THE LATTICE OF SUBMODULES OF A MODULE
OVER A NONCOMMUTATIVE RING

BY
EDMUND H. FELLER

Introduction and summary. Of fundamental importance to the theory of
ideals in commutative rings satisfying the ascending chain condition for ideals
has been the works of Noether [6] and Krull [4]. What follows, in the first
two sections, is an attempt to extend more of the Krull-Noether theory of
commutative rings to one-sided ideals in noncommutative rings. A decom-
position theory for one-sided ideals in the noncommutative case was provided
by Fitting [1]. Although Fitting was able to prove uniqueness theorems in
certain cases, he did not prove uniqueness theorems for arbitrary noncom-
mutative rings satisfying the ascending chain condition for right ideals. By
methods based on the works of Noether and Fitting, we shall prove decom-
position and uniqueness theorems for arbitrary noncommutative rings with
identity that satisfy the ascending chain condition for right ideals. Actually,
the theorems in this paper are proved for what we define to be A-R modules,
which is a generalization of noncommutative rings.

In the third section, we discuss completely indecomposable A-R modules,
which follow along the lines of a paper by Snapper [7]. A sufficient condition
for two faithful representations of a noncommutative ring with identity to
be equivalent follows from this discussion.

The author is indebted to Professor C. W. Curtis for valuable suggestions
in the preparation of this paper.

1. A property of the A.C.C. for 4-R modules. We begin by defining an
A-R module

DEeFINITION 1.1. An A-R module is a system consisting of an additive
abelian group M, a ring A containing the identity element 1, a ring R con-
taining the identity element e, and two functions defined on the product sets
(M XA) and (M XR) having values in M, such that if xa and ya denote the
elements in M determined by the elements x, yin M, a in 4, and « in R, then

I-1. x(a + b) = xa + xb,
I-2. x2(ab) = (xa)b,
I-3. x(a + B) = xa + xB,
I4. x(af) = (xa)B,

1-5. (z + y)a = xa + ya,
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I-6. (z 4+ y)a = 2a + ya,
1-7. x1l = xe = x,
I-8. (xa)a = (xa)a

hold for any @, b in 4 and «, B in R.

DEerFINITION 1.2, A subgroup N of M is said to be an R-submodule of M
if xa & M for every x in N and every « in R. A subgroup N of M is said to be
an A submodule of M if xa& N for every x in NV and every a in 4. A subgroup
N is an A-R submodule if it is both an 4 and R submodule.

ExampLEs. Every ring with identity can be considered as an 4-R module
by taking the ring of right multiplications as R and the ring of left multipli-
cations as 4.

A module M over a ring R containing the identity element can be handled
as an 4-R module by taking as A the ring of endomorphisms that commute
with the endomorphisms which are the multiplications of the elements in
M by the elements of R.

ConNvENTIONS. In the future, except where the contrary is stated, the
letters N, N, N, etc., will stand for R and 4 submodules; the letters a, b, ¢,
for elements of 4 ; the letters «, 8, v, for elements of R; the symbols m, 1, p, q,
will stand for ideals in R and 4.

The proofs of the theorems, except for Theorems 1.2 and 2.2, in the first
two sections follow closely the proofs of similar theorems for the commuta-
tive case given by Noether and Krull, and are therefore omitted.

For proof of the following theorem we refer to [2, p. 242].

THEOREM 1.1. Let Gy, Gs, - - -, G, be normal N subgroups of the group G
with operators N. If the A.C.C. holds for N subgroups of G/G;,1=1,2, - - -, n,
then the A.C.C. holds for N subgroups of G/Gi" - - - NGy,

THEOREM 1.2. If M is an A-R module, which satisfies the A.C.C. for A
submodules and R submodules, then the rings A/q and R/q’ satisfy the A.C.C.
for right ideals, where q and o' are the annihilating ideals of M in A and R
respectively.

Proof. We shall show that the A.C.C. holds for right ideals in 4/q. A
similar discussion proves this statement for R/q’.

Consider A4 as a right module over its ring of right multiplications. For a
fixed x; in M the set (0:x;; 4) = {a| x02=0, x;EM, aEA} is a right ideal of
A, and hence an 4 submodule of 4. The mapping ¥, which takes a+(0:x;; 4)
into x.a, is an A-isomorphism of the 4 module 4/(0:x;; 4) upon x;4
= {x.a|a€EA}, which is an 4 submodule of M. Since x:4 is an 4 submodule
of M, it satisfies the A.C.C. for 4 submodules, i.e., right ideals. We have
also assumed that M satisfies the A.C.C. for R submodules. Hence there
must exist a set of generators x1, xg, + - -, X5, for M as an R module. Then,
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from q=(0: M; A)=(0:{x1, - - - ,%n}; 4)=(0:x1; A)N\ - - - N\(0:x,; 4) and
Theorem 1.1, it follows that 4 /q satisfies the A.C.C. for right ideals.

2. Decomposition of submodules of an 4-R module. Let M be an 4-R
module.

DErInNITION 2.1. If Nisan R submodule of M, the set V*(N) = {a| NaC N,
a€A4} is called the centralizer of N.

V*(N) is a subring of A which contains the identity element. We denote
an arbitrary subring of V*(N) that contains the identity element by V(XN).

DEFINITION 2.2. If T is a set in M, and N is an R submodule of M, then
(N:T; V)={a|TaCN, a€V(N)} is a right ideal of V(N). If now T'=M,
this set is an ideal of V(XN) and will be called the V shadow of N. In general
we shall denote the V shadow of NV by n.

DEerFINITION 2.3. If N is an R submodule of M and H is a set in V(V),
then (N:H) = {x|xhEN, x€ M, all hEH} is an R submodule.

DEeFINITION 2.4. The V radical of an R submodule N of M is defined to
be the set of all a& V(N) such that a! is contained in the V shadow n of NV
for some positive integer ¢.

DEFINITION 2.5. An R submodule N is said to be V primary provided that
xaEN, for x&N and e € V(N), implies Ma*C N for some positive integer ¢,
i.e., a is contained in the V radical of V.

One should note here that if an R module N is V primary, then it is neces-
sarily V’ primary, where V’ is any subring of V(N) containing the identity
element.

DEFINITION 2.6. An ideal p of an arbitrary ring K will called completely
prime provided abEp, a, bEK, implies at least one of these elements is con-
tained in p. »

DEFINITION 2.7. An ideal q of an arbitrary ring K is said to be right
primary provided ab&q, akq, a, bEK, implies b*&q for some positive inte-
ger s.

One can easily show that the V shadow of a V primary R submodule is a
right primary ideal of 4.

DEerFINITION 2.8. An R submodule is irreducible provided it is not the
intersection of two R submodules that properly contain it.

TueoreM 2.1. If M is an A-R module satisfying the A.C.C. for R sub-
modules, then every irreducible R submodule N is V(N) primary.

THEOREM 2.2. The V radical of a V primary and irreducible R submodule
is a completely prime two-sided ideal of V(N).

Proof. The V radical p of N is closed under addition. For a, bEp, let s
and ¢ be the least positive integers such that a® and b* are contained in the V
shadow n of N. Suppose s>1 and t>1. Then, since (Ma*=)aCN and
Ma*—1EN, we have NC(N:a), and similarly NC(N:b). Suppose a+bd&)p.
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Then, since [(N:a)N\(N:b)] - (a+b) N and N is V primary, it follows that
(N:a)M(N:b) S N. However, this is impossible since this would imply that
N is reducible, i.e., N=(N:a)N(N:b). If s=1, then (a+b)*En, and similar-
ly, if t=1, then (¢+b)*En.

The radical p is closed under right and left multiplication by elements of
V(N). Again, for aEp, let s be the least positive integer such that a*&n. Since
n is an ideal of V(N), a*cEn, for any c€ V(N). If s>1, then a*~!(ac)En.
Hence, since the V shadow n of N is right primary and e*~'€n, it follows
ac€yp. If s=1, the result is trivial. Since (ca)*=c(ac)*'a, caEp.

We conclude by showing that p is completely prime in V(). Suppose
a1- a2 €Y, a1, a:EV(N). Then (a1a2)*En for some positive integer ¢£. From
these elements let a;,, @i, - - -, @i, be the smallest subcollection whose prod-
uct @i;- @i, - - - a;, isinn. Since gq; - - - - - a;,_, is not in n and n is right
primary, it follows a;, Ep.

Usual lattice theoretic methods give us the following theorem.

THEOREM 2.3. If M is an A-R module satisfying the A.C.C. for R sub-
modules, every R submodule can be expressed as the intersection of a finite num-
ber of irreducible R submodules.

DEeFINITION 2.9. The intersection N=N;"\ - - - N, of R submodules
is said to be srredundant if NCNi/N - - - A\N,_xN\N. N - - - NN, 1=1,
2, -, ¢

THEOREM 2.4. If N=N\"\ - - - \N,=N{N - - - "\N¥s, where N;, N}, are
irreducible, and if these intersections are irredundant, then:
(i) For any i, 1 S1<s, there is a j, lgjés“, such that

N=le\n-(\Ni_lf\N?f\NH.lf\”-f\N,.

(i) s=s"

For proof we refer to [2, p. 252].

DeFINITION 2.10. If NV is an R submodule of M, then N’ is a component
element of N’ if it appears in any irredundant representation of N as the
intersection of irreducible R submodules.

DEFINITION 2.11. The ring F*(N) =1 V*(N,), where N, ranges over the
entire set of component elements of N, is called the subcentralizer of N.

The subcentralizer F*(N) is contained in the centralizer of N and is not
zero since it contains the identity element. We denote an arbitrary subring of
F*(N) that contains the identity element by F(N). The radicals, which we
- shall now consider, will be in just such a subring F(N).

THEOREM 2.5. Let N=N\"\ - - - N\N,=N"\ ... N\N¥ be irredundant
intersections where the N;, Nt are irreducible R submodules, =1, 2, « - -, s.
Then the set of distinct F radicals of Ny, - - -, N, is identical with the set of
distinct F radicals of N¥, - - -, N¥in F(N).
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THEOREM 2.6. Let Ny, - - -, N, be irreducible V' primary R modules,
where V' is any subring of V*(Ny)N - - - N\V*(N,) containing the identity
element. If N; has V' radical p for all i, then N=Ny"\ - - - NN, is again V'
primary with radical p. If the intersection N=Ny\ - - - NN, is irredundant
and N has radical p;,1=1, 2, - - -, r, where p;#Y;, for 1#j, then N is not V'
primary.

From the preceding theorems, we can state a theorem quite similar to
that given by Noether and Krull. However the radicals will not be ideals of
the ring A, but will be ideals in a subring of 4. In the example following we
show that the same result cannot be stated unless the ring F(N) is used.

THEOREM 2.7. Let M be an A-R module satisfying the A.C.C. for R sub-
modules. Let N be an R submodule and F(N) a subring of the subcentralizer of
N containing the identity element. Then there exists F primary R submodules
Ny, - - -, N,, with distinct F radicals py, « - - , ps, Suchthat N=N/\ - - - NN,
where this intersection is irredundant. If N=N¥\ . . - N\N? is another such
reduction of N, then r=s, and for a suitable rearrangement of the subscripts the
corresponding prime F radicals are equal.

We shall call such a reduction of NV an F-short representation of N, and the
prime radicals the F associated prime ideals of N.

If the 4-R module M satisfies the A.C.C. for R submodules, then for any
R submodule N and any ideal q of V(N), the R submodules (IV:q) are fixed
for large r. We denote this limit by N(q).

LeEMMA 1. If M satisfies the A.C.C. for R submodules and N=N,MNN,,
where N1 and N, are R submodules, and q is an ideal of V', which is any subring
of V¥(Ni)NV*(V2) containing 1, then (N1 \N3)(q) = N1(q)MNa(q).

LEMMA 2. If N is a V primary R submodule of M, with V radical ideal p,
such that p"Cmn, the V shadow of N, then

() N(@) =N, if adp,
(i) N(q)=M, if a<p,
for an ideal q contained in V(N).
From the preceding lemmas the following theorem is immediate.

THEOREM 2.8. If M satisfies the A.C.C. for R submodules and N =N\ - - -
NN, s an F-shortrepresentation of N with distinct F radicals {p;} ,1=1,2, - - -,

s, such that YiCn; for some positive integers ri, 1=1,2, - - - ,s,and qis en ideal
of F(N) contained in Pmi1, = - - , Doy DUt not in p1, + + +, Pm, then N(g) = NN
.« NN,

DEeFINITION 2.12. If N=N,"\ - - - NN, is an F-short representation of
N,wecall N'=N;N - - - N\N,, an F isolated component of N, if no one of the
prime ideals p;,, - - -, P, contains an F associated prime ideal of N which
is not an ideal of this set.
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THEOREM 2.9. If M is an A-R module satisfying the A.C.C. for R sub-
modules and N=Ny"N\ - - - \N,=N{N - . - \N? are two F-short representa-
tions of N with distinct F radicals py, - - - , Da, such that pjiCu; and piiCnf for
positive integers r; and t;, where n; and nt are the corresponding F shadows,
i1=1,2, - - -, s, then the corresponding isolated components are equal.

One may ask in what cases, as in Theorem 2.9, would p;iCn If M satis-
fies the A.C.C. for R and F(NV) submodules, then this is true. For it follows
from Theorem 1.2 that F(N)/q, where q is the annihilating ideal of M in
F(N), satisfies the A.C.C. for right ideals. Therefore F(N)/n; satisfies the
A.C.C. for right ideals. Since p; is the set of all nilpotent elements in F(N)/n;
it follows pjiCn (see [5]). In addition, if F(NV) satisfies the D.C.C. for right
ideals, then p;iCn. In fact, in this case, F(N)/p;: is a division ring, and the p;
are maximal ideals of F(N). Therefore each N; would be an isolated com-
ponent. Hence, in this case, the representation would be unique.

2’. Example. Let D be a Noetherian ring with identity 1. Consider D,,
the ring of 2X2 matrices with elements in D. Then by taking as R the ring
of right multiplications and as 4 the ring of left multiplications, we have an

A-R module.
Denote by
(7)
I
the set of all matrices (a;;) in D with an, @12 €D as, ass &1, where I is an ideal
in D. Then
(;)
I
is an R submodule.
The proof of the following lemma we leave as an exercise.

(D)=()n ()

Denote by (Ih, Ir): the set of all matrices (a:;); in 4 with an, a1 ED,
an €1, anE I, where I; and I; are ideals in D.

THEOREM 2'.1. If

LEMMA 1.

if and only if I=IN1,.

then V*(N) is (I, D).
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Proof. Certainly this set is contained in the centralizer of N. Suppose
(ai))1& I, D)y, i.e., an € I. Then for

(1 O)GN

0 0

6 - e
a21 Q2 00 a 0

THEOREM 2'.2. If
D
= ()
I

then the V*(N) shadow of N will be (I, I):, and the V*(N) radical of N will be
(I, p)1, where p is the radical of I in D.

Proof. Certainly (I, I); is contained in the V*(N) shadow of N. If now
(a:;)1E V*(N) but not contained in (I, I),, i.e., a&I. Then for

(e

0 1

(011 012> (0 0) _ (0 012) EE N.
a21 QG2 01 0 as

If (,aij)le V*(N), then (aij)f=(b,~,~)z, where by, b ED, bu€E1, b22=c+a‘22
for cE1. Hence, (a:;): is contained in the V*(N) shadow if and only if ax&p.

THEOREM 2’.3. If
D
v-(7)
I

where I is a primary ideal in D, then N is V*(N) primary.

we have

we have

Proof. Suppose (a:;) is contained in M and is not contained in N, say
(121€I. Let (bij)le V*(N) = (I, D)z, i.e., bzlel. Then if (a;j)(b;j);= (b.-,-)(a,-,')'
= (ci;) EN, we have s =d+anbn, with dE1. Since (¢;;) EN, cn=d+anbn&l.
Inasmuch as I is primary in D and as €1, then b Ep, the radical of I in D.
Hence (b:;)1E€ (I, p)1, the V*(N) radical of N.

A similar discussion holds if as & I.

Let D =F|1, x, y], the ring of polynomials in x and y over the field F. Let
I=(x? xy), [=(x), and I.=(x?, y+ax), where «EF and L.#=Is if a=pB.
Then in D, I =1;N\I., where the radical p = (x, y) of I, is the same for each
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decomposition of [ in primary ideals.

Il’l Dz, let
D D D
N=< ), N, = < ), and ."Va=( )
I 1./, Iq

Then, by Lemma 1,
ZV = Nl ﬂ Na.

However, here the V*(N,) radicals (Va, p) are different for each decomposi-
tion. If we let F=NI,\I1, then in (F, D) =N V¥(N )N V*(N,) the radical
(F, p): is the same for each decomposition.

Thus although the corresponding V* radicals may be distinct for two de-
compositions of an R submodule, the corresponding F* radicals are the same.

3. Completely indecomposable 4-R modules.

DEeFINITION 3.1. An R submodule of an 4-R module M is said to be in-
decomposable if it can not be expressed as the direct sum of R submodules.
An 4 submodule of M is said to be indecomposable if it can not be expressed
as the direct sum of 4 submodules.

DEFINITION 3.2. A completely indecomposable A-R module is an 4-R mod-
ule where the following four conditions are satisfied.

II-1. Every R submodule of M is indecomposable.

1I-2. Every A submodule of 3 is indecomposable.

I1-3. M satisfies the A.C.C. for 4 submodules and R submodules.

11-4. M satisfies the D.C.C. for A submodules and R submodules.

DEFINITION 3.3. A simple or minimal R submodule is an R submodule N
such that if 0CEN’C N, where N’ is an R submodule, then either 0 =N’ or
N=N'. A simple or minimal A submodule is defined in the same manner.

From I1-3 and Theorem 1.2 we conclude that R/q’ and R/q both satisfy
the A.C.C. for right ideals, where ¢’ and q are the annihilating ideals of M in
R and 4 respectively. By 11-1 the 0 module is irreducible as an R submodule,
for if N; and N; are R submodules such that 0=N,N\N,, then N+ N,
= N;@® N,. Hence, by Theorem 2.1, the 0 submodule is 4 = V*(0) primary,
and, by Theorem 2.2, the radical p of 0 in 4 is a completely prime ideal of 4.
Furthermore, since A4/q satisfies the A.C.C. for right ideals and p is a nil
ideal in 4/q, then from a theorem proved by Levitski [5], it follows that
p*Cq for some positive integer s. Similarly by II-2, the 0 module is an irre-
ducible 4 submodule. Hence 0 is R primary and its radical p’ in R is a com-
pletely prime ideal in R, where p’"Cq’ for some positive integer 7.

For a set H in M and a set m in A denote by Hm the set of all sums
inai for x;€H and a;&m. For a set M CR we denote by Hm’ the set of all
sums D_x,0; for x;€H and a;Em’.

LemMA 1. Every completely indecomposable A-R module M contains a unique
minimal A-R submodule.
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Proof. By 11-4, M contains a minimal R submodule N,, which is necessar-
ily a unique minimal R submodule. For if N, is another such minimal R sub-
module, then 0 = Ny \N;. Similarly M contains a unique minimal A submod-
ule V.

We shall now show that N, is an 4 submodule. Let H(a) be the homo-
morphism x—xa of M for a©A. Then H(a) will be an R homomorphism of
N, with kernel N, or 0. If the kernel is N,, then Nya=0. If the kernel is 0,
then Na is an isomorphic image of Ny and therefore a minimal R submodule.
Since N, is the unique minimal R submodule, then Noa = N,. In both cases
NowaCS Ny, and therefore Ny is an A submodule. Similarly N’ is an R sub-
module. Hence it follows that N¢C N’ and N'CN,, and therefore No=N".

LEMMA 2. (0: Ny; A) and (0: No; R) are maximal right ideals in A and R
respectively.

Proof. Let xR =xA4 = N,, which is necessarily cyclic. Lety be the homomor-
phism that takes a into xa, for all a € A. If we treat 4 as a right module over
its set of right multiplications, then y is an 4 homomorphism of 4 upon N,
with kernel (0:x; A). Hence A/(0:x; A) is A isomorphic to x4. Since x4 is
a simple 4 module, it follows that (0:x; 4) is a maximal right ideal of 4.
From the relation

No(0:x; A) = xR(0:x; A) = x2(0:x2; A)R =0

it follows that (0:x; 4) =(0: No; 4).

Similarly (0: No; R) is a maximal right ideal in R.

Inasmuch as the 0 module of M is A primary, we have (0: No; 4) Cp. Con-
sequently p is a maximal right ideal in A4, and since p is also a completely
prime ideal in 4, it follows that 4/p is a division ring. Similarly R/p’ is a
division ring.

LEMMA 3. The unique minimal A-R submodule N, is equal to (0:p) and
(0:p").

Proof. We have (0:p) is a vector space over A/p. If NoC(0:p), then
(0:p) =N,®N’, where N’ as an A/p subspace. Since N'C(0:p), it follows
that N’ is an R submodule. This contradicts II-1. Hence No=(0:p). Similarly
Noy= (0:;)’)

Lemmas 5 and 6 are immediate applications of the following known
lemma, which holds true for arbitrary modules over a noncommutative ring.

LEMMA 4. Let M be a unitary right module over a ring R, where R contains
an ideal p such that My*=0 for some integer n. If N is a simple R submodule
of M, then Np=0.

LEMMA 5. If M is a completely indecomposable A-R module and Ny is a
maximal R submodule of the R submodule N, then Nyp’ C Ny, where p’ is the
radical of 0 in R.
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If we consider 4/q as a right module over its set of right multiplications,
we have the following lemma.

LEMMA 6. Let M be a completely indecomposable A-R module. If ny and n,
are right ideals in A containing q, where Wy is maximal in the set of right ideals
contained in Ny, then Mp Sy where P is the radical of 0 in A.

THEOREM 3.1. If M is a completely indecomposable A-R module, then A/q
satisfies the D.C.C. for right ideals, where q is the annihilating ideal of M in A.
Then if

(1) gCnCun---Ca,=4

15 a composition series of right ideals from g to A and

©) 0OCNCN,C---Chh=M
s a composition series of R submodules for M, then

3) 0=0Om,)C---C@O:n) CM
and

(4) = (0:Ny;A) C--- C(0:Np;A4) C A

are composition series of R submodules and right ideals of M and A/q respec-
tively.

Proof. Consider 4 as a right module over its set of right multiplications.

Since M satisfies both chain conditions for R submodules, there exists a
chain (2). From this chain we shall show that the factors of (4) are either 0 or
isomorphic to a simple 4 module, i.e., the chain is a normal chain which can
be refined to a composition series of right ideals in 4/q. From this we can
conclude that 4 /q satisfies the D.C.C. for right ideals, and the length x of
A/q in right ideals is less than or equal to the length X of M in R submodules.

In the second part of this proof we shall show in a similar manner that the
chain (3) is a normal chain that can be refined to a composition series of R
submodules in M. From this we can conclude that u=X\, which completes
the proof of the theorem.

Since (2) is a composition series of M in R submodules, we have, by
Lemma §, N;p’C N,_;, where p’ is the radical of 0 in R. Hence N;p’(0: N;_,; A)
=N;(0:N,_1; 4)p'=0. From Lemma 3, we have (0:p’) = N,, hence N;(0: N;_;;
A)CN,. Since N, is a simple R submodule, it follows that either the R sub-
module N;(0:N,_;; A) equals 0 or N,. If this R submodule is zero, we have
(0:N;j; A)/(0: Nj; A)=0. Suppose however that this R submodule is equal
to No. Then there must exist an xEN;, xE N;—;, and an a €(0: N;_;; 4) such
that xa0. Since x&EN;, x&N,_;, then N, ;+xR=N;. It follows, since
xa#0, that the A submodule x(0: N;;; 4) = {xa] a&(0:N;_; A)} =N, since
N, is also a minimal 4 submodule.
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If we treat 4 as a right module over its set of right multiplications, the
correspondence Y:a—xa for a&E(0:N;; 4) is an A homomorphism of
(0:N;_1; A) onto N, with kernel (0:N;;; A)N\(0:x; A), which equals
(0:N;; A). Hence (4) can be refined to a composition series of 4/q, and
A=pu.

We shall now show that u=X. Since (1) is a composition series we have by
Lemma 6 that n;pCn;_;. Hence (0:1;_1)n,;p =0, and since (0:p) = N,, it follows
that the 4 submodule (0:1;_1)n; equals 0 or N, since IV, is a minimal 4 sub-
module. If this 4 module is 0, we have (0:1;1)/(0:n;) =0. However, if this
A submodule is N,, there must exist an ¢&n;, adn;—; and an x&(0:n;,)
such that xas0. Since a&En;, adn;; it follows that n;_;+ad =n;. Since
xa 0, we have (0:n;_,)a = {xa] xE(O:nj_l)} is an R submodule equal to N,,
since Ny is a minimal R submodule. The correspondence y—ya for
yE(0:1;1) is an R homomorphism of (0:n,;) onto No with kernel (0:n;-)
M (0:a) =(0:n;). Therefore (3) except for repetition is a composition and
/.l,;)\ v

The following theorem is proved in the same manner as Theorem 3.1.

TueoreMm 3.2. If M is a completely indecomposable A-R module, then
R/q§' satisfies the D.C.C. for right ideals, where o’ is the annihilating ideal of M
in R. In addition, the length of R/q’ in right ideals is equal to the length of M in
A submodules.

An immediate application of these theorems gives us the following corol-
lary.

COROLLARY 1. Let R be a ring with identity that satisfies the A.C.C. and the
D.C.C. for both right and left ideals. If no right ideal and no left ideal can be
expressed as the direct sum of right ideals and left ideals respectively, then the
length of R in left ideals and right ideals is the same.

LeEMMA 7. If M is a completely indecomposable A-R module, then [0:(0:m);
Al=nand [0:(0:N; A)] =N, where n is a right ideal in A and N is an R sub-
module.

Proof. Let N=N; in the composition series
0OCNCN:C---CNu=M
of R submodules for M. From Theorem 3.1 it follows that
0C [0:(0:Nog; )] C -+ - C[0:(0:N,; A)] = M

is a composition series of R submodules for M. Clearly [0:(0:N;; A)]S N,
for all 4. Since N, is a minimal R submodule, it follows that No=[0:(0: No;
A)], and this implies that N;=[0:(0: N;; 4)] for all 4. The other part of this
lemma is proved in like manner.

A similar lemma can be stated for a right ideal n in R and an 4 submodule
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N, by interchanging the letters R and 4 in the preceding lemma. The follow-
ing lemma follows immediately.

LEMMA 8. In a completely indecomposable A-R module M, an R submodule
N is completely determined by its annihilating right ideal in A, and an A sub-
module is completely determined by its annihilating right ideal in R.

TaeEOREM 3.3. If M is a completely indecomposable A-R module, then the
set € of A endomorphisms of M consists of the multiplications of the elements
of M with the elements of R. Hence, if q' is the annihilating ideal of M in R,
then § is ring isomorphic with the factor ring R/q’.

Proof. We shall consider € not as a ring, but as a module with R as right
operator domain, according to the following definitions.

x(Hl + Hz) = zH; + xzH,,
2(Ha) = (xH)a,

for all x&€M, Hy, H,, HEGC, a ER.

To any e ER there corresponds the mapping H(a) in € defined by xH ()
=xa for all x&€ M. If R is considered as a right module over its set of right
multiplications, then the correspondence a—H(«) is clearly an R endomor-
phism from R into € with kernel q’. Hence € contains an R submodule E’
which is R isomorphic to R/q¢’. We have but to show that € =E’. Since E’
has finite length, namely the length u of R/q’ in right ideals, we shall show
that € as an R module has length u. This would imply that €=E’.

By Theorem 3.2, since R/q’ has length u for R submodules (right ideals),
the length of M for A submodules will be u. Let

(1) 0OCNCN,C---CN,=M

be a composition series of M in A submodules. Let E;, for =0, 1, - - - | u,
be the R submodules of € which annihilate N;, i.e., HEE; if N;H=0. We
shall show that the chain

(2) CDE2E D2 -+ 2E, =0,

where 0’ denotes the zero-endomorphism, will be a composition series of R
submodules for €. This we shall do by showing that E,_;/E; is R isomorphic
to the division ring R/p’.

If HEE,,, then N;H is an 4 submodule which is homomorphic with N,.
Since N;_1H =0, the length of N;H is at most 1; hence N;HC N,=(0:p’).
Let x be a fixed nonzero element of NVyand x; be a fixed element of N; not in
N;_;. Then xR=Nyand N,;_;+x:4 =N;. Since NNJHC Ny=xR, there exists an
a &R such that x;H=xa. Let @ denote the coset of o in R/p’. Since p’ is the
annihilating ideal of Ngin R, the correspondence H—& is an R homomorphism
of E;, into R/p’ with kernel E;. Hence E;/E; is R isomorphic with an R
submodule of R/p’. However, since the only submodules of R/p’ are 0 and
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R/y’ itself, all that remains to show is that E;_,/E;#0’.

Let Ef be the set of all elements « in R such that N;a=0,4=0,1, - - - , b
Then by Theorem 3.2, Ej_,DE¥ and consequently there exists an element
aER such that N;a0 and N,_;a=0. From this it follows that H(a) is con-
tained in E;; and not in E;. Hence E;_,/E,;#0’, and therefore (2) is a com-
position series. Thus E' =@.

COROLLARY 1. Let M be a completely indecomposable A-R module and let
N be an A-R submodule. Then every A endomorphism H* of N can be extended
to an A endomorphism H of M. If H* is an automorphism of N0, then H is
an automor phism of M.

Proof. If N is an A-R submodule of M, then N is a completely indecom-
posable 4-R module. Hence, it follows from Theorem 3.3 that if H* is an 4
endomorphism, then there exists an element « € R such that xH* =xa for all
xEN. The endomorphism xH =xa for all x& M is clearly an extension of H*
to an A endomorphism H of M. If H* is an automorphism of N0, then
adyp*, where p* is the radical of the zero-module of N in R. If p’ is the radical
of the zero-module of M in R, clearly p’ Cp*, and since p’ is a maximal ideal,
then p’ =p*. Hence a&y’, which implies H is an automorphism of N, since
a is a unit of R(Y).

LEMMA 9. If N, and N, are two R submodules of M with respectively the
annthilating right ideals n, and n,, then the annihilating right ideal of Ny N,
s m +le.

Proof. Let N;=NiMN\N,. Then if n; is the annihilating right ideal of N;
in A4, we have, by Lemma 8, n;=(0: N3; R). Since (0:1,41n2) = (0:1)M(0:1n,)
= NN\ N,= N3, then, by Lemma 8, 0: (0:1n,+n;); R=(0:N;; R) =n,.

The following lemma which holds for arbitrary modules over a noncom-
mutative ring is proved by Snapper [7, p. 131].

LEMMA 10. Let M and W be two additive groups with the same ring R as
operator domain. Let Ny and N be two R submodules of M and let W1 and W,
be two R submodules of W. Let I, be an R isomorphism between Ny and W, and
let I, be an R isomorphism between Nz and W,. Let I, map N3=N1(\N; iso-
morphically onto Ws= WiN\Wa, i.e., I induces an R isomorphism I* between
W3 and N;. In the same way, let Iy map Ni isomorphically onto Ws. Finally,
let Ii*=I,*=1I;. Then there exists an R isomorphism between N+ N, and
Wi+ W which is simultaneously an extension of I, I and I;.

DEFINITION 3.4. A completely indecomposable 4-R module M is said to
be duo, provided every R submodule is an 4 submodule and every A sub-
module is an R submodule.

(%) It is shown in Jacobson [3, p. 57] that if R/p is a division ring, then the elements not in
p are units of R, if p is a nil-ideal.
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Since the set of annihilators of an 4-R submodule in 4 or R is a two-sided
ideal, we have by Theorem 3.2 and Lemma 7

THEOREM 3.4. If M is a duo completely indecomposable A-R module, then
the length of M in A-R submodules, the length of A/q in two-sided ideals, and
the length of R/q’ in two-sided ideals, where q and o’ are the annihilating ideals
of M in A and R respectively, are the same. In addition, if 1 1s a two-sided ideal
of A and N is an A-R submodule of M, then

0:(0:n); A =n and 0:(0:N;A) = N®,

LeMMmA 11. Let M be a duo completely indecomposable A-R module. If M
has a unique maximal A-R submodule, then M is R isomorphic to R/q’ and A
isomorphic to A/q, where o' and q are the annihilating ideals of M in R and A
respectively.

Proof. If N is the unique maximal 4-R submodule of M, then for xE M,
x€&N, it follows that xR=xA4 = M. The mapping a—xa, all aE A4, is an A
homomorphism of 4 onto M with kernel g, for suppose xa =0, then xaR =0,
which implies that xRe =0, i.e., Ma=0.

The following is an extension of a theorem proved by Snapper [7, p. 133].

THEOREM 3.5. Let M be a duo completely indecomposable A-R module and
W a duo completely indecomposable A-K module, then M is A isomorphic to W
if and only if they have the same annihilating ideals in A.

Proof. It is obvious that if M and W are A isomorphic, they have the
same annihilating ideals in 4. Hence we assume that A/ and W have the same
annihilating ideal ¢ in 4 and prove they are 4 isomorphic.

Since the length of M and W in A-R submodules are both equal to the
length of the difference module 4/q in A submodules (two sided ideals), let
u be the common length of W, M and A/q. If u=1, both M and W have their
zero submodules as unique maximal 4-R submodules, and hence, by Lemma
11, are A isomorphic to 4/q, and hence isomorphic to each other. Conse-
quently, we assume u>1 and make our induction hypothesis that Theorem
3.5 has been proved for u=1, 2, - - -, u—1. There are two cases to be con-
sidered.

CASE 1. One of the two modules, say M, has a unique maximal A-R sub-
module. Since M has a unique maximal submodule, it follows from Lemma 11
that M is 4 isomorphic to 4/q. This implies that 4/q contains a unique mini-
mal two sided ideal. Consequently, there exists only one two-sided ideal g,
where the length of 4/q; is p—1 in two-sided ideals. If 0’ is the zero element
of W, the length of W;=(0":q,) is u—1 and hence W, is a maximal 4-R sub-
module of W. We assert that W, is the only maximal 4-R submodule of W.

() Notice that this implies that every right ideal of 4 or R is a two-sided ideal.
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Let W, be any maximal A-R submodule of W with q; as annihilating ideal in
A. Then, by Theorem 3.4, the length of W, is u—1, and the length of 4/q,
is u—1. Consequently, =gz and Wo=(0":q2) =(0:q:) = W;. Lemma 11 then
implies that M and W are 4 isomorphic to 4/q and hence W and M are 4
isomorphic.

CASE 2. Both M and W have at least iwo different maximal A submodules.
Let N, and N, be two different maximal A-R submodules of M, which implies
that M = N;+ N,. The length of N, and N, is u—1. If g, and g, are the anni-
hilating ideals in 4 of N; and N,, then qu=(0:N;; 4) and qe=(0: N2; A).
Furthermore, by Theorem 3.4, qi#q. and the length of both the difference
modules 4/q; and A/g; in 4 submodules (two-sided ideals) is u —1. Consider
the 4-R submodules W;=(0":q;) and W,=(0":q2) of W. Then, by Theorem
3.4, Wy # W,, and the length of Wjand Wyisu—1,i.e., Wy and W, are distinct
maximal 4-R submodules of W, which implies that Wi+ W,=W. Since N,
is a duo completely indecomposable 4-R module and W, is a duo completely
indecomposable 4-K module with the same annihilating ideal g, it follows
by induction that N; and W, are 4 isomorphic. In the same way N, and W,
are A isomorphic. Hence, let I, be the 4 isomorphism which maps N, onto
Wi and I, the A isomorphism that maps N; onto W,. We claim that I; maps
N3=N1NN; A isomorphically onto W3=WiN\W, and that I, maps N; 4
isomorphically onto W3. In the first place, the annihilating ideal of N3 and
W3 in A is g1+ ¢z according to Lemma 9. In the second place, both N3I; and
N3l are A-R submodules of W which are A isomorphic with' V3. Hence these
modules have q14q. as annihilating ideals in 4, which implies, according to
Theorem 3.4, that N3I,=N3l,=Wj;. Let I}* and I;* be the A isomorphism
which map N; onto W3 and which are induced respectively by I; and Ie.
However, we cannot as yet apply Lemma 10 since it may be that I*# I*.
However, we shall change I, into a new A4 isomorphism J; such that J* = I3*.
Let (I;*)~! be the inverse of I}*; hence (I;*)~! maps W34 isomorphically onto
N;. Then (I*)~'I* is clearly an A isomorphism, say H*, of W; onto itself.
Since W3C Wy, it follows from Theorem 3.3, Corollary 1, that there exists an
A isomorphism H of W, onto itself, where H is an extension of H*. For J,
we then take the A isomorphism J;=I;H which clearly maps IV, onto W,.
Furthermore, if Ji* is the A isomorphism between N; and W3, induced by Jy,
then J* = I* because, if x & Nj, then xJ* =xI1H=xI*H and, since xI*& W,
then xI*H =xI*H* =x[*(I*)~s* =xI;* =xI,. We can conclude from Lemma
10 that there exists an 4 isomorphism between N1+ N. =M and Wi+ W,=W
which proves our theorem.

In terms of representations this theorem has the following meaning. Let
M and W be faithful representation spaces for a ring 4 with identity, where
@, and G; are the ring of R endomorphisms of M and W respectively. Consider
M and W as representation spaces for §; and @,. Then, if every A subspace
of M is a G, subspace and if every €, subspace of M is an 4 subspace, and if
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every A subspace of W is a €, subspace and every &, subspace of Wis an 4
subspace, and if, in addition, M and W have composition series of 4 sub-
spaces and unique minimal 4 subspaces, these representations are equivalent.

3’. Examples. Examples of completely indecomposable 4-R modules
where 4 and R are commutative are given by Snapper in [7].

ExampLE 3’.1. Every Grassmann(®) Algebra with finite basis can be con-
sidered as a duo completely indecomposable 4-R module by taking as R the
ring of right multiplications and as 4 the ring of left multiplications. Sup-
pose the basis elements are ey, €3, - - -, e,. Then this A-R module is duo since
eie;= —eje;, and satisfies I1-1 and I1-2 since xR=x4, where x=¢e,-¢; - - - €,,
is a unique minimal 4-R submodule (two-sided ideal).

ExaMPLE 3’.2. Let F be a field and x,, x; and x3; be indeterminants. Con-
sider H= F[1, x1, xz, %3], where the following conditions are satisfied:

(1) Associate law of multiplication.

(2) Two sided distributive law.

3) al=1la=a, ax;=x.a,1=1, 2, 3, for all aEF.

(4) XXXk = X1, ’I:,j, k=2, 3.

(5) xxjxrx:=0,14,7, k, 1,=1,2, 3.

H is an algebra with finite bases over F, for if x€ H, then x =ao+awx;+asx.
4 a5+ asxs+asxs +asxexs+arxsxs. Properties (4) and (5) imply 0 =x% =xx;,
1=2, 3. If we let R be the ring of right multiplications and 4 be the ring of
left multiplications, then H is a completely indecomposable 4-R module, for
xR =xH =Hzx,=x4 is a unique minimal 4 submodule and a unique mini-
mal R submodule. H is not duo since x.H =x,R is not an 4 submodule because
it does not contain x3x;,.
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