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For Riemannian manifolds there are four kinds of holonomy groups: the

(nonrestricted) holonomy group H, the restricted holonomy group H°, the

(nonrestricted) homogeneous holonomy group h, and the restricted homo-

geneous holonomy group h". It is known that all of these are Lie groups of

transformations and H" and h° are the connected components of the identity

of H and h respectively.
1. Relations among invariant linear subspaces of h° and h. If the restricted

homogeneous holonomy group h° is reducible (in the real number field) it is

completely reducible, for h is a subgroup of the orthogonal group. If the

holonomy group h° is reducible, we can take a repere in the tangent space

En(0) at the base point 0 of the holonomy group so that all elements of the

group h° can be represented by matrices of the following type:

\  Ti 0 )
Tt

T =

. 0 ' TV

We assume that the group of matrices 7\ is irreducible for each X(X = 1, • • • ,

m). Let us denote the linear vector space on which T\ operates by -E(x),

E(x)'s are called irreducible invariant linear subspaces. If Tm is of dimension 1,

Tm is equal to 1.

In the same way we can consider the reducibility of the group h. It may

happen that, for example, Eai is not invariant under h although it is invariant

under h". In such a case there exists a closed curve Ca of class D' passing

through the base point 0 of our holonomy groups such that the congruent

transformation T(Ca) associated with it takes E(d into another linear sub-

space .Ecd*:

7XCa).E(l)   =   jE(l)a-

We shall denote the element of the fundamental group 7Ti to which Ca belongs

by a.
If we take another closed curve C„' passing through 0, the product curve

C^CoT1 = Co is homotopic to zero. Hence we get

T(C0) = T(C?*)T(Ci).

As T(Cal) = T(Ca)~\ we see

T(a) = T(Ca)T(C0),
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and accordingly we get

T{Ci)Em = TiCa)TiCo)EiU = TiCa)Ea) = PU)«.

Therefore the transformation T associated to any closed curve passing

through 0 and belonging to a takes Pr» to the same Ema.

In the next place, we can show that the linear subspace Ema is invariant

under the group h°. To prove this, let us take an arbitrary closed curve Co of

class D' passing through 0 and homotopic to zero. Then the product curve

CaCo is homotopic to Ca, whence by virtue of the above result we get

P(Co)P(C0)£(i) = P(i>«,

whence

r(Co)P(l)a  = P(l)«,

which is to be proved.

In the same way it may happen that transformations associated to closed

curves passing through 0 and belonging to an element 0 of iri take P(d to a

linear subspace Ea)p different from Pfi> and P(i)a. It is easily seen that trans-

formations associated to closed curves passing through 0 and belonging to the

element orl0 take E(i)a to P(d/j.

We shall assume that dim (P(i>) ^2. Then P(i>a must coincide with one of

P(2),   •   •   •  , P(m).

To show this let us take a vector v of P(i)a. then it can be written in the

following form:

V = Vi + Vi + • • ■ + vm,

where i>xGP<x). First we assume that fi ?*0. According to Borel-Lichnerowicz's

theorem (l) we know that the restricted group h° is a direct product of com-

ponent groups of matrices: h° = h°wXh\2)X • • • Xh^. Hence h° contains the

group h°D X1 X • • • X1 as its subgroup. If we denote a transformation of this

group by T, we get

Tiv) - v = 7>i) - i-i,

the last vector belongs to Ea->(^Ema. As h°w is irreducible there exists a T

such that Tivi)—Vi is not the null vector. This contradicts the fact that

£(D^£(i)« and P(u is irreducible. Accordingly vi must be equal to zero.

By the same argument, we can see that if dim (P(\)) ^ 2 (X fixed), then either

v\y^0 (other v„ = 0, p-t^X) and P(i)a coincides with P<x> or i>x=0. As Pa)« does

(') A. Borel and A. Lichnerowicz, Groupes d'holonomie des varittts riemanniennes, C. R.

Acad. Sci. Paris vol. 234 (1952) pp. 1835-1837.
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not contain invariant vectors, this proves that Ea>« coincides with one of

E(z), ■ • ■ , E(m). Q.E.D.
We shall change the notation if it is necessary and can assume that

E(i)a coincides with E(z).

In the same way, if Em& is different from Ew and JE(2) it coincides with one

of £(3), • • • , E(m). We can assume that Emp coincides with E(8).

Repeating this process we can see that there exists a minimal set of linear

subspaces Ea), • • • , E<k) such that they are transformed to each other by the

holonomy group h and no other linear subspaces are obtained from them by

h. Then the direct sum of these spaces constitutes an irreducible invariant

subspace of h.

Consequently, we get the following theorem:

Theorem 1. Suppose that the restricted homogeneous holonomy group h° is

reducible and let Ea), • • • , £(m> be irreducible invariant subspaces. If Ea) is

not invariant under h and dim Ew ^ 2, we consider the irreducible invariant sub-

space under h which contains En) and denote it by E*q. Then we can select, from

E(d, • • • , E(m), lx (h = dimE^/dim-Ed)) linear subspaces all of the same

dimension such that they span E*t) and each of them can be transformed from

any other of them by some transformations of h.

We change the notation if it is necessary and can assume that these h

linear subspaces are En), • • • , EaY). If dim £(ji4n^2 and £(r1+i> is not in-

variant under h, then we can consider the irreducible invariant subspace

under h which contains Eill+l). We denote it by E*2) and assume that E*2)

consists of £(j1+i), • ■ • , E^i1+it), and so on.

If there are one-dimensional subspaces among Ea-,, ■ ■ ■ , E(m>, we collect

them altogether at the last part of the sequence of subspaces. Suppose that

E(1) is one of the subspaces Ea), • • • , -E(«o and such that dim£tl) = l. If

£C1) is not invariant under h, then as before there exist vectors Eu)a, £(1)", • • ■

invai iant under h° and not equal to £(1) and derived from £(1) by some trans-

formations of h. However, contrary to the former case, we cannot say that

£U>, E(1)a, E(1"3, • • • are orthogonal to each other. We shall investigate in

the next section the structure of the transformations of h operating on the

irreducible invariant subspace £(1)* containing Ea).

2. The manifold R* and its holonomy group H. Suppose that the holon-

omy group h of a complete Riemannian manifold M„ is reducible to r- and

(ra—r)-dimensional parts. Then there exist an r dimensional parallel plane

field and an (ra — r) dimensional parallel plane field orthogonal to each other.

Let K be an arbitrary curve in Mn. We denote its initial point by P and its

terminal point by Q. We take orthogonal reperes [ei, • • • , en]P and

[ex, • • • , e„]o so that their first r vectors [ex, • ■ ■ , eT]p and [ex, ■ ■ ■ , er]g

are contained in the r-dimensional planes of the first field at P and Q respec-

tively and the remaining (n—r) vectors [er+x, ' ■ • , en]p and [er+x, ■ • • , c]q
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are contained in the (» — r)-dimensional planes of the other field at P and Q

respectively. By developing the curve K in the tangent space P„(P) with re-

spect to the Euclidean connection of the space, we find a unique image of the

point Q and a unique image [e*, • • • , e*] of the repere [ei, • • • , c„]<}. Then

the transformation which takes [ei, • • • , en]p to [e*, • • • , e*] can be ex-

pressed by a matrix P(M„, K) of the type

(A   0   a\

\0    B  Bj'

where A and B are-(r, r) and (» — r, n — r) orthogonal matrices respectively

and a and 0 are (r, 1) and (n—r, 1) matrices respectively. Let us denote by

tiM„, K) the matrix (.4, a). The set of all transformations of the type (.4, a)

constitutes a group.

Let K = arc PQ be a sufficiently short curve of class D' so that it is con-

tained in a so-called "reduced coordinate neighborhood" such that

ds2 = gabixc)dxadxh + gfjix^dx^x",

a,b, c = 1, 2, • • • , r,

P, q, r = r + 1, • • • , ».

We denote r-dimensional totally geodesic submanifolds belonging to the

family xp= const, by P and 5- i=n — r) dimensional totally geodesic sub-

manifolds belonging to the family x" = const, by S, and the P- and S-submani-

folds which pass through a point P by Rp and Sp.

We can project K on RP by using the reduced coordinate neighborhood.

We denote the projection by w and denote the image of K by K' =ir(P). The

repere [ei, • • • , er]« impresses a repere [e{, • • • , ef ]q at the image @'=7r(0

on RP. By developing the curve K' in the tangent space Pr(P) of RP with re-

spect to the induced Euclidean connection of the space, we find a unique image

[e{*, • • • , e{*] of the repere [e{, • • • , e'r ]Q. Let us denote the transforma-

tion which takes [eu ■ ■ ■ , er]p to [e{*, • ■ ■ , el*] by P(Pp, K'). Then

Lemma 1. *(Jlf„f K) = TiRP, K').

If we write down the equations of definition of the Euclidean connection

using a reduced coordinate neighborhood which contains K we can easily see

the truth of our assertion, for in this case the equations of definition of the

connection separate into two parts corresponding to R- and S-submanifolds.

Let P0 and P& be two P-submanifolds and assume that P(E.Ra and

QGPb lie on the same S-submanifold. By a P-neighborhood of P we mean a

neighborhood of P in Rp. Then there exists an isometry x between some R-

neighborhoods F(P) on P„ and F(0 on Rb such that corresponding points

on P„ and Rb lie on the same S-submanifolds.

To prove this we connect P and Q by a geodesic [PQ] in the S-manifold

in which P and Q are. Divide [PQ] so fine that if we denote the dividing
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points by P = z0, Zi, ■ • • , zk = Q, the reduced neighborhood U(z{) of z«- con-

tains Zi+i. Then it is clear that there arises a sequence of isometries between

suitable ^-neighborhoods V(zi)CU(zi)r\R,t (i = 0, 1, • • • , k).
In the next place, let L be a curve on Ra passing through P. Then we can

prolong the isometry x of V(P) and V(Q) along L on Ra and its image on Rh,

a point on Ra and its image on Rb lying always on the same S-submanifold.

To prove this we first take a point Px on the connected component of

Po = Pon V(P)C\L and draw its image curve and denote the image of Pi by

Qx. Draw the geodesic segment [Pi(?i] near [PQ] and starting from [Pi(?i]

we can construct an isometry between some ^-neighborhoods V(Px) on Ra

and V(Qi) on Rb. It is evident that on V(P)C\V(Px) and V(Q)C\V(Qi) both
isometries are identical and hence we can prolong the isometry V(P)+±V(Q)

to the isometry V(P)W(Pi)+±V(Q)KJV(Qx). Repeating this reasoning we

can easily see that our assertion is true because we can choose a sequence of

new neighborhoods so that the diameters of the new neighborhoods which

arise successively by analogous construction have a positive lower bound. We

denote the prolonged isometry also by x-

Let us denote the image of L on Rb by M. We impress the repere

[ex, ■ • • , eT]p, at the initial point P of L spanning the r-dimensional tangent

plane of Ra at P to the initial point Q of M and likewise impress the repere

[ex, • ■ ■ , er]p> at the terminal point P' of L spanning the r-dimensional

tangent plane of Ra at P' to the terminal point Q' of M. Then

Lemma 2. T(Ra, L) = T(Rh, M).

Now let us consider a closed curve C passing through the base point 0

of the holonomy group. We divide the curve C by m points O = P0, Px, • • ■ <

Pm-x, Pm — O so fine that the subarc PxP\+i is contained in a reduced coordi-

nate neighborhood U(P\) for every X(X=0, 1, • • • , m — 1). We take at

Po = Pm and Pi, • • • , Pm_i reperes so that their first r vectors [ex, • • • , er]

span /--dimensional tangent planes at them. And we consider the development

of C in the tangent space E„(P0). Then, we get the following relation.

Lemma 3. t(Mn, C) = P(Pp„, C), where C is the continuous projection of C

by it such that n(Po) =Po-

Proof. First we get by virtue of Lemma 1

t(Mn, C) = T(RPn_lt arc Pm^xP'm)t(Mn, arc P0Pm-i of C),

where arc Pm-iP'm is the image of the arc Pm_iPm by the projection ir. The

right-hand side of the last equation is, by virtue of Lemmas 1 and 2, equal to

the following transformation:

T(RPm_t, arc Pm-zPZ)t(Mn, arc PoPm-t of C),

where the arc Pm-2PZ is the image of (arc Pm_2Pro-i of C)+arc Pm^2P„_i by
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the projection it and isometry x on Pj>m_x. Iterating this process we can see

that Lemma 3 is true.

We are now going to assume a hypothesis(2).

Hypothesis W. There exists in Mn a point 0 such that each point of the

submanifold Po has an P-neighborhood which meets at most once with any

S-submanifold.

When this hypothesis is satisfied, we take such a point 0 as the base

point of holonomy groups. Then, for any S-submanifold, the intersection

Sf^Po is a discrete set of points. We say that any two points of this set are

congruent to each other. Then a sufficiently small P-neighborhood of a point

on Po is isometric with corresponding P-neighborhoods of its congruent

points. Hence if we identify congruent points on P0, there arises a manifold

P* such that Po is a covering manifold of P*. As Mn is assumed to be com-

plete, Po and P* are also complete. The terminal point 0' of the curve C does

not in general coincide with the point 0, except in the case when C is homo-

topic to zero. However, by the construction, 0' is congruent to 0. Hence the

image C* of C on P* is a closed curve passing through 0* (image of 0) on P*.

As Po and P* correspond locally isometrically we can easily see that

T(P0, C) = TiR*, C'*) G 77(P*),

where HiR*) means the holonomy group of R*.

Conversely, let us consider a closed curve of class D' passing through the

base point 0* and the transformation TiC*) of the holonomy group HiR*)

associated with C*. As Po is a covering manifold of P* we can construct the

curve C which issues from the point 0 over 0* and lies over C*. The terminal

point 0' of C is a point which is congruent to 0. We can easily see that

TiC*) = TiR0, C),

provided that the reperes [ei, ■ ■ ■ , eT]o and [ei, • • • , er]o' at the initial and

terminal points of C are those which lie over the repere at the point 0*.

Now, as 0 and 0' lie on the same submanifold S0 we can connect O' with

0 by a curve C" of class D' on So. If we consider the product curve C'C" as a

curve in Mn, the continuous projection of C'C" into P0 is easily seen to be C.

The repere [ei, • • ■ , er]o> we mentioned above is also the image of [ei, • • • ,

er]o by the projection. Hence we can see that

7X.Ro, C) = t(Mn, C'C").

Consequently, we get the following

Theorem 2. Let Mn be a complete Riemannian manifold whose holonomy

group h decomposes in r-dimensional and in —r)-dimensional parts and satisfies

the hypothesis W. We take a point 0 satisfying the hypothesis W and construct

(2) A. G. Walker, The fibering of Riemannian manifolds, Proc. London Math. Soc. (3)

vol. 3 (1953) pp. 1-19.
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the submanifold P0 and the manifold R* which arises by identification of con-

gruent points of P0. Then the group which consists of all transformations

tiMn, C) is the same as the holonomy group HiR*) of the manifold R*, the base

point 0* and the repere at 0* on R* being naturally impressed from Mn.

Suppose that the restricted holonomy group h° of Mn decomposes and

fixes r vectors (we do not assume that there are no other invariant vectors),

and that these r vectors span an r-dimensional plane invariant under the

holonomy group h. Then there exist a parallel field of r-dimensional planes in

M„ and (» —r)-parameter family of r-dimensional totally geodesic submani-

folds P. Each of these submanifolds P is an Euclidean space form, in other

words, a complete manifold with locally flat Riemannian metric. Hence the

manifold P* is also a Euclidean space form. However, as is known, "the uni-

versal covering manifold of any Euclidean space form of n dimensions is the

w-dimensional Euclidean space P„ and the holonomy group 77 of it coincides

with the group of covering transformations on Pn". Hence, 77(P*) is nothing

but a discrete group of congruent transformations without fixed points of

P„. Accordingly we get, by virtue of Theorem 2, the following

Theorem 3. Suppose that the holonomy group h° of a complete Riemannian

manifold Mn decomposes and fixes r vectors and that these r vectors span an

r-dimensional plane invariant under the holonomy group h. If it moreover satis-

fies the hypothesis W, the r-dimensional part corresponding to the invariant r-

dimensional plane of the holonomy group 77(Af„) is a discrete group of congruent

transformations without fixed points of P„.

Remark. We can easily see from the fact " • • • " cited above that a (non-

restricted) homogeneous holonomy group h is not always closed in the orthog-

onal group O(n). For example, consider the cyclic group generated by the fol-

lowing transformation of P„

x{ = cos axi — sin aXi,

x{ = sin axi + cos aXi, a/re irrational,

X{    =   *3 +   1.

The factor space of P„ by this group has obviously the desired property.

3. A theorem on the group 77°.

Theorem 4(3). Let Mn be an irreducible Riemannian manifold. Then the

holonomy group H°

(i)  either contains all translations of Euclidean space P»

(ii) or it fixes a point in En {in other words, it is a subgroup of the rotation

group 0+in) with a center at the fixed point).

(3) We owe this theorem to A. Borel. But for the sake of completeness we shall write our

proof here.
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Proof. We shall indicate an element of H° considered as a topological

group by g and the motion associated with g by

(1) T(g):x< =aii(g)xi+ai(g).

Then all the transformations T(g) constitute H°. Of course, the matrices

A(g) = (ati(g))

are nothing but the coefficient matrices of transformations of h° and this set is

irreducible by our assumption.

Now let us consider the representation T'.g—*A(g) and denote the kernel

of T by K. Then K is the totality of elements of H° such that A(g) =E, hence

K is the subgroup of H° consisting of all translations of H°. We shall classify

two cases; the first is the case where K is nondiscrete and the second is the case

where K is discrete.

(i) The case where K is a nondiscrete group. As K is a closed subgroup of

H°, K is a Lie group. Hence K contains at least a one parameter group Ki of

translations as its subgroup. Let us denote it by

(2) A(: xi = Xi + A,/

where X,- are constant such that at least one of them is not equal to zero.

Now denoting an arbitrary element of H° by T(g) we can easily verify that

T(g)AtT(g)~1 is a translation and its equation is given by

(3) x/ = x{ + aik(g)\ht.

As the set of matrices (au(g)) is irreducible, we see immediately that K con-

tains ra linearly independent translations. Hence K contains all translations

olEn.

(ii) The case where K is a discrete group. As K is the kernel of the repre-

sentation r, K is a normal subgroup of H°. Hence, by virtue of the theorem(4)

to the effect that every discrete normal subgroup of a connected topological

group is a central normal subgroup of this group, K is contained in the center

of H°. Accordingly, if we assume that T(g) and A:x,' =Xj+Xj are transforma-

tions belonging to H" and K respectively, then P(g)AP(g)_1 must coincide

with A. Hence, we can see that the equation

X« = aik(g)\k

must hold for every gGH° and fixed X,-. If there is one X which is not equal

to zero among X,-, the last equation shows that there exists at least an invari-

ant direction under ha which contradicts the fact that h° is irreducible by our

assumption. Accordingly, every X< must vanish and hence K consists only of

the identity. Consequently, we can conclude that the representation T is

faithful, in other words there exists an isomorphism H°=h°.

(4) Pontrjagin, Topological groups, p. 77.
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By virtue of a theorem of Borel-Lichnerowicz(6), the group h" is a closed

subgroup of the compact orthogonal group CH"(«) and hence h° is compact. As

H°^h°, 77° is also compact. Accordingly, we can introduce in the group mani-

fold of 77° the Haar measure. Denoting the total measure of the group mani-

fold by w, we put

— I a>ig)dg = Ci.
CO  J

In the last and the following equations we assume that the integrals are ex-

tended over the whole group manifold. Then we can easily see that

aikig)ck + aiig) = — I  iaikig)akih) + aiig))dh.
CO   J

As the integrand of the right-nand side of the last equation is equal to

a<ihg), we get

aikig)ck + aiig) = — I a,iihg)dh.
0) J

Since the Haar measure over the compact group is two-sided invariant, the

right-hand side is equal to

l  r
— I aiih)dh = d.
CO J

Consequently, c,- is the fixed point under the group 77°. Thus our theorem is

completely proved.

4. A theorem on complete Riemannian manifolds.

Theorem 5. Let Mn be a complete Riemannian manifold. If the holonomy

group 77° fixes a point, then Mn is an Euclidean space form.

Proof. We shall prove the theorem under the assumption that Mn is

simply connected. However, if this is done, the general case follows immedi-

ately. For, as the holonomy group 7? = 77° of the universal covering manifold

Mn of Mn with naturally induced matric from Mn coincides with 77°, M„ is

an Euclidean space form by hypothesis and hence Mn itself is everywhere

locally Euclidean.

Let us denote the base point of the holonomy group by 0 and denote the

fixed point in the tangent space P„(0) by Po*. Then, we can draw a geodesic

segment arc OPo in Mnsuch that its development in P„(0) coincides with the

straight line OP* by virtue of the completeness assumption. We shall con-

sider a normal coordinate system with center P0 and denote it by * and the

(') A. Borel and A. Lichnerowicz, loc. cit.
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coordinate neighborhood by U. It is well known that

(4) Q^ = °
holds good in U.

Now let us consider a point P — x'd at every tangent space E„(P) (P£ U)

on a geodesic xi = ais through Po, where we assume that e,- is the natural

repere at that point. Then, by virtue of (4) we get

d /dx*      dx{ (~i\     \
-(p-,v.) = (----^y^. = o.

Hence, the point P — xieiGEn(P) at each point P of the geodesic xi = ais

concides when we develop these tangent spaces along the geodesic. If we con-

sider the case xi = 0 we can see that the point P —*Vj coincides with the in-

variant point Po* of the holonomy group H°. Hence P — x^i in En(P) is the

point which is transplanted from P0* by the connection of the manifold Mn,

and it does not depend upon the curves which combine P0 to P.

Let us now consider another curve C through P and consider the deriva-

tive of P — x'ei with respect to this curve. As P — x'et is a covariant constant

point field, we get (d/ds)(P — xiei) =0, which reduces to

( J)      dxk
<    >x'-e, = 0.
Xjkj       ds

As the curve C may have any direction at P, we get from the last equation

the following relation:

From the last relation we get easily

(dgx/dx1)^ = 0,

which shows that gjk(x)'s are homogeneous functions of degree 0 with respect

to x*'(6). Hence, as Po is a regular point of the manifold Mn, we see that

gjk(x) =gjk(0) in the neighborhood U. Accordingly, in the domain Uour mani-

fold is locally Euclidean.

In the next place we shall show that any two geodesic rays which issue from

0 do not intersect any more. By hypothesis Mn is simply connected. Hence

the point Po* can be transplanted uniquely on every tangent space En(P)

(PGMn) by development irrespective to curves which bind P0 to P. It is

(e) S. Tachibana, On the normal coordinate of Riemann space, whose holonomy group fixes a

point, T6hoku Math. J. (2) vol. 1 (1949) pp. 26-30.
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evident that the transplanted point does not coincide with P unless P coin-

cides with P0. Now, let us assume that there exist two geodesic rays which

intersect at Qi^P) and denote them by gi and gi. If we consider the points

Pi*, P2* on P„(0 which lie on the tangents of gi and g2 at Q such that 0Z?\*

= the length of arc QP0 along g\ (X = 1, 2), then P*, P* are the transplanted

points of P* along g\. This contradicts the fact that P* is transplanted

uniquely irrespective to curves which bind Po to Q. Accordingly, any two

geodesic rays which issue from Po do not intersect any more. In other words,

geodesic rays which issue from Po constitute a geodesic field in the large.

Now let us denote by Ki the inner domain of the geodesic hypersphere of

radius / and with center P0 and by dKi its boundary. We take I so large that

every point PGP; has a locally flat neighborhood but some points on dKi do

not have such property. If /= «>, then our theorem is proved, so we assume

that I is finite and QGdTCj is one of the points which do not have the above

stated property.

As the group 77° fixes the point P*, there exists a neighborhood V of Q

such that the line element ds2 in V can be written as(7)

ds2 = ixn)2gabixc)dxadxh + idxn)2 a, b, c <*> 1, 2, • • • , n - 1.

If a point R(E.V has the coordinates ix", xn), then xn = the length of the geo-

desic segment PoP and the geodesic hyperspheres xn = const, are umbilical

hypersurfaces too. However, when xn<l the line element is locally flat by as-

sumption, hence it is also locally flat for xn^l. Hence the line element is

locally flat in V. This contradicts the fact that Q has no locally flat neighbor-

hood. Accordingly /= a> i.e. M* is locally Euclidean everywhere. Q.E.D.

Corollary 1. Let Mn be a complete Riemannian manifold which is irreduci-

ble iwith respect to the holonomy group h°). Then the holonomy group H° con-

tains all translations of the Euclidean space P„.

Corollary 2. Let Mn be a complete Riemannian manifold. Then the

holonomy group 77° is a closed subgroup of the group of motions.

Corollary 3. Let Mn be a complete and simply connected Riemannian

manifold. If its nonhomogeneous holonomy group H° fixes an r-dimensional

linear subspace Er (0<r <n) of En, then

VT=  VXX P„-r.
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