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The study of additive mappings from one ring R into another ring R'

which preserve squares was initiated by Ancochea [l; 2] in connection with

problems arising in projective geometry. Kaplansky [6] and Hua [4] took

the subject up from where Ancochea had left off and pushed his results

further. Jacobson and Rickart [5] then proceeded to carry out an extensive

study of such functions.

In this paper we are primarily concerned with the study of certain addi-

tive mappings onto prime rings and in all cases we assume, ab initio, that the

characteristic of the rings occurring as image rings is different from 2. In

this case the various definitions of Jordan homomorphism all coincide; we

define a Jordan homomorphism here as a mapping <p:R—+R' such that

<p(a+b)=<p(a)+<p(b) and such that <p(ab+ba) =<p(a)<t>(b)+<p(b)<p(a) tor all

elements a and b in R. In the situation where <p is onto R' and where R' is a

prime ring of characteristic larger than 3 we obtain the theorem that <p is

either a homomorphism or an anti-homomorphism. Of interest is the special-

ization to the case R=R' where R' is either a simple ring or a primitive ring;

here we obtain that any Jordan automorphism is either an automorphism or

an anti-automorphism. These results are closely related to some of those oc-

curring in [5] and extend a few of these. In the last portion of the paper we

characterize additive mappings onto prime rings of large enough character-

istic (or 0) which preserve wth powers.

The material in this paper is entirely self-contained; in order to keep it

so we re-prove a few lemmas that occur in [5] (our Lemmas 2 to 4). We also

make use, on a number of occasions, of a theorem on linearization due to

Gerstenhaber in his Ph.D. thesis; this result by itself can be found in [3].

The use of this linearization theorem leads to certain identities, obtained by

linearization, in a quick fashion but in every particular case where we make

use of it, because of the low order of multi-linearity of the functions involved,

the reader can avoid using the general result and can carry out a series of

linearizations to obtain the desired end-product.

We define again: a mapping <p from one ring into another ring R' is said

to be a Jordan homomorphism from R into R' if

(1) <t>(a + b) = <p(a) + <p(b),

(2) <p(ab + ba) = cb(a)<p(b) + <p(b)<p(a),
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for all a and b in R. In case R' is not of characteristic 2 (i.e. 2x' = 0 implies

x'=0), (2) is equivalent to

(2') <p(a2) = <K<z)2.

It is of course clear that every homomorphism and every anti-homomorphism

is a Jordan homomorphism.

We assume throughout the paper that 0 is a Jordan homomorphism of

R into R' and that R' is not oj characteristic 2. We say that a ring R' is of char-

acteristic greater than w if w!x' =0 implies x' =0.

The following variation of a linearization lemma appearing in [3 ] will be

useful.

Lemma 1. Let J(xi, x2, • ■ • , x„) be multilinear (multi-additive) from one

ring R into another ring R', and suppose that f(a, a, ■ ■ ■ , a) =0 for all

adR- Then

(1) Yji**W,   **(2),   •  •  •   -   *x(n))   =   0

where ir runs through the symmetric group oj degree n acting on the letters

1, 2, • • • , w,

(2) f(b, a, a, ■ ■ ■ , a) + f(a, b, a, - • ■ , a) +   ■ • ■ + f(a, a, ■ ■ ■ , a, b) =0

for all a, b in R if the characteristic of R' is greater than n — 1.

We now prove

Lemma 2. For all a, bdR, <b(bab) =<b(b)(p(a)<l>(b).

Proof. Since 0 is a Jordan homomorphism,

0{ (ab + ba)b + b(ab + ba)} = <t>(ab + ba)(p(b) + <j>(b)4>(ab + ba)

= [<t>(a)4>(b) + $(b)4,(a)]<l>(b)

+ <p(b) [0(a)0(6)+0(6)0(a)j.
However

<j>{(ab + ba)b + b(ab + ba)} = <b(ab2 + b2a + 2bab) = (p(ab2 + b2a) + 2<p(bab)

= <t>(a)<t>(b)2 + <t>(b)2<b(a) + 2<p(bab).

Here we have made use of <p(b2) =<b(b)2. Comparing these two expressions we

obtain 2<p(bab) =2<p(b)<j>(a)<p(b), and since R' is not of characteristic 2,

<P(bab)=<p(b)<p(a)<p(b).
Linearizing Lemma 2 by replacing in it b by b+c we obtain

Lemma 3. For all a, b, cdR, <p(abc+cba)=<f>(a)4>(b)(t>(c)+4>(c)<P(b)4>(a).

We can now establish

Lemma 4. For all a, bdR,
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(1) [<t>(ab) - <p(a)<p(b)][<i>(ab) - <p(b)<p(a)] = 0,

(2) [<p(ab) - <l>(b)<t>(a)][<p(ab) - <p(a)<t>(b)] = 0.

Proof. We prove only (1) since the proof of (2) is exactly the same. Now

[<b(ab) - <p(a)<p(b)][<p(ab) - <p(b)<p(a)]

= <p(ab)2 + d>(a)<j>(b)2<j>(a) - <p(a)<p(b)<p(ab) - <p(ab)<p(b)<p(a)

= <p((ab)2) + <p(ab2a) - <p(ab(ab) + (ab)ba)

(by Lemmas 2 and 3)

= <p(abab + ab2a — abab — ab2a) = <f>(0) = 0,

proving the lemma.

We consider some consequences of Lemma 4.

Lemma 5. For all a, b, r£P

[<t>(ab) - c/.(a)*(i)]<^(r)[^(a6) - <l>(a)<p(b)] = [<p(ab) - d>(a)<p(b)]<p{(ab - ba)r}.

Proof.

<t>(r)[4>(ab) - <p(a)d>(b)]

= <p(r)<p(ab) - <p(r)^(a)<p(b)

= <p(r)d>(ab) + d>(b)<t>(a)<p(r) — <p(rab + bar) by Lemma 3

= <f>(r)<p(ab) + <p(b)<t>(a)<f>(r) - <t>{r(ab) + (ab)r} + d>{(ab - ba)r}

= <p(r)<b(ab) + <p(b)<p(a)<p(r) - <p(r)<p(ab) - <p(ab)<p(r) + <p{(ab - ba)r}

(since <p is a Jordan homomorphism)

= [<t>(b)<j>(a) - <p(ab)]<p(r) + <p{(ab - ba)r}.

Left multiplying both sides of this equation by [<f>(ab) —<p(a)<f>(b) ] and making

use of Lemma 4, we obtain

[<p(ab) - <p(a)<p(b)]<p(r)[<l>(ab) - 4>(a)<p(b)] = [<j>(ab) - <t>(a)<t>(b)]4>{(ab - ba)r},

which is the statement of Lemma 5.

We multiply the result of Lemma 5 from the right by [<p(ab) — <p(b)<p(a)];

using Lemma 4 we obtain

Lemma 6. For all a, b, r£P

[d>(ab) - <p(a)<j>(b)]^>{(ab - ba)r} [<p(ab) - <f>(b)<t>(a)] = 0.

In Lemma 6 we replace r by r(ab — ba). Since by Lemma 2

<b(ab — ba)<p(r)<p(ab — ba) = <t>{(ab — ba)r(ab — ba)},

Lemma 6 yields
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Lemma 7. For all a, b, rdR

[<t>(ab) - <t>(a)4>(b)]<p(ab - ba)<p(r)<p(ab - ba)[<p(ab) - <p(b)<b(a)] = 0.

A ring R' is said to be a prime ring if in R', x'R'y' = (0) implies that

either x'=0 or y'=0. Every simple ring (radical or otherwise) and every

primitive ring is a prime ring. Lemma 6 immediately implies

Theorem A. Let <p be a Jordan homomorphism oj a ring R onto the prime

ring R'. Then J or every a, b in R either

[<j>(ab) - (j>(a)(p(b) ]<j)(ab - ba), = 0

or

(p(ab - ba)[<p(ab) - 0(o)c/>(a)] = 0.

Let us consider the first possibility, namely that

[<l>(ab) - <p(a)<p(b) ]<fi(ab - ba) = 0.

We evaluate <t>(ab — ba);

<p(ab - ba) = 2<b(ab) - <b(ab + ba) = 2<p(ab) - [<b(a)(j>(b) + <p(b)<f>(a) J

=  [<t>(ab) - <t>(a)<p(b)] + [<b(ab) - <t>(b)<p(a)].

Left multiplying this by <b(ab) —<j>(a)(j)(b) and using Lemma 4 we then have

0 =  [<j>(ab) - <p(a)(j>(b)]<t>(ab - ba) = [<l>(ab) - <p(a)<j>(b)]2.

Similarly ii<p(ab-ba) [<b(ab) -<p(b)(b(a) ] =0 we obtain that [<f>(ab) -<j>(b)cp(a) ]2
= 0.

We summarize these remarks as

Theorem B. If <pis a Jordan homomorphism of a ring R onto a prime ring

R', then for any pair of elements a and b in R at least one of [<f>(ab) —<p(a)<p(b) ]2

= 0 or [<p(ab) —<f>(b)<t>(a)]2 = 0 must hold.

It will be convenient for us to change notation at this point. For a, bdR

we let ah=4>(ab) —<p(a)<p(b) and ab=<b(ab) —<p(b)<f>(a). We list a few elementary

properties of the symbolism just introduced.

Lemma 8. For all a, b, cdR

(1) ah+c = ab + ac, ab+c = ah + ac,

(2) (a + b)' = a° + b°,       (a + b)c = ac + bc,

(3) ah = - o°,        ab= - ba,

(4) a2b = 2a6, a2b = 2ah, or6 = — ab,      a-b = — ab.

The proofs of these are all immediate. Of course (4) is a special case of

(1) but we point it out for emphasis; (3) is nothing but a restatement of the
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fact that 0 is a Jordan homomorphism. We are now also able to apply Lemma

1 to ab and ab as linear functions from R into R'.

We assume henceforth throughout the paper that R' is a prime ring and that

<f> is a Jordan homomorphism of R onto R'.

In terms of this new notation, Lemma 4 becomes: for all a, bCR, abab

= aoab = 0. Theorem B becomes: for all a, bCR at least one of (afc)2 = 0 or

(ai,)2 = 0. Thus

Lemma 9. For all a, b, r£P, (ab)2<p(r)(ah)2 = 0; that is (ab)2R'(ab)2 = (0).

Consider the multi-additive function/(x, y, u, z) from R to R' defined by

f(x, y, u, z) =axay(p(r)aua'; by Lemma 9 f(b, b, b, b) =0 for all bCR- So we

can apply Lemma 1. Since/ is multi-additive in four variables, to apply the

second part of Lemma 1 we must assume that the characteristic of R' is

greater than 3. We consequently assume that indeed the characteristic of

R' is larger than 3; the full power of Lemma 1 thus becomes available to us.

Using Lemma 1 with x=y = b and u=z=c we obtain

(i)      (ab)2<l>(r)(a°)2 + (ac)2<p(r)(ab)2 + (abac + acab)<j>(r)(aba° + a'ab) = 0.

Using Lemma 1 with x=y = u=b, z = c, we have on simplifying and regroup-

ing

(ii) (ab)24>(r)(abac + acab) + (abac + acab)<p(r)(ah)2 = 0.

Suppose that (ab)29^0. By Theorem B, (ah)2 = 0. Thus (ii) reduces to

(ab)2<b(r)(aba': + a°ab) = 0 for all r £ R.

Since R' is a prime ring and since (ab)2^0, it must follow that abac+acab = 0

for all cCR. This, together with (ab)2 = 0, reduces (i) to (ab)24>(r)(ac)2=0. The

primeness of R' and the fact that (ab)29^0 then forces (ac)2 = 0 for all c£P.

We have thus proved

Theorem C. If R' is of characteristic larger than 3 and if (ab)2y^O for some

bCR, then (ac)2 = 0for all c£P.

Similarly, if (ab)2^0 for some bCR, it would have followed that (a„)2 = 0

for all c£P.

The procedure we are to follow is to show that if (ac)2 = 0 for all c£P then

ac = 0 for all c, and similarly if (ac)2 = 0 for all c then ac = 0. So we shall assume

that (ab)29^0 for some pair of elements a and b in R. Our next theorem will

then show that (xy)2 = 0 for all x and y in R and eventually we shall prove

that this forces xy = 0 holds universally in R. We could carry out the similar

argument to prove that if (ab)2^0 for some bCR then (a,,)2=0 for all c£P.

In case (ab)2=0 lor all b we would eventually prove ab = 0. If (aj,)2=0 and

(ab)2=0 for all a and b in R, the reduction used in proving that ab = 0 (or

ab = 0) would merely become easier.
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We assume henceforth that R', in addition to being a prime ring, is of

characteristic larger than 3.

We proceed with

Theorem D. If for some a, bdR, (ab)2^0 then (xv)2 = 0 for all x and y in R.

Proof. Suppose that (di,)2^0. By Theorem C, of course, (czx)2 = 0 for all

x in R. Suppose that (cd)2^0 for some c, ddR- By Theorem C again, (cx)2 =0

for all x in R. Consider the element a+c. Now, either [(a+c)x]2=0 for all

x, or [(a+c)x]2 = 0 for all x in R. Suppose, say, that [(a+c)x]2=0 for all

xdR- Thus, since (ax)2 = 0, axcx+cxax+(cx)2=0. We claim that it is impossible

that [(a—c)x]2 = 0 for all x in R; for if [(a — c)x]2 = 0 for every x, this would

result in — axcx — cxax+(cx)2 = 0, which when added to the result above would

yield that 2(cx)2 = 0, and so (cx)2 =0 for all x in R, contradicting that (cd)2^0.

Thus by Theorem C, if [(cz+c)x]2=0 then [(a-c)x]2 = 0 for all x in R. If,

on the other hand, [(a+c)x]2=0 for all x inP, then (ax)2+axcx+cxax = 0 since

(cx)2 = 0. We claim that it is impossible that [(a — c)x]2 = 0 for all x for then

(ax)2 — axcx — cxax = 0 would result, which added to the result obtained above

would lead to (ax)2=0 for all x in R contrary to (ab)2^0. Also, since (— c)d

= — (cd), (( — c)d)2^0. Thus, without loss of generality we may assume that

[(a+c)x]2 = 0 for all x in R and that [(a-c)x]2=0 for all x in R. Thus

axcx+cxax+(cx)2 = (ax)2 — axcz — cxax = 0 for all xdR- Now consider the ele-

ment a + 2c. If [(a + 2c)x]2=0 for all xdR then 2(axcx+exczx)+4(cx)2 = 0.

Combined with axcx+cxax+(cx)2=0 this leads to 2(cx)2=0 and so (cx)2=0 for

all x in R, contrary to assumption. If, on the other hand, [(cz + 2c)x]2 =0 then

(ax)2 + 2(axcx+cxax) =0. Combined with (ax)2 — axcx — cxax = 0 this leads to

3(ax)2=0, forcing (ax)2 = 0 for all x, contradicting (a&)25^0. One of these two

alternatives must always hold true, and yet each led to a contradiction. In

this way the possibility that (cd)29^Q is voided, and the theorem thereby

proved.

We restate Theorem D as

Theorem D'. Either

(a) (x")2 = 0 for all x and y in R or

(b) (x„)2 =0 for all x and y in R.

The sequence of events to follow will show that if (x")2 = 0 for all x, ydR

then (x")=0. The obvious changes in the proof would show that if (xj,)2=0

universally in R then (xv) =0. Since one or the other must hold, by Theorem

D', we proceed from here assuming that (xy)2 =0 for all x and y in R.

Linearizing (a6)2=0 we obtain

Lemma 10. For all a, b, cdR, abac+acab = 0.

We change course for a short while. Our first turn is

Lemma 11. For all a, xdR, a(x,) =ax<f>(x) +<f>(x)ax.
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Proof. aix2) =(p(ax2) — (p(a)<p(x2) =<p(ax2) — <p(a)<p(x)2. But <p(ax2+xax)

= cp(x)<p (ax) +<p (ax)<j> (x), therefore

<j>(ax2) = <p(x)<f>(ax) + <p(ax)4>(x) — <p(x)<p(a)<f>(x).

Thus

<p(ax2) - <p(a)<p(x)2 = 4>(x)[<p(ax) - <p(a)4>(x)} + \<p(ax) - <p(a)<p-(x)]<p(x)

= ax(p(x) + <p(x)ax.

Corollary. For all x, yCR, axv+yx = ax<p(y)+<p(y)ax+ay<p(x)+<p'(x)a>'.

The proof of this corollary is immediate by linearizing Lemma 11.

We consider a special case of Lemma 10. In fact we have, by Lemma 10,

that for z = y2, ava'+aza" = 0. Substituting for a" from Lemma 11 we have

[<p(y)av+a,»<p(y)]a>'+ay[4>(y)ay+ay<p(y)]=0. Since (a")2 = 0 we obtain that

2av<p(y)av = 0, and so ay<p(y)a" = 0. That is

Lemma 12. For all a, y£P, a"<p(y)a" = 0.

The linearized form of this lemma will be useful to us later so we single

it out; we carry out the linearization using the second half of Lemma 1. We

obtain, in this way

Lemma 13. For all a, x, yCR

a"<p(x)ax + ax<j>(y)ax + ax<p(x)a» = 0.

Our goal is to show that bx = 0 for all b and x in R. So we suppose that

b'r^O for some b, g in R.

Let V*={u'CR'\u'bx = bxu' = 0 for all x£P} and let V = {uCR\<P(u)

CV*}. Let W={xCR\bx = 0}.

We now prove

Lemma 14. FC1F.

Proof. Suppose that x£ F. Thus for all yCR, by Lemma 13, b*<p(x)by

+bx<p(y)bx+by<p(x)b* = 0. However, since x£F, <j>(x)CV*, so <p(x)bv = b"<p(x)

= 0. Thus the relation above reduces to bx<j>(y)bx = 0 for all y£P. Since R' is

a prime ring, this forces bx = 0, and so xCW. Thus VCW.

Lemma 15. W is an additive subgroup of R, and if 2x£ IF then xCW.

Proof. That W is an additive subgroup of R is clear. If 2x£IF, then

&2l = 0. However, by Lemma 8, b2x = 2bx; hence 2&* = 0. Since R' is of character-

istic larger than 3 this implies that bx = 0. By the definition of IF this puts x

in W.

Lemma 16. If u'C V* then for all x, yCR
1. u'<p(x)bx = bx<p(x)u'=0,
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2. u'<p(x)b»+u'<p(y)bx = 0,

3. b«<t>(x)u' + bx<p(y)u' = 0.

Proof. Let z=x2. Thus u'bz = bzu' = 0. However, by Lemma 11, b*=<p(x)bx

+bx<b(x), so left multiplying this by u' we obtain u'(p(x)bx = 0. Similarly right

multiplying by u' we have that bx<b(x)u' =0. Linearizing these we establish

parts (2) and (3) in the statement of the lemma.

Lemma 17. If vd V, rdR then vr+rvd W.

Proof. By the corollary to Lemma 11, brv+"r =<b(r)bv + bv<p(r) +<p(v)br

+br<b(v). Since vdV, by Lemma 14, v dW, and so bv = 0; since vd V,<p(v)d V*

hence br<j>(v)=<b(v)bT = 0. Thus the right-hand side becomes 0; that is,

0rv+vr = Q putting rv+vr in W.

Lemma 18. IfvdV, then for allrdR, br'T = 0; that is rvrdW.

Proof.

f/trvr  =   pr(rr+or)+(ru+cr)r _  fozv+vz where 2  =   T2

= bT<j>(rv + vr) + <f>(rv + vr)bT + <p(r)brv+vr + brv+vr4>(r) — bzv+v*

by the corollary to Lemma 11 _

However the last three terms on the right-hand side are 0 by Lemma 17.

Thus

02<-»r = b'4>(rv + vr) + <j>(rv + vr)br

= b'<$>(r)<t>(v) + br<p(v)<p(r) + <p(r)<j>(v)br + (j>(v)<p(r)br

since <p is a Jordan homomorphism. Now br4>(v) =<b(v)br = 0 since vdV; on

the other hand, bT<p(r)<f>(v) =<p(v)<f>(r)br = 0 by part (1) of Lemma 16. So

birvr = 0, whence 2rvr dW which implies that rvr dW by Lemma 15.

Lemma 19. If vdV and wdW then <p(v)<j>(w)bx = Q for all xdR-

Proof. By the part (2) of Lemma 16, <j>(v)<p(w)bx = — <f>(v)<p(x)bw = 0 since

6"=0, w being in W.

Lemma 20. If u'dV* then for all rdR, u'(f>(r)u'<p(r)dVt.

Proof. u'=<p(u), and where udV. But then Lemma 18 tells us that

rurdW for all r in P, and so, by Lemma 19, (p(u)<f>(rur)bx = 0 for all xdR.

That is, <p(u)<f>(r)<p(u)<b(r)bx = 0; by the very definition, since bx<b(u)<b(r)<j>(u)<b(r)

is also 0, <f>(u)<t>(r)<p(u)<j>(r)dV*, proving the lemma.

Suppose now that u'dV*; thus u'<p(r)u'<p(r)bx = 0 for all r, xdR- Replac-

ing r in this by r+s we obtain

Lemma 21. If u'dV*, then for all r, sdR and all xdR, u'<p(r)u'<p(s)bx

+u'<p(s)u'4>(r)bx = 0.
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We are now able to prove the key

Lemma 22. If u'CV* and b'^0 (that is, sCW) then u'<p(s)u'=0.

Proof. By Lemma 21, putting x = s we have u'<p(r)u'4>(s)b*+u'<p(s)u'<p(r)b'

= 0. However, by part (1) of Lemma 16, u'<p(s)u'<p(r)b' = 0. Thus we obtain

that u'<p(s)u'<p(r)b' = 0 for all r£P. Since t>*7*0 and since R' is a prime ring, it

follows that u'<p(s)u' = 0, which is the contention of the lemma.

We proceed from here to prove

Theorem E. If u'bx = bxu'=0 for all xCR then u' = 0; that is, V* = (0).

Proof. By Lemma 22, if s£lF then u'<p(s)u' = 0. Suppose now that

wCW, s£JF. Since IF is an additive subgroup of R, s+wCW. So Lemma 22

yields again that u'<p(s+w)u' =0. That is u'<p(s)u' +u'<p(w)u' =0. However,

since s£IF, u'<p(s)u' =0. So we are left with u'<p(w)u' =0 for all wCW.

Combined with Lemma 22 this yields that u'<p(r)u' =0 tor all r£P. Since

R' is a prime ring, this results in u' =0, establishing Theorem E.

Having shown that if b'5^0 for some elements b and g in R then we can

find no element u' in R' such that u'bx = bxu' =0 lor all x in R, other than

u' = 0, we proceed to construct such u' and to derive consequences from the

fact that these elements must turn out to be 0. This will be seen in the proof of

Theorem F. For all b, yCR, by<j>(y) =<t>(y)b".

Proof. If b' = 0 for all z£P, the theorem is, of course, trivially true. So

let us suppose that b°9^0 for some gCR- By Lemma 10, for ally, z£P,

(*) b«b' + b'by = 0.

In this relation we replace z by bz. So we must evaluate V". Now

bbz = <p(b-bz) - <p(b)<p(bz) = <p(b2z) - <p(b)<l>(bz)

= <f>(b)<f>(bz) + <p(bz)<t>(b) - <f>(bzb) - <p(b)d>(bz)

since <p is a Jordan homomorphism

= <t>(bz)<j>(b) - <p(bzb) = 4>(bz)4>(b) - <p(b)<p(z)<p(b)

= [<p(bZ) - <p(b)d>(z)]<p(b) =b'<p(b).

Thus, by replacing z by bz in (*) it becomes bvb'<p(b) +bz<j>(b)bv = 0. Using (*) in

this we arrive at -b'b»<p(b) +b'(/>(b)b« = 0. That is, bz(b"<p(b) -<p(b)by) =0 tor

all zCR- Similarly, using the substitution of zb for z in (*) we obtain (b"<f>(b)

-0(t>)5")^ = O. Thus, by Theorem E, by<p(b)-<p(b)b" = 0 for all b and y in R.
However, by= —yb by Lemma 8. So we have that —yb<p(b) = —<t>(b)yb. Inter-

changing the labelling of b and y we have that b"<p(y) =<p(y)bv lor all b and y

in R; this completes the proof of Theorem F.

Theorem G. For all b, z£P, b' = 0.
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Proof. If t=z2, then, by Lemma 11, bt=<j>(z)bz+bz(p(z). Using the result

of Theorem F this further simplifies to b' = 2<p(z)bz = 2bz<f>(z). Thus b'bv

= 2b'<j>(z)6" and b"b' = 2by<p(z)bz. However, by Lemma 10, btb"+b''bt = 0; using

the values of bvb' and b'b" just calculated, we have 2[b"<p(z)bz+bz(f>(z)b^]=0.

In P' this implies that bv<p(z)bz+bz<p(z)bv= 0 for all 6, y, zdR- However, by

Lemma 13, bv<t>(z)bz+bz<p(y)bz+by<p(z)bz = 0. In light of the above result, this

reduces to bz<b(y)bz = Q for all y and z in P. Since R' is a prime ring, bz = 0 for

all &, zdR, proving Theorem G.

Thus we have proved that if (x»)2 = 0 holds for all elements x and y in P,

then x" = 0 follows. Similarly, if (x„)2 = 0 holds universally in P, then x„ = 0

follows. Since one of these two possibilities must prevail, we have indeed

shown that either xK = 0 for all x and y in P or x„ = 0 for all x and y in P. The

first alternative, from the definition of x", implies that <p is a homomorphism,

the second alternative implies that <p is an anti-homomorphism. Thus we have

proved the main result.

Theorem H. If <f>is a Jordan homomorphism of a ring R onto a prime ring

R' of characteristic different from 2 and 3 then either <j> is a homomorphism or

an anti-homomorphism.

Interesting corollaries of Theorem H come on its application to two

special cases of prime rings, namely, simple rings and primitive rings. We

record these as

Theorem I. A Jordan automorphism of a simple ring of characteristic

different from 3 and 2 is either an automorphism or an anti-automorphism.

Theorem J. A Jordan automorphism of a primitive ring of characteristic

different from 2 and 3 is either an automorphism or an anti-automorphism.

Theorem J of course implies Theorem I except in the possible (?) case of

a simple radical ring, for which Theorem I still holds true.

In the concluding part of this paper we consider mappings, cp, from one

ring P into another ring P' such that

(1) <b(a + b) = 0(a) +*(6),

(2) 0(o») = 0(a)"

for some fixed integer w>2. We shall call such mappings n-Jordan mappings.

We prove the

Theorem K. Let <b be an n- Jordan mapping from a ring R onto a prime

ring R' of characteristic larger than n. Suppose further that R has a unit element.

Then <p = er where t is either a homomorphism or an anti-homomorphism and

where e is an (n — l)st root of unity lying in the center of R'.

Proof. Since <p(x)n=<f>(xn), linearizing this and using Lemma 1 we have,
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where tt runs through the symmetric group of degree n,

(1) zZ<t>(x*ah xT(2h • • • , xT(n)) = zZ<f>(x"a))<t>(xHi)) ■ ■ ■ 4>(x*M).
X T

Let <p(l) =a where 1 is the unit element of R. Thus 0(1) =<£(1M) =<p(l)n, thus

an=a. Putting xi=x, X2=x3= ■ • ■ =x„ = l in (1) we obtain

(2) nl<t>(x) = (n - l)!(an_10(x) + an-2<p(x)a + • • • + ^(x)a"-1),

and since the characteristic of 72' is larger than n, this simplifies to

(3) n<p(x) = a"-10(x) + a"-2<p(x)a + • • • + a<p(x)an~2 + <p(x)an-K

Using a"=a and multiplying (3) through from the right by a we have

mp(x)a=an~14>(x)a+an-2<j>(x)a2+ • ■ • +<p(x)a. Multiplying through (3) by

a from the left we obtain ncap(x) =a<p(x)+an~1<p(x)a+ ■ ■ ■ +a<p(x)an~l.

These lead by transposing and comparing to (n — l)a<f>(x) = (n — l)<p(x)a.

Since the characteristic of 72' exceeds n, this forces <p(x)a =a<p(x). Thus a

is in the center of 72'. Thus (3) simplifies to n<p(x)=nan~1<p(x), and again

from the fact that the characteristic of 72' is larger than n we are led to

a"-1<£(x) =<f>(x). Thus a"-1 is the unit element of 22' and a is an (n — l)st root

of unity lying in the center of 22'. We specialize in -(1) by putting xi=x,

x2=y, X3= • ■ • =x„ = l. We obtain, using that the characteristic of 22' ex-

ceeds n, that <p(xy+yx) =an~2[<p(x)<p(y)+<p(y)<p(x)]. Let r=an~2<j>; thus

r(xy+yx) =an~2<p(xy+yx) =an~2an~2 [<p(x)(p(y)+<p(y)<p(x) ] = (an~2(p(x))(an~2<p(y))

+ (an~2<p(y))(an~2<p(x))=r(x)T(y)+T(y)T(x). Thus r is a Jordan homomor-

phism, and so by Theorem H, r is either a homomorphism or an anti-homo-

morphism. Since <p = (an~2)~1T, and a"~2 is an (n-l)st root of unity and lies

in the center of 22', Theorem K is completely proved.

One might conjecture that an appropriate variant of Theorem K would

hold even if R does not have a unit element.
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