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1. Introduction(2). A. G. Kurosh [l, p. 323] has formulated the following

problem: The free and the direct product of a set of groups are algebraic

operations on these groups which have the following properties:

(a) the operations are commutative;

(b) the operations are associative;

(c) the product contains subgroups which generate the product;

(d) these subgroups are isomorphic to the original groups;

(e) the intersection of a given one of these subgroups with the normal sub-

groups generated by the rest of these subgroups is the identity. The question

arises, are there any other products, other than the free and the direct prod-

uct, which also have these properties?

The answer to this question is yes. Golovin (see [3]) discovered a de-

numerable number of such products which he called nilpotent products. We

give in this paper another set of such products which include nilpotent

products as a special case. S. Moran [5] has also produced another set of

products which he called verbal products.

To the properties (a) through (e) above, S. MacLane has added

(f) (MacLane's postulate): if each of these subgroups (in the product) is

replaced by a factor group of the same subgroup, then the resulting group is

the same as the product of the factor groups.

In his paper, Golovin introduced what he called regular products and

fully regular products. Regular products are those products which satisfy

conditions (c) and (e); Golovin showed that they necessarily satisfy (d).

Fully regular products satisfy conditions (a), (b), (c), (d), and (e). Golovin

asks, but does not answer, the question as to whether all regular products are

associative. The answer will be given here in the negative. Verbal products

(which include nilpotent products) satisfy MacLane's postulate. A fully regu-

lar product which does not satisfy MacLane's postulate will be given here;

hence MacLane's postulate is independent of (a) through (e).
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In this paper regular products are investigated further, and several non-

associative, commutative products are produced.

The significance of this problem is that its solution may lead to a more

detailed classification of groups; for example, by means of direct products,

all Abelian groups with a finite number of generators can be classified. It

would also be a tool for the creation of new groups or new classes of groups.

The following questions are still open:

(i) Are there any more fully regular products satisfying MacLane's postu-

late other than those already mentioned here? If so, how can they be classi-

fied?
(ii) How can all regular products be classified? Given a regular product,

how can one decide if it is fully regular?

(iii) Given a group, defined by means of a set of generators and some de-

fining relations, how can one tell whether or not it is a fully regular product

of its subgroups?

In the second section of this paper, definitions and notation are given,

and theorems proved in Golovin's paper are stated. Thus it should be possible

to follow this paper without previous study of Golovin's work, but obviously

such study would be helpful.

In the third section, theorems needed in the fourth and fifth sections are

proved, and an important theorem due to W. Magnus is stated. Theorem 3.7

is of particular importance, since it is the key identity used to prove that

Golovin's nilpotent products are a special case of the associative products

given in §5. It is also of intrinsic interest, since it gives a relation between

members of several lower central series of a free product.

In the fourth, fifth and sixth section, the final results are stated and

proved; in the fourth section, the results on nonassociative products; in the

fifth section, the results on associative products. A general method for proving

a large number of regular products nonassociative is given in the second

proof of Theorem 4.8. Notations and conventions are introduced there which

are necessary in understanding the proofs of Theorems 4.9 through 4.11.

In the sixth section MacLane's postulate is discussed, and a fully regular

product is given which does not satisfy this postulate. The relation between

the work of S. Moran and the results of this paper is summarized.

2. Notations, definitions, and theorems proved elsewhere. The following

notations and definitions will be used throughout:

G = (")» Ai means that G is the intersection of the sets (groups) At.

G=H means the group G is isomorphic to the group 77.

ft0 [A ] denotes the normal subgroup of G generated by the set (group) A.

If there is no confusion, this will be denoted by Sft[A] alone. If 77 is a sub-

group of G, and both 9lH[.4] and 5ft G [A] are under discussion, then SSI [A]

vfill reier to SHa[A].
•C = A/B means that the group C is the factor group of A modulo B.
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G= {Aa, aCM} means that G is generated by the subsets (subgroups)

Aa where the index a runs over the set M. Similarly, G= {A, B, • ■ ■ } means

that G is generated by A, B, • • • .
G = T[a£M Aa means that G is the product of its normal divisors Aa; how-

ever, one of the Aa may not be normal. Similarly G=A BC means that G

is the product of its subgroups A, B, C, two of which are normal.

G= Hagiif *Aa means that G is the free product of the Aa. Similarly

G =A *B * C means G is the free product ol A, B, and C.

G= HaeAfX^4a means that G is the direct product of the groups Aa.

Similarly G=.4X23XC means that G is the direct product of the groups

A, B, and C.
(x, y) =x~1y~1xy denotes the commutator of the group elements, x, y.

(A, B) denotes the group generated by (a, b) for all aCA and bCB.

°A=A, kA= (k~1A, A), where k is a non-negative integer.

oA a =91°[.4], *^4G = (i_i^4Gl G). This is known as the lower central series

determined by A. If there is no danger of confusion, kA will be used. If 27

is a subgroup of G and both kAji and kAg are under discussion, then kA will

refer to kA a-

G = IJagM o Aa is a regular product of the groups Aa if

(a) G={Aa, aCM};

(h) AaC\'>Si[Ba] = l, where Ba= {As, j3^a, PCM} and 1 is the identity

element of G.

Fully regular products are regular products which are associative and com-

mutative. This means that if A o B is a fully regular product of A and B,

then A o B=B o A under the obvious mapping. If any three groups A, B,

and C are given, then (A o B) o C=A o (B o C) under the obvious mapping

(of A-+A, B-+B, C—>C). A(k)B is the jfeth nilpotent product of A and B if

A(k)B= (A*B)/k(A,B)A*B.

A free associative ring, R, with generators Xi, • • • , xr over the integers

is a ring generated by the X; and the integers with the following properties:

(i) all the usual ring operations hold except that multiplication is non-

commutative ;

(ii) the integers commute with every element;

(iii) no other relations hold between elements of the ring other than (i)

and (ii);

(iv) a typical element of 2? is a finite or infinite sum of the form

n + zZ w(«i» «2, • • • , am; au a2, • ■ • , am)xa\xa\ ■ • ■ xanm

where n, ait at and n(a\, a2, • ■ • , am; au a2, • • • , am) are integers (1 ^cti ^r),

and the summation extends over all possible combinations. Questions of con-

vergence do not enter here, since the summation is purely formal.

In a free associative ring R, [x, y] =xy—yx.
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G w; m will refer to a theorem or identity proved by Golovin (see [3]) in

chapter n, section m of his paper. For example, G I; 3.1 will refer to Chapter

I, §3.1. n.m will refer to the mth theorem proved in §w of this paper.

Ml will refer to a theorem proved by Magnus.

The following theorems and identities are stated by Golovin in his paper.

Not all of them are original with Golovin. Many are proved in his paper.

G I; 2.1.1  (x,y) = (y,x)-\

G I; 2.1.2 (xy, z)=y~1(x, z)y(y, z) = (x, z)((x, z), y)(y, z).

G I; 2.1.3 (x, yz)=(x, z)z~1(x, y)z = (x, z)(z, (y, x))(x, y).

GI;2.3 (A,B) = (B,A).
G I; 2.4.1 If A is a subgroup of G, then (G, A)^A if and only if A is

normal.

G I; 2.4.2 liA^B and Cg>D, then (A, C)^(B, D).
G I; 2.4.3 04,5)^9c[.4]n9fl[j3].
G I; 2.4.5 yi[(A,B)]^(1\[A], SSl[B]), and the inequality may hold.
GI;3.1 If G=U,.BJ, then (A, B) =ft[(A, B)] = (ft[A], 9c[B]).
G I; 3.5 If G= {4,5}, then (G, A) = (A, A)(A, B).
G I; 3.6 If TV is normal in G, and A is an arbitrary subgroup of G, and

SA is a system of generators of A, then (TV, A) =(N, SA)-

G I; 4.3 If TV and Ma are normal subgroups of a group G, and A is an

arbitrary subgroup, then

(a • II Ma, n) = (A, N) II iMa, N).
\ a / a

G I; 4.8 If A, B, and C are normal subgroups of G, then

HA,B),C) Ik i(B,C),A)((C,A),B).

G I; 5.3 If Aa are arbitrary subgroups of G, then

m{Aa}    =   II mAa, W = 0, 1, 2,  •  •   ■   .
a

G I; 5.4 If A is any subgroup of G, then (m_1G, A) ^^4, m = l, 2, ■ • ■ .

G II; 1.2 Let G= [Aa, adM}, where T17 is an ordered set. Then G is a

regular product of the Aa if and only if every element g oi G can be written

in the form

g = aaiaa, • • ■ aanu,

where aa(dAai, ud(3i[Aa]) = {(^[^«], ^[As]), a^P}, and «i<a2< • • •

<a„. The aai are unique up to factors equal to 1 (the identity of the group(s)).

G II; 1.14 If G=.4 *B, then (A, B) is a free group generated by (a, b),

adA.bdB.
G II; 5.7 All nilpotent products of groups are fully regular products.

G II; 6.3 If G=A(k)B, and A and B are finite, then G is finite.
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3. Preliminary theorems. In this section, we prove theorems needed in

§§4 and 5. Theorem 3.3 (for which Theorems 3.1 and 3.2 are needed) is a key

theorem in proving the associativity of the products introduced in §5. Theo-

rems 3.4, 3.5, and 3.6 are needed to prove Theorem 3.7 whose significance is

mentioned in §1. Theorem Ml, proved by W. Magnus, and Theorem 3.8 are

the heart of a general method used in §4 to prove that a large number of

products are not associative.

Theorem 3.1. Let P and Q be subgroups of the group G. Then (iP, jQ)
^i+j+iPf\i+j+iQ, and in particular (<P, ,-G) S i+j+iP-

(Comment. This is a generalization of G I; 5.4.)

Proof. This follows almost immediately from G I; 5.4, for since jG = 'G,

(%P, fi) ^ i+i(iP) = i+i+iP;

dP, ,Q) S dP, ,G) ̂  i+i+iP. (Use is made of G I; 2.4.2.)

Similarly, (,-P, jQ) ̂  n-j+iQ. q.e.d.

Theorem 3.2. Let P and Q be arbitrary subgroups of a group G, and M and

N normal subgroups of G. Then

(PN, QM) ̂  SR[(P, Q)(P, M)(Q, N)] (N,M).

Comment. Note that (N, M) is normal since N and M are.

Proof. (PN, QM) is generated by (pn, qm) where pCP, qCQ, nCN,
mCM. This is where normality of N and M are used. Using G I; 2.1.3 and

G I; 2.1.2, we have

(pn, qm) = (pn, m)m~1(pn, q)m =  [»-1(# m)n](n, m)[mr1[n~1(p, q)n](n, q)m].

Since 9c [(P, Q)(P, M)(Q, N)](N, M) is normal, the proof is finished.

Theorem 3.3. Let F=G*H, and let P be a subgroup of G; then

kPr ^ kPa(kG P\ *77), k = 0, 1, • • • .

Proof. The proof is by induction on k.

k = 0: We have to show that 9c[P]^9c°[P](9c[77]ri9c[G]). 31 [P] is gener-

ated by elements of the form/-1/*/, where fCF, pCP- Since free products are

regular, by G II; 1.2, every element of F can be written in the lormf=ghu,

where gCG, h£77 and uC(G, 77). f~1pf=p(p,/)G9c°[P](P, F). Therefore,
we want to show that (p, ghu)C^G[P]m[H]r\3l[G]) for all gCG, hCH,
uC(G, 27). (p, g)CVla[P] by GI; 2.4.3. (p, h)C(G, 27)^9c[G]n9c[77] by
G I; 2.4.3. Similarly by also using G I; 3.1, (p, u)C3c[G]r\^[H]. Using G I;
2.1.3,

(P,gh) = (p, h)(b, (g, p))(p, g),

(p, ghu) = (p, u)(u, (gh, p))(p, gh).
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Since (h, (g, p))d(H, G) and (u, (gh, p))di(G, H)^(G, 77)^9t[G]n9c[77],
we have proved the theorem for k=0.

Suppose true for k — 1. kP = (k-iP, F). By G II; 1.2, we have to show that

(r, ghu)dkPa(kHr\kG) for all rdk-iP^k-iG, g, h, u as above. By induction,

r=t_ipw, where k-ipdk-iPa, ndk-iGC\k-iH. Using G I; 2.1.2, and Theorem

3.1, (r, g) = (t_ipw, g) = (k-ip, g)((k-xp, g), n)(n, g)dkPa-(kG, ^77) • (*_i77, G)

^kPa(kH(~\kG), where use has also been made of the fact that k-iU^kU for

any subgroup U. Similarly, (r, h)d(k-iG, 77)^*Gf\77; (r, u)d(k-iG, o77)
gt9i[G]nA9rl[77]. Using G I; 2.1.3, we obtain

(r, gh) = (r, h)(h, (g, r))(r, g)

and

(r, ghu) = (r, u)(u, (gh, r))(r, gh).

But (h, (g, r))d(H, kG)^kGC\kH and (u, (gh, r))d(oH, kG)^kGf\kH. q.e.d.

Theorem 3.4. If G=[A, B}, then (k<R[A}, 9c[5]) ^k(A, B).

Comment. This is similar to G II; 4.5.

Proof. The proof is by induction on k. For k=0, use G I; 3.1: (°9l[^4],

9?[5]) = (9c[.4], yi[B])=0(A, B). Suppose true for k-1; then using G I; 4.8,

the induction hypothesis, G I; 3.1, and Theorem 3.1, and various definitions,

(W[A],yi[B]) = ((*-W[A],yi[A]),'Sl[B])

g «^W[A],n[B]),W[A'bW[A]MB]).*-W[A])

= (k-i(A, B),G)((A, B), "~Xi) < k(A, B). q.e.d.

Theorem 3.5. If R, S, T, and S*T are subgroups of G, then

W[(R,S*T)] = W[(R,S)(R, T)} ^ CR[u],S«[5])(9c[U],Stt[r])

Proof. The inequality follows from G I; 2.4.5. 9t[(R, S* T)] = 91[(R, S)
• (R, T) ] = V is trivial. The opposite inequality is proved by induction on the

length of an element in S*T. (r, s), (r, t)dV for all rdR, sdS, tdT, obvi-

ously. Suppose u is an element of S* T of length w. Then by G I; 2.1.3,

(r, us) = (r, s)s_1(r, u)s which £ F by induction and the normality of F. Sim-

ilarly (r, ut)d V. q.e.d.

Theorem 3.6. Let G=A*B, then kA =*9t[.4]*_i(.4, B), k = 0, 1, • • • ,
where -i(A, B) = 1.

Proof. The proof is by induction. For k=0, QA='Sl[A]=°3l[A]. For

£ = 1, iA = (A, G) = (A, A)(A, B)^1'ift[A]0(A,B), where GI; 3.5 and some
definitions have been used. Suppose true for k; then using the induction

hypothesis, G I; 4.3, Theorem 3.5, Theorem 3.4, and various definitions, we

have
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k+iA = (kA,G) g (W[A]k-i(A,B),G) = (W[A],A*B)(k-i(A, B),G)

^ (*Sl[A}MA])(m[A],ft[B])k(A, B) :S *+W[A] k(A, B).

Theorem 3.7. Let G=A*B, then k(A, B) = IL.+«=* UA, nB) = (oA, kB)

(oB, kA).

Proof. To prove the first equality, we show (i) k(A, B) ^ Hm+n-* (mA, nB)

and then (ii) k(A, B)'^(mA, nB) for m+n = k.

(i) The proof is by.induction on k. For k =0, G I; 3.1 suffices. Suppose true

for k. Then using the induction hypothesis, G I; 4.3, G I; 4.8, and various

definitions, we have

k+i(A,B) = (k(A,B),G) = (ll   M,„P),g) =    II   ((rA,nB),G).
\m-+n=k / m+n=fc

But

(UI, nB),G) ^ ((mA,G), nB)((nB,G), mA) = (m+1^, „P)(„+15, mA).

This proves (i). To prove (ii), use induction on k. For k=0, G I; 3.1 suffices.

Suppose true for k, and let m+n = k + l. Then by usingG I; 4.8, the induction

hypothesis and various definitions, we have

(mA, nB) = ((n-iA.G), nB) g (m-iA, (G, nB))((n^iA, nB),G)

^ (m-iA, n+iB)(m+n_i(A, B),G) = (n-iA, n+iB)k+i(A, B).

By repeating this as many times as is necessary, we obtain

M, nB) ^ (0A,k+iB)k+i(A,B),

and similarly,

(mA, nB) ^ (k+lA, 0P)*+i(^, B).

Now, using Theorem 3.6, G I; 4.3, and Theorem 3.4, we obtain

(k+iA,0B) < (*+W[A]-k(A, 23),9c[23])

= (k+^[A]MB])(k(A,B)MB]) ^ k+i(A,B).

This proves the first equality. To prove the second equality, it is sufficient to

show that for k^l, k(A, B)S(oA, kB)(kA, oB) in view of the inequalities

proved in the first part of the proof. But kA =( ■ ■ ■ (A, G), ■ • • , G)

^( • • • ((.4, B), G), • • • , G)=i_:(.4, B). Therefore, since all groups con-

sidered are normal, with the use of Theorem 3.5,

(kA,0B)(0A, kB) ^ (k-i(A, B), yt[B])m[A], ^(A, B))

^ (k-i(A, B), A*B) = k(A, B). q.e.d.

The following theorem was proved by Magnus (see [4]).
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MI. Let F be a free group with generators ai, a2, ■ • • , a„; let R be a free

associative ring over the integers with generators xx, x2, • • • , x„. Let a<

correspond to 1+x,- and ar1 correspond to Y?-o ( —l)'^- Then to each bdF

corresponds a unique series of the form

i + Y PK*)
i-i

where 7Jy(xi) is a polynomial of degree j in the x,. (Here XiXk is considered a

polynomial of degree two.) Then the image of F in R is a faithful representa-

tion of F. Let Zi = F,Zk = (Z*_i, F). Let Dk be the set of all b dF such that b
corresponds to a polynomial of the form 1+ Y?-t Rj(xi), i.e., Pjixi) =0 for

all j<k. Then Zk=Dk. For convenience, we shall write (in the future)

& = 1+X>y(x,).

Theorem 3.8. The following identities given here can be proved by direct

computation. Let p, q be elements of a free group, and Ui, z>,-, wit ti elements of

degree i of a free associative ring over the integers. Then using the correspondence

set up in Theorem MI, let

p = 1 + Mi + u2 + u3 + • • • ,

q = 1 + vi + v2 + v3 + ■ ■ ■ ,

p"1 = 1 + Wi + w2 + w3 + • • • ,

q-1 = 1 + h + k + h H-;

then

ui + wi = 0, vx + tx = 0,

2 2
u2 + w2 — ui = 0, v2 + t2 — vi = 0,

«3 + W3 + UiW2 — U2Ui = U3 + W3 — uxu2 + w2ux = 0,

v3 + t3 + Vih — v2Vi = v3 + t3 — »i»2 + t2vx = 0;

awo*

(a) (p, q) = 1 + [«i, vx] + ([ui, vt] + [«2, »i] + (ui + vx)[vx, ux]) + • ■ • .

If p = l+Uk+uk+x+ • ■ • , q = l+vx+Vt+ • ■ ■   where k^2, then

(b) (p, q) = 1 + [«*, vi] + • • •

and

(c) q-xpq = p(p, q) = 1 + uk + (uk+x + [uk, Vi]) + ■ ■ - .

7/p = l+M2+M3+ • • • , q = l+vt+v3+ ■ • • , then

(d) (p, q) = 1 + [u2, v2] + ([«,, »3] + [m3, »2]) + • • • .
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4. Nonassociative products. In this section, several regular products will

be defined and proved to be nonassociative.

In his paper Golovin asked, but did not answer, the following question:

"Are all regular products associative?" An almost trivial example given in

Theorem 4.1 shows that they are not. However, this product is not com-

mutative, and the question arises, are all commutative regular products

associative? Theorem 4.2 gives the answer in the negative.

Theorems 4.3 through 4.8 give proofs of the nonassociativity of some

commutative regular products. Each of these proofs is a special one, using a

method probably not applicable to other nonassociative products. Starting

with Theorem 4.8, a method is used which is due to W. Magnus, using Theo-

rem Ml on the relations between commutator subgroups of a free group and

elements of a free associative ring. This method is used to prove the non-

associativity of a large number of commutative, regular products, and is

probably applicable to others not mentioned here.

Two proofs are given for Theorem 4.8, the second of which explains and

utilizes the method due to Magnus. Notations and conventions will be intro-

duced there which are used in the proofs of Theorems 4.9 through 4.11.

Theorem 4.1. Let A o B=A *B/(<R[(A, A)], 9i[P]). Then o is a regular,
noncommutative, nonassociative operation.

Proof, o is regular because (9l[(A, A)], 9c[23])^(9c[4], m[B]) and G II;

1.2. Let A be Abelian, and B non-Abelian. Then A o B =A * B, while ((b, b'),

a), b, b'CB, aCA is a nontrivial element of A * B which is mapped onto 1 in

23 0.4. Thus o is not commutative. Let A, B be Abelian groups. Then

A o (Bo C)=A *B* C, while ((a, b), c), aCA, bCB, cCC is a nontrivial
element of A * B * C mapped onto 1 in (A o B) o C. G II; 1.14 has been used,
q.e.d.

The question arises, are all commutative, regular products associative?
Here again, the answer is no.

Theorem 4.2. Let A o B=A *B/yt[((A,A), (B, B))]; then o is a commuta-
tive, nonassociative, regular operation.

Proof, o is regular by G II; 1.2. It is commutative because of the sym-

metry of the kernel. Let A he non-Abelian, B and C Abelian. Then (AoB)o C

= A *B * C. But ((a, a'), (b, c)), a, a'CA, bCB, cCC is a nontrivial element

of A *B * C which is mapped onto one in A o (B o C). G II; 1.14 has again
been used, q.e.d.

Comment. The same proof shows that A oB=A* B/(<$1 [(A ,A) ]9c, [(B,B) ])

is a commutative, nonassociative, regular product.

In the rest of this section more commutative, regular products will be

defined and proved nonassociative. A summary of these products is given on

p. 34.
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Theorem 4.3. Let A o B =A * B/HA, B), (A, B)). Then o is not associa-

tive.

Proof. Let H=A o B, adA, bdB, cdC, hdH. Obviously, u = ((a, b),
(a,c)) = l in Ao(BoC). It will be shown that u^l in (A o B) o C.

(AoB)oC=H*C/((H, C), (77, Q). According to Gil; 1.14, (77, C) is
freely generated by (h, c) for all hdH, cdC. By the definition of 77o C,
(77, C) in 77 o C is an Abelian group, the direct product of the infinite cyclic

groups generated by (h, c). Order the (h, c)'s. Then every element of (77, C)

in 77 o C can be uniquely expressed as a product of the form

(hi, ci)ai(ht, c2)ai • • • (hn, c„)°»,        hi d 77, c,- d C, a,- integers,

(hi, d) ^ (hj, c,) if i ^ j.

All such expressions are distinct from 1 unless all factors equal 1. Now

m = ((a, b), (a, c)) = ((a, b), c)(a(a, b), c)-x(a, c)

as can be verified by applying G I; 2.1.1 and G I; 2.1.3 to (c, a(a, b)). Thus

u^l in 77o C = (A o B) o C. q.e.d.
Comment. Another variation of this proof is to consider ((77, C), (77, C))

as a subgroup of (77, C) in 77* C. Using G I; 3.1, G I; 3.6 and G II; 1.14,
((77, C), (77, C)) is generated by elements of the form

iihi, ci) ■ ■ ■ ihk, ck), (h, c)), hi, h d B, d, c d C.

Thus in every element of ((77, C), (77, C)) appears an even number of factors

of the form (h, c), since any cancellations will occur in pairs. But as shown

above, the expansion of u as an element of (77, C) in 77* C has three factors,

an odd number. The method using free associative rings which will be used

later is also successful for proving Theorem 4.3. (See Theorem 4.10.)

Theorem 4.4. Let A oB=A*B/P, where P = 9c[{x2, xd(A, B)}]. Then

o is not associative.

Proof. Let A = {a}, B= {b}, C={c} and a2=b2=c3 = l. It will be shown

that the order oi (A o B) o C is 217-3, while the order of A o (B o C) is 227-3.

By G II; 1.2, the order of 77o V is the product of the orders of U, V and

(U, V) in Uo V. Accordingly, A o B is of order 8, since by G II; 1.14, (A, B)

in A*B is generated by (a, b), and in A o B, (a, b)2 = l. In (A o B) * C,

(AoB, C) has 7X2 = 14 generators. A group in which every element is of

order 2 is Abelian, since xyxy = xyyx = l and hence xy—yx. Hence (A o 73, C)

in (A o B) o C is the direct product of 14 groups of order 2. Thus the order of

(4o5)oCis 8-3-2" = 2"-3. Similarly, B o C is of order 2-3-2* = 24, and

the order oi A o (B o Q is 2-24-22S = 2"-3. q.e.d.

Theorem 4.5. Let A o B =A *B/P, P = Sfl[{(a, b)2, adA, bdB}]. Then o

is not associative.
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Proof, (ab, c)(ab, c) = l in (A o B) o C, where aG^4, bCB, cCC. It will be
shown that (ab, c)(ab, c)^l inio(Bo C). Let 7> = B o C. Then (A, D) in

A *D is freely generated by (a, d), aCA, dCD, according to G II; 1.14. Thus

(A, D) in A o D is the free product of cyclic groups of order two, each gener-

ated by (a, d). By direct computation,

(ab, c)(ab, c) = (b, a)(a, cb)(b(c, b), a)(a, cb(c, b))(b, c)2 in A * D.

Since (b, c) (b, c) = 1 and (a, a*) = (d, a) and (b, c) = (c, b) in A o D, the above

relation becomes

(ab, c)(ab, c) = (a, b)(a, cb)(a, b(c, b))(a, be) in A o D.

But this is a nontrivial product in the free product (A, D) in A o D. q.e.d.

Theorem 4.6. Let A oB=A*B/P, G=A*B, P = <R[{(abab, g), for all
aCA, bCB, gCG} ]r\(A, B). Then o is not associative.

Proof. To prove this theorem, we shall prove the following: (a) If A is

cyclic, and B is the cyclic group of order 2, then (A, B) in A o B is cyclic;

in particular, let A = {a}, B = {b}, an = b2 = 1; then (a, b)k = (a*, b) and hence

(a, b)n = l. (b) If A = {r\, B={s}, and r* = s3 = l, then A oB=AXB, i.e.,

A o B degenerates into the direct product of A and B.

In the proof of (a) and (b), we shall need the following identities which

can be checked by direct computation: (k, m7 p are arbitrary integers)

(1) (rksmrhsm, sp) = (sm,rk)(rk,s2m)(s2n,r2k)(r2k,sp+2m)(sp+2m,rk)(rk,sm+p),

(2) (skrmskrm, rp) = (rm, sk)(sk, r2m)(r2m, s2k)(s2k, rp+2m)(rp+2m, sk)(sk, rm+p),

(3) (rksmrksm, rp) = (sm,rk)(rk, s2m)(s2m, rp+k)(rp+k, sm)(sm,rp),

(4) (skrmskrn, sp) = (rm, sk)(sk, r2m)(r2m, sp+k)(sp+k, rm)(rm, sp).

Let b2 = 1; then

(5) (akbakb, b) = (b, ak)(a2k, b)(b, ak),

(6) (bambam, ap) = (am, b)(b, a2m)(a2m+p, b)(b, am+p),

(7) (bambam, b) = (am, b)(b, a2m)(am, b),

(8) (ambamb, ap) = (b, an)(am+p, b)(b, ap).

Note that all the identities are variations of or derivable from (1) and (3).

Proof of (a). Using (8) and the definition of A o B, we have

(b, am)(an+p, b)(b, ap) = 1 in A o B,

i.e.,

(am+p, b) = (am, b)(ap, b) for all integers m, p.

In particular, (a2, b) = (a, b)2 and, by induction,
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(am, b) = (a^\b)(a,b) = (a, b)m,

and hence 1 =(an, b) = (a, b)n.. Inspection of identities (5), (6), (7), and (8),

which are essentially the only identities holding in A o B, shows that (a, b)k

= 1 only if w divides k. Since by G II; 1.14, (ak, b),k = l,2, • ■ ■ , w — 1, gener-

ate (A, B) in A *B, (a) is proved.

Proof of (b). In (3), letp+fc = 4 (r4 = l).Then using the definition of A o B

(sn, rk)(r\ s2m)(sm, r4-*) = 1.

Let k=m = 2, then

(9) (r2, s) = (r2, s2)2.

Let m = k = l, then (5, r)(r, s2)(s,r3) =1. Let m = 2, k = l, then (s2,r)(r, s)(s2, r3)

= 1. From these two equalities in A o B, we obtain

(10) (r, s) = (r, s2)(s, r3) = (r, s2)(r3, s2)

or

(11) (s, r3) = (f\ s2).

In (4) let m=3, k = 2, p = l, then

(12) (r3, s2)(s2, r2)(r3, s) = 1.

Using (12) and (11),

(13) (s2, r2) = (s2, r3)(s, r3) = 1.

Using (9), this gives

(14) (r2, s) = 1.

In (2), let m = l, p=2, and use (13), (14) and the fact that 1 and 2 are essen-

tially the only nontrivial values that k can take. We obtain

(15) (r, s")(s\ r3) = 1.

Let k = 1, 2:

(r, s) = (r\ s);        (r, s2) = (r\ s2).

Combining with (11):

(16) (s, r») = (s, r) = (r3, s2) = (r, s2).

In (2) let k=p = l, m = 2, and use (14):

(17) (s2, r)(r, s)is, r») = 1.

From (15) for k = l, and (17), it follows that

(18) (s2, r) = 1.
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From (16), (18), (13), and (14), it follows that

(f«, **) - 1,        i= 1,2,3;       j=l,2.

With G II; 1.14, this suffices to show that (A, B) =1 in A o B, which proves

(b).
Proof of theorem. Let A = {a}, B = {b}, C= {c} and a* = b* = c2 = 1. Then

by (b), Ao B =A XB, i.e., A o B is the cyclic group of order 12 generated by

ab. By (a), (ab, c) generates (A o B, C) in (A o B) o C, and (ab, c)k = ((ab)k, c).

In particular, (abab, c) = (ab, c)2^l in (A o B) o C. But (abab, c)=l in

A o (Bo C). q.e.d.

Theorem 4.7 is essentially a corollary to Theorem 4.6.

Theorem 4.7. Let A\jB=A*B/((A, G), (73, G))-P, where G=A*B,
P = 9i [ {(abab, g),for alladA,bdB,gdG}]C\(A,B). Then V is not associative.

Proof. Let A, B, C be the same groups as in the proof of Theorem 4.6.

Then D =A V73 =A XB, and D is cyclic of order 12. Let D*C = F. Then by
G I; 3.5, (D, F) = (D, D)(D, C) = (77, C) since D is Abelian. Similarly (C, F)
= (D, C). Thus ((77, F), (C, F)) = 1 in (A VB) VC reduces to ((D, C), (D, Q)
= 1, i.e., (D, C) is Abelian in D VC. But from the proof of Theorem 4.6,

(dcdc,f)=l, ddD, cdC,fdF is sufficient to make (D, C) in D VC Abelian.
Hence (A VB) X/C=(A o B) o C, where o refers to the o of Theorem 4.6, and

thus in (A VB) VC, (abab, c)^l. But (abab, c)=l in A V(73 VC). q.e.d.
Comment. In §5, it will be shown that ^ is associative, where A^B

= (A*B)/((A, G), (73, G)), G=A*B (Theorem 5.1, for w=w = l). It was

conjectured that by multiplying the "nonassociative factor" P — {(abab, g)}

by the "associative factor" ((A, G), (73, G)), an associative product might be

produced. Theorem 4.7 shows that this conjecture was mistaken.

Theorem 4.8. Let A o B=A *B/((A, 73), (G, G)), G=A *B. Then o is not
associative.

Proof. Two proofs will be given here. The first will be a special proof

designed for just this o. The second will be a proof, based on the work of

Magnus given in §3. This second proof is a general method which will be

used to show a large number of products are nonassociative. Both methods

are given here to indicate the superiority of the second method over the first.

First proof. Let A * B * C = F. Then by the second theorem of isomorphism

Ao(BoC)^A*B*C/yi[((B,C),(B*C, B*C))]-((B*C,A), (F,F)) = F/Q,

(AoB)oC£*A *B*CW[((A, B), (A*B,A*B))}-((A* B,C), (F,F)) = F/P.

Suppose that o is associative. Then Q=P. Let a, a'dA, b, b'dB, c, c'dC.

Obviously ((c, b), (a, a'))dP- Hence ((c, b), (a, a'))dQ- From considerations

of symmetry it follows that ((6, b'), (a, a'))dQ- Hence ((b, b'), (a, a'))dP-

Let D=AoB. Then ((b, b'), (a, a')) = 1 mod ((D, C), (D*C,D* Q) in D . C.
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Since ((b, b'), (a, a'))CD and by G II; 1.2 every element of D* C can be

uniquely expressed as dcu, dCD, cCC, uC(D, C), ((b, b'), (a, a')) = l in D.

Thus if we can find two groups A and B such that ((b, b'), (a, a')) 9^1 in A o B,

we have proved the nonassociativity of o. Let M={a, b}; N={c, d};

((a, b), a) = ((a, b), b)=a2 = b2 = l; ((c, d), c) = ((c, d), d)=c2=d2 = l. Then

((a, b), (c, d))^l in Mo N. When this is proved, the nonassociativity of o is

proved: M and N are both non-Abelian groups of order 8. (Note that ((a, b),

a) = (b, a)(b, a) = 1.) M<=N. The elements of M are a, b, ab, ba, (a, b), bab,

aba, and 1. All elements are of order 2 except ab and ba which are of order 4.

Similar statements hold for N.

By Theorem 3.5, and G I; 4.3 and G I; 3.1, ((M, N), (M*N, M* N))
= ((M, N), (M, N))((M, N), K[(M, M)]) ((M, N), 9c[(/V, N)]). ((M, N),
(M, N)) = 1 in Mo N means that (M, N) is Abelian in Mo N. Since (M, N)

is finitely generated, this means that (M, N) in M o N is the direct product of

cyclic groups, (a, b) is the only nontrivial element of (M, M). From ((M, N),

(M, 217)) =1, we obtain (let mCM, nCN)

((m, n), (a, b)) = (n, m)(m(a, b), n)(n, (a, b)) = 1

or

(1) (m(a, b),n) = (m, n)((a, b), n) for all m C M, n C N.

Similarly from ((M, N), (N, N)) = 1, we obtain

(2) (n(c, d), m) = (n, m)((c, d), m) for all m £ M, n £ N.

It turns out that these are essentially the only relations that hold in (M, N)

in M o N. For example,

((m, ni), »_1(o, b)n) = 1 in M o TV, «, »i £ N, m £ M,

and this gives

((m, m), (a, b)((a, b), »)) (using G I; 2.1.3)

= ((m, »,), ((a, b), «))(«, (a, b))((m, «i), (a, b))((a, b), n) = 1

which gives no new relations. The complete verification consists of more

computations of the type just described.

The chart on p. 439 gives the results of (1) and (2). It turns out that

(M, N) is the direct product of nine infinite cyclic groups and seven cyclic

groups of order 2. The elements of order 2 are of the form

((a, b), n)    and    ((c, d), m).

In particular, ((a, b), (c, d)) 7* 1. q.e.d.
Second proof. Let P and Q be the same as in the first proof. We shall

show that ((a, b), (c, c'))CP, where a£.4, bCB, c, c'CC. Obviously ((a, b),

(c, c'))CQ- We shall use Theorem MI proved by W. Magnus as stated in §3.
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Let x, y, 2i, z2 be generators of a free associative ring R over the integers.

Let a = l+x, o = l+y, c, = l+z,- as indicated in Theorem MI, i.e., we shall

assume that A, B are infinite cyclic groups generated by a and b respectively

and that C= [Ci, c2} is the free product of two infinite cyclic groups. We shall

show that ((a, b), (a, c2)) corresponds to an element which cannot occur in P.

Since our argument will depend only on the literal coefficients of the elements

of R, we shall not write the numerical coefficients. For example, instead of

writing a typical element of A as

1 + nxx + n2x2 + ■ ■ • , ni integers,

we shall write a typical element of A as

1 + x + x2 + ■ ■ ■ .

We first compute the literal coefficients of a typical element of P. We shall

use Theorem 3.8, and it will be sufficient to consider only the first nontrivial

term of each series.

P is the product of 9c[((A, 73), (A *B, A *B))] and ((A*B, C), (F, F)),
where F = A * 73 * C. We shall show that elements of the first factor considered

as elements of R start with polynomials of degree 5, while those of ((A * 73, C),

(F, F)) start with polynomials of degree 4. Thus if we can show that there are

terms in the fourth degree polynomial with which ((a, b), (c, c')) starts which

do not appear in any fourth degree polynomial corresponding to an element

of ((A *B, C), (F, F)), we have proved the nonassociativity of our product.

9c[(G4, 73), (A *B, A *B))]: Let a typical element of A be l+x+ • • •

and similarly a typical element of 73 be 1 +y+ • • • and a typical element of

A*B be l+x+y+ • ■ • . Then using Theorem 3.8(a) and the fact that

[u, u] =0 for any u, we have

1 + [x, y] + • • • as a typical element of (A, B),

and

1 + [x, y] + • • • as a typical element of (A * B, A * B).

Since [[x, y], [x, y]]=0, elements of ((A, 73), (A *B, A *B)) start with a

polynomial of degree 5. (Here we have used Theorem 3.8(d).) Use of Theo-

rem 3.8(c) shows that 9l[((4, 73), (A *B, A *73))] starts with elements of

degree 5.
((A*B, C), (F, F)): Let typical elements of A *B, C, and F be 1+x+y

+ • • • , l+zi+z2+ • • ■ and l+x+y+Zi+z2+ • • • respectively. Then

typical elements of (A *B, C) and (F, F) are

1 + [x ,zi] + [x, z2] + [y, Zi] + [y, z2] + ■ ■ ■

and

1 + [*, zi] + [x, z2] + [y, zi] + [y, z2] + [x, y] + [zu z2] + • • •
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respectively. Then a typical element from ((A *B, C), (F, F)) is

1 + [[x, zi], [x,z2]] + [[x,z{], [y,Zi]]

(1) + [[y, Zi], [y, zt]] + [[x, Zi], [x, y]] + [[x, z,], [zi, z2]]

+ [b, Zi], [x, y]] + [[y,Zi], [*!,«,]]+■••

where by [x, Zi] and [y, z,] is meant summation over both values of i (i = 1, 2).

For the sake of brevity, we can write (1) as

(2) 1+ [[«, p], [y, «]]+•• •

where a=x or y, /3=Zi or z2, and y^b, and summation is assumed over all

a, (3, 7, 5 which satisfy these conditions.

((a, b), (cx, c2)):a = 1 + x+ ■ ■ • ,   6 = 1 + y +  • • • ,    a = 1 + z{ + • • • ,

(a, b) = 1 + [x, y] + ■ ■ ■ ,        (cx, c2) = 1 + [zu z2] + ■ ■ • ,

and

((a, b), (ci, c2)) = 1 + [[x, y], [zu z2]] + ■ ■ ■ .

Consider xyziZ2 which appears in ((a, b), (ci, c2)), and compare it with the

fourth degree polynomial represented in (2). The only terms in which ZiZ2

appears as the last two factors of a fourth degree term, xy does not appear

with it. Remember that elements of a free associative ring do not commute,

so that

[[x, zi], [y, z2]] = (xzx — zix)(;yz2 — z2y) — (yz2 — z2y)(xzx — zxx)

has no terms of the form xyziz2. q.e.d.

Theorem 4.9. Let A o B=A *B/((W[A], ^[A]), (9c[73], 9c[73])). Then o
is not associative.

Proof. The method of free associative rings used in the proof of Theorem

4.8 is used again. By the second law of isomorphism,

(AoB)oC^A*B*Cm[(&lG[A],S!ta[A],) (9cG[5], 9c°[73]))]

■(W[A*B], 9cU*5]), (9c[C],9c[C])) = F/P

and

A o OBoC) 9=^*7UC/9c[((9F[7S], W[B}), (9F[C], 9F[C]))]

■((<!l[B*C],Vl[B*C]), MA],<iSl[A])) =F/Q,

where F=A*B * C, G=A*B, E = B*C. Let^ = {ai, a2}, B = {b}, C={c],
A being the free product of two infinite cyclic groups, and 73 and C being in-

finite cyclic groups. Using the method of free associative rings, we shall show

that P is made up of elements which start with polynomials of degree 5, i.e.,
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using Theorem MI, P^Z&, while ((b, c), (ait a2)) starts with a polynomial of

degree four, i.e., QC\Z^0, and hence Pr^Q.

Using the same notation and conventions as in Theorem 4.8, let at = 1 +x,-,

6 = 1 +y, c = l +z. Then from Theorem 3.8(c), it follows that typical elements

from9c[i4], 9c[23], and 9c[C] are of the form l+X!+x2+ • • • , l+y+ • • •.,

and l+z+ • • • , respectively. Using Theorem 3.8(a), elements from

(9cG [B ], 9c° [B]) and (9c [C], 91 [C]) start with polynomials of at least the third

degree. (Remember that [u, u]=0 for any u.) Elements from (9c[i4], 9t[.4])

and (9cG[4], 91°[-4]) start with l + [xi, x2]+ • • • . Elements from

(9c [A * B ], 9c [.4 * B ]) start with polynomials of the second degree. Thus, using

Theorem 3.8, all elements from P start with polynomials of the fifth degree.

But ((b, c), (ai, a2)) starts with an expansion of the form

i + [[y,4 [i.**]] + •••
whose first polynomial is of the fourth degree, q.e.d.

Theorem 4.10. Let A oB=A *B/k((A, B), (A, B)), k any non-negative

integer. Then o is not associative.

Proof. The method of free associative rings is used. Let A, B, Che infinite

cyclic groups, .4 = {a}, B= {b}, C={c}, a = l +x, 6 = 1 +y, c = l+z. As be-

fore,

(A o B) o C £* A • B*C/9l[k((A, B), (A, B))G] ■ t((A * B, C), (A * B, Q) = F/P

and

A o (B oC) 9* A* B*CM[k((B,C), (B,C))B]-k((B*C, A), (B*C, A)) = F/Q,

where F=A*B*C, G=A*B,E=B*C. Now

( • • • ((((a, c), (b, c)), c), c), ■ ■ ■ , c)

obviously £P. We shall show that it is not in Q.

9c[*((23, C), (B, C))E]: Using previous notation and conventions, typical

elements from (B, C) have the form 1 + [y, z] + • • • . Hence elements from

((B, C), (B, C)) start with polynomials of degree 5, and elements from

k((B, C), (B, C)) start with elements of degree £+5.

k((B * C, A), (B * C, .4)): Elements from B * C start with polynomials of

the form l+y+z+ • • • , and elements from (B * C, A) start with poly-

nomials of the form 1+ [y, x]+ [z, x]+ ■ ■ • . Thus elements from ((B * C, A),

(B*C, A)) start with elements of the form l+[[y, x], [z, x]]+ • • • i.e.,

all polynomials of degree 4 have at least two x's in them. Thus all polynomials

of degree k+i in k((B * C, A), (B * C, A)) have at least two x's in them.

( • • • ((((a, c), (6, c)), c), c), ■ ■ • , c): (a, c) and (6, c) have the form

l+[x, z]+ ■ ■ • and l + [y, z]+ ■ ■ ■ respectively. Hence ((a, c), (6, c)) has

the form 1 + [[x, z], [y, z]]+ ■ • ■ , i.e., there is only one x in its polynomials
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of degree 4. This proves the theorem for k=0. For k^l, ( ■ • • ((((a, c),

(b, c)), c), c), • • • , c) has the expansion

1+ [■■■   [[[[«, z], [y,z]],z],z], ...,,] + ...

which again has only one x in its polynomials of degree £+4.

Theorem 4.11. LetAoB=A *B/k((A, G), (B, G)), G=A*B, jfe^l. Then
o is not associative.

Note. In §5, it will be shown that this product is associative for k = 0.

Therefore, the assumption that k^l is essential.

Proof. The method of free associative rings is used. Let .4 = {ai, a2},

B={b}, C={c}, a,-=l+x,-, b = l+y, c = l+z, i.e., A is the free product of

two infinite cyclic groups and 73 and C are infinite cyclic. Then F = A *B * C,

G=A*B, and E=B*C, (A o B) o C^A *B* C/P, where P = 9c[*((^, G),
(B, G))0]-k((A*B, F), (C, F)), A o (B o C)^F/Q, where <2 = 9c[*((73, E),
(C, E))B]-k((B*C, F), (A, F)).u = ( ■ ■ ■ (((au b), (a,, b)), c), ■ ■ ■ , c) obvi-

ously is in Q. We show that it is not in P:

9c[t((.4, G), (73, G))g]: Elements from this group are of the form

(1) 1+ fixi, y) + •••

where f(x,-, y) is a polynomial of degree k+i in the x,- and y. As usual, Theo-

rem 3.8 has been used here.

k((A*B, F), (C, F)): Elements from G, C, and F are of the form

l+Xi+x2+y+ • ■ • , l+z+ • • • , and l+Xi+x2+y+z+ • • • respectively.

(A * B, F) is of the form 1+ [a, B] + • • • where ay^B; a or 8 = xi, x2, or y;

and summation is assumed over all a, B satisfying these conditions. Elements

from (C, F) are of the form 1 + [7, 5] + • • • where y^8;y or 8=z; and sum-

mation is assumed over all 7, 5 satisfying these conditionsi Thus elements

from ((A *B, F),(C, F)) are of the form

1+ [[a, j3], [7, 8]] + • • • , where a, 0, 7, 8 satisfy the conditions stated

above and summation is assumed over all a, 8,7, 5 satisfying these conditions.

Elements from k((A *B, F), (C, F)) are of the form

(2) 1+ [••• [[[a, 8], [7, *]],ti], ...,«,] + ...

where a, 8, y, 8 are as above, and ey = x,-, y, or z and summation is assumed over

all a, 8,y, 8, e,- satisfying these conditions.

u: ((ai, b), (a2, b)) is of the form

l + [k. y], K y]] + ■ ■ • ;

hence u is of the form

1 + [ • • • [[[[*!, y], [xt, y]], z], z], ■ ■ ■ , z].

Consider xiyyx2z* which appears in the expansion of u. We show that it
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does not appear in any term of the form (2). In every term of (2) at least one

of the following appears as a factor:

(3) otfiyb,    fiayti,    afidy,    ftaSy,    ySafi,    ySfia,    Syafl,    Sypla.

Now consider (xiyyx2)zk, xi(yyxiz)zk~1, Xiy(yx2zz)z*-2, Xiyy(x2zzz)zk~l, • • • ..

Consider the sets of four factors in the parenthesis of each of these terms. If

xiyyx2zk appears in (2), at least one of the sets of four factors must be of the

form (3). Xiyyxj cannot be one of the terms of (3) because all terms of (3)

contain at least one z. yyx2z cannot be one of the terms of (3) because yy never

appears in (3) as the first two factors since a 5^/3 and y^ 5. Similarly yx2zz

cannot be one of the terms of (3). For the same reason, all other possibilities

are excluded. Hence Xiyyx2z* never appears as one of the terms of (2). Xiyyx2z*

does not appear in any term of (1) because of the presence of z*. Here is where

the assumption k}± 1 is used, q.e.d.

5. Associative products. In this section, a denumerable number of com-

mutative, regular products will be defined and proved associative. It will be

shown that these products include products that are different from Golovin's

nilpotent products, and that nilpotent products form a special case of these

products. In Theorem 5.1 these products are defined and proved associative.

The heart of the proof lies in Theorem 3.3. The rest of the theorems of this

section "tie up odds and ends," and Theorem 5.5 generalizes the product of

Theorem 5.1.

Theorem 5.1. Let A oB=A *B/(mA, nB)(nA, mB), where m, n are any

two non-negative integers. Then o is a fully regular product.

Proof. That o is regular follows from G II; 1.2 and the fact that (mA, nB)

■(„A, mB)^(A, 23). o is commutative since (mA, „B)(nA, mB) is symmetric

with respect to A and B. The only problem is the associativity. Let

F=A*B*C, G = A*B, E=B*C, then

C4o23)oC^7/P,    P = 9c[MG, „230)]9c[(n^a, mBa)](mA*B, nC)(nA*B, mC)

and

A o (BoC)^F/Q,    Q = yi[(mBE, nCE)]9c[(nBB, mCE)]-(mB*C, nA)(nB*C, mA).

We want to show that P = Q. We shall show that Q^P. By symmetry, the

opposite inequality will follow, and hence the equality. 9c[(m23£, nC#)]

•9c[(„P£, mCE)]f$P by G I; 2.4.2, and the normality of members of a lower

central series. Using G I; 5.3, G I; 4.3, we obtain

(mB*C, nA) = (mBmC, nA) = (mB, nA)(mC, „A),

and similarly

(nB*C,  mA)   =   (nB,  mA)(nC,   nA)■
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Obviously (mC, nA)(nC, mA)^P. The problem is to show that (J3, nA)

• (n73, nA) = 7\ By Theorem 3.3

*73 ̂  kBG(kG r\ kC)

and similarly for kA. Hence, if we let kGC\kC = Nk and use Theorem 3.3 and

Theorem 3.2,

(m73, nA) ^ (mBG-Nm, nAa-Nn)

= 9c[(m50, nAG)(mBa, „C)(mC, nAa)(mC, nG)] = P.

Similarly (n73, mA)^P. q.e.d.

Theorem 5.2. 7/ m = 0, and n=k, then A o 73 in Theorem 5.1 is Golovin's

kth nilpotent product.

Proof. Theorem 5.2 follows immediately from Theorem 3.7 and the defini-

tion of nilpotent product.

Theorem 5.3. I J neither m nor n are = 0 in Theorem 5.1, then A o B is not

a nilpotent product.

Proof. By G II; 6.3, if A and B are finite, then A(k)B is finite. Let A — {a},

B = {b}, a2 = b2 = l. We shall show that A o B=A *73 in this case, and thus

is infinite. Hence, it cannot be nilpotent. By Gil; 1.14 (A, B) in A*B

= {(a, b)}, i.e., (A, B) is infinite cyclic, and hence Abelian. Thus ((.4, 73),

(A, B)) = l. Now using G I; 3.5, XA = (A, G) = (A, B)(A, A) = (A, 73). Since
the lower central series is a decreasing series, kAti(A, B) for k^ 1. Similarly

*73^(^,73) for ftfel. Thus (mA, nB)^((A, B), (A,B))=1 if m, «£1. But
then A o B=A *B, if m, »2tl. q.e.d.

Theorem 5.4. Let A oB=A*B/(mA, „73)(„4, JB). Then

k I k

AxoA2o- ■ ■oAk^J\*Ai/    II M.-. nA,).
t=l '      i,i\ii*i

Proof. Let k = 3. In the proof of Theorem 5.1, we showed that P = (mA, nC)

■(mB, nC)(mA, „73)(n,4, mC)(nB, mC)(nA, nB). By G I; 5.3 the inequality also

holds the other way, and hence is an equality. Since P = Q (Theorem 5.1),

Theorem 5.4 is proved for k = 3. For k>3, use induction and a proof similar

to that of Theorem 5.1.

Theorem 5.5. Let mx, • • ■ , mk, nx, nt, • ■ ■ , nk be 2k non-negative integers.

Let

AoB=A*B / I[ (miA, niB)(niA, m,73).'    »-i

Then o is associative. If all the mi, w.-S; 1, then o is not nilpotent.
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Proof. The proof of the associativity is the same as that for Theorem 5.1.

The proof of non-nilpotentcy is the same as that for Theorem 5.3.

6. MacLane's postulate. In this section MacLane's postulate will be de-

fined and it will be shown that all the commutative, regular products men-

tioned so far satisfy this postulate. Then the relation between S. Moran's

verbal products and those of §5 will be briefly summarized. Finally a de-

numerable number of fully regular products which do not satisfy MacLane's

postulate will be given. This example shows that MacLane's postulate is

independent of the other postulates.

Definition. Let A o B he a product of A and B; let M and N he normal

subgroups of A and B respectively. Then o satisfies MacLane's postulate if

A o23        A     B
-^ —o —
3l[MN]      M    N

under the obvious mapping for all A and B.

Comment. If a product satisfies MacLane's postulate, then the formation

of the product is to some extent independent of the structure of A and B;

this will be shown clearly in the example of Theorem 6.3.

Theorem 6.1. The nonassociative products of Theorems 4.2 through 4.11,

and the associative products of Theorems 5.1 and 5.5 all satisfy MacLane's

postulate; i.e., all the commutative, regular products mentioned so far satisfy

MacLane's postulate.

Proof. By the second law of isomorphism:

AoB A*B

91 [MAT]- m[MN]P

tor some subgroup P of A * B.

A    B

A     B        M* N A*B
— ° — =-= —~,-1-

M    N P' 9c [M2V]P"

for some subgroup P' of

A    B

M* N

and some subgroup P" of A * B. For each of the products mentioned in the

statement of the theorem, compute the corresponding P and P". If they are

equal, then MacLane's postulate holds; if not, it does not. A computation will

show that it does, q.e.d.
In  [5], S. Moran has defined verbal products and shown that they are
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fully regular. The following theorem shows that the products of Theorem 5.1

(and hence those of Theorem 5.5) are special cases of verbal products.

Theorem 6.2. Let G=A *B. Then (mG, nG)f\(A, B) = (nA, nB)(»A, mB),
where m, n are two arbitrary, fixed non-negative integers.

Proof. For the proof of this theorem, the following lemmas will be useful:

Lemma 1. (pq, st) = (p, t)((p, t), q)(q, t)(t, (s, pq))(p, s)((p, s), q)(q, s).

This identity can be verified directly, or Gl; 2.1.2 and G I; 2.1.3 can be applied

several times.

Lemma 2. Let G=A *B and gi = atbiUi, atCA, 6,£23, UiC(A, B). (Use is
made here of the unique representation theorem, G II; 1.2.) Let

*£=((••• ((go, gi), gi), ' ' '), gk),

ka <=((-• • ((o0, oi), a2), ■ ■ ■ ), ak),

*b= (("■((h,bi),b2),---),bk);

then

ka = kakbv,       v £ k-i(A, B), for k = 1,2, ■•■ .

Proof of Lemma 2. Proof is by induction on k.

k = l: We want to show that (a060Mo, ai6iWi) = (a0, ai)(6o, bi)u, -uC(A, B).

First, use Lemma 1, on

(a06o, 0161).

Using the fact that (A, B) is normal in A * B (and hence that (w, g)C(A, B)

for all wC(A, B) and gCG), Theorem 3.7 ((mA, nB)^m+n(A, B)), and the

fact that every lower central series is a decreasing sequence, we obtain

(a06o, aih) = (b0, bi)(aa, ai)u' = (a0, ai)(b0, bi)u",

u', u"C(A, B). The least trivial computation needed to obtain this result is

(*i, (ax, 0o6„)) £ (B, iA) ^ i(A, B) g (A, B).

Applying Lemma 1 over again (i.e., letting u0=q and ui=t),

(a0b0u0, aibiUi) = (a0, ai)(b0, bi)u,        u £ (A, B).

Again use has been made of the fact that (A, B) is normal.

Suppose true for k; we want to show that

(kahbv, abu) = k+1ak+1bw

where vCk-i(A, B), uC(A, B), wCk(A, B), maCmA,mbCmB (m=k, k + 1). As
before, we apply Lemma 1 first to

(*a*6, ab)
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to obtain (kakb, ab)=k+1ak+1bw', w'dk(A, 73). Here again we have used

Theorems 3.4 and 3.7. Now again apply Lemma 1 to

(ka"bv, abu),       v d k-i(A, 73),        u d (A, 73),

with v = q and u=t. This gives

(kakbv, abu) = k+1ak+1bw,        w d k(A, B).

Here Theorem 3.1 is useful for carrying out computations, e.g.

("akb, u) d (kG, (A, B)) ^ k+i(A, 73) = k(A, B),

(u, (ab, kakbv)) g ({A, B), u+iG) = k(A, B).

This is sufficient to prove Lemma 2.

Proof of Theorem. (mG, nG)C\(A, B)^(mA, nB)(nA, mB) obviously. We

want to prove the opposite inequality. By definition, if xd(mG, nG), then

r

x = II img<, "g>)>   where    mgi d mG,        ngi d "G.
i-i

By Lemma 2, mgi = maimbim-1Ui, "g< = "a^o.-"-'**,, for some kaidkA, kbidkB,

kUidkiA, 73), k = m, n, m — 1, n — 1. Using Lemma 1 twice, and the same

procedure as in the proof of Lemma 2, we obtain

imgi, ngi) = ima-u "ai)imbi, nbi)u,        u d (nA, mB)(mA, nB).

Here use is made of the fact that (nA, mB)(mA, nB) is normal and of Theorem

3.1; e.g.

("bi, ("ai, *»a,- ~b{)) ^ (nB, (nA, mG)) g (nB, „A).

Repeated use is also made of G I; 2.1.2 and G I; 2.1.3.

Thus if xd(nG, nG), then

r

x = II (ma» "ai)imbi, nb,)v,        vdinA, mB)(mA, „/3).
i—l

li xd(A, B), then

II C"«.-, na,) = II inh, °bi) = 1

by the unique representation theorem, G II; 1.2. Since ((ma„ "a,-), (mbi, nbi))

d(nA, nB), we can "shuffle" the (mo,-, nat) and (m&„ nbi) around (by means

of the identity pq = qp(p, q)), so that if xd(nG, mG)C\(A, 73), we obtain

xdinA, mB)(mA, nB). q.e.d.

Comment. For further details, see Moran's paper.

Theorem 6.3. Let k be a fixed non-negative integer, G=A*B,
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(a, b), a £ A, b £ B, such that either
A*B

A o B = —- >     D(k) = {a is in the center of A and ak = 1 or ■ •
9c[7>(£)] t

b is in the center of B and bk = 1

Then o is a fully regular product which does not satisfy MacLane's postulate;

hence it is not a verbal product.

The following lemma will be needed in the proof of Theorem 6.3:

Lemma 3. (A, B) in A o B is a free group; in particular, (A, B) is generated

by (a, 6), a£.4, 6£73, but some of the (a, b) are identified, i.e.,

(1) (a<o, 6,-6) = (aa,-, 6,-6) = (a<a, 66,) = (aait bbi) = (a,-, 6,)

for all aCAk= {a, aCcenter of A and ak = l} and all bCBk= {b, bCcenter of

B and 6* = 1}. Apart from these identities, there are no other relations which hold

among the generators of (A, 73); in particular, there are no elements of finite

order.

Proof of lemma. It is sufficient to show that the only elements of (A, B)

in 4 o 23 which equal 1 are the following: Let u = fT?=i (at, b/)ki be an element

of (A, B) which equals 1. If x, = (a,-, bi) and the identities indicated in (1) are

made; e.g., if x6 = (a2a, 62), a£^4*, then let x5 be replaced by x2 in the expres-

sion for u in terms of the x,-; then the expression for u becomes an identity

in the free group generated by the Xi. It is sufficient to show that this is true

for all the elements of A * B which equal 1 in A o B.

Any element in (A, B) of A * B which equals 1 in A o B is a product of

elements of the form

g~\a, b)g

where gCA *B and either aCAk or 6£23*. Let g=aibxa2b2 ■ • ■ a„6„. The argu-

ment will be by induction on the length of g. If g is of length 1, then by use

of the identities

(2) u_1(v, w)u = (vu, w)(w, u) = (u, v)(v, wu) (for any u, v, w)

we obtain

(3) ai (a, b)ax = (aau b)(b, ai),

(4) h\a, b)bi = (6i, a)(a, bh).

Hence, if we let xi = (ai, 6), yi = (6i, a), and we use (1), then (3) and (4) become

_1 _1 11

*i*i ,      yiyi    or   l-i

depending on whether a£^4* or bCBk. Suppose the lemma is true for g of

length n — 1, i.e., g~1(a, b)g= JJ™ i (at, 6<)*i where, if x,- are substituted for the
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(a,-, bi) as indicated by (1), then YL* Xt=l as a product in the free group

generated by the x,-. For every (a,-, bi) such that atdAk and btdBk, there cor-

responds either (bi, aa{) or (bbi, a<) with cE^4*, bdBk. Then using (2),

On (a,-, 6,-)a„ = (a,-a„, £>,-)(&,-, an) = x„y„,

a„ (6i, aaf)an = (a„, &i)(6,-, aaia„) = y„ xn ,

a„ (£&,-, a,)a„ = (a„, bbi)(bbit aia„) = yn xn .

Similar identities hold with bn substituted for aH. Therefore, if g_1(ai b)g

= Xit (ai, bi)ki has the properties mentioned above, so does

«n g   (a, b)ga„   and    bn g   (a, b)gbn. q.e.d.

Proof of theorem. That this product does not satisfy MacLane's postulate

can be seen readily by letting A and 73 be the additive group of integers and

T17 the integral multiples of k and TV the indentity. Then

AoB

MN

is the free product of the integers modulo k and the integers, while

A     B
— o —
M    TV

is the direct product of the integers modulo k and the integers. Since verbal

products satisfy MacLane's postulate, this product cannot be verbal.

That o is commutative is trivial. Associativity is the only difficult matter:

A*B*C l(a,b),   adAk   or   b d Bk)
(AoB)oC = —r^-,      P=< Y,

W[P] \(g,c),    gdGk    or    cdCj'

A*B*C lihc),    bdBk    or    c d Ck)
Ao(BoC) =-r^r- >      Q = < > ,

m[Q] \(a,e),    adAk    or    e d Ekf '

where G = A *B, E = B * C, and

Rk =  [rd center of R and rk = 1}, for R = A, B, C;

= [r d center of A o B and rk = 1 considering r as an element of A o B},

ior R = A*B;

=  {f d center of B o C and r* = 1 considering r as an element of B oC},

for 7? = 73*C.

It is sufficient to show that 9c[£>]^9c[P]. That (b, c)dP for bdBk or cdCk

follows from the fact that bdBk implies bdGk. Now consider (a, e), adAk.
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By G I; 2.1.3 and induction on the length of e as an element in B * C, (a, e)

£9c[P].
For (a, e), eCEk, the argument is somewhat more complicated. Let

e = bcu, bCB, cCC, uC(B, C). Since ek = bkckv, vC(B, C) by unique repre-

sentation (G II; 1.2), and since eCEk, we obtain bk=ck = l. Since e as an

element of B o C£center of 23 o C,

biCiUibcu = bcubiCiUi

for all 6i£23, Ci£C, Mi£(23, C) of B o C. By unique representation, 6£center

of B, cCcenter of C. Thus 6 and e£ center of 23 o C, and hence w£center of

B o C. Hence in B o C, ek=uk = l. But by Lemma 3, (B, C) is free in B o C,

and hence « = 1 in B o C, and hence u = 1 in (A o B) o C. Therefore, (a, e)

eCEk is of the form (a, 6c) in (A o B) o C, bCBk, cCCk. G I; 2.1.3 shows that
(a, be) = Hn(AoB)oC. Hence (a, e) = 1 in (A o B) o C. Hence (a, e) £9f [P].

q.e.d.

SUMMARY OF PRODUCTS

A o B = A * B/R

R Theorem  Associative?

(5ft [04, .4)], 5ft[B]) 4.1 No

1t[«A,A), (B,B))] 4.2 No

{{A, B), (A, B)) 4.3 No

5ft[{*2, xC(A,B)\] 4.4 No

5ft[{(a, b)\ aCA.bCB}] 4.5 No

W[{{abab,g),aCA,bCB,gCA *B}]r\(A,B) 4.6 No

((A,A *B),(B,A -B))-yi[{(abab,g),aCA,bCB,gCA*B}]r\(A,B)     4.7 No

((A,B),(A*B,A*B)) 4.8 No

{{<$t[A], 5rt[^]), (5ft[B],5rt[5])) 4.9 No

k((A,B),(A,B)),k^0 4.10 No

k((A,A*B),(B,A*B)),k^l 4.11 No

(„A, nB)UA, mB) 5.1 Yes

IlM.-^M.".^) 5.5 Yes
«-i

f(a, 6), o£centerof ^4 ando*=l or)

j 6£centerofBandi*=l.     > 6.3 Yes

[ k is a fixed integer J
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CHART OF PRODUCTS

REGULAR PRODUCTS

,_           I I                    ,_,
FULLY REGULAR PRODUCTS | '- Non-Associative and/or

._ I ._.     Non-Commutative Products

DO SATISFY MACLANE'S POSTULATE | Do not satisfy        Theorems 4.1 through 4:11
I           " MacLane's Pos-

Verbal Products tulate Theo-

S. Moran (|5|) rem 6.3

I
Theorems 5.1, 5.5

r I ,
Nilpotent Products

Golovin (|3|)
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