
SPECTRAL TYPE OF THE SHIFT TRANSFORMATION
OF DIFFERENTIAL PROCESSES WITH

STATIONARY INCREMENTS^)

BY

KIYOSI ITO

1. Introduction. Before discussing our problems on stochastic processes,

we shall define two kinds of equivalence of groups of measure preserving set

transformations following J. v. Neumann and P. R. Halmos [8](2). By a

measure preserving set transformation we understand a mapping from the sys-

tem of measurable sets of one measure space onto that of another measure

space modulo null sets which preserves measure and set operations such as

countable sum and complement. Given a measure space fl(S, m) and a one-

parameter group { TT} of measure preserving set transformations from B onto

itself, let H denote the L2-space over 0. The above group {T,} will induce a

group {UT} of unitary operators on H such that

(1-1) UrXM   =   XMlr]

where M is any set of finite m-measure, M[t] = TtM, and xx denotes the

characteristic function of a set A. We consider another measure space U(B, m)

associated with a group of measure preserving set transformations { TV} and

we define H and { UT} correspondingly. If there exists a measure preserving

set transformation 5 from B onto B such that

(1.2) Tr=STrS~1,

then we say that { TT} and {TT} are of the same spatial type. We shall also

introduce another classification of transformation groups which is rougher

than the above. If there exists an isometric linear mapping F from H onto

H such that

(1.3) UT   =   VUrV'1,

then we say that {TT} and { TV} are of the same spectral type.

Let X(t, co), — °o</<oo,bea measurable (in two variables t and co) differ-

ential process with stationary increments on a probability space £2(B, P).

For any finite interval I=(s, t] we shall define the increment AX (I, co) as

X(t, co) —X(s, co). By Bx we denote the Borel system of subsets of Q, generated
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by all the sets of the form {co; AX (I, co) <c j, and we shall consider the meas-

ure space Q(Bx, P) and the L2-space over it, say Hx- Now we shall define

a one-parameter group {TT} of measure preserving set transformations (shift

transformation) on Bx by

(1.4) TT{o>;AX(I, co) < c\ = {co;AX(7 + r, co) < c],

where I+t is the interval {x+r; xdl}- The possibility of this definition fol-

lows from the definition of differential processes with stationary increments.

From { TT} we can derive a group { Ur\ of unitary operators on Hx as above.

The purpose of this paper is to determine the spectral type of this group

{Tt\. In §2 we shall summarize some known facts on differential processes

as preliminaries. In §3 and §4 we shall introduce a multiple Wiener integral

which will play an important role in our theory. Our aim will be attained in

§5. The fundamental theorem established there generalizes Kakutani's theo-

rem [6] on the spectra of the flow of Brownian motion and implies that the

transformation groups induced by different processes are of the same spectral

type. But it is still an open question whether they are of the same spatial

type or not.

2. Independent random measure associated with a measurable differen-

tial process with stationary increments. Let S be a measurable space on which

a class of sets called measurable, B's, is assigned so that (1) the empty set

0dB's, (2) Ei, EtdB's implies ExVJEt, Ex-EtdB's, and (3) any decreasing

sequence in B's has its limit set in B's; we do not assume that the whole space

S belongs to B~.

A system of random variables f(E) =f(E, co) depending on a set EdB'%

with a probability parameter co is called an independent random measure if

f(Ex), f(Et), • • • , f(E„) are independent and

(2.1.a) /( U e) = Yf(Ei)
\ i_i    /       i=i

for every finite system {Ei} of disjoint sets in B3 and if

(2.1. b) /(-En) —> 0 (convergence in probability)

for every decreasing sequence {£„} in B'z tending to the empty set. We can

easily show that the above conditions imply that (2.Lb) holds in the sense

of almost everywhere convergence. A normal random measure [4] is a special

case of an independent random measure.

Let X(t, co) be a measurable differential process with stationary incre-

ments. By taking Doob's separable modification [l] of this process, we may

assume that X(t, co) is continuous in t except for discontinuities of the first

kind with probability 1. We also assume, as we may, that X(t, co) is continu-

ous on the right in r with probability 1. By a theorem of P. Levy [7], AX (I, co)
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is subject to an infinitely divisible law whose characteristic function <f>i(z) is

given by

. T C °° / izu   \1 + u2 "1
(2.2) log *,(*) = | 7 | |nz + J     U»« - 1 - ——J —— #(«) J

where | 7| means the length of 7, 7 is a real constant, and d[3 is a bounded

measure on (— 00, 00).

We shall consider a plane ir on which a coordinate system (/, u) is assigned.

Let Br denote the class of all Borel subsets of ir. We shall consider two meas-

ures v, p. on ir(Bt) by

r r 1 + u2
(2.3) v(E) = ■-—dtdff(u),

J  J E «

(2.4) fi(E) =  f f (1 + u2)dtdp(u) =  ff u2dv(t, u).
J  J % J  J E

It is clear that p. is the product of the one-dimensional measures dt and

dp.'(u) = (l+u2)d(5(u). Let Br he the totality of bounded Borel subsets of ir

whose distance from the /-axis is positive. We may consider ir(BT) as a

measurable space. If we define N(E, co), ECBr, to be the number of points

(t, u)CE for which X(t, u)-X(t-0, u>)=u. Then N(E, co) is subject to

Poisson distribution with mean v(E) for E fixed and the system {N(E, co),

ECBr} is an independent random measure. Further we have the following

expression of X(t, co):

AX (I, co) = 7 I 7 I   + <rAB(I, co)

+ lim   f       f \udN(t, u)-— dv(t, w)l

where cr2=j8(+0) — (3( — 0) and B(t, co) is a Wiener process which is independ-

ent of the system {N(E, co); ECBr}. We can easily deduce these facts from

the results stated in [3].

Next we shall introduce another independent random measure M(E).

Let B* be the class of all Borel subsets of ir whose ju-measure is finite. For

E in B* we define M(E) by

M(E) = M(E, co) =   f     a-dB(t) + lim   f f [udN(t, u) - udv(t, «)],
" E(0) n-»=o   J  J ((,u)GE(n)

where

E(n) = {(t, u) C E; n~l < \ u \   < n},       n = 1, 2, • • • ,

£(0) = [t; (t, 0) G E}
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and the integral based on dB(t) is the Wiener integral [l, IX, 2].

It is to be noted that N(E), AB(I) and M(E) belong to Hx for E and I

fixed. Also the expectation of M(E) is 0.

3. Definition of multiple Wiener integral based on dM. Let M(E, co),

EdB*., be the independent random measure defined in §2. We can easily

verify the following properties:

(3.1) (M(Ei), M(Et)) = M(£xn £,).

(3.1') \\M(E)\\2 = „(£),

(3.2) (M(E), 1) = 0.

In this section we shall make use of the following property of p:

Continuity: For every EdB* and every e>0, there exists a finite sub-

division of E: E = EiUEtVJ ■ • ■ W£„ such that p(Ei) <e, 1 = i = w.

Let ttp be the product measure space [ir(Br, p) ]p and let L2P be the L2-space

over ir". We shall denote points of ir by £= (t, u), £' = (/, u'), £,= (/,-, Wi), etc.

For any/G^-p we shall define the symmetrized function f oi f to be

(3.3) fa, ...,{,)-_ E/(f.d), • • • , *.(,))p! («)

where (e) = (*(l), • • ■ , e(p)) runs over all arrangements of (1, 2, • • • , p).

It is clear that/(fi, • • • , £„) is symmetric in (£i, • • • , £„) if and only if it

coincides with /. / is symmetric. We have also

(3.4) 11/11 ^ ||/||,        ||  || being the norm in l\.

Let Cp denote the class of all functions of the form:

(3.5) cp(ti, ̂ , • • • , *p) = xtti. £i)x(fe, E2) ■ ■ ■ x«„ £,)

where £,-, * = 1, 2, • • • , p, are disjoint sets in B* and x(^, -E) denotes the char-

acteristic function of the set £. Let Sp denote the class of all linear combina-

tions of functions in Cp. The continuity of p implies that Sp is dense in Lv

[4, Theorem 2.1].

Now we shall define the multiple Wiener integral of the pth degree based

on the independent random measure M and denote it by

(3.6) /„(/) = J  ... J /(£„ • • • , $,)<Uf({0 • • • dM(SP).

We define

(3.7) IP(cp) = M(EX) ■ ■ ■ M(EP)

for the cp of (3.5), then Ip(s) for 5 in Sp by linearity and finally Ip(f) for/ in

L\ by continuity. For convenience of notation we shall denote by L\ the com-
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plex number field (one-dimensional Hilbert space) and define I0(c)=c if

cCLl. In exactly the same way as in the case of normal random measure [4]

we can show that the definition is possible and that the following theorem

holds.

Theorem 1.

(1.1) Ip(f) = Jv(f),

(1.2) lp(af+bg) = alp(f) + blp(g),

(1-3) (IP(f),IP(g)) = pl-(J,g),

d.3') \\iP(f)\\ = g>oi/2||/|| ̂ (piyifl

(1.4) (/,(/), /,(«)) = 0 (p*q).

4. Completeness of multiple Wiener integrals. Let L2P denote the class of

all symmetric functions in L2. Up is clearly a closed linear manifold of Lv.

By (Ll) in Theorem 1 we see that the image of L2P by Ip coincides with that

of L2P, which we shall denote by H^- Since the mapping:

(4.1) VP.LP 3f,-* m-ll2IP(JP) C Hx

is isometric by (1.3'), 77x' is a closed linear manifold of Hx isomorphic with

L2P by Vp. By (1.4) we see that the H(/\ p = 0, 1, 2, ■ ■ ■ , are orthogonal to

each other.

We shall establish the following theorem which implies the completeness

of {/,(/,);/,Gi;, P = 0, 1,2, • • •}.

Theorem 2.

Hx = zZ © Hx (zZ © means 'direct sum').

Proof. 1°. We shall first prove the following lemma.

Lemma 1. All the elements of the following form constitute a fundamental

set in Hx'-

(4.2) N(Ei)pi ■ ■ ■ N(Em)p-AB(Ii)" ■ ■ ■ A7J(7n)*»,

where m, n = l, 2, ■ ■ ■ , pi, q,=0, 1, 2, • • • , and {E,} and {i,} are each dis-

joint.

Proof(3). It is clear that an element of the form (4.2) belongs to Hx, since

it has a finite norm. By the definition of Hx we can easily see that the totality

of the elements of Hx of the following form constitute a fundamental set in

Hx:

3 The author owes this proof to I. E. Segal who has established a more general fact in his

paper [9].
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(4.3) Y = /(AX(/i), • • • , AX(In)),

wherew = l,2, • • ■ , {/,-} aredisjoint and/is abounded continuous function.

By the expression of (2.5), AX (I) is the limit of linear combinations of

{N(E)} and {AB(I)}. Therefore the elements of the following form also

constitute a fundamental set in Hx:

(4.4) Z = f(N(Ei), • • • , N(Em),       AB(IX), - • • , AB(In))

where the Ei are pairwise disjoint, the /,- are also pairwise disjoint and / is

a bounded continuous function.

Let 5m = 5m(£i, • • • , Em, Ix, ■ ■ ■ , In) be the closed linear manifold

spanned by the polynomials in N(EX), ■■ ■ , N(Em), AB(IX), ■ ■ ■ , AB(In).

To prove the lemma it is enough to show that Z in (4.4) belongs to 9JJ. We

put

Z = U + V = g(N(Ex), ■ ■■ , AB(In)) + h(N(Ex), ■ ■ ■ , AB(In))

where UdWl, VA.'SR, and both g and h are Baire functions. It is enough to

show V = 0. To avoid trivial complications we consider the case that m=n = l.

It is sufficient to derive h(N(E),AB(I)) =0 for almost all co from the following

conditions:

(4.5) (h(N(E), AB(I)),        N(E)r>AB(I)«) = 0, p, q = 0, 1, 2, • • • .

We denote by cri and cr2 respectively the distribution of N(E) (Poisson dis-

tribution) and that of AB(I) (normal distribution). Then (4.5) can be written

as

(4.5') f f h(x, y)x^y"d<Ti(x)d<Tt(y) = 0.

But we have

f f e|i*l+|.»l | h(x, y) | cfcn(x)cfcr2(3')

= ( f f I h(x, y) l^i^cMy))    (f f e2i'*Wvid<Ti(x)d<r2(y)\

= \\h(N(E), B(I))\\ ( f e2^do-i(x) f e2^da2(yy\

Therefore (4.5') will imply

I   j   h(x, y)ei^tx+"''>d(Ti(x)do-t(y) =0,       - co < I, s < <x>.
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Thus we have h(x, y)=0 for almost all (x, y) with respect to the measure

dai(x)dfft(y), that is, h(N(E), AB(I))=0 for almost all co.

2°. Lemma 2. The elements of the following form constitute a fundamental

set in Hx'-

(4.6) F = N(Ei) ■ ■ • N(Em)AB(h) ■ ■ ■ AB(In),

where the Ei are pairwise disjoint and the Ij are also pairwise disjoint.

Proof. Making use of the fact that the independence of X and F implies

||XF|| =[|x|| -|| F||, we can easily see the following fact:

(*) Let {Xi, X2 • ■ •} and { Fi, Y2 • • •} be two independent sequences

of random variables. If Xn-^X and Yn->Y in L2(Q), then XnYn-^XY in

L2(Q).

Let N denote the closed linear manifold in ifx spanned by the elements

of the form N(Ei)N(E2) • • ■ N(Em) with pairwise disjoint £,- and let B he

the closed linear manifold spanned by the elements of the form AB(Ii)AB(I2)

■ ■ • AB(In) with pairwise disjoint Ij. By the above remark (*) it is enough

to show that

(4.7) N(Ei)piN(E2)n ■ • ■ N(Em)^ C N

and

(4.8) AB(Ii)«A£(72)« • • • AB(In)"£B

whenever the £,■ or the Ij are disjoint. (4.8) was proved in [4, Theorem 4.2].

It remains to prove (4.7). Consider a subdivision {Fi}, » = 1, • • • , s, of

{Ei}, i = l, ■ ■ • , m, so fine that ^(F.^Min (e/v(E), 1) where e>0 and

E = FiVJF2U • • ■ W71,. Then we have the following expression:

N = N(Ei)p>N(E2)p* • • • N(Em)p" = zZ N(Fiw)" • ■ ■ N(FilT))i'

with i(l) <i(2) < ■ ■ ■ <i(r).

Since N(Fi) takes only non-negative integral values, we have

N^zZ N(FuU)N(Fim) ■ • ■ N(FHr)) = Nt C N,

and also

Pttf 5^ AQ =P(N(Fi) ^ 2 for some i)

g ZZ P(N(Fi) ̂ 2)^JZ "(Fi)2 < *.
t=i »-i

Therefore Nt—>N in probability as e—+0. Thus we can choose a sequence

e(n) (—>0) such that NtM^>N almost everywhere in co. Further we have

0g,Nlin) = Nand NCL2(tt). Therefore we have \\Nt(n)-N\\->0 and so NCN.

3°. Now we shall deduce Theorem 2 from Lemma 2. It is enough to show

that F in (4.6) is expressible as
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(4.9) Y  =   /„(/„)   + 7i(/i)   +   •   •  •   + Im+nUm+n)-

Using the notation in §3, we set

/(£l,  *  "   '   > km, £m+l,   •   •   ■   ,  km+n)

=   Ml      •   •  •  Um O-      XBi(ll)   •   •   •   XE„(£»)X/i(£m+l)   '   •   ■   Xrm+Mm+n),

where xi denote the characteristic function of the interval IX {o} (in the

plane ir) and £,= (ti, ut). Then we have

Im+n(f) = (N(EX) - V(EX)) ■ • ■ (N(Em) - v(Em))AB(Ix) ■ ■ ■ AB(In)

= N(EX) ■ ■ ■ N(Em)AB(Ix) ■ ■ ■ AB(In) + R,

where R is a linear combination of the elements of the form:

N(Eiw) ■ ■ ■ N(EUp))AB(Ii) ■ ■ ■ AB(In), p < m,

and R = 0 in case m = 0. Therefore we obtain (4.9) by induction on m. Thus

our theorem is completely proved.

5. Spectral type of { TV}. In the last section we proved that

(5.1) Hx=Y®HxV)

and that each Hx) is isomorphic to Lp by Vp. Now we shall investigate the

behavior of the group of unitary transformations UT on Hx derived from the

shift transformations TT of the process X(t, co).

Let c4P) be the restriction of Ur to Hx0- Then we have

Lemma 1. iff is a unitary operator on H^ which is transformed by Vp into

the following unitary operator STp) on Ll.

(5.2) ST f(h, «i,---, lP, up) = f(ti — r, Ui, ■ • • lp — t, up), f d Lp.

Corresponding to the decomposition (5.1), we have

(5.3) UT=Y® Uf\
Pio

Proof. By the same expression as in (5.2) we shall define a unitary opera-

tor 5?' on L2,. It is clear that 5?' is an extension of Sf. Then we have

(5.4) I^f) = UTIP(f).

This is clear by the definition if/ has the form (3.5), and so it holds also if

fdL\, because both sides of (5.4) are bounded and linear in/.

Since Ur transforms Hf onto Hf by (5.4), the restriction iff of UT to
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H$* is a unitary operator on H^\ By (5.4) and the definition of Vv and

S^ we have

(pi ~(p)   —i
Ur       =   VpSrVp  .

Thus we can easily verify (5.3), since UT is a unitary operator on Hx.

Lemma 1 reduces the investigation of { UT} to that of {5^'}. S°T is only

the identity operator on Ll, which is a one-dimensional Hilbert space. We

consider STP\ p^l. We shall introduce two transformation groups, { (t) } and

{(e)}, on the 2£-dimensional space irp as follows:

(r)(/i, Mi, t2, U2,   •   •   ■   , tp, Up)   =   (h —  T, Ml, t2 —  T,U2,   ■  ■   ■   ,tp — T, Up),

(i)(tl, Mi, t2, U2,   ■   •  •   , tp, Up)   =   (tt{l), We(l)i h{2), Ut{2),   -   "   -   , tt{P), Me(p)),

where r is a real number and e= |e(l), e(2), ■ ■ • , e(p)} is an arrangement of

{1, 2, ••    ,p).
To make it easier to see how these transformations act on irp, we shall

consider the following coordinate transformation:

(h, Ui, t2, u2, ■ ■ • , tp, Up)

-» (t, s2,   ■ ■ ■ , Sp-i, Ui, ••■ , up) = (t, v), v C R2^1

which is defined by

1
(5.5) t = —(ti + t2+ ■■■ +tp),

P
V

(5.6) Si = \Z ("ah; i = 1. 2, • • • , p — 1,
i=i

where (a,-,-; l^i^p — 1, l^jSp) is a certain real matrix satisfying

(5.7) E«m = 0. l = i = p-l,
i

1/P        ■■■       1/p

an • ■ ■       aip

(5.8) _    _ "    =1.

«p-i,i   • • • aP-i,p

By (5.8) we have

dtidix'(ui) • ■ • dtpdfi'(up) = dtdsi ■ • • dsp-idn'(ui) • • • dn'(up) = dtd\p(v)

where

d\p(v) = dsi • • ■ dsp-id/j.'(ui) • • ■ dn'(up).

Since t is symmetric in (tx, ■ • ■ , tp), the transformation (e) will leave /

invariant, and we have
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(e)(t, v) = (t, (i)v),

where (<) is defined as follows. Given t and v=(5i, • • • , sp-X, ux, • • • , up),

let (tx, h, ■ • • , tp) be the solution of (5.5) and (5.6) and set

(t)V = (SX, • • • , Sp-i, «!,•■-, Up),     Si =  Y «<>'«(»)i i =  1, ■ ■ ■ , p —  1.
i

It follows from (5.7) and (5.8) that (e)v is quite independent of t, so that

we may consider (i)v to be a transformation on v.

Since the transformation (t) will leave s,- and accordingly v invariant by

(5.7), we have
(r)(t, V) = (t+ r, v).

As the transformation (e) preserves the measure dtx - - - dtpdp'(ux) • • •

dp'(up), we have

dtd\p((i)v) = dtd\p(v) i.e. d\p((e)v) = d\p(v).

Hereafter we shall consider the functions in L\ with respect to these new

coordinates (t, v). Then we see that the condition

f(t, (*» = /(/, v)

is necessary and sufficient for/ to belong to Ll.

We consider the L2-space over the measure space (i?2p_1, d\p) which will

be denoted by jQp-X. The totality of the functions in^p_i invariant under

the group {(i)} constitutes a closed linear manifold in jQv-x, say Xjiv-i- Ex-

cluding the trivial case that X(t, co) =yt+a, the measure d\p is not identically

zero for p = l, 2, • • • , so that J^„-X is at least one-dimensional. In addition

to this, the dimension of jQP-x is at most countable. Let 4>Pi(v), i = l, 2, • ■ -,

be a complete orthonormal system in 2jn>-i- Then/(/, v)dL2v is expressed as

a sum of orthogonal components:

• M V)   =   Y fn(t)$Pn(v), fn(t)   d L\&)
n

and we have

ll/«,v)||2=£ll/n||'
n

(SlP)f)(t, v) = f(t + r,v) = YfiO + r)$Pi(v).
i

Thus L2P is the direct sum of at most a countable number (> 0) of subspaces

which reduce {Sf} and on each of which Sf acts just as the unitary trans-

formation f(t)-^f(t+r) does on L^R1).
Summing up the above arguments we obtain the following

Fundamental theorem. Except for the trivial case X(t, co) =yt+a, Hx is

isomorphic to the direct sum of the complex number field C (one-dimensional
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Hilbert space) and a countable number of Hilbert spaces, each isomorphic to

L^R1), i.e.

HX9*C © L*(B}) 8 L^R1) + ■ ■ ■ ,

in such a way that this isomorphism transforms UT into the following operator:

<Mc flif), ft(t), ■•■)-►'(«, fi(t + r), ft(t + r), ■ ■ ■ ).

In other words, { UT} has spectra [2] of multiplicity one over the unitary

measure and of uniform multiplicity Wo over the ordinary Lebesgue measure

and only these spectra.
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