SOME THEOREMS ABOUT THE RIESZ
FRACTIONAL INTEGRAL

BY
NICOLAAS DU PLESSIS

I show in this paper that theorems which hold for Riemann-Liouville
fractional integrals have analogues holding for the Riesz fractional integral
[1]. Theorems 1, 2, and 3 are analogous to well-known results due to Hardy
and Littlewood [2]. Theorem 4 is of a different character and is analogous to
one recently proved by the author [3].

The Riesz fractional integral fo(P) of order « is given by

a—m

fo(P) = K fE rre f(0)dQ, where K, = x™22eT(a/2)|T((m — a)/2) ],

E denotes all of Euclidean m-space, and rpq denotes the distance between P
and Q.

We assume always that f(Q) is L-integrable over E.

I prove the following theorems.

TrEOREM 1. If f(P)ELip B, 0 <P <1 then fo(P) ELip (a+p), 0 <a+L<1.
THEOREM 2. If f(P)ELY, ¢>1, 14+m/q>a>m/q, then
f«(P) € lip (@ — m/q).

THEOREM 3. If f(P)E L and 0 <a<m/q, then

fo(P) € L7, where o« = m(l/q— 1/r).
THEOREM 4. If f(P) &L then
(@) for 0<a<m, 2<qg< ©, foro(P) is finite everywhere except possibly in a

set which is of zero B-capacity for all >m—e;

(b) for 0<a<m, 1 £q=2, foo(P) is finite everywhere except possibly in a

set of zero (m —a)-capacity.
Both (a) and (b) are best possible.

1. Preliminaries. If Pis the point (x;, - - -, x») and Q the point (¢, « * +, tm)
we define the points (x1+4, -+ +, *m+tm) and (x1—8, - - -, Xm—1Im) to be
P+Q and P—Q respectively. The distance |P | of P from the origin
0=(0, - - -, 0) is given by | P|2= 2™, 4% and | P—Q| is the distance P to

0.
If, for 0B <1, f(P+H)—f(P)=0(| H|#) uniformly in P as | H| -0, we
say that f(P)SLip B. If, in this, O is replaced by o we say that f(P)Elip B.
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Next, we have

KnlfulP + H) — fo(P))
- (fu +fw>(|Q — Hl|=m — [Q|=mfQ + P)dQ,

where U is the unit hypersphere having the origin as center. For |H | <1/2
it is not difficult to establish that

|0~ H|==— Q] =0(| H])
uniformly in E— U. The second integral is thus O(H) uniformly in P, and so
Kn(fa(P + H) — fa(P))

(2) n N
= | (= H|=—|Q|=mfQ+ P)dQ+0( H|).
U
2. Proofs of Theorems 1 and 2. First, Theorem 1. The first term on the
right-hand side of (1) of §1 may be rewritten in the form

fv< |Q = Hij=m— |Q|=m)(fQ + P) — f(P))dQ
1)

+50{ [ 1ol=mdo - [ |ol=io},

where U’ is the sphere U transforms into under the transformation Q'=Q— H.
The expression in curly brackets is dominated by [s|Q|*™dQ, where
S=U'4+U-U'U.
Now mS<zm2[[((m+2)/2)]"*{(1+|H|)"—1}=0(|H|) and |Q|>
<2main S for |H | <1/2. Consequently, the second term in (2) is O(| H|).
To deal with the first term we note that it is of order [y||Q—H|
— | QI"""| |Q|"dQ and apply a uniform dilatation transformation of ratio 1:
H| and then a rotation which takes the transform of H into the point
1=(1, 0, - - -, 0). The first term is then seen to be less than

(

|zl [ [lo - 1=~ [ol==llolao = o &|=),

since it is again a simple matter to establish that the integral is finite. This
proves Theorem 1.

Next, Theorem 2. Let S(r) denote the hypersphere of radius r centered
at the origin and write

A@) =S©6) - S(|H|), B@E) =U - 50),

where & will presently be defined. Split the right-hand side of (1) into integrals
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I, over S(| H| ), I over A(8), and Is over B(8). Then, firstly

(nl s {f llo-al==— |ol==|g}

1/q
{f [f(Q+P)|"dQ}
S(HI|)
1/q’
= Ha—m/q — 1|em — a—m q’d
af=mie{ [ [lo = 1]=m = [ Ql=mledg} " ott)

as | H| —0: we use the same transformation on the integral as before. Thus
I=o(| H| *=m!4). Further

1] = {L(S)HQ ~ H|=m ~ |Q|¢"n[q’dQ} "
' {fm) | 7@ + P) I«dQ} e

It is again easy to show that, for | H| <3/3,
llo - &=~ |Q|=n| =c|H]|Q]
and thus

1/q’ 1/q
I,.| £C|H (a—m—1)q’ | P) |4 .
L] =c| |{fAlel Q} {fm)lf(Q+ )| Q}

Further
f |Ql(a-m—1>q'dQ < lHl(a—l)q’—ﬂl(q’—l)f lQI(a—m—l)Q'dQ’
A(3) -U
so that
1/q
| I.| gclﬂlrmlq{f lf(Q+P)|“dQ} .
A(%)

Given any e€>0, we can choose & so that fA(a,‘f(Q+P)| 9d(Q is less than
(¢/C)9, and so

| | <e| H|om1,
Finally

1l s {f llo-glmn— |o|=|va0} L[ a0+ plagh e

For fixed 8, |Q—H|em=—|Q|*™=0(|H|) uniformly in B(8), and so
IL=0(| Hl).
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Thus, finally, Kn(fo(P+H)—f«(P)) =o(| H|«—ml9), giving the required
result.

3. Proof of Theorem 3. We first prove a many-dimensional generalization
of a theorem due to Hardy and Littlewood [2, Theorem 3].

LemMa. If f(P)ELY, g(QEL", 1/¢+1/r>1, ¢>1, r>1 and p=2-1/q
—1/r then
(1) f f, |Q — P|-™f(P)g(Q)dPdQ S KM (/) M),

where M (f) ={/&|f(P)| dP}Ve and M,(g) is similarly defined.

I prove here the case m =3, which is sufficiently typical.
Since an arithmetic mean is greater than the corresponding geometric
mean we have

| P— Q2= (2 — )2+ (22 — 1) + (22 — 1a)?
g 3| Xy — t1l2/3|x2 - t2|2I3| X3 — talzls
and so

|P—Q|‘3“§C| 2 — t || xz—tzl_“l xs-—tgl‘“.

Consequently the left-hand side of (1) is not greater than a constant multiple

of
o IS s

. dtadxsdtzdxzdtldxl.

By the Hardy-Littlewood theorem mentioned, which is the case m =1 of the
lemma,

f f I X3 — Is I—"f(xly %9, %3)g(t1, 2, ts)dlsdxs

is dominated by CF(xy, %) G(t1, t2), where F(xy, x5) = { [ | S, xo, xa)l gy } 19
and G(l4, te) is defined analogously.
Hence [2] is dominated by

le f f f I X1 — 4 I_"I X2 — g I““F(xl, xz)G(tl, tz)dtzdxzdtldxl.

Applying the case m=1 of the lemma again to the inner two integrals we
find that (1) is dominated by
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C1C2f f l x — b I“‘F(x;)G(tl)dtldxl,

where F(x,) = {f fg,l F(x,, xg)l quz} Ve and G(t) is defined analogously.

A final application of the lemma with m =1 shows that (1) is dominated
by CiC:CsM (F) M(G). Since M (F) equals {[£|f(P)| %dP}!e and a similar
result holds for M,(G), we have the required result.

To prove Theorem 3 it is sufficient to prove that, for every g(P) such that
M. (g) =1,

fg fu(P)g(P)IP S KM(J).

The left-hand side of this is equal to

3) Ko fx fEI P — Q|="/(Q)g(P)dQdP

and, since a—m=m(1/q—1/r) —m=—m(2—1/q—1/r'), the lemma applies
and shows (3) to be, in modulus, not greater than K’'M (f) M, (g) =K' M (f),
thus proving the theorem.

4. Preliminaries about Theorem 4. We say, with Frostman [4, p. 26],
that a non-negative additive set function u(S) defined for all Borel sets in E
is a distribution if u(E)=1. Further, if SCE and u(S) =1 we say that the
distribution is concentrated on S.

Let S be a given set. Suppose that there is a distribution concentrated on
S such that

Vo= sup fx |0 — P|#du(©@

is finite. Then we say that S is of positive 8-capacity. Otherwise Sis said to be
of zero B-capacity. Clearly, if S is of positive B-capacity, it is of positive
v-capacity for all ¥ <B. Further, if it is of zero $-capacity, it is of zero -
capacity for all y>p.

LEMMA. For 1 <q<2, and for every ¢ >0 for which ¢g—e>1, we have

(1) f {f i Q - Pl(alq')—mdy(Q)} q—edP < A(a, om0 S)V'(:::)/(q_‘) |
8 E

where A(a, €, m, q, S) is a constant depending only on the parameters shown
and S is a bounded set.
For 2=<g =< « we have

) S [ 1e- P au@} 4P 5 Ala mVE
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where A(a, m) is a constant depending only on the parameters shown.

We have

{fE Q- P|<a/q')_,,.d“(Q)} o

]

{[,1e=rlorlo—plrmao} ™

IIA

{ f @ = Pt — le@(@)}

A [ le - pl=mau

by Hélder's inequality. The second factor is not greater than V(e—9/(e—e’
while the first is [ El Q—PI aela=mdy(Q). The left-hand side of (1) is therefore
not greater than

} (g—€)/(g—e)’

v [ap [ 1o - PI™ " auo).
8 E

We invert the order of integration and note that
f |Q — P|ec/a=mdP = A(a, €, m, g,S), say.
8

Furthermore [zdu(Q)=1. (1) now follows.

To prove (2) I first show the result true for ¢=2 and then that this implies
its truth for ¢>2. For this latter part of the proof I am indebted to Professor
J. E. Littlewood.

We have first, on inverting the order of integration,

) { [le- PI‘“""”’JM(Q)} ‘ap

(3)
= LLL ' Q- Pl(a—m)l2| R — Pl(«-m)lzdeM(Q)dﬂ(R).

To deal with the inner integral we dilate E uniformly, taking Q as the center
of dilatation, in the ratio 1:| Q— R| and then rotate the dilated space so that
the transform of Q— R goes into the point 1. The inner integral then becomes

o — lef | U|te=mi2| U 4 1|(e=m12q7U = B(a,m)|Q — R|=
E
Consequently, the right-hand side of (3) is dominated by

B(a, m) fz fE | — R|*"du(Q) < Bla, m)Vm_.s(E).
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Since u(E) =1 this gives the result for ¢=2.
For ¢>2, we have

/ { [ le- Pl“""""‘dﬂ(Q)} ‘ap

=f {f lo - p|((q—2)1q><a—m)|Q_ Pl(a—Zm)/qdﬂ(Q)} .,dP
E E

and this, by Hélder’s inequality, does not exceed

7= [ 4] 1= pl=mao} L[ o= plemrano} ar.

The first curly bracket does not exceed V% (by the definition of Vi_a). So

TV {f lo - p'(a—m)/sz(Q)} zdp
e

and this, by the result for ¢=2, does not exceed V& %B(a, m) Vm_o. This gives
the result for ¢>2.
5. Proof of Theorem 4. Let

Sa(P) = fE | — P|eten[1() ].d0,

where

@] for Q]| =
[f@],.-{n - e

S.(P) is always defined and finite, and to prove the theorem it is sufficient
to show that S,(P) is bounded everywhere except possibly in a set of zero
B-capacity, where B=m —a for 1 £¢=<2 and B>m—a for ¢>2.

Assume, then, that S,(P) is unbounded in a set M of positive B-capacity.
It is then unbounded in a bounded set S of positive 8-capacity. Then, first,
there is a distribution concentrated on S such that [ g| Q—PI —Pdu(Q) is
bounded for all P. Secondly, there is a function n(P) =n, taking only integer
values such that [sS.(p)(P)du(P) exists and is unbounded as n— . This is an
adaptation of a known result used by Salem and Zygmund [, embodied in
the proof of Theorem I1], but a proof is perhaps not unwelcome.

Let S.(P) =sup Sa(P) for 0=m=n. Then for all PCS, {S.(P)}-1—0
as n— . By Egoroff’s theorem on uniform convergence it follows that there
is a set S'CS such that u(S—S’) is as small as we please, and in which
{S.(P) }-1—0 uniformly. It follows that, given any large number G, there is
an integer no=n,(G) such that, for all PES’, S.(P)>G for all n>ne(G)
Choose #(P) such that S, (P) =3.(P). Then
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LSu(P)(P)dM(P) > Gu(S") for n > ny,
and so
[ sunPraup) > + as n— .
I show this last to be impossible. We have

[ sn<p>(P)du<P>‘= [ [ 10~ PletenLi@) buardoiuce)

< f 150 | fs |Q — P|ete-mdu(P)dQ

and this does not exceed Mo(f) My [[s| Q— P| «/emdu(P)]. Now M (f) < +
by hypothesis, and we have only to show that

W o[ [ o= pleienua) |

is bounded.

If 1=¢=<2 then ¢’"=2 and (2) of the lemma of §4 immediately gives
(1). If g>2 we write 3 =m —+. Since ¥ <a there is an r <g such that a/qg=7v/r.
We may suppose 3 so near m —a that 2 <r <gq since the result, if true for a
given B3, is true for a larger 8. We may now rewrite (1) in the form

o[ [ 1P =olr=ma)],

which, since > 2, is shown to be bounded by invoking (1) of the lemma.

6. Theorem 4 is best possible. We show this by constructing a function
f(P)EL%and a set M of positive B-capacity (where 8=m—a when 1 <¢=<2,
and B is any number greater than m —a when ¢>2) at every point of which
Jaro(P) is infinite. It will avoid unnecessary complication and fully illustrate
the general procedure if this is done for the simplest case m =2.

M is constructed as follows. Let {£,} be any sequence such that 0<§,
<1/2. Let M, be the unit square 0=<x; <1, 0=<x;=<1. From M, remove the
rectangle £ <x1<1—§&, 0=<x,=<1 thus leaving the set M;. From the left-
hand rectangle in M, remove the rectangle &£ <x1<£(1—§&),0=<x,=<1,and
make a similar symmetric removal from the right-hand rectangle of M;, thus
leaving a set consisting of 4 closed rectangles of length 1 and breadth §&.
If we continue in this manner we are left, after the nth removal, with a set
M, consisting of 2" closed rectangles each of length 1 and breadth &,

-+« &,. Consequently
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mMy, = 2768 - - - b
It is known [5, p. 40] that the projection S of M =lim M, on the x-axis
will be of positive B-capacity if and only if

(1) E 27 n(Eiky c - - En) P < o0,

n=l

If S is of positive 3-capacity there is a distribution » concentrated on S
such that fé[ xl—t| —#dy(t) is bounded for all x;. Let u be an additive set func-

tion defined over E by
}.I.(X) = ff dv(xl)dxg.
X

1 1
f | P —Q|#1du(Q) = f f [(21 = 1) + (22 — 82)2]=®+D12d1yd(sy).

Then

In the inner integral make the substitution x;—t,=(x1—#)u. It is then
dominated by

o=l [+ )i = 4@) | 7 — ],

Consequently, since u is a distribution concentrated on M,

1
— 0|14 = P —0Q|#14 <4 1 — 8| Pdv(ty),
[ =0l - [ [P -0l s 46) [ |0~ n i

which is bounded. Thus M is of positive (341)-capacity if Sis of positive

B-capacity.
Define {f.(P)} over M, by

fo(P) = 0 in M,,
Sa(P) = (b1fe - - - En)~/~ in M,
fa(P) = faer(P) in Mo — M.
Since {f.(P) } is, eventually, an increasing sequence of measurable functions
the function f(P) given by
f(P) = lim fu(P) in M,,

f(P) =0 in E — M,

exists and is measurable over E.
It is easily seen that, for n=1, 2, - - -,
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f(P) =0 in MO—MI,
f(P) = (5122 c 5")—a/qn—-l on Mn - Mn+l

so that
[lawyar = [ |58 jap = 2 | sp) |ap
E M, n=1V My—Mp41
@ =3 (ke - £ (mM — mMor)

n=1

0

=2 (1 = 26040)2%(Eak2 - + + En) Vom0,

n=1

For ¢>2, we may choose §>0 so that 2(14-6) <g, and then put

2% " =14+ (14 8)n.

Then 2-7(&1&2 - - - £,)*'~Cn—1% so that (1) with 3=1—a is satisfied, show-
ing S to be of positive (1 —a)-capacity, and hence that M is of positive
(2 —a)-capacity.

Further, (2) is clearly finite, so that f&L? over E.

Let P(x,, x2) be any point of M. Let

Mu(P) = Ma-S[ts; 22 — e S s £ 22 + €], where €, = £ifs -+ * £a/2;

Ma(P) = (M, — Map1)S[ta; %2 — 60 < ta < 22 + 6a),
where 8, = £182 « - - Ea(1 — 2£,41)/2.

M., (P) then consists of 2"squares each of side &£, - - - £,, while M (P) C M,(P)
and consists of 2" squares each of side && - - - £,(1 —2£,41). No square in
M*(P) contains P, but one of the squares, I, (say), is contained in that one
of the squares, J, (say), of M,(P) which itself contains P. Furthermore, the
I, (n=1, 2, - - -) are disjoint.

Now |Q-—P| <242, . - . £, for Q in J,, and so certainly for Q in I, and
thus

L)

Kofurel?) = [ |0 - Pl - =5 (.

1V Mp—Mp 4 n=lv I,

This last is not less than

20 (2 )T e E) T e Ea)2(1 = 26a40)?

n=1

= 202213 (1 — 2£,,.)1 = + .,

Nl
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Consequently, fq/,(P) is infinite at every point of M, giving the required
example in the case of ¢>2, thus showing part (a) of Theorem 4 best possible.

For the case ¢ <2, let 8 be any positive number less than 1 —« and let £
be such that 2£(1-a+B/2=1  Consider the set M with £,=¢ for all n. Since
28>1, M is of positive (8-+1)-capacity. Defining f(P) as before, we use
exactly the same argument to show that fo;(P) =+ « at every point of M.
Furthermore, since 2£1-2<1, (2) is bounded, so that fE L9.

This shows part (b) of Theorem 4 best possible.

7. The lemma of- §4 is best possible. Consider, e.g., (2) of the lemma.
Suppose this is not the case, i.e. that there is an €¢>0 for which, in general,

MW[fEIQ— P["/ﬂ"’"du(Q):l < .

If, then, f(P) € L{e+9’ we may say that

< M(q+e)'(f)Mq+e|:LlQ - Plalq,_Mdﬂ(Q)]

fE Suiey(P)du(P)

which is bounded. This would imply that (b) of Theorem 4 is not best pos-
sible. Since it is best possible we have shown (2) best possible. A similar argu-
ment using (a) would show (1) best possible.
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