
SOME THEOREMS ABOUT THE RIESZ
FRACTIONAL INTEGRAL

BY

NICOLAAS DU PLESSIS

I show in this paper that theorems which hold for Riemann-Liouville

fractional integrals have analogues holding for the Riesz fractional integral

[l]. Theorems 1, 2, and 3 are analogous to well-known results due to Hardy

and Littlewood [2]. Theorem 4 is of a different character and is analogous to

one recently proved by the author [3].

The Riesz fractional integral faiP) of order a is given by

faiP) = K? f rlQmfiQ)dQ,   where    Km = x""22«T(a/2) [r((« - a)/2)]-\

E denotes all of Euclidean m-space, and rpQ denotes the distance between P

and Q.
We assume always that fiQ) is 7,-integrable over E.

I prove the following theorems.

Theorem 1. 7//(P)£Lip/3, 0<B<1 thenfaiP)GUp ia+0),O<a+0<l.

Theorem 2. If /(P)G7>, q>l, l+m/q>a>m/q, then

MP) G lip (« - m/q).

Theorem 3. 7//(P)G7> and 0<a<m/q, then

faiP) G LT,    where    a = w(l/g - 1/r).

Theorem 4. 7//(P)G7> then
(a) for 0 <a <m, 2 <q < oo, /a/4(P) is finite everywhere except possibly in a

set which is of zero 0-capacity for all 0>m—a;

(b) for 0<a<m, 1 ̂ q^2, fa/tiP) is finite everywhere except possibly in a

set of zero im — a)-capacity.

Both (a) and (b) are best possible.

1. Preliminaries. If P is the point ixu • • •, xm) and Q the point ih, • • ■, tm)

we define the points (*i-Mi, • • • , xm+tm) and {xi — ti,- ■ ■ , xm — tm) to be

P + Q and P — Q respectively. The distance \P\ of P from the origin

0 = (0, ■ • • , 0) is given by \P\ 2= zZ?-i 4, and |P-Q|  is the distance P to

If, forOg/3^1, /(P+77)-/(P)=0( 177|") uniformly in P as | 77|-»0, we
say that/(P)GLip 0. If, in this, 0 is replaced by o we say that/(P)Glip j3.
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Next, we have

Km(fa(P +H)- UP))

Q+f    )(\Q-H\—- \Q\"~m)f(Q + P)dQ,
U        J E-U/

where U is the unit hypersphere having the origin as center. For \H\ <l/2

it is not difficult to establish that

\Q - H\a~m -  \Q\a~m = 0(\H\)

uniformly in E— U. The second integral is thus 0(H) uniformly in P, and so

Km(fa(P + B)- fa(P))

=  f (|e-ff|—- \Q\~-m)f{Q + P)dQ + 0(\H\).
J v

2. Proofs of Theorems 1 and 2. First, Theorem 1. The first term on the

right-hand side of (1) of §1 may be rewritten in the form

f (| Q - H |— -  \Q \°-m)(f(Q + P)~ f(P))dQ

(1)    JV

+ f(P) {f   I Q\"-mdQ - J | Q \"-»>dQJ ,

where U' is the sphere U transforms into under the transformation Q'' = Q — H.

The expression in curly brackets is dominated by fs\ Q\ a~mdQ, where

S=U'+U-U'U.
Now 7ra5<7rm/2[r((m+2)/2)]-1{(l + |fl'|)m-l}=0(|H|) and |(?|—"

<2m~a in S for | H\ <l/2. Consequently, the second term in (2) is 0(\ H\).

To deal with the first term we note that it is of order /t;| | Q — H\ a_m

— | f2|0_m| | Q\edQ and apply a uniform dilatation transformation of ratio 1:

| H\ and then a rotation which takes the transform of H into the point

1=(1, 0, ...,0). The first term is then seen to be less than

I Hla+" f I \Q - 11*"""" - IQI'*-'"! \Q\$dQ = o(\h\^),
J B

since it is again a simple matter to establish that the integral is finite. This

proves Theorem 1.

Next, Theorem 2. Let S(r) denote the hypersphere of radius r centered

at the origin and write

A(8) = S(8) -S(\H|),        B(8) = U - S(8),

where 5 will presently be defined. Split the right-hand side of (1) into integrals



126 N. DU PLESSIS [September

7i over 5(| 77|), 72 over .4(5), and 1% over 5(5). Then, firstly

| 7i |   g  / f | \Q - 77 |— -  | Q |*-« |«'dell'«'
WS(|K|) /

•If     Iac + p)!^}1
WS(|fl|) /

=   \ H\"-m'U f \\Q - l\"-m -  \Q\*-m\<>'dc\       oil)

as |77|—->0: we use the same transformation on the integral as before. Thus

7 = o(|77|a-m'«). Further

|72|=g j f   ||Q-ff|— - |e|—I'-rfg}1'
W4(5) /

j f  l/(e + p)l^c} '.
WA(8) /

It is again easy to show that, for |77| <5/3,

Hc-77|^m- lei"-"1! ^c|77||e|a-m-1

and thus

\i,\£c\H\lf   |g|<—»*'dellB i f   |/(e + p)l^g}13.

Further

J | Q |<*-"-l>«'d()   <    |  flf |(o-l)«'-»(«'-l)    | | Q |(a-"-l)«'^
.4(8) J B-U

so that

|72|   £C|ff| — /«|J     |/(Q + P)|^G|   ".

Given any e>0, we can choose 5 so that /,i(j)|/((?+P)| QdQ is less   than

(e/C)«, and so

| 72|   < e| 77|"-m'».

Finally

I ii| ^ jj*   ||e-771—»- |eK»|«'de|1,|j,|/«2 + p)|«rfe|,'«.

For   fixed   5,   | @ — 771 a-m— | Q\ «-m = 0(| 77|)   uniformly   in   P(5),   and   so

h = Oi\H\).
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Thus, finally, Km(fa(P+H)-fa(P)) -o(|ff|—'«), giving the required

result.

3. Proof of Theorem 3. We first prove a many-dimensional generalization

of a theorem due to Hardy and Littlewood [2, Theorem 3].

Lemma. If f(P)GL<, g(Q)GL<, l/q+l/r>l, g>l, r>\ and p-2-l/g
— 1/r then

(1) f   f | Q - P \-n"f(P)g(Q)dPdQ g KMq(f)MT(g),
J E" B

where Mt(f) = {/b|/(P)| "dP}11" and Mr(g) is similarly defined.

I prove here the case m = 3, which is sufficiently typical.

Since an arithmetic mean is greater than the corresponding geometric

mean we have

I p - Q I2 - (*i - 02 + {.*% - t2y + (x3 - t3y

^ 3\xx- tx\2lz\x2-t2\2i*\ x3- t3\2l3

and so

| p - Q |-* £ C | *i - h |-" | x2 - tz |-" \x,-t, |-".

Consequently the left-hand side of (1) is not greater than a constant multiple

of

r°° r°° r r°° r°° r°°        f(xi,xz,x3)g(h,tz,t3)

(2) J-xJ^J-aJ-xJ-aJ-x   | xi - <i|"| xt - *iH*« - *»|*

• dt3dx3dt2dx2dtidxx.

By the Hardy-Littlewood theorem mentioned, which is the case »ra = l of the

lemma,

I     | *s — <« |~"/(*i, xz, x3)g(tx, tz, h)dt3dx3
-00 J — OO

is dominated by CF(x\, x2)G(h, tz), where F(xu x2) = {/!!«, |/(xi, x2, x3) 18<fo3} "«

and G(<i, <2) is defined analogously.

Hence [2 ] is dominated by

/CO       *»  00       y«  00      y»   OO

I      j      I     | *i — <i |-M | a* — <2 h"^(*i, *2)G(*i, tz)dt2dx2dtidxi.
-00 «/  —oo •/  —00 *^ —00

Applying the case m = \ of the lemma again to the inner two integrals we

find that (1) is dominated by
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I     I xi - h \-"Fixi)Giti)dhdxh
-OO ^ —OO

where F(xi) ={/"„| P(*i, x2)| qdxi}llq and G(/i) is defined analogously.

A final application of the lemma with m = \ shows that (1) is dominated

by CiCiCiM„iF)MriG). Since M,(F) equals {/*|/(P)| 'JP}1'" and a similar

result holds for MriG), we have the required result.

To prove Theorem 3 it is sufficient to prove that, for every g(P) such that

MAg)^\,

f faiP)giP)dP £ KMtif).

The left-hand side of this is equal to

(3) K~J f   f | P - Q \~-"fiQ)giP)dQdP
J bJ E

and, since a — m = mil/q — l/r)—m=—mi2 — l/q — l/r'), the lemma applies

and shows (3) to be, in modulus, not greater than K'Mq(f)MT'ig) ^K'M,if),

thus proving the theorem.

4. Preliminaries about Theorem 4. We say, with Frostman [4, p. 26],

that a non-negative additive set function p(5) defined for all Borel sets in E

is a distribution if ju(E) =1. Further, if SQE and p(5) =1 we say that the

distribution is concentrated on S.

Let 5 be a given set. Suppose that there is a distribution concentrated on

5 such that

V$ = sup   f | Q - P |-^M(6)

is finite. Then we say that S is of positive /3-capacity. Otherwise 5 is said to be

of zero /3-capacity. Clearly, if S is of positive /3-capacity, it is of positive

7-capacity for all 7 <0. Further, if it is of zero j3-capacity, it is of zero y-

capacity for all y>0.

Lemma. For Kq<2, and for every e>0for which q — e>l, we have

(1) f {fjQ- P |("/4''"%(0} '''dp < Aia, e, m, q, 5)Flr:)/<4-°',

where A(a, e, m, q, S) is a constant depending only on the parameters shown

and S is a bounded set.

For 2 ^ g ^ co we have

(2) j j J I Q - P I <a/9')-%(e)} "dP S Aia, mWZ'a,
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where A (a, m) is a constant depending only on the parameters shown.

We have

if \Q- P|<«/«'>—<fo(Q)j9 ' =  If \Q-P\-i<\Q-P\™dp(Q)Y

g  | f | Q - P |-«<«-«>/« | Q - p\<^-<»dn(Q)\

|e-p|—*.(g)|

by Holder's inequality. The second factor is not greater than !/(«-«>/(«-«>'

while the first is fs\ Q-P\ at'q~mdn(Q). The left-hand side of (1) is therefore

not greater than

V(JZ)H-'y fdpflQ-Pr'—dtiQ).
J s      J E

We invert the order of integration and note that

/\Q— P [«/«-«yf_p = A(a, e, m, q, S), say.
s

Furthermore fEdfi(Q) =1. (1) now follows.

To prove (2) I first show the result true for q = 2 and then that this implies

its truth for q>2. For this latter part of the proof I am indebted to Professor

J. E. Little wood.
We have first, on inverting the order of integration,

f \ f \Q ~ P\("-m),2dix(Q)\ dP
(3)

m| Q - p |<—«>/» | R - p\(«—»i2dPdm(Q)dn(R).
j

To deal with the inner integral we dilate E uniformly, taking Q as the center

of dilatation, in the ratio 1: | Q — R\ and then rotate the dilated space so that

the transform of Q — R goes into the point 1. The inner integral then becomes

\Q - R\a~m f | u\<-a-n>'2\ U + 11(«-m)i2dU = B(a,m)\Q- 2c|«-m.
JE

Consequently, the right-hand side of (3) is dominated by

B(a, m) f   [ | Q - R |—"d/i((>) ̂  B(a, m)Vm_alx(E).
JE" E
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Since m(P) =1 this gives the result for q — 2.

For q>2, we have

/* IX'Q ~p ̂ ig'""MQ)},<ip
=   f i  f  \Q - P | ((«-!)/«)(«-»> | Q - J> ] <«-2»)/«rfM(Q)\.   dP

and this, by Holder's inequality, does not exceed

J = f{f\Q~p \a~mdKQ)\ "~ {/ 16 - P\<°-m)n<iKQ)\ dp.

The first curly bracket does not exceed V^l2a (by the definition of Vm-a). So

j ^ vq~Lf {fie- p\(a-m)i2d,iiQ)\ dp

and this, by the result for q = 2, does not exceed F^~22P(a. m) Fm_a. This gives

the result for q>2.

5. Proof of Theorem 4. Let

SniP) = f \Q - P\"«-mUiQ)]ndQ,
J B

where

r«no /1/(0 I       f<>'      1/(0 I    *«
^WJ""t» for     |/(01   >».

5„(P) is always defined and finite, and to prove the theorem it is sufficient

to show that 5„(P) is bounded everywhere except possibly in a set of zero

/3-capacity, where 0=m—ct for 1 =Sg5£2 and 0>m — a for q>2.

Assume, then, that S„iP) is unbounded in a set M of positive /3-capacity.

It is then unbounded in a bounded set 5 of positive |3-capacity. Then, first,

there is a distribution concentrated on 5 such that fs\Q — P|_^ju(0 is

bounded for all P. Secondly, there is a function «(P) =Sn, taking only integer

values such that /s5„(P)(P)(f/i(P) exists and is unbounded as n—* °°. This is an

adaptation of a known result used by Salem and Zygmund [5, embodied in

the proof of Theorem II], but a proof is perhaps not unwelcome.

Let S„(P)=sup 5m(P) for Ogwtgw. Then for all PES, {5„(P)}-1^0
as m—>-°°. By Egoroff's theorem on uniform convergence it follows that there

is a set S'QS such that niS—S') is as small as we please, and in which

{5„(P) }_1—>0 uniformly. It follows that, given any large number G, there is

an integer n0=w0(G) such that, for all PG.S', 5„(P)>G for all w>«0(G)

Choose »(P) such that 5n(P)(P) =5„(P). Then
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j Sn(P)(P)dii(P) >G»(S')    for    n > n0,
J s

and so

f Sn{P)(P)dn(P) -+ + oo as ra -^ oo.

I show this last to be impossible. We have

I [sn(P)(p)dil(p)\ = \ f f |g-p|"'«—[/(G)]»(P,de^(P)

g f 1/(01 f |g-p|-"—<fo(P)<*e

and this does not exceed Mq(f)Mq> [fs\ Q~P\ alq-mdp.(P) ]. NowMq(f) < + «

by hypothesis, and we have only to show that

(1) M*'\f \Q~ p\alQ-mdn(P)]

is bounded.

If l2s2S=2 then q'^2 and (2) of the lemma of §4 immediately gives

(1). If q>2 we write/3 = m— 7. Since 7 <a there is an r <gsuch thata/<7=7/r.

We may suppose fi so near m—a that 2<r<q since the result, if true for a

given (8, is true for a larger /3. We may now rewrite (1) in the form

jfr._.rj|p-eh"-»^(0J,

which, since r'>2, is shown to be bounded by invoking (1) of the lemma.

6. Theorem 4 is best possible. We show this by constructing a function

f(P)GLq and a set ikf of positive /3-capacity (where P = m—a when 1 ^q^2,

and /3 is any number greater than m—a when g>2) at every point of which

fa/Q(P) is infinite. It will avoid unnecessary complication and fully illustrate

the general procedure if this is done for the simplest case m — 2.

M is constructed as follows. Let {£„} be any sequence such that 0<£„

<l/2. Let Mo be the unit square O^Xi^jl, 0gx2:Sl. From M0 remove the

rectangle £i<Xi<l— £1, 0^x2^l thus leaving the set Mx. From the left-

hand rectangle in Mi remove the rectangle £i£2<Xi<£i(l — £2), 0 gx2^l, and

make a similar symmetric removal from the right-hand rectangle of Mi, thus

leaving a set consisting of 4 closed rectangles of length 1 and breadth £i£2-

If we continue in this manner we are left, after the rath removal, with a set

Mn consisting of 2" closed rectangles each of length 1 and breadth &&

•••£„. Consequently
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mMn = 2»fcfc •••$,.

It is known [5, p. 40 ] that the projection S of M = lim M„ on the x-axis

will be of positive /3-capacity if and only if

(i) E 2-(fi& • • • £.r* < oo.
n=l

If 5 is of positive /3-capacity there is a distribution v concentrated on 5

such that f\\xi — t\~tdv(t) is bounded for all X\. Let p. be an additive set func-

tion defined over E by

KX) = ff dvixi)dxi.

Then

f  \P-Ql-e-UviQ) = f   f [(*i ~ h)2 + (*, - *2)2]-("+1)/WK'i)-

In  the  inner integral  make  the substitution xi — ti = ixi — ti)u.  It  is then

dominated by

/00

(1 + u')-v+»i*du = 4(0) I Xi - h |H».
-00

Consequently, since /x is a distribution concentrated on M,

f \P-Q I'O-'dniQ) =  f \P~Q V^dmiQ) < AiB) f   \ xx - h \~»dvih),

which is bounded. Thus M is of positive iB-\-\)-capacity if Sis of positive

0-capacity.

Define {MP)} over M0 by

MP) = 0 in Mo,

MP) = (Sifc ■ • • in)-°">n-i in Mm

MP) = /„_,(P) m Mo - Jf..

Since {/n(P)} is, eventually, an increasing sequence of measurable functions

the function /(P) given by

fiP) = lim MP) in Mo,
M-+00

fiP) = 0 in E - Mo

exists and is measurable over E.

It is easily seen that, for » = 1, 2, • • • ,
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f(P) = 0 in Mo - Mi,

f(P) = (fi?2 • • • f.)—""-1 on Mn - Mn+i

so that

r if(p) \°dp= c if(p) \*dp=z r     i/(p) i«jp
CO

(2) = Z ttifi • • • S»)-«ra-<(w*ilfn - »M„+1)
n-l

= Z (1 - 2kw)2-(fo& • • • y1-^-'.
n-=l

For g>2, we may choose S>0 so that 2(1+5) <q, and then put

2in" = 1 + (1 + 8)n~\

Then 2-n(£i£2 • • • £„)a-1~C«-1-! so that (1) with /3 = 1 -a is satisfied, show-

ing 5 to be of positive (1 — a)-capacity, and hence that M is of positive

(2—a)-capacity.

Further, (2) is clearly finite, so that/EL« over E.

Let P(xlt xt) be any point of M. Let

Mn(P) = MnS[t2; x2- en^ t2^ xz + e»], where «„ = |i£2 • ■ ■ £n/2;

Jf!(P) = (Mn - Mn+1)S[lz; xz - 8n ^ tz ^ x2 + 8n],

where 5„ = |x?2 • • • |„(1 - 2£n+1)/2.

Mn(P) then consists of 2" squares each of side £i£2 ■ • ■£„, while ilf*(P) CiW„(P)

and consists of 2" squares each of side £i£2 • • • £„(1— 2£„+i). No square in

M*(P) contains P, but one of the squares, In (say), is contained in that one

of the squares, Jn (say), of Mn(P) which itself contains P. Furthermore, the

7„ (ra = l, 2, • • • ) are disjoint.

Now | Q — P\ <21/2£i • • • £„ for Q in /„, and so certainly for Q in 7„, and

thus

Kzfalq(P) = f   \Q- P\°"-*f(Q)dQ = Z f = Z f
J M0 n-1 J Mn-Mn+1 n-1 •/ /„

This last is not less than

Z (21/2£i • • • !«)a/a-2(£i • • • 60-/w-1(€i • • • «2(l - 2?n+1)2
n-1

oo

, 2«/«*-i Z (1 - 2£n+1)2ra-1 - + oo.
n-l
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Consequently, /«/s(P) is infinite at every point of M, giving the required

example in the case of q>2, thus showing part (a) of Theorem 4 best possible.

For the case q :S2, let 0 be any positive number less than 1—a and let £

be such that 2£(1-a+fl)/2 = l. Consider the set M with £„ = £ for all n. Since

2£0>1, M is of positive (/3 +Incapacity. Defining/(P) as before, we use

exactly the same argument to show that /a/9(P) = + °° at every point of M.

Furthermore, since 2£1-a<l, (2) is bounded, so that/G-k*-

This shows part (b) of Theorem 4 best possible.

7. The lemma of §4 is best possible. Consider, e.g., (2) of the lemma.

Suppose this is not the case, i.e. that there is an e>0 for which, in general,

M*+\f \Q-P\a,9'-mdKQ)~] < *.

If, then,/(P)G7/«+,)' we may say that

| f SniP)iP)dKP)   < M{q+lYif)Mq+l [f \Q-P |-'«'-"*(e)]

which is bounded. This would imply that (b) of Theorem 4 is not best pos-

sible. Since it is best possible we have shown (2) best possible. A similar argu-

ment using (a) would show (1) best possible.
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