
EXACT CATEGORIES AND DUALITY
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D. A. BUCHSBAUM

Introduction

Throughout the book Homological algebra, by H. Cartan and S. Eilenberg,

the authors dealt with functors defined on categories of modules over certain

rings and whose values again were modules over a ring. It will be shown in this

paper that the theory may be generalized to functors defined on abstract

categories, and whose values are again in such abstract categories. An abstract

treatment such as this has several advantages. We list a few:

(1) The dualities of the type

Kernel — cokernel

Projective —- injective

Z{A) —Z\A),

originally suggested by MacLane [4], may now be formulated as explicit

mathematical theorems.

(2) In treating derived functors, it suffices to consider left derived func-

tors of a covariant functor of several variables; all other types needed may

then be obtained by a dualization process.

(3) Further applications of the theory of derived functors are bound to

show that the consideration of modules over a ring A will be insufficient.

Rings with additional structure such as grading, differentiation, topology,

etc., will have to be considered. With the theory developed abstractly, these

generalizations are readily available.

The paper is divided into four parts. Part I deals with basic definitions,

duality, and fundamental lemmas. We make no attempt to prove or even

state many of the necessary trivia which are used throughout.

Part II is rather short, due to the facts that most of the results follow

trivially from Part I, and the definitions are identical with those in [l]. Con-

nected sequences of functors were included in §4 since they are so similar to

homology sequences, and the proof of 4.1 was given to show that it is inde-

pendent of Axiom V, which is not apparent from [l ].

Part III is devoted to the abstract treatment of the fundamental concepts

in [l]. Theorem 5.1, however, is proved in its full generality so as to be ap-

plicable in the theory of sheaves.

Part IV contains three applications of a purely algebraic nature. We desist

from giving applications to theory of sheaves as these would be fragmentary.
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The following treatment has some points in common with that of Mac-

Lane [4].

Part I. Exact Categories

1. Definition of exact categories. An exact category c/f is given by the

following four data:

(i) a collection of objects A,

(ii) a distinguished object 0, called the zero object,

(iii) an abelian group H(A, B) given for any pair of objects A, B in zA.

The elements <j>^H(A, B) will be called maps. We shall frequently write

<j>: A—>B instead of <j>(ElH(A, B). The zero element of any of the groups

H(A, B) will be denoted by 0;
(iv) a homomorphism H(B, Q ®H(A, B)-+H{A, C) given for each triple

of objects A, B, C£c/f. The image of \f/®4> in H(A, C) will be denoted by
^> and will be called the composition of \p a°d <£.

The primitive terms of (i)-(iv) are subjected to four axioms.

Axiom I. If a: A-+B, /3: 5->C, 7: C-*D, then 7(/3a) = (7/3)a.
Axiom II. H{0, 0)=O.
Axiom III. For each A (E.zA there is a map e^: A—*A such that e^/3 =/3 for

each /3: B—*A and yeA=y for each 7: A—*C.

It is easy to verify that H(A, 0) =O = H(0, A) for all A £<vf and that
the identity map ex of Axiom III is unique.

A map <t>: A—*B will be called an equivalence if there exists a map <t>': B^>A

such that (j>'(f> = eA, <M>'=eB- It is easy to see that <£' is unique; we write

<£'=<£-1. Clearly <£~l also is an equivalence and (tfr"1)-1 =</>. If \p: B—*C is

another equivalence, then \f/<f> also is an equivalence and (\j/<j>)~1 =<j>-i\ff~x.

Definition. We shall say that the pair of maps

«      P
A-+B->C

has property (E) if the following conditions hold

(1) /3a = 0.
(2) If a': A'—>B and /3a'=0, then there exists a unique 7: A'—>A with

a'=07.

(3) If /3': B—*C and /3'a = 0, then there exists a unique S: C-+C with

/3' = 5/3.
We are now ready to state

Axiom IV. For any map a: A-+B there exist objects K, I, I', F and maps

such that

u T        6 K T

(*) K->A^>I-*I'->B^F

such that
(4) a = K0r,
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(5) 0 is an equivalence,

(6) K—*'A—*TI has property (E),

(7) I'-^B-^'F has property (E).

Lemma 1.1. Let A-*aB^>C have property (E), and let D->°A(C-+TF) be

such that a<r = 0 (tj3 = 0). Then <r = 0 (t = 0).

Theorem 1.2. If Ki-*'lA-*T:1Ii-*>1I{ -►"B-^'.Fi also satisfy (4)-(7), <fcew

ifeere exist unique maps £, ?/, f, o> swc/i 2/ia2 £&e diagram

<r t 6 K TC
K -* 4 -» 7 -»/' -» 5-»F

£ «4 I? f 6B W

ffl Tl 01       .   K\ V\
Ki-+A-*Ii-+I{ -*B-^Fi

is commutative. The maps £, 77, f, w ore equivalences.

Proof. Since Ki0iTio-=a(r = K0T0- = O implies that Ti<r = 0, we know there is a

unique £: iC—».K\ such that <r—<T\^. Also we know there is a unique ?j: I—*I\

such that n = ?jr. Similarly we obtain f and w with k = «if and -iri =car. Now we

must show that 0iij = f0. But

KldtfT  =   KlOlTl  =  a  =  (C0T  =  Klf0T.

Thus Ki($irj — $"0)r = O which, by Lemma 1.1, implies that 0i?7=f0.

It is easy to show that £, t], f, w are equivalences.

2. Exact sequences. In view of Theorem 1.2, we shall call the pairs

(K, a), (I, r), (/', k), and (F,ir) the kernel, coimage, image and cokernel of a

respectively. The sense in which these notions are uniquely associated with

a is clear from Theorem 1.2.

Definition. A sequence

am                            an-i

Am —*Am+i —>  • • •->An m + 1 < »

is earacf if Ker a, = Im a,_i m<q<n.

We now obtain the crucial

Theorem 2A. A necessary and sufficient condition that

a       /8
A->B-+C

have property (E) w that

a       0
0-+A-+B-+C-+0

be exact.

Proof. Suppose A—>aB-*f>C has property (E). Then we must show that
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0—>A—>aB, A^faB-^C, B-^C-^0 are all exact. Let us first consider

A^>-"B—>fiC, and show that Ker /3 = Im a. The decompositions of a and /3

can be taken to be

eA     et      a      B
(1) 0^A-+A->A^B->C,

a      B      ec     ec
(2) A-+B-+C -»C -»C-»0.

(Since, as can be easily seen, 0—>A—*'aA, C-+*cC—*0 have property (E)).

Thus Im a = (A,a)= Ker /3.

From (1) we see that Ker a = (0, 0) and from (2) we see that Im B = (C,

ec). But it can be trivially verified that Im (0-+A) = (0, 0) and Ker (C—>0)
= (C, ec). Thus, we have shown that 0—*A—*"B and B—^C—>0 are also

exact, hence the necessity has been established.

For sufficiency, we assume that 0—>A—>"B, A-^aB^C, B^>C^>0 are

exact. This tells us that Im B = (C, ec), Ker a = (0, 0) and Im a = Ker /3.

Hence we can write the decompositions of a and B as

e\      0       k      x
(3) 0 -->A-*A-*D->B->F, k8 = a,

k      tt'      0'     ec
(4) D-->B->F'->C->C-+0, 0V = j8.

Now we must verify conditions (1), (2) and (3) of property (E).

8a = 0V;c0 = 0.

Now, suppose a': A'—*B and Ba' = 0. Then 6'ir'a' = 0 implies 7r'a' = 0.

Hence there is a unique 7': .4'—-kD such that K7'=a'. But 7=0_ly': A'—*A

anda(0_17') =K00_17' = K7'=a'. If 7: .4'—+A and «7 = a', then K07=/ry' implies

7=0-17'. Hence condition (2) is satisfied. Similarly one verifies (3) and this

completes the proof.

Definitions, a: A^>B is a monomorphism if 0—>.4 —>a.B is exact. /3: 2?—>C

is an epimorphism if 2?—►''C—>0 is exact.

3. G-graded categories. To cover the case when we are dealing with

categories of graded modules over graded rings, we introduce the notion of a

G-graded category (zA, G) where G is an abelian group. In most applications,

G is the group of integers Z, or a direct sum of Z's.

A G-graded category is given by the following four data:

(i) a collection of objects {A };

(ii) a distinguished object 0, called the zero object;

(iii) an abelian group H(A, B) for any pair of objects A, B^(iA, G),

an abelian group H„(A, B)QH{A, B) for any pair of objects A, B£L(iA, G)
and any g£G. A map <j)£;Ha(A, B) is said to be homogeneous of degree g,

and we still write <f>: A—>B;
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(iv) a homomorphism Hai(B, Q®Hai(A, E)—*H,,l+g^A, C) given for
each triple of objects A, B, C(E(zA, G) and each pair of elements gi, gt(EG.

Five axioms are imposed on these primitive terms.

Axiom 0. Hgi(A, B)nH„(A, 73) =0 if gi^gt.
Axioms I-III are the same as those for an exact category, applied to

homogeneous maps, Axiom III implying that e^ has degree 0.

Axiom IV is the same as Axiom IV for exact categories applied to homo-

geneous maps, except that <r, r, k, t have degree 0, thereby implying that the

degree of 0 is the same as the degree of a. (We assume property (E) defined

only for homogeneous maps.)

An exact category is a special case of a G-graded category; G is taken to be

trivial and H0(A, B) =H{A, B). In the sequel, we may think of the theorems

as being proved for G-graded categories. However, we shall suppress the de-

grees of the maps and in general use the language of exact categories.

4. Duality. For subsequent work, we shall have to deal with the dual

category zA* of an exact category zA. We shall consider a metamathematical

duality theorem afterwards.

The objects of zA* are symbols A* with A €=zA; the zero object of zA* is

0*; the group H(A*, B*) is defined as H{B, A) (for graded categories

H„(A*, B*)=H-S(B, A)); for each map <j>: B—*A in zA we denote by </>*:

A*^>B* the corresponding "dual" map in zA*; the composition in zA* is

given by \l/*<j>* = (#^) *.
zA* is clearly an exact category; Axioms I and II are trivial to verify. In

Axiom III, define d* to be (e^)*. To verify Axiom IV, we suppose we have

a*: A*-+B*. Then a: B-*A. We therefore have K-±°B-*rI->°r-^"A-+*F.

But then dualizing we obtain F*-+T*A*^>'*r*->>*I*-+r*B*-+r*K*. Now

t*0*/c* = (k0t)*=o!*. g* js an equivalence for (00_1)* = (c/O*=«/'*> and

(0-i0)* =ei*. It is obvious that F*^>A*-+I'* and I*->B*^>K* both have
property (E).

Now for the metamathematical duality we replace the primitive term

H(A, B) by H(B, A), i.e., we "reverse arrows." We also replace H(B, C)

®H(A, B)-+V'B-CH(A, O by H(B, A)®H(C, B)-**0-B-*H(C, A).
Making these substitutions, we see that Axioms I-IV are unchanged.

Hence we arrive at the

Duality Theorem 4.1. Let Sbea statement in zA, S* the "dual" statement in

zA (i.e., the statement obtained from S by the above-mentioned substitutions).

Then S is true in zA if and only if S* is true in zA.

Throughout the rest of this paper, we shall state lemmas, but not their

duals, it being understood that the latter are also true.

5. Fundamental lemmas.

Lemma 5.1. Let a: A—*B be a monomorphism. Then there is a mapping /S



6 D. A. BUCHSBAUM [September

and an object C such that 0—*A—*aB—*fiC-^>0 is exact. (For graded categories,

8 can be chosen to be of degree zero.)

Lemma 5.2. A necessary and sufficient condition that 0—*A-*"B—*fiC

be exact is that /3a = 0 and for every map f: A'—*B such that /3/=0, there is a

unique f: A'—*A such thatf=af.

Lemma 5.3. A necessary and sufficient condition that a be a monomorphism

is that if f is any map such that a/=0, thenf = 0.

Theorem 5.4. A necessary and sufficient condition that 0—*A—>,B—>0 be

exact is that 8 be an equivalence.

Theorem 5.5. Let

0     0     0

0 -^Ai-> A ->Az->0"I   J" J"
(D) 0->B1^B-+Bt^0

Pi P     \p*

a   "   B
0->Ci->C-»C,->0

0      0      0

be a commutative diagram with exact columns. If the bottom two rows are exact,

then so is the top row.

Proof. First we show that /uX = 0. kj/iX = frjKi = 0. Thus juX = 0.

Next we see that X is a monomorphism. Suppose X/=0. Then kX/ = 0

= r/Kj/, which implies / = 0. Therefore, we can find a map w and an object N

such that 0—*Ai—**A—**N—*0 is exact. We must now show that N is equiv-

alent to Aj, i.e., we must produce an equivalence 6: N-^A% such that

0co=/i. To do this, we apply the first Noether isomorphism theorem (which

holds in an exact category zA), to the following sets of exact sequences:

0-+BiXb Xb2—>0,

(1) 0^^i^Bi^C1-^0,

TIKi T

0^A1-+B ^F(B,A1)^0,
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0-*A -^B-^C->0,

(2) 0-+Ax-*A ^N->0,

0 -»A ̂ 5 B -^ F(B, A 0 -»0,

and obtain

Ml J»l

(I) 0-^Cl^F(B,Al)-*Bi->0,

exact with nipi=rri, Wir = f;

(II) 0^N^F(B,A1)'^C-+0

exact with «jw =tic, w»r=p.

We then apply the dual to the Noether isomorphism theorem to

0->iV^F(5,^1)-^C -»0,

(3) 0-*d-^C->C2-+0,

a Bmi
0^R -*F(B,A1)—>C2->0,

»i mi
0^C1^F(B,A1)—>B2^0,

Hi pi

(4) 0^Ai^Bi->C2-»0,

o- Bm.2

0^R ^F(B,Ai)-^C2-*0,

and obtain

(III) 0->N-*R->C1-*0

exact with <r»j=«j, a7w3 = mja-;

«4     mi

(IV) 0^d^i?^^2-^0

exact with an^ = n\, Ktmi=mia.

Now we can show that m%n\=ecl\ amin^=nH<jn\ = m%n\, mtfi\p\=mirr\

=prj=api which implies tw2«i=a. am3n^=a implies tW3»4 = ec,.

Let 0=»&4«s: N-^Az. Then 0w=/* for «20w = k2W4W3w = mianso) = W1M2C0

= m\TK=%K = Ktix. Hence 0w=ju. Now we show that 0 is an equivalence.

Let f0=0. Then (fm^ni = 0 implies that fmt=f'm3. Since 0=/w4«4
=/'w3«4=/', we see that/wi4 = 0, hence /=0. If 0g = O, then m4(«3g)=0 im-

plies that M»g=«4g'- Since 0=wswjg = w3«4g'=g', we have wjg=0, hence
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g = 0. Thus 0 is both a monomorphism and an epimorphism, hence an equiva-

lence.

We remark here that this proof shows that R is the direct sum of A% and

Ci (see Part III, §1, Remark).

Lemma 5.6. Let
0

Pi «1
0-+A1->B1->C1

oci /3i       y

P "
0-^A ->73 -+C

be a commutative diagram with exact rows and columns. Then

(a) Ker ai«Ker/3i,

(b) There is a monomorphism ju: Im ai—>Im ft,

(c) There is a monomorphism i: Coker pi—>Coker p,

(d) Coker pi« Coker p.

Lemma 5.7. If Ai-+alA—*aiAz can be imbedded in the commutative diagram

000

4r *r ♦

<*1 <*2

Ai—* A —* Ai

Pi P P2

B\ —> 73 —> Bi

i i

0-^d^C

in which the columns and bottom two rows are exact, then A\—>alA—♦a,^4j is

exact.

Theorem 5.8. Consider the commutative diagram

at      a-i
Zl'^>Z'-+Zi'-*0

d\    I d       di
(H) 1       i       i

ft ft
0-^Zi-^Z ^Z2

with exact rows. Then
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(a) Ker ft—»Ker d—>Ker ft is exac/,

(b) Coker ft—»Coker d*—>Coker ft is exact,

(c) TTfere is a map «£: Ker ft—>Coker ft swcft <fea/

(5) Ker d —> Ker ft —> Coker ft —* Coker d is exact.

Proof, (a) and (b) are trivial consequences of Lemma 5.7 (and its dual).

Therefore, we need only concern ourselves with (c). We shall use two

dual constructions of the map *£, obtaining a map ^i and a map j(ji, and show

that j(j=/ji. This will demonstrate the self-duality of j(\

We first employ a procedure which is tantamount to taking the counter-

image. Consider the commutative diagram

0 0 0

0->Ka2^> Km —» 0-^0

m        a2
-.4- +

Wi T20(2

0-  7ft ^ Z'   -^ Iit^0

h a2 I

0 -> Kdi ̂ X Z%' ~^> 7ft -* 0

0 0 0
The three rows and the middle and right columns are exact by definition;

Ht and St are naturally induced maps and 7ft = Ker nctt. Thus the diagram is

commutative and the left column is exact. Since ftaV'2=fta2^'2 = ft0'2§2 = O, we

know that d\f/i—0iit where 12: 7ft—*Zi. Now we examine the following exact

sequences

0->Kdl ^Z{ -^Idl—>0,

*1 Tl
0->7dj   ^Zi -+Fi —*0,

0 -» Ken -4 Z{ % Kat -» 0,

where /crn =ft and the last sequence is exact due to the exactness of the top

row of (H). Also 82*1 =«i.

Now Ti5i=0 for ftKlTi5i=ftftai=aaiai=0. Therefore ai=<ri£2 where

£2: Kai—*Kdl. £2 is, of course, a monomorphism. Thus we have the commuta-

tive diagram
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Si #1

Kan -> Z,' -► Kai-*0

O-J Ti

K^ —* Z\  —> 7,1,

and therefore an epimorphism r/»: Kat—>Idl such that ij»*i=ti. We observe

the following equalities:

/SiKiijjTi = BiKiTi = Bidi = dai,

/3l»2M3*l  =  rf\f2/i27Tl  =  <fa27Tl  =  dct\.

Hence kitjj = ii/ij so we obtain the commutative diagram

Ms      8»
a2 —* D2 —* Kit —* 0"I    I"

Ki Vi

I^-tZi-^F!

and obtain the map «£j: Kd,-^Fi with ^52 =xii2.

Construction of Jji. In this construction we shall only label the diagrams

and maps and not bother with the verification of each step.

0 0       0

■L 4* »r

|| I fix       «i

/3i«i      ^i
0-»Jft ^Z liDi ->0

ft       Mi
J, J, A,

0 -» 0 —» *, -» ».   -» 0

0        0      0

^-i<fai = 0 so V'i^ = iia2 where ti: Z{—*Di. Then we have

(Tj        /32

0->Fft  -»Z, -»Fft ->0,

_, K2 7T2 _^
0-^Id,   -^>Zt ->Fd,-+0,
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KiTt = ftt <T2ft ■» 02,

ft = |it2,       ti'.Fdi—*F0i,

ki = ftiji,       9i: 7ft—>7?ft,

and wj=jkiIi. Therefore we have a map ^: K^-^F^ such that 5i^i = ii<r».

To see that J^ =.£2, we observe that

Si-Ci&t = ti^A = na2^2 = lh#2 = lAij8u2 = 5iirii2 = 5i^252.

In a G-graded category, we observe that jfy, jQi can be constructed to

have the same degree as ft provided cti, a2, ft, ft have degree zero.

We define -C=.G=-G: Kd,-^Fdv
It will now suffice to show that Ker d—*** Ker ft—>-C Coker ft is exact, for

the proof of the other exactness is dual to this. We record the fact that

a»<7,=<rjw» where a: Ker d—>Z'.

Sl/j>>2 = ll<T2W2 = iia^c = rpidff = 0.

Hence jfjiit = 0. We have

Pi 0i
0 —» Kui —» Ker rf-» 7w2 —» 0,

Xi vi
0 —* 7w2 —» Ker ft-> Fui —* 0,

0 -* K£ ^ Ker ft —-* 7£ -► 0,

0 -► l£-^> Coker ft -^ Fj^ -» 0,

exact with Xi$i =co», X2<p2=-C. Now <pjXi = 0 since X202Xi^i=^a>j=O. Thus we

have 0: Ioii-^KP with p20=Xi. 0 is a monomorphism.

We must show that 0 is also an epimorphism. To this end, consider the

commutative diagram

0 0 0

0 —» Ka2 —* Ka.i-> 0   —> 0

1^2 4>2.Si
0-+E* -^ 7ft -^—* /£-» 0

ft Si ||

0 -» Z.^ -► Ker ft -^-» 7£-> 0

0 0 0
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with exact rows and columns. Since 7rlij^j=/°5j^t=^p282 = 0, we have

12& =K\U where u: Ez—*Idi. We claim that u is an epimorphism, for Kiupz

= i2i?;2M2=i2M2 = Ki'72 implies that up,z = "qt. We shall establish a map f: Ker d

—>Ei and prove that 0—»Ker d-*rEz-**Id\—*0 is exact.

Since tzcx-zo- = 0, a =\ptr where r: Ker d—>Dz. But 5ikz<f>i8zr =\pid}f/zr =\{/ida = 0,

hence <$*&& — 0 and r = ifjf. Now consider

0 -> Ku -4 Ez -> Idx -> 0

exact. BiKiuf = Bi^zf = dil/zr=d(r = 0, hence «f = 0 and f = <ruft where £2: Ker d

-^>Ku. Now we have

0 -► Ker d -> E* -+F; -* 0,

\^2|?2 •$

0 -> Ez->Z' -*Fiz$i -» 0,

0 -> Ker <f -> Z' -^ /<* -» 0,

exact with <r=\f/z^zf, hence

n      m
0 ->F-T^> Id^Ffafc -* 0

is exact with nv=Tipz$i.

KnV<Tu   =   KTifyztyzGu   =  dlpt^z<Tu  =  /Sll^Cu   =  /3lKl«CTu   =   0

implies that vau = 0, and we obtain £2': Ku—>Ker <f with rQ'=<ru. It is trivial

to show that n' = S2_1. Thus our assertion that 0—>Ker d^rEz^"Idi—y0 is

exact is proved.

We next study the commutative diagram

0 0        0

4, 4- 4"

0 —» Ktj2  —* Ka.2 —> Id\ —> 0

4» _       4» 4'

0 -+ Ker d -► £2 —► Idi -* 0

0 0        0
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and deduce that the left column is exact, in particular, that Sif is an epimor-

phism. We show that 0<pi=52f:

<TiPi6<j>\ = <t2Xi#i = <r2a>2 = oLi<s = a.v\j/ir = c-fty^f = aipzSif.

Hence 6<pi = Sif and 0 is thereby an epimorphism.

For the remaining lemmas, we shall make use of the following diagram

Pi      Po      p°      p1
Ai^Ai^A^A^A1

(v) <t>i     Ui  * U2  01
Xi     X,     X»      X1

ft-*^-^^-^2-*^1

which is commutative and has exact rows.

Theorem 5.9 (Five Lemma). Let <pi be an epimorphism, <f>2 a monomor-

phism. Then Ker 0«Impo<7(<p2) where o-(<pi): Ker fa-^Ai.

Corollary 5.10. Let <pi be an epimorphism, fa and <f>2 monomorphisms.

Then <f> is a monomorphism.

Corollary 5.11. Let <pi be an epimorphism, <j>1 a monomorphism, and let

<pi and <p2 be equivalences. Then <p is an equivalence.

Part II. Homology in Graded Categories

1. Abstract homology. Throughout this section, we shall be working with

objects and maps in a fixed G-graded category. The degree of a mapping

will take on more significance here than in the last chapter, and will be given

more consideration. Henceforth, we shall write zA for (zA, G).

Definition. A pair (A, d), A^zA, d£Hg(A, A), will be called a g-deriva-

tion or an object with differentiation if d2 = 0.

Let us now consider a g-derivation (A, d) and the consequent factorization

of A-+*A:

0->Z->j4->73-> o$

e
B^B'

0^>B'-^A-^Z'-*0.

We recall that a, t, k, t are of degree zero, and 0 is of degree g. We must also

keep in mind the fact that this factorization is unique only up to a transitive

family of equivalences of degree zero (viz. Part I, 1.2).

We can obtain a unique map w: B'—>Z of degree zero such that (TW = k for

(k0)(tk)(0t) =(kBt)(kBt) =di = 0 implies ™=0.

Similarly, we can obtain a unique map <p: Z'—*B of degree zero such that
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<f>ir=r. Also, we have the map w: Z—*Z' of degree zero, and so we have the

sequence

w     7r<r      6

(1) 0->B'-+Z-+Z' -> B-*0.

Lemma 1.1. The sequence (1) is exact.

Since ira is of degree zero, we may choose as its canonical factorization

to     X
0-*B'-+Z->H^0,

f A   =  T<T.

0-+E-*Z'-?B-+0,

Let us consider the map D =w0</j: Z'-+Z. D is a mapping of degree g. It is

quite clear that

(2) Ker D = H = Coker D or

f      Z>     X
(3) 0->Z7-»Z'-*Z->iJ->0 is exact.

Definition. The pair (Z, Z') is called the cycles of (.4, d), denoted some-

times by Z(.4), Z'(A). The pair (B, B') is called the boundaries of (.4, d),

denoted by B(A), B'(A). The object H will be called the homology of (.4, d),

denoted by H(A).
When there is no ambiguity, we shall write Z instead of Z(.4), etc.

The self-duality of the definition of H(A) may be stated in terms of the

dual object [A*, d*) in the category zA*. We have

Z(A*) = [Z'(A)]\        B(A*) = [B'(A)]*,

Z'(A*) = [Z(A)]*t B'(A*) = [B(A)]*,

E(A*) = [H{A)\*.

Definition. A mapping/: (A, d)—*(A, d) of g-derivations is a mapping

fEHh(A, A) such that/<* = <*/.
It will suffice to consider mappings of degree zero. There is nothing to be

gained by treating the more general case.

Let/: (A, d)-*(J, d) be a mapping. Then we have the commutative dia-

grams

0-*Z-^,4^B->0 0^B'^A ^>Z'-*0

z 8        b b' f       z'

0->Z-^2^i?->0,        0->2T'-^I^Z'->0,
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f       D       X
0-*/f-^Z'->Z->ff->0

'*!, i - I'- I'*
If 1 D 1\   *

0-* H-^Z'-^ Z -» H^>0,

0
2?-^B'

J I J'

i 0 i
5-* B'.

Definition. We shall say that the sequence of g-derivations

0 -»(A, di) Z(A,d)-t (Az, dz) -¥ 0

is exact if

a      8
0 ->A!-*A-^Az-*0

is exact, (a and 8 are assumed to be maps of derivations.)

Theorem 1.2. Let 0—*(Ai, di)-*a(A, d)^(Az, dz)-+0 be an exact sequence

of g-derivations. Then there exists a map d: Hz—^Hi such that the sequence

a*      8*        d        a*      fi*
(4) n1-Zn!-Zn,-+Hi-lH"H,

is exact. The map d has degree g.

Proof. This follows from Part I, 5.8 and the obvious exactness of Z{ —Az'

-*iZi ->0 and 0-»Zi-»'iZ->*.Z,.
The usual propositions about homology can now be proved easily. How-

ever, for the sake of completeness, we make the following

Definition./, g: (A, d)-*(A, d) are chain homotopic, f^g, if there exists

a mapping s: A—*A of degree minus (degree of d) such that

ds + sd = / - g.

It is well known that chain homotopy is an equivalence relation.

2. Complexes.
Definition. A complex in zA is a sequence

d"-1      dn
A: ■ • • —> 4 n_1-► 4" —> 4B+1 —►

with dndn~l = 0. (We are assuming, now, that we are in an exact category.

Otherwise we would require that the degrees of all the dk be zero.)

As usual, we may define Z" = Ker dn, Bn = lm dn~l, B'" = Coim d"-1,

Z'B = Cokerd».
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For each n, we have the exact sequence

CO"        7T"cr" <bn
(1») 0->73'"->Z"->Z'n-^Bn-*0

and 77" = Coker u" = Ker 0".

Definition. A mapping/: A—>A of one complex into another is a sequence

of maps {/"} where/": An—>An and dnfn—fn+ldn.

The usual formal facts about homology for complexes may be obtained

here.

3. Construction of graded categories. In this section, we shall give two

constructions of categories. The first will correspond to the category of ob-

jects with differentiation d(zA, G) in a g-graded category (zA, G); the second

will be the construction of a g-graded category starting with an exact cate-

gory zA and an abelian group G; this will correspond to the category of com-

plexes over an exact category.

Let (zA, G) be a G-graded category. We define the objects of d(zA, G) to

be pairs (A, d) where (A, d) is a g-derivation. The zero object is (0, 0).

7ft((^4i, ft), (.42, ft)) is the group of all maps/: (Ai, ft)—>(^42, ft) of degree h

and Hhl((Ai, ft), (A,, ft))®7TAl((^i, ft), (A,, di))-+Hhl+hl((Ai, ft), (At, ft))
is the usual composition of maps. It is easy to see that d(zA, G) is a G-graded

category.

This construction essentially parallels the construction of the category

of modules over the ring of dual numbers T = (A, d) obtained from the category

of modules over the ring A.

For our second construction, we let zA be an exact category, G an abelian

group. Our objects are defined to be functions A from G to the objects of zA.

The zero object, 0, is the function 0(g) =0 all g(EG. For each g'GG, and

each pair of objects A, B, we consider functions a defined on G such that

«(g) £77(^4(g), B(g-l-g'))- We define addition in the obvious way and thus

turn the set of such a's into an abelian group H„>(A, B). The composition of

two such maps is defined in the natural way.

It is easy to verify that we again have a G-graded category.

The usual case occurs when g is the group Z of integers. In that case, the

1-derivations are precisely the complexes of §2.

4. Functors and homology. Throughout this paper, by the term "functor"

we shall mean an additive functor [l]. We are varying from the standard

use of the term here [2] because of the additional additive structure of an

exact category. In this section we are considering only functors of one vari-

able (see also Part III, §3).
Definition. A connected sequence of covariant /« tors T={Tn} is a

family of functors such that for every exact sequence

0-+A'-*A-*A"-*0,
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we have T»(A")->Tn+l(Af) such that

-> Tn(A) -> T"(A") -+ T»+1(A') -> r»+i(il) -> • • •

is of order two, and for every commutative diagram

0—»^4i—*A —* Az—* 0

0-*Bi->B-*Bt-+0

with exact rows,

Tn(A") -» Tn+\A')

l I
T"{B") -> T»+l(B')

is commutative.

For contravariant functors, A' and A" should be interchanged.

Let us consider the exact sequence

(1) 0->4°^.41->->A'-+0, p>\.

Then we obtain the iterated connecting map Tr,~"(Ap)—*Tn~1{A°) in the fol-

lowing way. We may consider the exact sequences

0 -*Z"-1 -+A*~i-+A*-* 0,

0 ->Z»-2 -» ^p-'-^Z*-11-» 0,

i

0-*A"-^A1-^Zi-^0.

We have

3T»-p(4p) _». ̂ -("-"(Z"-1) ->.-►' T"*-1^0).

The iterated connecting map is defined as the composition of these maps.

Proposition 4.1. Consider the diagram (D) of Part I, 5.5. Assume that all

rows and columns are exact. Then for T= [ Tn} a connected sequence of functors,

we have

r-»(C») * r-Mi)
<t>z i ih

r»(c,)   ^ r*»(4i)

with ^'i<pi+^'2<p»=0.

Proof. Weshall use the potation of Part I, 5.5. Before prqceeding with the

proof of 4.1, v/e must first consider some more exact sequences obtainable

from (D) which are essentially dual to the ones obtained in the proof of Part

I, 5.5.



18 D. A. BUCHSBAUM [September

0->73i-^73 ->732-»0        0-»,4 Aj? 4c -»0

0->Ai^B^Cz->0       0-+d->C -!->Ci-*0

a      pjf a     pit
0-+K-*B ->C2-»0       0-»iS:-*73-4C2-*0

Ml Vl «2 »2

0-»73i->.K:->42-»0       0-»^ -+K->Ci-+0

CUi = 1J <TMj = K

f a = k2Bi pa = ac2

«2 »2 «1 »1

0->,4 -»£->Ci->0        0->73i-»7T -»,42->0

X M Kl Pi
0->.4i-»j4 -»42-*0        0->.4i-»731-»Ci-*0

M2X        T Ui\ T

0->4i->.K:-»F -*0        0->4i-*7T->F -»0

«3 »S M4 Vt

0->Ai->F ->Ci->0        0->Ci->F -»^,->0

«3JU  =   7TW2 «4Pl  =  «"«!

V&C  =  J>J tU*-  =  Pi.

It can be easily verified that vtut=eA,, v3ut=ecv

Now consider 72 of Part I, 5.5. We have d=u#n\-\-uimc R—*F. d is an

equivalence.

The following diagrams are commutative:

wjfl-1       «4 «4     mt
At->R-*At       Ci-^R^Ci

I    HIM
»S t>4 ut v3

Ai->F->Az       Ci-^F-^Ci.

We now proceed with the proof of the theorem. First we show that

M30_1»I4+W4W3=cb; UtVi+u&i^ep.

Let nj0_IW4+«4W»+x-eB. Then xnt = 0, so x=x'»»4. Thus (x'+nz6~v)mA

+nimz = eR and x'+»30_1=«a0^1. Hence x'=0 and x=0. Similarly UiV4-\-utVi

=eP.

The commutative diagrams

tr                  0Mi                       <r    ,         ,   0m%
R ->F(B,Ai)—->C2 R-*F(B,Ai)->C,

ws mi nti mi
11 11 i

Of /3 K2   „ P»        _
Ci-»C        -*C, ^2->732      ->C»
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.     *    ,   J"   . .    **   », P1 „
A\—> A —* At A\—* Bi—*Ci

|     j* |«.     |     j„ j*
«2X IT M2\ X

j4i—»£-»F Ax—>K-*F

and the connectedness of T will yield

$ $
r-'CCi) -» r»(i?) r»-1(c2) -» r-(F)

r»(w3)      I J r"(«4)

r-^Ci) -? rn(Ci)        r"-1^) -J r»(ii,)

Tn(A z) ̂  rn+l(^ 0 t»(Cx) i r-+H^ 0

r»(«0 I r»(«4) j I ||

T"(F)  ->T"+l(Ax) T"(F) -*T»+\Ax)

commutative.

^'i<pi+^202 = !?7,B(d)#. Hence we must merely show that \pTH(d)$ = 0. Let

us consider the diagram

a             p2f
0->K-+B -C2->0

d~lir t

<j Bmz
0-► R -»F(5, At) —♦ C2 -»0

The right box is commutative. If we show that the left box is commutative,

we shall obtain

/

r»(i-i)r-(x)

commutative. But then $Tn(d)$ = $Tn(ir)J=0.

Therefore we shall show that ad~iw=ri. Since au%K ■» tjkx, we have a unique

map q: F-*F(B, Ax) such that qic = ra. Nbw Bmzqir = BmtT<r =Bpa =8avt=0,

hence Bntzq = 0 and q=ad', d': F—*R.

ffd'uzfi = otm2 = Tff«2 = tk = »j0~1m = anzd~lp..

Hence d'u3=n3d~1. Also d'ut=nt.
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Let dd'=ep+x- Then, dd'Ui = ut+xUi and dd'ut = dn$-l = ui. Thus,

X«»=0, and x—x'^a- We have, the'n,-dd' = e^+xA»3. Now

«4 = dn* = dd'u* = «4 -f- x'^aw* = «4 + x'-

Hence x' = 0 and x = 0- Therefore dd' = ep and d' = d~l.

Since od~lir =<jd'ir = qir =to, the proof is complete.

Let (.4, d) be an object with differentiation, and let jTbe a covariant func-

tor. Consider the commutative diagram

X
Z -> H

(2) a f

ir
^ ->Z'

Now Z, Z', and H can be considered objects with differentiation, the

differentiation being zero. Under those conditions, all the maps in (2) are

maps of objects with differentiation. Also, we see that H(T(Z)) = T(Z),

H(T(H)) = T(H), H(T(Z')) = T(Z'). Let lis consider the induced commuta-

tive diagram

r(x)
2\Z)    -U T(H)

(3) 2 T(f)

n
H(T(A))-> T(Z')

where 2= [?»]*, II=[r(7r)]*.

Proposition 4.2. Let T be right exact (see Part III, 3). Then there exists a

unique map a: T(H)—>H(T(A)) such that aT(\) =2 and Ua = T(f). a is natu-

ral relative to maps A—*~X and is the identity on objects with zero differentiation.

Furthermore, these last two properties characterize a completely.

Proof. Since T is right exact,

T(B') —^4 T(Z) -U T(H) ->•0

is exact. We must show that ~ET(u>) = 0. It is easy to see that 27\«) = \T(k) ]*.

Also, since T is right exact, T(Bt) is an epimorphism. Now we have the com-

mutative diagrams

T(B') — T(B') T(B') =-■ T(B')

T(k)\ \s lrW]*{ s

T(A) ^*Z'(T(A)) H(T(A)) 4. Z'(T(A))



1955] EXACT CATEGORIES AND DUALITY 21

M(r(K))*=»r(*c), thus u(T(K))*T(0f)=nT(d)~O, since Z'(r(^)) = Coker
T(d). Therefore [T(k) ]* =0=XT(a>). Thus we have a mapa: T(H)-*H(T(A))
with ar(X)=S. To show that TLa = T(t), we observe that Ilar(X) =HS
= T(^)T(\), and in view of the fact that T(\) is an epimorphism, we have

Ha = r(f).
Suppose we have/: (A, d)-*(A, d). We must show that

T(H(A)) -^L T(H(A))

a a

HT(A)   —[i-h   HT{A)

is commutative.

«[j(/)]*ar(x)=«[r(/)]*2

uaT(f*)T(\) = uaT{\)T(z) = u[T(a)]*T(z)

= nT(a)T(z) = nT(f)T(<r) = a [T(f) ]*[T(*) ]. = a[T(f)\^.

Let ^4 have zero differentiation. Then we have

T(A) Z T(A)

II II

T(A) Z T(A)

and a is obviously the identity.

To prove that these properties completely characterize a, suppose a, 8:

T(H(A))—*H(T(A)) both are natural and are the identity on objects with

zero differentiation. Then aT(\) =H=8T(K) implies a=8.

Part III. Derived Functors

1. Direct sums. Up to this point, we have carefully avoided using direct

sums (although Part I, 5.5 and Part II, 4.1 certainly indicate their use). As

yet, we have found no efficient way of defining infinite direct sums and

products in an arbitrary exact category zA.

Definition. A family of maps

la       pa
Aa —* A ■** Aa,

where a belongs to a finite set of indices, is a direct sum representation of A if

PJa = eAa, pgla = 0 for 8 ^ a, X) lapa - eA.
a

This definition does not guarantee the existence of a direct sum of given
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summands. For this purpose we introduce

Axiom V (Existence of direct sums). For any two objects Ai, At£zA,

there is an object A ZzzA and maps

la       pa
Aa—*A —*Aa, a — 1, 2,

which yield a direct sum representation of A.

This axiom is obviously self-dual.

We easily deduce that the direct sum of a finite number of objects in zA

exists in zA, and any two such are equivalent.

Definition. We say the exact sequence 0—>Ai—>"A—^At—*0 right-

splits if there is a map 7: At—>A such that By =cx,. We say the sequence left-

splits if there is a 8: A-^Ai such that 8a =0,.

Proposition 1.1. The sequence 0—*Ai—>"A—*$Ai—>0 right-splits if and
only if it left-splits and in either case we can find maps such that

a       S
Ai—* A -*AU

7      0
Ai—*A^>Az

yield a direct sum representation of A.

Remark. Referring to (D) of Part I, 5.5, we have (as was indicated at the

end of that proof)

Ker (Coker (kX)—>Ci) is the direct sum of Ci and Ai. So also is

Coker (4i-»Ker (/3p)).

Proposition 1.2. Consider the commutative diagram

c£i X J^Ci'
f   ^\ft     w      0)^^ >k

61 Cj^ 82

«l^-^ ^\02

C2 p. CI

y^T?*"""^     S

with diagonals exact, 0i, 02 equivalences, and p,X = 0. Then

a.     0r»ft „            „, on     flr'ft _,
C1-+C-»C2, Ci-^C-*Ci

and
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aiOx1     8*                 , a^F1     Px
Cx-* C —> Cx,       Cz -> C —> Cx

yield direct sum representations of C. Furthermore

70fV + Jflj-'r = 0.

Let 0-*Ax-^aiBx-*filC-^0, 0^Az-^a%Bt-^*C-*0 be exact, and let

lx pi h pi
Bx —* Bx ~\~ Bz —► Bx        Bz ~~* Bx t Bz —► Bz

be a direct sum representation. We obtain the map 8xpx —8zpt: Bx+Bi—*Cand

the exact sequence

*■ PiPi—PtPt
0-*R-+Bx + Bz   F >C->0.

Since {Bxpx —Btpz)ljctj=0, j = 1, 2, we haveKi: Ax—*R, k»: j4j—»i? with o~Kj=ljOij,

i-1,2.

Lemma 1.3. 7"Ae sequences

Kx      Pz<r
0-+Ax-+R—+Bz^>0,

0->42->F—>Bx->0

are exact.

2. Projectives and injectives.

Definition. An object P&zA is called projective if any diagram

P

\>

A^A"-*0

in which the row is exact may be imbedded in a commutative diagram

P

h/   f

g
A-^A"-^0

We define QQ.zA to be injective by duality.
For further work, we need the following axiom and its dual:

Axiom VI  (Existence of projectives). Given A(E*A, there is an epi-

morphism P—>A with P projective.

Proposition 2.1. A direct sum of objects is projective if and only if each

summand is projective.
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Proposition 2.2. In order that P be projective, it is necessary and sufficient

that all exact sequences 0—*A'—>A—>P—*0 split.

Proposition 2.3. Let 0—*A'—>aA-^A"—*0 be exact. Consider the dia-

gram

0 0

1 I
M' M"

'I        I""
p, pn

,] j,»

a        B
0-+A'-+ A ■£ A" ->0

1 I
0 0

with exact columns, P' and P" projective. Then this diagram can be imbeddeo

in the commutative diagram,

0      0      0

0 -> M' -> M ̂ > M" -»0

*' I I k k"

/i      ft
0 -> P' -► P ^ P" -»0

"I   H'

0       0       0
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in which rows and columns are exact, and the middle row splits (therefore P is

projective).

Proof. We let P = P'+P". Then

h      pi h      ptp'-ipi; p>,     p" -XptA p"

is a direct sum representation of P. Since P" is projective, we have 7: P"—*A

with By=p". Define p=ap'pi+ypt: P—*A. Then p/i=ap', 0p=p"pt. p is an

epimorphism, and the remainder of the proof is automatic, if we choose

M=Kerp.
3. Functors of several variables. For A Ee/ft" C(EQ, we consider functors

T(A, C) covariant in A, contra variant in C, with values in D, in the sense of

[2], Throughout we assume the functors additive, in that

T(a + 0, to) = T(a, ec) + T(0, ec),

T(eA, 7 + S) = T(eA, 7) + T(eA, S).

Definition. Let zA, Q, <D be three exact categories.

Let

(1) 0^^i^.4^,42^0,

(2) 0 -» Ci -* C -»C2 -> 0

be exact.

Definition. A functor T is exact if for all exact sequences (1) and (2)

0 -» T(Ai, C) -» T(A, C) -» T(At, C) -> 0,

0 -* T(A, d) -» T(A, C) -> r(il, C) -»0

are exact.

T" is rigAi cx;ac< if for all sequences (1) and (2)

T(Ai,C)->  (T,C)  -+T(Ai,C)^0,

T(A, d) -* T(A, C) -* T(A, d) -» 0

are exact.

Analogous definition for left exact.

T is half exact if for all sequences (1) and (2)

T(Ai,C)->T(A,C)-*T(Az,C),

T(A,Ct)-+T(A,C)-*T(A,Ci)

are exact.

The usual discussion about composition of functors and preservation of

exactness under composition [l, II. 5] applies. However, we single out two

cases for special study.
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Let D denote generically the functor which takes an exact category zA

into its dual zA*. T is a functor.

We define T* by

Tm(4, C*) = T(A, D~KC*)) = T(A, C).

Since D, (D~l), is an exact, contravariant functor, Tand T* differ in variance

on C but preserve the same type of exactness. We see that (7*)* = T (more

precisely, (7*)* is naturally equivalent to T).

We define T* by

T*(A*, C) = D[T{D~\A*), C)].

T* and T differ in their variance on C and also preserve opposite types of

exactness (i.e., when Tis left exact, T* is right exact; Texact, T* exact; etc.).

4. Satellites of functors.
Definition. Let

0 -» M -» P -> A -> 0

be exact, with P projective. Let T be a covariant functor of one variable. The

left satellite of T, denoted by SxT(A), is defined as Ker (T(M)-*T(P)).
It is shown in [l, III] that S\Tis independent (up to a transitive family

of equivalences) of the choice of the sequence 0—>M—»P—>.4—>0.

Now let g: A-+A'. We then have

0-»ilf ->P -+A ->0

(1) 1        i        if
0-*Af'-*P/-+4'-»0

with P and P' projective. But then we obtain

0-*SiT(A) -» r(JO -»r(P)

i i i

0^>SxT(A') -> r(M') -* r(P')

and we call the left-hand map SxT(g).
With these definitions, SxT becomes a covariant functor.

Definitions. Let T be a covariant functor. We define the right satellite

of T, ST, by

5T = (SxT*)*,

i.e.,

Slr(4) = D~\SxT*(D(A))).

Let r be a contravariant functor. Then T* is covariant. We define
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SiT(A) = S1T„(A*),

S*T(A) = SlT*(A*).

Due to these relationships, it is sufficient to consider only covariant func-

tors.

Definition.

SnT = Si(Sn-iT), n > 1,

SnT = 51(5—17'), n > 1.

Let us consider the commutative diagram

«1 Oil
0 —* Ai—* A —* At—* 0

(2) p'\ P       \P2

B±      B*
0^Bi-> B->B2^0

with exact rows.

We have

i       p
0 —> Mi—*Pt—>Ai—>0

(3) M I X
Oil Oil

0-+Ai -+A -*Ai^0

and therefore a map 3i(eAt): SiT(Ai)—»Ker (T(ai)). We define

ft = aiSifoiJiSirCili) -» T(Ai),

where <ri: Ker (T(cti))—*T(Ai) is the "inclusion."

Dually, we obtain 01: T(At)—*SlT(Ai). Thus we have

0n:SnT(Ai)^Sn-iT(Ai),

6n:Sn-*T(Ai)->SnT(Ai)

for »>0 (we let S0T = S°T=T).

Consequently, we obtain the sequence

->SnT(Ai) ^SnT(A) -+SKT(Ai) -+Sn-iT(Ai) -+ • • •

(4) -»SiT(At) -> tw -> r(ii) -► r(42)

-^^r^i)-*-»s—^(iio-^-zW-* • • • •

Proposition 4.1. The sequence (4) is of order two.

Proposition 4.2. The diagram (2) induces a commutative diagram
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ft fl*

-> SxT(At) —^ T(Ax)-> T(A)-► T(A2)-*S1T(A1)-> • • •

SxT(Pl) T(pi) T(pz) S'T(Pl)

Si Sl
-> SiT(Bz)-> T(Bx)-> T(B)-» T(B2)->SiT(Bx)-> ■ ■ •

Theorem 4.3. Let T be a half-exact functor. Then the sequence (4) is exact.

5. Axiomatic description of satellites.
Definition. Let T= { Tn}, U= {Un\ be connected sequences of functors

(Part II, §4). A map $: T—*U is a family {<pn} of natural transformations

[2] <t>n: Tn-+Un such that

Tn(Az) -* T»+i(Ax)

i i

Un(Az) -» U«+\Ax)

is commutative for every exact sequence 0—>Ax—>A—>At—>0.

If T is a functor, by ST we mean the connected sequence of functors

S-r where SnT = SnT for m^O, S"T=S^nT for «<0.

The axiomatic description of ST can be found in [l]. However, we shall

prove here a more general theorem which is applicable as well in the theory of

sheaves.

Definition. Let zA be an exact category (Axioms I-IV), let 2L= {Q} be a

subclass of the class of objects of zA, and let <p: {0} —>{A } be a (not neces-

sarily single-valued) function from SI to the objects of zA. We denote the

pair (Si, <p) by ft*. We say that ^ is <p-injective if every diagram

0->*«2x)->0i

i Qi■■€ ft
0-^<t>(Qi)-*Q2

with exact rows can be imbedded in a commutative diagram

0-><KQi)-+Qi
i i

0 -* 4>(Qt)  -» ^2.

We say a ^-injective class is <p-complete if <p is onto and for each A(E<t>(Q),

there is a monomorphism 4—»Q.

Theorem 5.1. Let ft+ ie a ^-complete ^-infective class in zA. Let T= {T"}

be a positive (i.e., T'n = 0 for «<0) connected sequence of functors such that for

every exact sequence
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(1) 0-*A-+Q-+N-^0 Q G $, A G <p(Q)

the sequence

(2) Tn(Q) -* T"(N) -* Tn+l(A) -► 0 n ^ 0

is exact. Suppose, also, that U= { Un} is a positive connected sequence of functors

and<p°: T°—*U° is a natural transformation. Then there exists a unique extension

$: T-+Uoi<p°.

Proof. We proceed by induction on n. Suppose <j>n: I"*1—>£/" has been de-

fined. We consider an exact sequence of type (1) and obtain

dT*(Q) -> T"(N) —► Tn+l(A) -* 0

(3) <t>"(Q) L»(A0
I I      _

Un(Q) -► U"(N) —> Un+\A)

commutative. Since the top row is exact, and the bottom row is of order two,

we obtain a unique map <pn+1(A): Tn+1(A)—>Un+1(A) such that

(4) <f>n+l(A)d = ftV(A0-

This map appears to depend upon the sequence (1) which was originally

chosen. Without changing notation, we shall consider <pn+1(A) as a function

of (1) as well as of A.

Let/: A-+B. Then

<Pn+i(A)
T*+KA)-^4 Un+1(A)

r»+1(/) u^+Hf)

T«+i(B)-—> Un+i(B)

V+1(5)

is commutative, i.e., <j>n+1 is natural.

We choose any sequences

a        3
0-+A -+Q-+N-+0

{\
a  _ 0 _

0-* B-*Q->N-^0.

Then we have/': (?—>(? with/'« = «/, and a unique/": N-+N with 8f'=f"0.
We therefore have the commutative diagrams
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a
T'(1V) -> Tn+\A)

T»(f") Tn+\f)

_   d Tn(f")       _
T»(N) -> Tn+\B) T»(N) —^-4 T"(N)

4>»(N) Un+1(B)        <r(N) L"(N)

-    d Un(f") _
Un(N) -> U»+1(B) U»(N) —^-4 U»(N)

U»(f") U»+1(f)

d
U*(N) -► U'+l(A)

the second diagram being commutative by our induction hypothesis. Thus

we have

<t>n+1(B)Tn+1(f)d = <p+l(B)dTn(f") = d^n(N)T"(f"),

U^(f)^+\A)d = Un+1(f)d<pn(N) = dU»(f")<t>n(N).

The right-hand sides being equal, and 9 being an epimorphism, the desired

result follows.

By choosing A =B, we see that <pn+1 is independent of the choice of the

sequence (1).

If 0—>.4'—►<".4—>M"—»0 is exact, then

3'
T«(A") -> r-+i(.4')

4>n(A") <t>"+1(A')

U»(A") -> U»+*(A')

is commutative.

Let 0-+A-*Q-*tN-^>0 be exact. Then we have 0-+A'->atQ->rN'-^0

exact and we obtain the commutative diagram

0 -► A' -X. A -^ A" -> 0

I    \"  lx
ay       t

0 -► A' -» Q -> iV' ->0.
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Consider the commutative diagrams

d'
T»(A") -» T»+l(A')

r»(x) II

d" r»(x)
T»(N') -» Tn+\A') T"(A") —^4 T»(N')

<t>»(N') | 4>"+>(il')     <t>n(A") <pn(N')

., i i |

Un(N') -> Un+1(A') Un(A")-> Un(N')

U«(\)

tf"(A) II

J'
r/»(.4") -» C/"+1(4')

Then

d**"(il") = d"U"(\)<t>n(A") = d"<p«(N')Tn(\) = 0»+1(4')3"r»(X) = 4>B+1(,4')d'.

6. Derived functors.

Definition. A doubly (multiply) graded or double (multiple) complex is a

sequence {.4P'«} of objects together with two sequences {df*}, {<%*} of maps

dl": il#.«-»ilH-i.ti dp: A"-"-*A"-<'+1 such that dp+1-'dp1-t = 0=dp2*+1dF't, and

rfM+i(fM = ^+i.«rrfM Furthermore, for each n, all but a finite number of

Ap-q for which p-\-q = n are different from zero.

Because of this last condition, we can define the associated singly graded

complex in the usual way. The standard definitions of maps and homotopies

can easily be made and the consequences in the associated complex deduced.

Definitions. Let A £.zA. By a left complex over A, we mean a complex

e
(1) ->An->An-i->->.4o->;4->0-*0-* •••.

By an acyclic left complex over A, we mean a complex (1) such that the

sequence (1) is exact.

By a projective left complex over A, we mean a complex (1) where each

A q is projective.

By a projective resolution of A, we mean a projective, acyclic left complex

over A.

Replacing "left" by "right," and "projective" by "injective," we obtain

dual definitions.

The existence of projective resolutions of any object A £zAis ensured by

Axiom VI.

Definition. Let X, X' be left complexes over A and C respectively and

let/: A—>C. A map F: X^>X' is a map over f if
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Xo-^A

"j , I'
XI -+C

is commutative.

Proposition 6.1. Let X be a projective left complex over A, and X' an

acyclic left complex over C. Letf: A—*C. Then we can find a map F: X-+X' over

/. Furthermore, any two such maps Fx, F2: X—>X' over f are chain homotopic.

Let T be a covariant functor of two variables. Let A QzA, C(EQ, X, X'

projective resolutions of A, C respectively. Then we get a double complex

T(X, X') defined by

Tp,q(X,  X )   =   T(Xp,  X qJ,

dr.1 = T(dv, ex-q),
z

dP,q = T(exr, dq).

Definition. The rath left-derived functor, LnT(A, C) is Hn(T(X, X')),

where H„(T(X, X')) is the rath homology of the singly graded complex asso-

ciated with the double complex T(X, X').

Proposition 6.2. LnT(A, C) is independent (up to a transitive family of

equivalences) of the choice of resolutions X, X'.

Let a: .4—>.4', 7: C—*C. Then in the natural way, we have a map

LnT(a, y):LnT(A, C) — LnT(A'', C).

Therefore, LnT is a functor of two variables.

Theorem 6.3. Let 0—*Ai—*A—>Az—>0, 0—»G—*C—yC2—>0 be exact.
Then we have sequences

->LnT(A1,0->LnT(A,C)-*LltT(At,C)->L»-iT(Ax,C)-* • ■ ■

-+ L0T(Ax, C) ->L0T(A, C) -»L0T(Az, C) -»0

^LnT(A,Cx)-^LnT(A,C)-+LnT(A,Cz)^Ln-iT(A,Ci)-+- ■ ■

-+L9T(A,Ci)^>LoT(A,O->L9T(A,Ci)-*0

which are exact [l].

Definition. Let T be a covariant functor of two variables. Then

T*(A*, C*) = [T(A, C) ]* is also covariant. Define

R»T(A,C) = [LnT*(A*,C*)]*.

RnT is called the rath right derived functor of T. Its formal properties can be
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deduced from the formal properties of LnT.

Analyzing this definition, we see that X*, X'* are projective resolutions

of A*, C* if and only if X and X' are injective resolutions of A and C. Thus

R»T(A, C) = [LnT*(A*, C*)]* = [Hn(T*(X*, X'*))]*

= [Hn((T(X, X'))*]* = H«(T(X, X')),

which is precisely the definition of RnT(A, C) given in [l].

Definition. Let T be a functor, covariant in A, contra variant in C. Then

T* (A, C*) = T(A, C) is covariant in A and C*. Define

LnT(A,C) =LnT*(A,C*),

R»T(A, C) = R»T*(A, C*).

An argument similar to the preceding one shows that these definitions

agree with those given in [l].

The formal properties of the derived functors, their comparison with satel-

lites, the notion of balanced functor as treated in [l ] can be translated into

the language of exact categories. Also, the maps a and a' of Part II, §4 can

be defined abstractly for functors of several variables.

Part IV. Applications

1. The functors Ext". For each exact category zA, the functor H(A, C)

may be regarded as a functor contravariant in A, covariant in C, and with

values in the exact category M of abelian groups. This functor is left exact;

for a fixed A0, H(A0, C) is an exact functor of Cif and only if Aa is projective;

for a fixed CoE.zA, H(A, Co) is exact in A if and only if Co is injective. Thus

H(A, Q is right balanced [l].
If d/f satisfies Axioms V and VI, then Extn(A, C) may be defined as the

right derived functor with respect to the variable A (i.e., using a projective

resolution of A). If zA satisfies Axioms V and VI*, then injective resolutions

of C may be used to define Extn(A, C). If c/f satisfies Axioms V, VI, and VI*,

either or both may be used.

We can define the global dimension of an exact category as the highest

integer n for which Ext"(A, C)?^0. A category has global dimension zero if

and only if H(A, C) is exact, i.e., if all elements of zA are projective (or injec-

tive). This takes the place of semi-simple rings in [l].

2. Axiomatic homology. The axiomatic homology and cohomology theo-

ries of Eilenberg-Steenrod [3 ] may be defined using an arbitrary exact cate-

gory zA as the range of values of the theory. Thus, replacing zA by zA* re-

places a homology theory by a cohomology theory and vice versa. This dual-

ity principle simplifies the exposition of the theory. Furthermore, the unique-

ness proof [3, Chap. IV] remains valid for such generalized homology and

cohomology theories.
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3. Pontrjagin duality. The Pontrjagin duality for discrete and compact

abelian groups readily shows that the category Q of compact abelian groups

is the dual of the category Vtt of discrete abelian groups. Thus we conclude

that Q satisfies Axioms V, VI, and VI*. In fact, in Q, the injectives are the

toroids (since the only discrete abelian projectives are the free groups); and

the projectives in Q are those compact groups whose character groups are

divisible.
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