns are exact. Then for T = { T"} a connected sequence of functors,
we have

reicy) B Toay)
2 v I
T(Cy) s T*H(4))
with Y11 +Yads =0.

Proof. We.shall use the’'notation of Part I, 5.5. Before praceeding with the
proof of 4.1, we must first consider some more exact sequences obtainable
from (D) which are essentially dual to the ones obtained in the proof of Part
I, 5.5.
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Q_)Bl—’LB LBQ—)g

Q’-’AzE’BzE’Cr—’,@'

g—»K—:BP—’i‘Cg—)g

% 01
F—>B—>K S A4:,—»F
ouL =19

3‘& = K201
Fg—A Z‘})chl—)g
A
F—oA4,-4 -ﬂ)Az—)g

g-—)Al@K:‘)F -

(23 Vs
F—4;>F -C,—- I
Uz = TU2

V3% = V3

g4 5BhC 5y
gqqicﬁaqg
PN S L. LNy

0.’143=K

po = av,

%1 0N
B—>Bi—K —»4,-F
g_)AlgBlﬁl)Cl_)g

Q—)Alul))‘K -I)F -

Uy U
F—-C,—>F -A4:—»F
U4p1 = TU1
Ux = 91,

It can be easily verified that v =ea,, vsu=ec,.

Now consider R of Part I, 5.5. We have d =ugms-+uyms: R—F. d is an
equivalence.

The following diagrams are commutative:

n m
Ci— R—=C,

| | ]

u ?.
Ci—F —C;.

Ay—— R— A4,

|
I |
Us Vs
Ag—— F — 4,

We now proceed with the proof of the theorem. First we show that
nb~'metnims=er; uwitups=er.

Let n6~'m,+nms+x =er. Then xn,=0, so x=x"mq Thus (X' +n0-"")m,
+ngmz=er and x'+n8-1 =nf-1. Hence x’ =0 and x =0. Similarly .4 uv;
=ép.

The commutative diagrams

m
R -‘LF(B,AI)-ETKC, R E»F(}sr,Al)—‘B—}»Ca
ms l ma my my
adc L, 458 2.,
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1—>‘>-4 ﬁ’Az 1'3312’01
e T
DU TR
Ay,— K —>F A— K —>F
and the connectedness of T will yield
TY(Cy) —> T*(R) T 1(Cy) -i T»(R)
T T T
r1C) 2 cy) T*1(Cy) = T*(4y)
T*(4,) 'b) T+(4,) T(C,) ﬁ’» Tr+1(4,)
To(us) 1 ﬂ T*-(m)] l I
@) Loy T Lorencay

commutative.
i1+ = ¥ T(d) . Hence we must merely show that ¢T(d)$=0. Let
us consider the diagram

Q————)K——)B C:— g

T

g — R—»F(B A)—)Cz—»ﬁ

The right box is commutative. If we show that the left box is commutative,
we shall obtain

T*(Cy) "j"’ T~(K)
] T~(a)T™(x)

T~(C:) — T*R)

commutative. But then $T%(d)@= ¢ T*(x)f =0.

Therefore we shall show that od=1r =75. Since 4s\ =71, we have a unique
map ¢q: F—F(B, A4,) such that gr=7. Now Bmaqm =pBmar6 =Ppd =Pavs =0,
hence fmag=0 and g=0d’, d’: F—-R.

od'tsp = grus = TOUs = TK = N8~ = ongdu.
q

Hence d’u; =n#~1. Also d’u,=n..
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Let dd’=er+x. Then, dd'uz=wus+xus and dd'uz=dnf~'=us. Thus,
x3=0, and x =x"vs. We have, then, dd’ =er+x'vs. Now

g = dny = dd'ug = ug + xX'vat0s = us + x'.
Hence x’ =0 and x =0. Therefore dd’ =er and &' =d™.
Since gd~'w =gd'w =gw =747, the proof is complete.

Let (4, d) be an object with differentiation, and let T be a covariant func-
tor. Consider the commutative diagram

A
Z > H
@ l l:
™
A -7
Now Z, Z', and H can be considered objects with differentiation, the
differentiation being zero. Under those conditions, all the maps in (2) are
maps of objects with differentiation. Also, we see that H(T(Z))=T(Z2),

H(T(H))=T(H), H(T(Z"))=T(Z"). Let us consider the induced commuta-
tive diagram

T2) 2(5-)) T(H)

@®) z l j ()

H(T(4)) _11_) T(Z")
where Z = [T(¢) |, O = [T(x) ]x.

ProrosITION 4.2. Let T be right exact (see Part 111, 3). Then there exists a
unique map a: T(H)—H(T(A)) such that aT(\) =2 and Na=T({). a is natu-
ral relative to maps A—A and is the identity on objects with zero differentiation.
Furthermore, these last two properties characterize oo completely.

Proof. Since T is right exact,

T(B) -1:-(22 T2) B}-)) TH)—- &

is exact. We must show that ZT(w) =0. It is easy to see that ZT(w) = [T(x) ]+.
Also, since T is right exact, T(f7) is an epimorphism. Now we have the com-
mutative diagrams

T(B')==T(B') T(B') =——=T(B’)
CY I P O s

74) 5 2z/(1(4)) H(T(A)) > 2/(T(4))
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u(T(k))x =nT(k), thus u(T(x))xT(0r)=nT(d)=0, since Z’(T(A4))=Coker
‘T(d). Therefore [T(x) ]« =0 =2ZT(w). Thus we have a map a: T(H)—H(T(4))
with aT(\) =Z. To show that Ia=T({), we observe that IlaT(\) =IIZ
=T()T(N), and in view of the fact that T(\) is an epimorphism, we have

Ha=T().
Suppose we have f: (4, d)—(4, d). We must show that
T(f«
T(H(4)) & )—’ T(H(4))
a &
arw) L0k HT(A)

is commutative.
&[T (f) lsaT) = %[T(f) ],=
#aT(fs) T(\) = 2aT(\)T(z) = 4[T(5) |« T(2)
= #T(&T(z) = aT()T(e) = #[T()):[T(0) } = 2[T() 12

Let A have zero differentiation. Then we have

T(4) > T(A)
l 1 l I

T(4) > T(A)

and « is obviously the identity.

To prove that these properties completely characterize «, suppose «, §:
T(H(A))—>H(T(A)) both are natural and are the identity on objects with
zero differentiation. Then aT(\) =2 =8T(\) implies a=8.

Part III. DERIVED FUNCTORS

1. Direct sums. Up to this point, we have carefully avoided using direct
sums (although Part I, 5.5 and Part II, 4.1 certainly indicate their use). As
yet, we have found no efficient way of defining infinite direct sums and
products in an arbitrary exact category <A4.

DEFINITION. A family of maps

I
4. 5454,

where a belongs to a finite set of indices, is a direct sum representation of A if

Pade = €4,y psla = 0 for B 7 a, Zlapa = e,.

This definition does not guarantee the existence of a direct sum of given
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summands. For this purpose we introduce

Axiom V (Existence of direct sums). For any two objects 4;, 4:€4,
there is an object 4 E¢4 and maps

A.,-l:Anga, a=1,2,

which yield a direct sum representation of 4.

This axiom is obviously self-dual.

We easily deduce that the direct sum of a finite number of objects in <4
exists in o4, and any two such are equivalent.

DerinNiTION. We say the exact sequence @F—A;—°4—84;—F right-
splits if there is a map v: 4;—A such that By =e4,. We say the sequence left-
splits if there is a §: A—A,; such that da=ea,.

PROPOSITION 1.1. The sequence &—A,—2A—B8As— & right-splits if and
only if it left-splits and in either case we can find maps such that

a 8
Al_)A —’Al;

4,548 4,

yield a direct sum representation of A.

REMARK. Referring to (D) of Part I, 5.5, we have (as was indicated at the
end of that proof)
Ker (Coker (k\)—G,) is the direct sum of C; and 4,. So also is

Coker (4; — Ker (8p)).

ProrosITION 1.2. Consider the commutative diagram

with diagonals exact, 61, 0s equivalences, and u\=0. Then

65781 c:

2

oy 676, , a3

Cy—> C——C,, Ci—C
and
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ot 1
a2 B, B

yield direct sum representations of C. Furthermore
¥9T + 80517 = 0.
Let g—4,—>*B—C—J, F—As—2By—PC—J be exact, and let

l l.
BAB+BYE B BB +BE,

be a direct sum representation. We obtain the map By —Baps: B1+Bs—C and
the exact sequence

& —>RSB, + B,Mc_)g,

Since (Bi1p1—Bapa)ljo;=0,j=1, 2, we have xi: 41— R, ks: A;— R with ox;=1aj,
ji=1,2,

LeEMMA 1.3. The sequences

g4 5 R"-’»’B,—»,@',

IR Sl NP

are exacl.

2. Projectives and injectives.
DEFINITION. An object PEeA is called projective if any diagram

P
lf
A_iA//_)g

in which the row is exact may be imbedded in a commutative diagram

P
h | /
l
A i A" — g
We define Q<A to be injective by: duality.
For further work, we need the following axiom and its dual:

Axiom VI (Existence of projectives). Given 4 EeA, there is an epi-
morphism P—A with P projective.

PROPOSITION 2.1. A direct sum of objects is projective if and only if each
summand is projective.
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PROPOSITION 2.2. In order that P be projective, it is necessary and sufficient
that all exact sequences & — A' > A — P — & split.

PRroOPOSITION 2.3. Let Z—A'—2A—8A"—F be exact. Consider the dia-
gram

7] %)
M’ M;:l/
% l k"
P’ P’I

with exact columns, P' and P projective. Then this diagram can be imbeddec
in the commutative diagram,

g & o

L

A
Q——)M’-——)M—I‘-)M”—)g

Ll

g—-p -—)P -&P"-—)g

p’f lp l e’ |

g A —)A -—)A"

L

g g g
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in which rows and columns are exact, and the mzddle row splits (therefore P is
projective).

Proof. We let P=P’'+P"”. Then

APty prBplip

is a direct sum representation of P. Since P” is projective, we have y: P"—A
with By =p’. Define p=ap’p1+vps: P—A. Then pli=ap’, Bp=p"'ps. p is an
epimorphism, and the remainder of the proof is automatic, if we choose
M =Ker p.

3. Functors of several variables. For A €4, CE(E, we consider functors
T(A, C) covariant in 4, contravariant in C, with values in D, in the sense of
[2]. Throughout we assume the functors additive, in that

T(a+ B, ec) = T(e, ec) + T(B, ec),
T(ear v + 8) = T(ea, v) + T(ea, 9).
DEFINITION. Let A, (, D be three exact categories.

Let
(1) B A1—A—> 4> I,
(2) B—-C1—>C—Ci— I
be exact.

DEeFINITION. A functor T is exact if for all exact sequences (1) and (2)
& — T(4,,C) > T(4,C) > T(4,, C) - I,
H—>T(A,C) »TA,C)->TU,C)—- I

are exact.
T is right exact if for all sequences (1) and (2)

T(Alv C) - (Tv C) - T(A2; C) - g’
T(4,C) > T(4,C)>T4,C)—» &
are exact.

Analogous definition for left exact.
T is half exact if for all sequences (1) and (2)

T(Aln C) i T(A’ C) - T(Ag, C)'
T(A’ Cﬁ) - T(A» C) = T(A’ Cl)
are exact.
The usual discussion about composition of functors and preservation of

exactness under composition [1, II. 5] applies. However, we single out two
cases for special study.
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Let D denote generically the functor which takes an exact category e4
into its dual «4*. T is a functor.
We define Tx by

T«(4,C*) = T(4, D7'(CY) = T(4, C).

Since D, (D™!), is an exact, contravariant functor, T and T differ in variance
‘on C but preserve the same type of exactness. We see that (Ts)x =T (more
precisely, (Tx)s is naturally equivalent to T').

We define T* by

T*(4*,C) = D[T(D~*(4%), O)].

T* and T differ in their variance on C and also preserve opposite types of
exactness (i.e., when T is left exact, T* is right exact; T exact, T* exact; etc.).
4. Satellites of functors.
DEFINITION. Let

Fo-M—->P—-A- I

be exact, with P projective. Let T be a covariant functor of one variable. The
left satellite of T, denoted by SiT(4), is defined as Ker (T'(M)—T(P)).

It is shown in [1, III] that S;T is independent (up to a transitive family
of equivalences) of the choice of the sequence F—M—P—A—J.

Now let g: A—A’. We then have

F—->M -P -4 ->F
(1 Il g
B-M ->P oA>F
with P and P’ projective. But then we obtain
I >S5 T(4) —» T(M) — T(P)
! ! A
- 5TA") — T(M') > T(P')

and we call the left-hand map S, T(g).

With these definitions, S;T becomes a covariant functor.

DEFINITIONS. Let T be a covariant functor. We define the right satellite
of T, S'T, by

SIT = (5:T*)*,
ie.,
SIT(4) = D7X(5:T*(D(4))).

Let T be a contravariant functor. Then T is covariant. We define
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S1T(A) = S1Tx(4%),
SIT(A) = ST, (4%).
Due to these relationships, it is sufficient to consider only covariant func-

tors.
DEFINITION.

SaT = Sl(Sn-lT'), n > 1,
S*T = SY(S™'T), n> 1.
Let us consider the commutative diagram

ay

Fo4 3434,

o

Q’—»BIEI)BEiB,—)Q

with exact rows.
We have

g-—) M’—‘;)Pz'g)Ag—')g

Y

Fody B4 B4,59
and therefore a map Ji(e4,): S1T(A42)—Ker (T(a1)). We define
01 = 0131(e4,): $1T(43) — T(41),

where 01: Ker (T'(a1))—T(4,) is the “inclusion.”
Dually, we obtain 6*: T'(A4:)—S'T(A,). Thus we have

01. : S,.T(A 2) - Sn—lT(A 1)9
67 S™IT(4,) — S*T(4,)

for n>0 (we let SeT=ST=T).
Consequently, we obtain the sequence

c o ST (A1) 9 SaT(A) > SaT(As) > Sa1T(41) — + -
)] = 81T (As) > T(4,) = T(4) > T(49)
SSIT(4)) > - - - > S T(4s) > S*T(4) — - - - .
PROPOSITION 4.1. The sequence (4) is of order two.

PropPOSITION 4.2. The diagram (2) induces a commutative diagram
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s SUT(AD) 2 T4 —— T(A) —— T(As) ~s ST(A) — - - -

lslr(m) lr(po J JT(Pz) JS’T(;»;)

1

v+ = $,T(Bs) —> T(By) —> T(B) — T(Bs) —>S'T(B;) —> - - -

THEOREM 4.3. Let T be a half-exact functor. Then the sequence (4) is exact.

5. Axiomatic description of satellites.

DEFINITION. Let T={T"}, U= { U} be connected sequences of functors
(Part II, §4). A map ®: T—U is a family {d)"} of natural transformations
[2] ¢": T»— U such that

Tn(A 2) —_— Tﬂ+1(A 1)

l {
Un(dy) — Uri(A))

is commutative for every exact sequence J—4,—4—4,— .

If T is a functor, by ST we mean the connected sequence of functors
S*T where S*T=3S8"T for n=0, S*"T=S_,T for n<0.

The axiomatic description of ST can be found in [1]. However, we shall
prove here a more general theorem which is applicable as well in the theory of
sheaves.

DEFINITION. Let o4 be an exact category (Axioms I-1V), let = {Q} be a
subclass of the class of objects of <4, and let ¢: {Q}—{A4} be a (not neces-
sarily single-valued) function from & to the objects of «4. We denote the
pair (Q, ¢) by Q4. We say that Q4 is ¢-injective if every diagram

B — ¢(Q1) >
l 0:EQ
B — ¢(Q2) — Q2

with exact rows can be imbedded in a commutative diagram

& — $(Q1) = O
! !
& — ¢(Q2) — Q2

We say a ¢-injective class is ¢-complete if ¢ is onto and for each 4 E¢(Q),
there is a monomorphism 4—Q.

THEOREM 5.1. Let Q4 be a ¢-complete ¢-injective class in 4. Let T={T"}
be a positive (i.e., T*=0 for n <0) connected sequence of functors such that for
every exact sequence
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1) F—>4-2Q0->N->F QEQ 4 €¢(Q)
the sequence
(2) Q) > IT™(N) > T*'(4) > & nz0

is exact. Suppose, also, that U= { U} is a positive connected sequence of functors
and @°: T°— U° is a natural transformation. Then there exists a unique extension
®: T—U of ¢°.

Proof. We proceed by induction on #. Suppose ¢*: T»— U= has been de-
fined. We consider an exact sequence of type (1) and obtain
T%(Q) = T*(N) > T"i(4) - &
© #@|  |em
UnQ) — UN) > U)

commutative. Since the top row is exact, and the bottom row is of order two,
we obtain a unique map ¢*+1(4): T*+(4)— U»*+1(4) such that

@ $"+1(4)9 = 3¢"(N).

This map appears to depend upon the sequence (1) which was originally
chosen. Without changing notation, we shall consider ¢"+}(4) as a function
of (1) as well as of 4.

Let f: A—B. Then

T™H(4) ﬂ‘@, Un+1(4)

Tn+l(f) 1 l U!H-l(f)

T+1(B) m U™(B)

is commutative, i.e., $**! is natural.
We choose any sequences

quiQﬁng
g
a_f _
g—->B—->Q0—-N-J.

Then we have f: Q—Q with f'a=af, and a unique f”’: N—N with 8f’ =7"'8.
We therefore have the commutative diagrams
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ad

To(N) > T*1(4)
To(f") l l ()

T~(N) i T™+(B) T™(N) M T(N)
() l lw(m ¢"(N)l F"(N)

93 U»(f'") -

U~(N)— U*(B) UrN)——> U™N)

Uy [ I ()

3
U™N) — U(4)
the second diagram being commutative by our induction hypothesis. Thus
we have
¢"H1(B)T*+1(f)d = ¢™(B)aT*(f") = d¢*(N)T"(f"),
U(f$HA)d = UGS N) = BUMS")m(I).
The right-hand sides being equal, and @ being an epimorphism, the desired
result follows.
By choosing 4 =B, we see that ¢*t! is independent of the choice of the

sequence (1).
If F—A'—>2A—PA"— X is exact, then

6’
T™(4") — T*+(4’)
¢"(A") 1 J ¢u+l(Al)

UnA") = U™(4")

is commutative.
Let F—A—7Q—3N— be exact. Then we have F—A4'—>*7Q—"N' -
exact and we obtain the commutative diagram

goata -B»A"-»g

| 1= Db

Fg-aD0l N g,
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Consider the commutative diagrams
4

9
T~(4") — T**(4')

0y | b
a”’ l Tr(\)

o) & perigar ro(ary ZX) oy
o) lomi)  gm(am) l | e
Un;N@ % yeriiar ") 523 UT)

Uu»(\) [ Il

unar) 2 umiary
Then
Fer(A") = FURNY(A”) = $r(N)TH(N) = $mH (AN THN) = $mH(4")3.

6. Derived functors.

DEFINITION. A doubly (multiply) graded or double (multiple) complex is a
sequence { A47:¢} of objects together with two sequences {d??}, {d2*} of maps
dit: Aria—sArtla @39 Ar.e—sAr.etl guch that ditd2%=0=d3?'d3?, and
aPtt1gea = @2+t1442e  Furthermore, for each #, all but a finite number of
Ar:¢ for which p+4g=mn are different from zero.

Because of this last condition, we can define the associated singly graded
complex in the usual way. The standard definitions of maps and homotopies
can easily be made and the consequences in the associated complex deduced.

DEFINITIONS. Let A €. By a left complex over A, we mean a complex

(1) ~~~—)A,,—>A,,_1—)---——)Aoi)A——)Q'—)Q'—) ..

By an acyclic left complex over 4, we mean a complex (1) such that the
sequence (1) is exact.

By a projective left complex over 4, we mean a complex (1) where each
A, is projective.

By a projective resolution of A, we mean a projective, acyclic left complex
over 4.

Replacing “left” by “right,” and “projective” by “injective,” we obtain
dual definitions.

The existence of projective resolutions of any object 4 €A is ensured by
Axiom VI.

DEFINITION. Let X, X’ be left complexes over 4 and C respectively and
letf: A—C. A map F: X—X'is a map over f if
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. €
Xo'—>A

“ b

XJ —»C
is commutative.

PRrOPOSITION 6.1. Let X be a projective left complex over A, and X' an
acyclic left complex over C. Let f: A—C. Then we can find a map F: X—X' over
f. Furthermore, any two such maps Fy, Fy: X—X' over f are chain homotopic.

Let T be a covariant functor of two variables. Let 4 €4, CER, X, X’
projective resolutions of 4, C respectively. Then we get a double complex
T(X, X') defined by

TP.Q(Xv X’) = T(Xm X,Q»)v
1
dp.g = T(dp, ex,),
2
dpq = T(e'x,, dg).

DEFINITION. The nth left-derived functor, L,T(A4, C) is H.(T(X, X')),
where H,(T(X, X’)) is the nth homology of the singly graded complex asso-
ciated with the double complex T(X, X’).

ProrosITION 6.2. L,T(A, C) is independent (up to a transitive family of
equivalences) of the choice of resolutions X, X'.

Let a: A—A’, v: C—C’. Then in the natural way, we have a map
LaT(a, v): LaT(A, C) — L.T(4’, C').
Therefore, L,T is a functor of two variables.

THEOREM 6.3. Let F—A1—A—A—F, F—-C—C—Co—F be exact.
Then we have sequences

«—L,T(A4,,C) > L,T(A,C) > L,T(42,C) > L, 1T(4,,C) —> - - -
— LyT(41,C) = LoT(4,C) — LoT(42,C) > &
— L,T(A,Cy) > L,T(A,C) > L,T(4,C3) > L, 1,T(4,Cy) =« - -
—L,T(4,Cr) > LyT(4,C) — L, T(4,Cy) > &
which are exact [1].

DEFINITION. Let T be a covariant functor of two variables. Then
T*(A*, C*)=[T(4, C)]* is also covariant. Define

R*T(4, C) = [L.T*(4*,CH]*
R~T is called the nth right derived functor of T. Its formal properties can be
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deduced from the formal properties of L,T.
Analyzing this definition, we see that X*, X’* are projective resolutions
of A* C* if and only if X and X’ are injective resolutions of 4 and C. Thus

R*T(4,C) = [L.T*(4* CH]* = [Hu(T*(X*, X™))]*
= [B.(T(X, X))*]* = HYT(X, X)),

which is precisely the definition of R*T(4, C) given in [1].
DEFINITION. Let T be a functor, covariant in 4, contravariant in C. Then
T«(4, C*)=T(A, C) is covariant in 4 and C*. Define

L,T(4, C) = L,Tx(4, C%,
R*T(A4, C) = R*Ty(4, C*).

An argument similar to the preceding one shows that these definitions
agree with those given in [1].

The formal properties of the derived functors, their comparison with satel-
lites, the notion of balanced functor as treated in [1] can be translated into
the language of exact categories. Also, the maps a and o’ of Part II, §4 can
be defined abstractly for functors of several variables.

PArT IV. APPLICATIONS

1. The functors Ext". For each exact category /4, the functor H(4, C)
may be regarded as a functor contravariant in 4, covariant in C, and with
values in the exact category MM of abelian groups. This functor is left exact;
for a fixed 4., H(A,, C) is an exact functor of Cif and only if 4, is projective;
for a fixed Co€eA, H(A, Co) is exact in A4 if and only if Co is injective. Thus
H(A, C) is right balanced [1].

If oA satisfies Axioms V and VI, then Ext*(4, C) may be defined as the
right derived functor with respect to the variable 4 (i.e., using a projective
resolution of A4). If <A satisfies Axioms V and VI*, then injective resolutions
of C may be used to define Ext"(4, C). If <A satisfies Axioms V, VI, and VI*,
either or both may be used.

We can define the global dimension of an exact category as the highest
integer n for which Ext*(4, C) 0. A category has global dimension zero if
and only if H(4, C) is exact, i.e., if all elements of <A are projective (or injec-
tive). This takes the place of semi-simple rings in [1].

2. Axiomatic homology. The axiomatic homology and cohomology theo-
ries of Eilenberg-Steenrod [3] may be defined using an arbitrary exact cate-
gory oA as the range of values of the theory. Thus, replacing ¢4 by <4* re-
places a homology theory by a cohomology theory and vice versa. This dual-
ity principle simplifies the exposition of the theory. Furthermore, the unique-
ness proof [3, Chap. IV] remains valid for such generalized homology and
cohomology theories.
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3. Pontrjagin duality. The Pontrjagin duality for discrete and compact
abelian groups readily shows that the category (2 of compact abelian groups
is the dual of the category 9 of discrete abelian groups. Thus we conclude
that ( satisfies Axioms V, VI, and VI*. In fact, in (2, the injectives are the
toroids (since the only discrete abelian projectives are the free groups); and
the projectives in (° are those compact groups whose character groups are
divisible.
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