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Introduction and summary. Of fundamental importance to the theory of

ideals in commutative rings satisfying the ascending chain condition for ideals

has been the works of Noether [6] and Krull [4]. What follows, in the first

two sections, is an attempt to extend more of the Krull-Noether theory of

commutative rings to one-sided ideals in noncommutative rings. A decom-

position theory for one-sided ideals in the noncommutative case was provided

by Fitting [l]. Although Fitting was able to prove uniqueness theorems in

certain cases, he did not prove uniqueness theorems for arbitrary noncom-

mutative rings satisfying the ascending chain condition for right ideals. By

methods based on the works of Noether and Fitting, we shall prove decom-

position and uniqueness theorems for arbitrary noncommutative rings with

identity that satisfy the ascending chain condition for right ideals. Actually,

the theorems in this paper are proved for what we define to be A-R modules,

which is a generalization of noncommutative rings.

In the third section, we discuss completely indecomposable A-R modules,

which follow along the lines of a paper by Snapper [7]. A sufficient condition

for two faithful representations of a noncommutative ring with identity to

be equivalent follows from this discussion.

The author is indebted to Professor C. W. Curtis for valuable suggestions

in the preparation of this paper.

1. A property of the A.C.C. for ^4-P modules. We begin by defining an

A-R module
Definition 1.1. An A-R module is a system consisting of an additive

abelian group M, a ring A containing the identity element 1, a ring P con-

taining the identity element e, and two functions defined on the product sets

(MXA) and (MXR) having values in M, such that if xa and ya denote the

elements in M determined by the elements x, y in M, a in A, and a in P, then

1-1. x(a + b) = xa + xb,

1-2. x(ab) = (xa)b,

1-3. x(a + P) = xa + xp\

1-4. x(a$) = (xa)P,

1-5. (x + y)a = xa + ya,
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1-6. (x + y)a = xa + ya,

1-7. xl = xe = x,

1-8. (xa)a = (xa)a

hold for any a, b in A and a, /3 in R.

Definition 1.2. A subgroup TV of M is said to be an R-submodule of M

if xaCM lor every x in TV and every a in P. A .subgroup TV of M is said to be

an A submodule of M ii xa £ TV for every x in TV and every a in A. A subgroup

TV is an A-R submodule if it is both an A and R submodule.

Examples. Every ring with identity can be considered as an A-R module

by taking the ring of right multiplications as R and the ring of left multipli-

cations as A.

A module M over a ring R containing the identity element can be handled

as an A-R module by taking as A the ring of endomorphisms that commute

with the endomorphisms which are the multiplications of the elements in

M by the elements of R.

Conventions. In the future, except where the contrary is stated, the

letters TV, TV,, TV2, etc., will stand for R and A submodules; the letters a, b, c,

for elements of A; the letters a, @, y, for elements of R; the symbols m, n, p, q,

will stand for ideals in R and A.

The proofs of the theorems, except for Theorems 1.2 and 2.2, in the first

two sections follow closely the proofs of similar theorems for the commuta-

tive case given by Noether and Krull, and are therefore omitted.

For proof of the following theorem we refer to [2, p. 242].

Theorem 1.1. Let G\, Gt, • • • , G„ be normal TV subgroups of the group G

with operators TV. If the A. C. C. holds for TV subgroups of G/d, i — 1, 2, • • • , n,

then the A.C.C. holds for TV subgroups of G/Gif~\ ■ ■ • C\Gn.

Theorem 1.2. If M is an A-R module, which satisfies the A.C.C. for A
submodules and R submodules, then the rings A/q and R/a' satisfy the A.C.C.

for right ideals, where q and q' are the annihilating ideals of M in A and R

respectively.

Proof. We shall show that the A.C.C. holds for right ideals in ^4/q. A

similar discussion proves this statement for P/q'.

Consider A as a right module over its ring of right multiplications. For a

fixed Xi in M the set (0:xi; A) = {a\xia=0, XiCM, aCA } is a right ideal of

A, and hence an A submodule of A. The mapping if/, which takes a + (0: Xi■:, A)

into x»a, is an A -isomorphism of the A module A/(0'.Xi; A) upon x{A

= {xta\aCA }, which is an A submodule of M. Since XiA is an A submodule

of M, it satisfies the A.C.C. for A submodules, i.e., right ideals. We have

also assumed that M satisfies the A.C.C. for R submodules. Hence there

must exist a set of generators xit x2, • • • , x„, for M as an R module. Then,
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fromq = (0: M;A) = (0: {xu ■ ■ ■ ,x„} ;A) = (0:xi;A)r\ ■ ■ ■ r~\(Q:x„;A) and

Theorem 1.1, it follows that A/q satisfies the A.C.C. for right ideals.

2. Decomposition of submodules of an A-R module. Let M be an A-R

module.

Definition 2.1. If TV is an P submodule of M, the set V*(N) = {a\ NaQN,

ad A } is called the centralizer oi TV.

V*(N) is a subring of A which contains the identity element. We denote

an arbitrary subring of V*(N) that contains the identity element by V(N).

Definition 2.2. If T is a set in M, and TV is an P submodule of M, then

(N:T; V) = {a\TaQN, aGF(TV)} is a right ideal of V(N). If now T = M,
this set is an ideal of V(N) and will be called the V shadow of TV. In general

we shall denote the V shadow of TV by n.

Definition 2.3. If TV is an P submodule of M and Pi" is a set in V(N),

then (N:H)= {x\xhdN, xdM, all hdH} is an P submodule.

Definition 2.4. The V radical oi an P submodule TV of M is defined to

be the set of all aG V(N) such that a' is contained in the V shadow n of TV

for some positive integer t.

Definition 2.5. An P submodule TV is said to be V primary provided that

xadN, ior xdN and ad V(N), implies Ma'QN for some positive integer /,

i.e., a is contained in the V radical of TV.

One should note here that if an P module TV is F primary, then it is neces-

sarily V primary, where V is any subring of V(N) containing the identity

element.

Definition 2.6. An ideal p of an arbitrary ring K will called completely

prime provided a&Gp, a, bdK, implies at least one of these elements is con-

tained in p.

Definition 2.7. An ideal q of an arbitrary ring K is said to be right

primary provided a&Gq, aGq, a, bdK, implies &*Gq for some positive inte-

ger 5.

One can easily show that the V shadow of a V primary P submodule is a

right primary ideal of A.

Definition 2.8. An P submodule is irreducible provided it is not the

intersection of two P submodules that properly contain it.

Theorem 2.1. If M is an A-R module satisfying the A.C.C. for R sub-

modules, then every irreducible R submodule TV is V(N) primary.

Theorem 2.2. The V radical of a V primary and irreducible R submodule

is a completely prime two-sided ideal of V(N).

Proof. The V radical p of TV is closed under addition. For a, bdp, let s

and t be the least positive integers such that a" and b' are contained in the V

shadow n of TV. Suppose s>l and t>l. Then, since (Ma'-^aQN and

Afa*-1Ct.7V, we have Nd(N:a), and similarly Nd(N:b). Suppose a+^Gp-
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Then, since [(TV:a)n(TV:cj)]- (a+t>)CTV and TV is F primary, it follows that

(N:a)C\(N:b)QN. However, this is impossible since this would imply that

TV is reducible, i.e., N=(N:d)r\(N:b). If 5 = 1, then (a+t>)'£n, and similar-

ly, if t = 1, then (a+b)'Cn.
The radical p is closed under right and left multiplication by elements of

V(N). Again, for aCp, let s be the least positive integer such that a»£n. Since

n is an ideal of V(N), a«c£n, for any cCV(N). If s>l, then a,~1(ac)Cn.

Hence, since the F shadow n of TV is right primary and a*~l£rt, it follows

acCp- If 5 = 1, the result is trivial. Since (ca)'=c(ac)'~1a, caCp-

We conclude by showing that p is completely prime in V(N). Suppose

ai-aiCp, a,i, a2CV(N). Then (<iia2)'£n for some positive integer t. From

these elements let a,-,, a,„ • • • , atk be the smallest subcollection whose prod-

uct a.ya,-,.aik is in n. Since atl.ali_1 is not in n and n is right

primary, it follows a^Cp-

Usual lattice theoretic methods give us the following theorem.

Theorem 2.3. If M is an A-R module satisfying the A.C.C. for R sub-
modules, every R submodule can be expressed as the intersection of a finite num-

ber of irreducible R submodules.

Definition 2.9. The intersection N = NiC\ • • • HNt of R submodules

is said to be irredundant if NCNiH, • • - nTVi-ifW.+iA • • • C\N, i = l,
2,---,t.

Theorem 2.4. If N = NiC\ ■ ■ ■ rW8 = TV?n • • • PiTV**, where TV,-, TV?, are
irreducible, and if these intersections are irredundant, then:

(i) For any i, l^i^s, there is aj, 1 ̂ j^s*, such that

tv = TVi n • • • n tv,-_i r\N?r\ Ni+i r\ • • • r\ n,.

(ii) s = s*.

For proof we refer to [2, p. 252].

Definition 2.10. If TV is an R submodule of M, then TV' is a component

element of TV' if it appears in any irredundant representation of TV as the

intersection of irreducible R submodules.

Definition 2.11. The ring F*(N) =f\a V*(Na), where TV„ ranges over the

entire set of component elements of TV, is called the subcentralizer of TV.

The subcentralizer F*(N) is contained in the centralizer of TV and is not

zero since it contains the identity element. We denote an arbitrary subring of

F*(N) that contains the identity element by F(N). The radicals, which we

•   shall now consider, will be in just such a subring F(N).

Theorem 2.5. Let TV = TViH • • • r\N. = Nfr\ ■ • ■ f~\N* be irredundant
intersections where the TV,-, TV? are irreducible R submodules, i = l, 2, • • • , s.

Then the set of distinct F radicals of TVr, • • • , TV, is identical with the set of

distinct F radicals of TV?, • • • , TV* in F(N).
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Theorem 2.6. Let TVi, • • • , TVr be irreducible V primary R modules,

where V is any subring of V*(Ni)(~\ • • • r\V*(Nr) containing the identity

element. If TV< has V radical p for all i, then N = Nxf~\ ■ ■ ■ C\Nr is again V

primary with radical p. If the intersection N = NXC\ ■ • • f~\Nr is irredundant

and TV has radical p<, * = 1, 2, • • • , r, where pi^>pj,for i^j, then TV is not V

primary.

From the preceding theorems, we can state a theorem quite similar to

that given by Noether and Krull. However the radicals will not be ideals of

the ring A, but will be ideals in a subring of A. In the example following we

show that the same result cannot be stated unless the ring F(N) is used.

Theorem 2.7. Let M be an A-R module satisfying the A.C.C. for R sub-

modules. Let TV be an R submodule and F(N) a subring of the sub centralizer of

TV containing the identity element. Then there exists F primary R submodules

Ni, • • • , TV,, with distinct F radicals pi, • • • , p„ such that N = Nxf~\ - ■ • P\TV„

where this intersection is irredundant. If TV = TVfP\ • • ■ C\Nf is another such

reduction of TV, then r=s, and for a suitable rearrangement of the subscripts the

corresponding prime F radicals are equal.

We shall call such a reduction of TV an F-short representation oi TV, and the

prime radicals the F associated prime ideals of TV.

If the .4-P module M satisfies the A.C.C. for P submodules, then for any

P submodule TV and any ideal q of V(N), the P submodules (TV:q) are fixed

for large r. We denote this limit by TV(q).

Lemma 1. If M satisfies the A.C.C. for R submodules and N = Nxf^N2,

where Nx and TV2 are R submodules, and q is an ideal of V, which is any subring

of V*(Nx)r\V*(N2) containing 1, then (Nxr^N2)(q) =Nx(q)nN2(q).

Lemma 2. If N is a V primary R submodule of M, with V radical ideal p,

such that prCjw, the V shadow of TV, then

(i) TV(q)=TV,*/q£p,.
(ii) TV(q)=if, i/qep,

for an ideal q contained in V(N).

From the preceding lemmas the following theorem is immediate.

Theorem 2.8. If M satisfies the A.C.C. for R submodules and TV = NXC\ ■ ■ ■

r\N, is an F-short representation of TV with distinct F radicals {p,-}, i = 1, 2, ■ • ■,

s, such that p^Cn,- for some positive integers r„ i = 1, 2, ■ ■ ■ ,s, and q is an ideal

of F(N) contained in pm+i, ■ • • , p„ but not in pi, • • • , pm, then N(q) =NXC\

• • • r\Nm.

Definition 2.12. If N = NXC\ ■ • ■ HTV, is an P-short representation of

TV, we call TV = TV,-/^ • • • C\Nir an F isolated component of N, ii no one of the

prime ideals p,„ • ■ • , p,-r contains an F associated prime ideal of TV which

is not an ideal of this set.
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Theorem 2.9. If M is an A-R module satisfying the A.C.C. for R sub-
modules and TV = TVin • • ■ r\NT = Nff\ • ■ • P\TV* are two F-short representa-

tions of TV with distinct F radicals pi, ■ ■ ■ , p„ such that p^^.TXi and p{*Ctt?/or

positive integers rt and ti, where n,- and nj are the corresponding F shadows,

i = l, 2, • - ■ , s, then the corresponding isolated components are equal.

One may ask in what cases, as in Theorem 2.9, would pJ'Cn If M satis-

fies the A.C.C. for R and F(N) submodules, then this is true. For it follows

from Theorem 1.2 that F(N)/q, where q is the annihilating ideal of M in

F(N), satisfies the A.C.C. for right ideals. Therefore P(TV)/n,- satisfies the

A.C.C. for right ideals. Since pi is the set of all nilpotent elements in P(TV)/n<

it follows p'^n (see [5]). In addition, if F(N) satisfies the D.C.C. for right

ideals, then pi»Cn. In fact, in this case, F(N)/pi is a division ring, and the pi

are maximal ideals of F(N). Therefore each TV< would be an isolated com-

ponent. Hence, in this case, the representation would be unique.

2'. Example. Let D be a Noetherian ring with identity 1. Consider 7J>2,

the ring of 2X2 matrices with elements in D. Then by taking as R the ring

of right multiplications and as A the ring of left multiplications, we have an

;1-P module.

Denote by

0
the set of all matrices (a,y) in D with an, ai2CD; an, a22CI, where 7 is an ideal

in D. Then

Q
is an R submodule.

The proof of the following lemma we leave as an exercise.

Lemma 1.

O-OQ
if and only if 7 = 7iP\72.

Denote by (7i, 72)i the set of all matrices (a,y)j in A with au, anCD,

a2iCIi, a22CIi, where 7i and 72 are ideals in D.

Theorem 2'.1. If

then V*(N)is (I,D)t.
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Proof. Certainly this set is contained in the centralizer of TV. Suppose

(flu)i^(I, D)i, i.e., czjiG/. Then for

C >'
we have

Van    a22/V0    0/      Va2i   0/

Theorem 2'.2. If

then the V*(N) shadow of TV will be (I, I)t, and the V*(N) radical of TV will be
(I, p)i, where p is the radical of I in D.

Proof. Certainly (I, I)i is contained in the V*(N) shadow of TV. If now

(aa)idV*(N) but not contained in (I, I)h i.e., c^G-f. Then for

/0    0\

(o  JeM

we have

/an    «„\/0    0\ = /0   ax2\      ^

\a2X    a22) Vo    1/      Vo   a22)

If (o«)iGF*(7V), then (a,-,)! = (&</) i, where &n, &12G.D, 62iG7, &22=c+a22

for cG-L Hence, (a;,)* is contained in the F*(TV) shadow if and only if a22dp-

Theorem 2'.3. If

where I is a primary ideal in D, then TV is F*(TV) primary.

Proof. Suppose (a,,) is contained in Tlf and is not contained in TV, say

ci£7. Let (bii)ieV*(N) = (I, D),, i.e., b2xdl- Then if (aii)(bii)l = (bii)(aii)
= (ca) GTV, we have c2i =d+a2xb22, with dGL Since (c,;) GTV, c2i = cf+a2ic>22GL

Inasmuch as I is primary in D and ci2iG7, then b22dp, the radical of I in Z>.

Hence (ft</)i€(7, /»)i, the F*(V) radical of TV.

A similar discussion holds if a22G7.
Let D = F[l, x,y], the ring of polynomials in x and y over the field F. Let

I = (x2, xy), Ix = (x), and Ia = (x2, y+ax), where aeE and Iaj^I$ if a5^/3.

Then in D, I = IxC\Ia, where the radical p = (x, y) of Ia is the same for each
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decomposition of 7 in primary ideals.

In D2, let

Then, by Lemma 1,

TV = TVi C\ Na.

However, here the V*(Na) radicals (Na, p) are different for each decomposi-

tion. If we let P = n7„n7i, then in (F, D)=f\a V*(Na)nV*(Ni) the radical

(F, p)i is the same for each decomposition.

Thus although the corresponding F* radicals may be distinct for two de-

compositions of an R submodule, the corresponding F* radicals are the same.

3. Completely indecomposable A-R modules.

Definition 3.1. An R submodule of an .4-22 module M is said to be in-

decomposable if it can not be expressed as the direct sum of R submodules.

An A submodule of M is said to be indecomposable if it can not be expressed

as the direct sum of A submodules.

Definition 3.2. A completely indecomposable A-R module is an A-R mod-

ule where the following four conditions are satisfied.

II-l. Every R submodule of M is indecomposable.

11-2. Every A submodule of M is indecomposable.

II-3.  M satisfies the A.C.C. for A submodules and R submodules.

11-4. M satisfies the D.C.C. for A submodules and R submodules.

Definition 3.3. A simple or minimal R submodule is an R submodule TV

such that if OCTV'CTV, where TV' is an R submodule, then either 0 = TV' or

N = N'. A simple or minimal A submodule is defined in the same manner.

From 11-3 and Theorem 1.2 we conclude that 22/q' and P/q both satisfy

the A.C.C. for right ideals, where q' and q are the annihilating ideals of Min

R and A respectively. By II-l the 0 module is irreducible as an R submodule,

for if TVi and TV2 are P submodules such that 0 = Nir\N2, then Ni + N2

= Ni®N2. Hence, by Theorem 2.1, the 0 submodule is A = F*(0) primary,

and, by Theorem 2.2, the radical p of 0 in A is a completely prime ideal of A.

Furthermore, since ^4/q satisfies the A.C.C. for right ideals and p is a nil

ideal in A/q, then from a theorem proved by Levitski [5], it follows that

p'CIq for some positive integer s. Similarly by II-2, the 0 module is an irre-

ducible A submodule. Hence 0 is R primary and its radical p' in R is a com-

pletely prime ideal in P, where p'rCq' for some positive integer r.

For a set 27 in M and a set m in A denote by 77m the set of all sums

zZxiai f°r XiCH and o,£m. For a set m'CP we denote by 77m' the set of all

sums zZxi°Li f°r xiCH and ai£m'.

Lemma 1. Every completely indecomposable A -R module M contains a unique

minimal A-R submodule.
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Proof. By II-4, T17 contains a minimal P submodule TV0, which is necessar-

ily a unique minimal P submodule. For if TVi is another such minimal P sub-

module, then 0 = TV0^\TVi. Similarly T17 contains a unique minimal A submod-

ule TV.
We shall now show that TV0 is an A submodule. Let 77(a) be the homo-

morphism x—>xa of M for aG-4. Then 77(a) will be an P homomorphism of

TV0 with kernel TV0 or 0. If the kernel is TV0, then TV0a = 0. If the kernel is 0,

then TV0a is an isomorphic image of TV0 and therefore a minimal P submodule.

Since TV0 is the unique minimal P submodule, then TV0a = TV0. In both cases

TV0aCTV0, and therefore TV0 is an A submodule. Similarly TV' is an P sub-

module. Hence it follows that N0QN' and TV'CTV0, and therefore TV0 = TV'.

Lemma 2. (0:TV0; A) and (0:TV0; P) are maximal right ideals in A and R

respectively.

Proof. Let xR—xA = TV0, which is necessarily cyclic. Let 0 be the homomor-

phism that takes a into xa, for all ad A. If we treat A as a right module over

its set of right multiplications, then \\i is an A homomorphism of A upon TV0

with kernel (0:x; A). Hence ^4/(0:x; A) is A isomorphic to x.4. Since x^4 is

a simple A module, it follows that (0:x; A) is a maximal right ideal of A.

From the relation

TV0(0:x;,4) = xR(0:x;A) = x(0:x;A)R = 0

it follows that (0:x; A) = (0:TV0; A).
Similarly (0:TV0; R) is a maximal right ideal in P.

Inasmuch as the 0 module of AT" is A primary, we have (0:TV0;.4)Cp. Con-

sequently p is a maximal right ideal in A, and since p is also a completely

prime ideal in A, it follows that A/$ is a division ring. Similarly i?/p' is a

division ring.

Lemma 3. The unique minimal A-R submodule TVo is equal to (0:p) awo"

(0:p').

Proof. We have (0:p) is a vector space over A /p. If TV0C(0:p), then

(0:p)=TV0©7V, where TV as an A/$ subspace. Since TV'CI(0:p), it follows

that TV' is an P submodule. This contradicts II-l. Hence TV0 = (0:p). Similarly

TV„ = (0:p').
Lemmas 5 and 6 are immediate applications of the following known

lemma, which holds true for arbitrary modules over a noncommutative ring.

Lemma 4. Let M be a unitary right module over a ring R, where R contains

an ideal p such that Tkfpn = 0 for some integer n. If TV is a simple R submodule

of M, then Np = 0.

Lemma 5. If M is a completely indecomposable A-R module and TV is a

maximal R submodule of the R submodule TV2, then TV2p'CTVi, where p' is the

radical of 0 in P.
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If we consider .4/q as a right module over its set of right multiplications,

we have the following lemma.

Lemma 6. Let M be a completely indecomposable A-R module. If tii and xi2

are right ideals in A containing q, where rii is maximal in the set of right ideals

contained in n2, then njpCrii where p is the radical of 0 in A.

Theorem 3.1. If M is a completely indecomposable A-R module, then A/q

satisfies the D.C.C.for right ideals, where q is the annihilating ideal of Min A.

Then if

(1) q C n0 C tti • • • C rtM = A

is a composition series of right ideals from q to A and

(2) 0 C No C TVi £ • • • £ TVx = M

is a composition series of R submodules for M, then

(3) 0 = (0:n„) £ • • • £ (0:n0) £ M

and

(4) q = (0:Nx;A)C--- C(0:No;A)CA

are composition series of R submodules and right ideals of M and A/q respec-

tively.

Proof. Consider A as a right module over its set of right multiplications.

Since M satisfies both chain conditions for 22 submodules, there exists a

chain (2). From this chain we shall show that the factors of (4) are either 0 or

isomorphic to a simple A module, i.e., the chain is a normal chain which can

be refined to a composition series of right ideals in ^4/q. From this we can

conclude that A/q satisfies the D.C.C. for right ideals, and the length p, ol

A/q in right ideals is less than or equal to the length X of M in Rsubmodules.

In the second part of this proof we shall show in a similar manner that the

chain (3) is a normal chain that can be refined to a composition series of 22

submodules in M. From this we can conclude that m = X, which completes

the proof of the theorem.

Since (2) is a composition series of M in R submodules, we have, by

Lemma 5, TV,p'CTVy_i, where p' is the radical of 0 in R. Hence TVyp'(0:TVy_i; A)

= TVy(0: TVj_i; A)p' = 0. From Lemma 3, we have (0: p') = TV0, hence TVy(0: TVy_i;

A)QN0. Since TV0 is a simple R submodule, it follows that either the 22 sub-

module TVj(0:TV,_i; A) equals 0 or TV0. If this R submodule is zero, we have

(0:TVj_i; .4)/(0:TV3; A) =0. Suppose however that this 22 submodule is equal

to TV0. Then there must exist an x£TVy, x£TVy_i, and an aC(0:Nj-i; A) such

that xa^O. Since x£TVy, x£TV,_i, then TVy_i+x22 = TVy. It follows, since

xa?^0, that the A submodule x(0:TVy_i; .4) = {xa|a£(0:TVy_j; A)} =TV0 since

TVo is also a minimal A submodule.
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If we treat A as a right module over its set of right multiplications, the

correspondence i^:a—>xa for aG(0:TV,_i; A) is an A homomorphism of

(0:TVy_i; A) onto TV0 with kernel (0:TVy_i; A)C\(0:x; A), which equals

(0:TV;; A). Hence (4) can be refined to a composition series of .4/q, and

X^p.
We shall now show that p=X. Since (1) is a composition series we have by

Lemma 6 that n,pCn;_i. Hence (0:ny_i)n.,p =0, and since (0:p) =TV0, it follows

that the A submodule (0:ny_i)tij equals 0 or TV0 since TV0 is a minimal A sub-

module. If this A module is 0, we have (0:n/_i)/(0:n,-)=0. However, if this

A submodule is TV0, there must exist an adtij, adni-i and an xG(0tn,-_i)

such that xa^O. Since aGny, a$n;_i it follows that xij-X+aA =n,-. Since

xa^O, we have (0:tiy_i)a = {xa|xG(0:n,_i)} is an P submodule equal to TV0,

since TV0 is a minimal R submodule. The correspondence y^ya for

yG(0:ny_i) is an P homomorphism of (0:n,_i) onto TV0 with kernel (0:ny_i)

P\(0:a) = (0:n,). Therefore (3) except for repetition is a composition and

The following theorem is proved in the same manner as Theorem 3.1.

Theorem 3.2. If M is a completely indecomposable A-R module, then

P/q' satisfies the D.C.C. for right ideals, where q' is the annihilating ideal of M

in P. 7w addition, the length of R/q' in right ideals is equal to the length of M in

A submodules.

An immediate application of these theorems gives us the following corol-

lary.

Corollary 1. Let R be a ring with identity that satisfies the A.C.C. and the

D.C.C. for both right and left ideals. If no right ideal and no left ideal can be
expressed as the direct sum of right ideals and left ideals respectively, then the

length of R in left ideals and right ideals is the same.

Lemma 7. If Mis a completely indecomposable A-R module, then [0: (0:n);

A ] = n and [0: (0: TV; A) ] = TV, where n is a right ideal in A and TV is an R sub-

module.

Proof. Let TV = TV,- in the composition series

0 C TVo C TVi C • • • C TV„ = M

of P submodules for M. From Theorem 3.1 it follows that

0C [0:(0:JVoM)]C ■•• C [0:(0:N,; A)] = M

is a composition series of P submodules for T17. Clearly [0:(0:TV»; -4)]c;TVi,

for all i. Since TV0 is a minimal P submodule, it follows that TV0= [0: (0:TV0;

A)], and this implies that N,= [0:(0:TV,; ^4)] for all i. The other part of this

lemma is proved in like manner.

A similar lemma can be stated for a right ideal n in P and an A submodule
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TV, by interchanging the letters 22 and A in the preceding lemma. The follow-

ing lemma follows immediately.

Lemma 8. In a completely indecomposable A-R module M, an R submodule

TV is completely determined by its annihilating right ideal in A, and an A sub-

module is completely determined by its annihilating right ideal in 22.

Theorem 3.3. If M is a completely indecomposable A-R module, then the

set S of A endomorphisms of M consists of the multiplications of the elements

of M with the elements of R. Hence, if q' is the annihilating ideal of M in 22,

then S is ring isomorphic with the factor ring 22/q'.

Proof. We shall consider S not as a ring, but as a module with 22 as right

operator domain, according to the following definitions.

x(77i + 272) = xHi + xH2,

x(Ha) = (xH)a,

for all xCM, 77,, 272, 27£g, aCR.
To any aCR there corresponds the mapping 27(a) in S defined by xH(a)

= xa tor all x£Af. If 72 is considered as a right module over its set of right

multiplications, then the correspondence a—>H(a) is clearly an 22 endomor-

phism from 22 into S with kernel q'. Hence £ contains an R submodule E'

which is 22 isomorphic to 22/q'. We have but to show that S=£'. Since E'

has finite length, namely the length p, of 22/q' in right ideals, we shall show

that S as an 22 module has length p. This would imply that S = E'.

By Theorem 3.2, since 22/q' has length p. for R submodules (right ideals),

the length of M for A submodules will be p. Let

(1) 0 £ No C TVi £ • • • £ TV„ = M

he a composition series of M in A submodules. Let Ei, for i = 0, 1, • • • , p,

be the 22 submodules of E which annihilate TV,-, i.e., HCEi if TVj77 = 0. We
shall show that the chain

(2) S2£d3£i5  •••2£, = 0',

where 0' denotes the zero-endomorphism, will be a composition series of 22

submodules for S. This we shall do by showing that £,_i/£< is 22 isomorphic

to the division ring 22/p'.

If HCEi-i, then TV,77 is an A submodule which is homomorphic with TV,-.

Since TV,_i77 = 0, the length of TV.-77 is at most 1; hence TV.-TJC TV0 = (0: p').

Let x be a fixed nonzero element of TV0 and x,- be a fixed element of TV,- not in

TV,_i. Then x72 = TV0 and TVt_i+Xj4 =TV,-. Since NiHC.N0 = xR, there exists an

a£22 such that x,27 = xa. Let a denote the coset of a in 72/p'. Since p' is the

annihilating ideal of TV0 in R, the correspondence 27—>a is an 72 homomorphism

of £,_i into 22/p' with kernel Ei. Hence Ei-i/Ei is 22 isomorphic with an R

submodule of 22/p'. However, since the only submodules of 22/p' are 0 and
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22/p' itself, all that remains to show is that Ei-i/E^O''.

Let Et he the set of all elements a in R such that TV<a=0, i = 0, 1, • • ■ , p.

Then by Theorem 3.2, 2£?_iD£*, and consequently there exists an element

a£22 such that TV,a?^0 and TV,_ia = 0. From this it follows that 27(a) is con-

tained in Ei-i and not in £,-. Hence £,_i/£,?*0', and therefore (2) is a com-

position series. Thus £'=S.

Corollary 1. Let M be a completely indecomposable A-R module and let

TV be an A-R submodule. Then every A endomorphism 77* of TV can be extended

to an A endomorphism 77 of M. If 77* is an automorphism of N^O, then 77 is

an automorphism of M.

Proof. If TV is an .4-72 submodule of M, then TV is a completely indecom-

posable 4-22 module. Hence, it follows from Theorem 3.3 that if 27* is an A

endomorphism, then there exists an element a£72 such that xH*=xa for all

x£TV. The endomorphism xH = xa for all xCM is clearly an extension of 77*

to an A endomorphism 77 of M. Ii 27* is an automorphism of TVf^O, then

a£p*, where p* is the radical of the zero-module of TV in 22. If p' is the radical

of the zero-module of M in 22, clearly p'Cp*, and since p' is a maximal ideal,

then p' = ps. Hence a£p', which implies 27 is an automorphism of TV, since

a is a unit of 72(x).

Lemma 9. If Ni and N2 are two R submodules of M with respectively the

annihilating right ideals iti and tt2, then the annihilating right ideal of Ni(~\N2

is ni+n2.

Proof. Let N3 = Nir\N2. Then if n3 is the annihilating right ideal of TV3

in A, we have, by Lemma 8, n3 = (0:TV3; 22). Since (Orrti+to) = (0:ni)n(0:n2)

= TViPiTV2 = TV3, then, by Lemma 8, 0:(0:ni+n2); 22 = (0:TV3; 72)=n3.

The following lemma which holds for arbitrary modules over a noncom-

mutative ring is proved by Snapper [7, p. 131].

Lemma 10. Let M and W be two additive groups with the same ring R as

operator domain. Let TVi and Ni be two R submodules of M and let Wi and Wi

be two R submodules of W. Let L be an R isomorphism between TVi and Wi, and

let Ii be an R isomorphism between N2 and W2. Let 7i map N3 = Nif^Ni iso-

mer phically onto W3= WiH\W2, i.e., 7i induces an R isomorphism Ii* between

W% and TV3. In the same way, let I2 map TV3 isomorphically onto W3. Finally,

let 7i*=-72* = 73. Then there exists an R isomorphism between TVi + TV2 and

Wi + Wi which is simultaneously an extension of 7i, 72 and 73.

Definition 3.4. A completely indecomposable .4-22 module Jlf is said to

be duo, provided every R submodule is an A submodule and every A sub-

module is an 22 submodule.

(') It is shown in Jacobson [3, p. 57] that if R/p is a division ring, then the elements not in

p are units of R, if p is a nil-ideal.
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Since the set of annihilators of an A-R submodule in A or P is a two-sided

ideal, we have by Theorem 3.2 and Lemma 7

Theorem 3.4. If M is a duo completely indecomposable A-R module, then

the length of M in A-R submodules, the length of A/q in two-sided ideals, and

the length of R/q' in two-sided ideals, where q and q' are the annihilating ideals

of M in A and R respectively, are the same. In addition, if n is a two-sided ideal

of A and TV is an A-R submodule of M, then

0:(0:n);A=n   and   0:(0:N;A) = N™.

Lemma 11. Let M be a duo completely indecomposable A-R module. If M

has a unique maximal A-R submodule, then M is R isomorphic to R/q' and A

isomorphic to A/q, where q' and q are the annihilating ideals of M in R and A

respectively.

Proof. If TV is the unique maximal A-R submodule of T17, then for xdM,

xG^V, it follows that xR=xA = M. The mapping a^>xa, all aG^4, is an A

homomorphism of A onto T17 with kernel q, for suppose xa=0, then xaP = 0,

which implies that xPa = 0, i.e., T17a = 0.

The following is an extension of a theorem proved by Snapper [7, p. 133].

Theorem 3.5. Let M be a duo completely indecomposable A-R module and

W a duo completely indecomposable A-K module, then M is A isomorphic to W

if and only if they have the same annihilating ideals in A.

Proof. It is obvious that if TI7 and W are A isomorphic, they have the

same annihilating ideals in A. Hence we assume that Tlfand IF have the same

annihilating ideal q in A and prove they are A isomorphic.

Since the length of M and IF in ^4-P submodules are both equal to the

length of the difference module A/q in A submodules (two sided ideals), let

p be the common length of W, Mand A/q.lip = l, both T17and Whave their
zero submodules as unique maximal ^4-P submodules, and hence, by Lemma

11, are A isomorphic to A/q, and hence isomorphic to each other. Conse-

quently, we assume p > 1 and make our induction hypothesis that Theorem

3.5 has been proved for p = 1, 2, • • • , p —1. There are two cases to be con-

sidered.

Case 1. One of the two modules, say M, has a unique maximal A-R sub-

module. Since M has a unique maximal submodule, it follows from Lemma 11

that M is A isomorphic to A/q. This implies that .4/q contains a unique mini-

mal two sided ideal. Consequently, there exists only one two-sided ideal qi

where the length of A/qi is p — 1 in two-sided ideals. If 0' is the zero element

of W, the length of IFi = (0': qx) is n — 1 and hence Wx is a maximal ^4-P sub-

module of IF. We assert that IFi is the only maximal A-R submodule of IF.

(J) Notice that this implies that every right ideal of A or R is a two-sided ideal.
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Let W2 be any maximal A-R submodule of W with q2 as annihilating ideal in

A. Then, by Theorem 3.4, the length of W2 is p. — 1, and the length of ^4/q2

is/x —1. Consequently, qi = q2and Wi = (0':qi) = (0:qi) = Wi. Lemma 11 then

implies that M and IF are A isomorphic to ^4/q and hence IF and M are 4

isomorphic.

Case 2. Both M and W have at least two different maximal A submodules.

Let TVi and TV2 be two different maximal A-R submodules of M, which implies

that M = Ni + N2. The length of TVi and TV2 is p. — 1. If qi and q2 are the anni-

hilating ideals in A of TVi and TV2, then qi = (0:TVi; A) and q2 = (0:TV2; A).

Furthermore, by Theorem 3.4, qi?*q2 and the length of both the difference

modules .4/qi and -4/q2 in A submodules (two-sided ideals) is /x — 1. Consider

the A-R submodules Wi = (0':qx) and IF2 = (0':q2) of W. Then, by Theorem

3.4, Wir^W2, and the length of IFi and W2 is ju — 1, i.e., IFi and IF2 are distinct

maximal A-R submodules of IF, which implies that Wi + Wi=W. Since TVi

is a duo completely indecomposable ^4-22 module and IF2 is a duo completely

indecomposable A-K module with the same annihilating ideal qi, it follows

by induction that TVi and IFi are 4 isomorphic. In the same way TV2 and IF2

are A isomorphic. Hence, let 7i be the 4 isomorphism which maps TVi onto

Wi and 72 the A isomorphism that maps TV2 onto IF2. We claim that 7i maps

N3 = NiC\N2 A isomorphically onto Wz=Wir\W2 and that 72 maps TV3 A

isomorphically onto IF3. In the first place, the annihilating ideal of TV3 and

IF3 in 4 is qi+q2 according to Lemma 9. In the second place, both TV37i and

TV372 are A-R submodules of IF which are A isomorphic with TV3. Hence these

modules have qi+q2 as annihilating ideals in 4, which implies, according to

Theorem 3.4, that TV32i = TV372 = IF3. Let 7i* and 72* be the A isomorphism

which map TV3 onto IF3 and which are induced respectively by 7i and 72.

However, we cannot as yet apply Lemma 10 since it may be that 1*9^1*.

However, we shall change 7i into a new A isomorphism Ji such that J* = I2*.

Let (7*)_1 be the inverse of I*; hence (7*)-1 maps W3^4 isomorphically onto

TV3. Then (I*)"1!* is clearly an A isomorphism, say 27*, of IF3 onto itself.

Since W3CI IFi, it follows from Theorem 3.3, Corollary 1, that there exists an

A isomorphism 27 of IFi onto itself, where 27 is an extension of 27*. For Ji

we then take the A isomorphism Ji=IiH which clearly maps TVi onto Wi.

Furthermore, if J* is the A isomorphism between TV3 and W3, induced by J\,

then J* = I2* because, if x£TV3, then xJ?=xIiH = xI*H and, since x7i*£ W3,

then x7i*77 = x7*77* =x7i*(7i*)_172* =x72* =x72. We can conclude from Lemma

10 that there exists an 4 isomorphism between TV1 + TV2 = M and Wi + W2=W

which proves our theorem.

In terms of representations this theorem has the following meaning. Let

M and W be faithful representation spaces for a ring A with identity, where

Si and £2 are the ring of 22 endomorphisms of M and W respectively. Consider

M and W as representation spaces for 61 and S2. Then, if every A subspace

of M is a Si subspace and if every Si subspace of M is an A subspace, and if
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every A subspace of IF is a (52 subspace and every S2 subspace of W is an A

subspace, and if, in addition, 717 and IF have composition series of A sub-

spaces and unique minimal .4 subspaces, these representations are equivalent.

3'. Examples. Examples of completely indecomposable A-R modules

where A and P are commutative are given by Snapper in [7].

Example 3'.1. Every Grassmann(3) Algebra with finite basis can be con-

sidered as a duo completely indecomposable A-R module by taking as P the

ring of right multiplications and as A the ring of left multiplications. Sup-

pose the basis elements are ex, e2, ■ ■ ■ , en. Then this A-R module is duo since

eiej= —e,ei, and satisfies II-l and II-2 since xR=xA, where x=ei-e2 ■ ■ ■ en,

is a unique minimal .4-P submodule (two-sided ideal).

Example 3'.2. Let P be a field and xi, x2 and x3 be indeterminants. Con-

sider 7z"=P[l, Xi, x2, Xt], where the following conditions are satisfied:

(1) Associate law of multiplication.

(2) Two sided distributive law.

(3) al =la=a, axi = xta, i = l, 2, 3, for all adF.

(4) XiX,Xk = Xi, i,j, k = 2, 3.

(5) x,xyx*xj = 0, i, j, k, I, = 1, 2, 3.

77 is an algebra with finite bases over P, for if xG77, then x = a0+aiXi+a2x2

+03X3+04X^+05X3+06X2X3+07X3X2. Properties (4) and (5) imply 0=x2 = XiXi,

i = 2, 3. If we let P be the ring of right multiplications and A be the ring of

left multiplications, then 77 is a completely indecomposable .4-P module, for

XiP=Xi77 = 77xi=Xi^4 is a unique minimal A submodule and a unique mini-

mal P submodule. 77is not duo since x277 = X27?is not an A submodule because

it does not contain x3Xj.
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