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1. Introduction. An intrinsic homogeneous algebra A on the w-dimensional

torus Tn is defined by the following properties:

(HO) A is a commutative semi-simple complex banach algebra.

(HI) The maximal-ideal space of A is exactly the w-torus Tn.

(H2) A is invariant with respect to all translations and with respect to

all group automorphisms of Tn.

(H3) For each/G A the mapping x—>fx from Tn to A is continuous, fx be-

ing the translate of/ defined by/x(y) =f(y — x).

Condition HI implies that multiplication is pointwise (not convolution),

and that all/GA are continuous. In the presence of H2 and H3, condition HI

asserts equivalently that all real-analytic functions belong to A, i.e. all com-

plex functions that possess near each xG Tn a convergent power series expan-

sion in the n real local coordinates. In particular A contains all constant

functions. In the presence of HI and H2, condition H3 asserts equivalently

that the group characters all belong to A and generate a dense subalgebra.

For proofs of the above assertions see Silov [l] or Mirkil [l]. It is an easy

consequence of H3 that the given norm on the algebra is uniformly bounded

for all translations, hence we can assume that our norms are actually transla-

tion-invariant. It may not be true that the norm on A is uniformly bounded

for all automorphisms of T„. In Silov's work the invariance with respect to

group automorphisms is omitted from H2, and the algebra A is simply called

homogeneous.

In §3 we prove that whenever an intrinsic homogeneous algebra A con-

tains two different functions agreeing on one open subset of T„ then A con-

tains functions separating any disjoint pair of closed subsets of Tn. In §5 we

extend to the w-torus a theorem of Silov concerning homogeneous algebras

on the circle. In order to prove the theorem of §5 we must establish in §4

a purely algebraic theorem about ideals in formal power series invariant

under unimodular substitutions.

2. Definitions and notations. We write the w-torus, even the circle, addi-

tively. We write o for the identity element of Tn (but 0 for the number zero,

and 0 for the zero element of a local algebra). It will often be convenient to

choose a coordinate system so that each xdTn is an w-tuple (xi, • • • , x„) of

reals mod 1. Relative to this coordinate system there are w basic characters

d, • • • , e„ defined by ek(x) =ek(xi, • ■ ■ , x„) =exp (x*) =cos 2irxk+i sin 2rrxk.
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Every circle subgroup TV is a direct factor of Tn, hence a coordinate system

can always be chosen to make 7\ = {x£Tn:x2 = x3= • • • =x„ = 0}.

It is easy to show that relative to a coordinate system the automorphisms

of 2"„ are represented by matrices with integer entries and determinant ±1.

Thus the only nontrivial automorphism of the circle 7\ is the reflection

x—> —x. Throughout this paper we shall really use only the oriented auto-

morphisms, i.e. those of determinant +1. Ti has none of these except the

identity. Note that although the w-torus is a quotient of the w-dimensional

vector group, the oriented automorphisms of the torus form a subgroup of

the automorphisms of the vector group. This subgroup ( = the integer ma-

trices of determinant +1) is called the unimodular group.

Relative to a coordinate system there is a natural riemannian metric on

Tn that defines the square of the distance between x and y as the minimum

of (xi—yi+Wi)2+ • • • +(xn — yn+mn)2, taken over all w-tuples of integers

*»i, • • • , mn. The metric is preserved when the coordinates Xk are permuted

and when certain xk are reflected into — xk; these are in fact the only rigid

automorphisms.

3. Quasi-analytic vs. regular. There exist certain homogeneous algebras,

we shall call them quasi-analytic, which contain so few functions that the be-

havior of a function on any small open subset of the torus determines its

values everywhere. Equivalently, if a function in a quasi-analytic algebra

vanishes on an open set then it vanishes identically. Most known examples

of such algebras are actually quasi-analytic in the stronger classical sense:

they consist entirely of indefinitely-differentiable functions, and none of these

functions (except 0) vanishes at a point together with all its derivatives.

Denjoy, Carleman, and Mandelbrojt have made extensive study of this kind

of quasi-analyticity. On the other hand, the homogeneous algebras of ordinary

analysis (e.g. the continuous functions, the absolutely-convergent fourier

series, the functions obeying a lipschitz condition, the differentiable functions)

are the extreme opposite of quasi-analytic. Each of these algebras contains

so many functions that any disjoint pair of closed sets on the torus can be

separated by some function identically 0 on the first set, identically 1 on the

second. Silov calls such algebras regular. The theorem below states that there

are no homogeneous algebras of a sort midway between these extremes.

"Quasi-analytic" is meant in our sense and not in the sense of Denjoy-

Carleman. The banach algebra expert will note that the proof would be

simpler if A were closed under complex conjugation.

Theorem 1. Every intrinsic homogeneous algebra A on the n-torus Tn must

be either quasi-analytic or regular.

Proof. For each/£A define Z(f) = {x£T„:/(x) =0}, and let Z°(f) be the

interior of Z(f). Let /= {/£A:o£Z°(/)} and let Z(J)=C\Z(f), the intersec-
tion taken over all/£/. By the general Silov theory, see e.g. Mirkil [l], the
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regularity of A is equivalent to the property Z(J) = {o}. The following lemma

states that an even weaker property is sufficient.

Lemma A. // o is isolated in Z(J), then Z(J) contains no other points.

Proof of lemma. Let U be an open neighborhood of Z(J) such that the

connected component of U that contains o contains no other points of Z(J)

and is far away from other components. For each xQU there exists fxdj

vanishing nowhere on some neighborhood Vx of x. Finitely-many Vx cover

the (compact) complement of U. Let W=(\Z(fx), for thefx corresponding to

this finite number of Vx. IF is a closed neighborhood of o contained in U, and

for every x not in W there exists /G A, f=0 on W, f(x) y±0. This is precisely

the condition that the closed set W be the maximal ideal space for the quo-

tient algebra A/M(W) obtained by restricting each fdA to W. Because of

the way U was chosen, W is the union of disjoint closed subsets W0 and Wx,

with Wo!^Z(J) = {0} and W0 open relative to W. Finitely-many characters

«i, • • ■ , «» generate A, hence their restrictions to W generate A/M(W).

Define S0 as the compact subset of complex w-space obtained by taking the

direct product of the images ei(W0), e2(Wo), • • • , en(W0). Define Sx similarly.

So and Si are disjoint. Let c/> be a complex-analytic function =0 in some open

neighborhood of S0 and =1 in some disjoint neighborhood of Sx. Then the

function x^>0(ei(x), • • • , en(x)) belongs to A/M(W). See Silov [4]. But this

function is the restriction to W of some fdJ such that Z(f)C\Z(J)= {0}.

Hence Z(J) = {0}, and Lemma A is established.

Now suppose that A is not quasi-analytic, so that / contains some non-

trivial function g. Define S= {xdTn:x+Z°(g)dZ(g)}. S is clearly a closed

set stable under addition, hence it is a closed subgroup of Tn and must be

either finite or contain a circle Xi.

Case I: S finite. (Note that this must be the case when Tn itself has

dimension 1.) For yG<S we have y+Z°(g)(£Z(g), and there exists zdZ°(g)

with g(y+z)^0. But g(y+z)=g-z(y), and g-,dj- Hence ydZ(J), and by

Lemma A the algebra A is regular.

Case II: S contains some circle Xi. (Tn has dimension w = 2.) Express Tn

as the (internal) direct product of a circle 7\ and an (n — l)-torus T„_i so that

each xGTn can be written uniquely xi + x with xiGXi and xdTn-X- We pro-

ceed by induction on the dimension w. Take 5 small enough so that Z(g) con-

tains the strip neighborhood {xdTn:x\+x\+ • • • +x2n<h}. For each fdA,

the following A-valued integral makes sense and defines a continuous projec-

tion /—>/' of A onto the subalgebra A* of functions that do not depend on

the first coordinate:

f* = f   /-A,.

The mapping /—>/' is of course not multiplicative. To prove it continuous,
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use the closed graph theorem, or calculate directly from the integral. Now let

ei, • ■ • , en he the basic characters relative to the given coordinate system on

T„. We can show that e2, ■ ■ ■ , en generate A*. For let/£A and let/B ap-

proach / in norm, where the /„ are finite linear combinations of characters,

i.e. polynomials in ei, • • • , en. Then /' approaches ff. But each /„ is a linear

combination of monomials like ef'e™2 ■ • • «"", and

(eT ■ ■ ■ eZ") # (x) = I        ei{x)dxi\ eT(x) ■ • • C(x)

with the integral of e™l = 0 or 1 according as miT^O or =0. If we consider

Ci, ■ • • , en temporarily as functions on the maximal-ideal space T* of A*

and let y run over T$, then y—>(ei(y), ■ • • , en(y)) is a homeomorphism of 2^

into complex (» —l)-space. The image is called the "joint spectrum" of

Ci, ■ • • , en with respect to A*. The ordinary spectrum of each ek (k ^ 2) with

respect to A* is exactly what it was with respect to A, namely the complex

numbers of absolute value one, because the inverse of a function independent

of Xi is also independent of Xi. Hence the above subset of complex (n — l)-spa:e

is actually a subset of the direct product ol n — 1 unit circles. On the other

hand, even with respect to A the joint spectrum of e2, • • • , e„ is already the

full direct product of these circles. Hence each maximal ideal of A* is con-

tained in an ideal of A and the maximal ideal space for A* is the quotient

space got by identifying all points in Tn that differ only in their first coordi-

nates. Interpreted as a homogeneous algebra on T„_i, A# must be either quasi-

analytic or regular by the induction assumption. Recall now that Z(g) is

known to contain an open strip, and let h be a function in A uniformly very

close to the complex conjugate of g. Then (hg)*CA* vanishes on an open strip

but not identically, proving that A* is regular. Given x = (xi, • • • , xn)CTn

with XkT^O (k^2) there exists /£A* vanishing on a strip neighborhood of o,

such that/(x) 5^0. This proves that the ideal J in A has all its zeroes in the

subgroup Ti. But Z(J) is invariant under permutation of coordinates, hence

Z(J) ={o} and the regularity of A is established.

4. Invariant ideals in formal power series. This section is purely alge-

braic, and can be read without reference to other sections. Throughout, K

will be an arbitrary field of characteristic 0 and 7C[[Xi, • • • , X„]] will be

the integral domain of formal power series in n variables. The order ol a

formal power series is the degree of its lowest-degree term. The order of 0

is often taken to be + oo, just as the degree of 0 is taken to be — oo. Every

PCK[[XU • • • , Xn]] has order ^0. The invertible P are exactly those

having order 0, and the others form a unique maximal ideal M. (A commuta-

tive algebra that possesses exactly one maximal ideal is called a local algebra.)

Under the natural valuation topology on 7C[[Xi, • • • , Xn]] defined by taking

the powers of M as neighborhoods of 0, series of high order are small and

series of low order are large; thus the topology induced on K is discrete. The
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polynomial algebra K[XX, ■ ■ • , X„] is a dense subalgebra of i£[[Xi, • • ■ ,

X„]] in this valuation topology, and in fact the formal power series become

genuinely convergent power series. The only nontrivial fact about formal

power series that we shall need is the following theorem.

Theorem (Krtjll). The valuation topology on K~[[XX, ■ ■ • , X„]] is

hausdorff and makes all ideals closed.

Proof. See Chevalley [l].

Lemma B. Every finite-dimensional local algebra B over K can be repre-

sented as a homomorphic image of K[[XX, ■ • ■ , Xn]], for some n. The kernel

of this homomorphism is an ideal containing some power of the unique maximal

ideal M of K[[XX, ■ ■ ■ , Xn]].

Proof. Let Yi, ■ ■ ■ , Y„ be generators for the unique maximal ideal TV of

B. Because B is finite-dimensional some power Nr is zero. A suitable homo-

morphism is that induced by Xx—>YX, X2—>Y2, etc., which takes M—>7V and

hence takes Mr—*0.

Lemma B above will not be used until the next section. But the lemmas

below are needed in the present section for the proof of Theorem 2.

Lemma C. Let Px, • ■ ■ , Pm be linearly independent polynomials in n vari-

ables over K. Let vx, ■ ■ ■ , vm span some vector space V over K, and for integers

ax, ■ ■ ■ , an define the vector

v(au ■ • • , an)=Px(ax, ■ ■ ■ , an)vx+ ■ ■ ■ +Pm(ax, • • • , an)vm.

Then as ax, ■ ■ ■ , an run over all n-tuples of integers, the vectors v(ax, ■ ■ ■ , an)

also span V.

Proof. Suppose v' is a functional on V orthogonal to all the vectors

v(ax, • ■ • , an) so that

(v(ax, ■ ■ ■ , a„) | v')

= ( Y Pi(ax, ■ ■ • , an)vt | v')

= Y (»«I v')Pi(ai, ■ ■ ■ ,an) = 0.

Then the polynomial Yivi\v')Pi vanishes on all integer w-tuples and must

be identically zero. By the linear independence of the Pk all the (i>*|»') are

zero. Then v' can only be the zero functional, and the vectors v(ait ■ ■ ■ , an)

must span V.

We shall say that a monomial really appears in a polynomial or power

series if it has nonzero coefficient.

Lemma D. // PdK[Xi, • • • , Xn] is homogeneous of degree 5 = 0, then

there exists some unimodular substitution L such that X\ really appears in L(P).

Proof. The fact that P(Xi, X2, • ■ • , X„) does not vanish identically and
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is homogeneous guarantees that P(l, X2, • ■ • , Xn) does not vanish identi-

cally. Let bt, • ■ ■ , bn be integers such that P(l, bi, ■ ■ ■ , bn)?*0. Let L be

the unimodular substitution:

Ai —> Ai,

X2 —> b2Xi + X2,

Xn —> bnX 1 + Xn.

Then the coefficient of X\ in L(P) is exactly P(l, b2, ■ ■ ■ , b„).

Lemma E. Let {P} be a collection of polynomials in several variables such

that the set {A(P)} is linearly independent, where A(P) is the homogeneous part

of P that has highest degree. Then the set {P} is itself linearly independent.

Proof. Note that A(ciPi+c2P2) =CiA(Pi)+C2A(P2) when Pi and P2 are of

equal degree, but A(ciPi+C2P2) =CiA(Pi) when the degree of Px is higher.

Consider some linear combination £iPi + • • • +cmPm = 0, with none of the

scalars d zero. We may suppose the indices chosen so that Pi, • • • , Pr all

have equal degree and Pr+i, • ■ • , Pm have various lower degrees. Then

0=A(ciPi+ • • • +cmPm)=A(ciPi+ • • • +crPr)=CiA(Pi)+ • • ■ +crA(Pr).

Butby the linear independence of {A(P)} we must have Ci=C2= • • • =cr = 0.

This contradiction proves the lemma.

Lemma F. Let m=the number of terms in the multinomial expansion of

(A1+X2+ • ■ • +A"„)*. If P£7£[Ai, • • • , Xn] is homogeneous of degree s,

then there exist unimodular substitutions Lx, ■ ■ ■ , Lm such that Li(P), ■ ■ • ,

Lm(P) span the vector space KM [Xi, • • • , Xn] of homogeneous polynomials of

degree s.

Proof. By Lemma D we can suppose P = cX[ + Q, with Xi appearing in Q

to powers <s. For each w-tuple a = (cxi, • • • , an) of integers with <Xi = l, let

La he the unimodular substitution defined by:

Xi —» aiXi + • • • + a„X„,

Xi —* Xi,

Let X'il ■ • • X'nn be one of the monomials (we ignore its coefficient) appearing

in Q. By the definition of Q, h+ • ■ • +tn>0. And the coefficient of X\J ■ ■ ■

A> in L.(X[i ■ ■ ■ X'n») = (Xi+aiXi+ ■ ■ • +anXn)hXt2* • ■ ■ Xn» is a mono-

mial in Oi, • • • ,anof degree strictly less than 5 —5i. Specifically, if XJ1 • • • Xsnn

can appear at all it appears with coefficient ti\[sil(s2 — ti)\ • • • (sn — /n)!]-1

• <#"'* • • • a„»"~'».
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Hence the coefficient of X[l • • • Xsnn in all of La(Q) has degree strictly

less than s—Si. On the other hand, the coefficient of X]1 ■ ■ ■ Xs„n in La(X\)

= (Xx+a2X2+ ■ ■ • +anXn)' is of degree exactly s — sx. Specifically this

coefficient is sl[sx\ • ■ ■ s„!]_1 a22 • • • asn". If for each cr = (si, • • • , s„) we let

P<r(at, ■ ■ ■ , a„) be the coefficient of X\i • • • Xn" in La(P) = cLa(X\)+La(Q),

then the term o22 • • • a'n" really appears in P, and all other terms of P„ have

lower degree. Equivalently, each monomial c22 • • • d" (s< integers = 0 with

st+ • • ■ +sn^s) really appears as highest degree term in exactly one of the

P„. Thus by Lemma E the P„ form a linearly independent set.

Now we are in a position to apply Lemma C. We have m linearly inde-

pendent polynomials Pinn — 1 variables, and a vector space KM [Xi, • ■ ■ ,

Xn] spanned by the m monomials X'11 • • • Xsn". The conclusion of Lemma C

then states that KM[Xi, • • • , X„] is spanned by homogeneous polynomials

of the form Y* P<iai, ' ' ' , fln)^i' • • ■ X'n*. But this is also the conclusion

of our present lemma, since

Y E,(a2, • • • , an)Xxl ■ ■ ■ X°: = La(P).
a

Theorem 2. Let I be a proper ideal in K\\XX, ■ • • , Xn]] invariant under

unimodular substitutions. Then I is some power of the unique maximal ideal M.

Proof. For each formal power series P write P(r) for the homogeneous part

of P that has degree r, so that P can be represented uniquely as an infinite

sum
p = pw _|_ pw _j_ pw _|_ . . .

The mapping P-»P« is linear from K[[XU ■ ■ ■ , Xn]]to K^[XU ■ ■ • ,Xn].

Choose QodI with the property that Oo has order 5 and no other element of /

has order less than 5. By Lemma F there exist unimodular substitutions

Li, ■ ■ ■ , Lm such that the Li(QQs)) span the vector space K03+1'Xi, ■ ■ • , Xn]

of homogeneous polynomials of degree 5. Although we do not yet know that

2" contains the Li(QQs)), we do know that I contains the Li(Qo) and linear

combinations of them. In other words, for any P(,) homogeneous of degree 5

there exists Qdl with 0/«> =pw.

We now claim that for any PdK[[Xi, • • • , X„]], and any integer r>s,

there exists Qdl with QM=P<->\ Q(.+u =p<«+i)i . . . , QM =poo. For by in-

duction we can at least choose some QodI with Q0s) =PM, Q'0S+1) =P(s+1\ • • • ,

Q&--i)=pCr_i) (This Oo is of course different from the Qo in the paragraph

above.) Let R = P — Qo. Because R has order =r we can write R<-r) =XiPi

+XtPt+ ■ • ■ +XnPn, with each P< either zero or homogeneous of degree

r— 1, though this expression for Pw is not unique. Also by the induction

assumption we know that I contains Qi, • • • , Qn with Q%~1) =P* and hence

(XiQi)M=XiPi. Let 0 = (?o+^i<2i+ • ■ • +XnQn- For 5=i=r we have

Q«)=Q$ + (XXQX+ ■ ■ ■ +XnQny». If t<r then (XXQX+ ■ ■ ■ +XnQn)w is
zero because XXQX+ • • • +X„Qn has order r (or possibly oo), and Q(t) =Ql
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= P«>. If t=r then (X&+ ■ ■ ■ +XnQn)™ = (X1Q1)M+ ■ ■ ■ + (A\Q.)M
= XiPi+ ■ ■ ■ +XnPn = RM, and c2">=(25r)+Pw = ((3o+P)(r)=P(r)=P(').

Hence our claim is established: for an arbitrary P of order ^s, the ideal I

contains a sequence {QT} such that Q, agrees with P for all terms of degree

<r. In other words Qr converges to P in the valuation topology. To finish

the proof of Theorem 2 what we need is exactly the theory of Krull cited

above.

5. Homogeneous algebras of type C. We return to the intrinsic homo-

geneous algebra A. Define M = {fCA:f(o) =0} and define J as in the proof of

Theorem 1. M is a maximal ideal. Throughout this section we shall suppose

A regular, so that the ideal / is contained in no maximal ideal except M. In

any algebra, an ideal contained in exactly one maximal ideal is called primary.

J is actually the smallest primary ideal in M, and its closure / is the smallest

closed primary ideal in M. If we define Mx = {fCA:f(x) =0} and Jx as the

smallest primary ideal in Mx, then Mx and Jx are simply translates of M and

7. In particular, M=M0 and J=Jo. The quotient algebra A/Jx is a local

banach algebra, in the purely algebraic sense of having only one maximal

ideal, hence every ideal in A/Jx is primary. The elements of A/Jx are ob-

tained by identifying /i and fi whenever they can be approximated in norm

by functions agreeing near x. All the local algebras A/Jx are canonically iso-

morphic with A/J because translations of Tn induce automorphisms of A.

This section will restrict itself to algebras of type C, in which by definition

the norm of each /£ A is the supremum of its quotient norms in the various

local algebras: ||/|| =supx ||/||x = supI ||/i||o, where ||/||x stands for the norm of

the image of / in the quotient algebra A/Jx. The type C condition can be

written directly:
ll/H =   sup     inf ||/, + «||.

»Er    »e/

Or if we are simply given the ideals / and /, the type C norm is identified as

the weakest that makes the closure of / no larger than /. We are of course

interested in the topology on A, not in the actual norm, and we can if we

want modify the type C definition accordingly.

Algebras of type C have been studied extensively in Silov [2]. The C is

really a Russian S, for "sum." Since the algebra generated by characters is

dense, the structure of a type C homogeneous algebra is completely deter-

mined by the abstract local algebra A/J and by the way in which the char-

acters map into A/J. For if e is a character then all its translates are scalar

multiples of e. Specifically, ex = e(x~1)e. Hence if / is a linear combination of

characters,/ = ciei+C2e2+ ■ • • , then its norm can be reckoned directly:

ll/H = sup \\fx\\„ = sup ||(ciei + c2e2 + ■ ■ ■ )x\\0
X X

= sup Hcie^ar1)^ + c2e2(x-1)e2 + • * • ||0.
X
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No such simple structure theory is possible for homogeneous algebras not of

type C. In the absolutely-convergent fourier series, for instance, A/J is the

complex numbers, so that when /= Yck exp (ikx), its type C norm is ||/||

= supx |/(x)|, a norm much weaker than the correct norm ||/|| = T"! | ck|.

We shall also require in this section that A/J have finite dimension. This

requirement can be stated in other ways:

Theorem (Silov). For a homogeneous algebra A on the torus (or on any com-

pact Lie group) the following three conditions are equivalent:

(1) A/J is finite-dimensional, J being the set of all fdA that vanish on

neighborhoods of the identity of the underlying group.

(2) A contains all indefinitely-differ entiable functions.

(3) A contains all m-differ entiable functions, for some m.

Proof. Silov [l]. Our Lemma B is helpful. Mirkil [l] gives a simple proof

of the implication (2)->-(3).

A typical example of an intrinsic homogeneous algebra of type C, with

A/J finite-dimensional, is given by the algebra Dm of m-diff er entiable func-

tions, i.e. functions having continuous mixed partial derivatives of all orders

= w. Suppose for simplicity that the underlying torus is one-dimensional.

Then / is all w-differentiable functions / such that/(o) =f'(o) =f"(o) = - • •

=fim)(o) = 0. And A/J is an (w + l)-dimensional algebra consisting of all poly-

nomials in a certain nilpotent element X with Xm?±0, Xm+1 = 0.fdA is small

if and only if all its derivatives up to the mth are uniformly small. Silov has

proved in [l ] that on the circle there are no other homogeneous algebras of

type C containing Dx. Theorem 3 below generalizes Silov's result.

Theorem 3. Let A be an intrinsic homogeneous algebra of type C on the

n-torus Tn, and let A contain the algebra Dx of indefinitely-differ entiable func-

tions. Then A is for some m exactly the algebra Dm of m-diff er entiable functions.

Proof. For simplicity we shall write DM = D. D has its own natural topol-

ogy, the only topology that makes it a complete metrisable algebra. A se-

quence of fkdD converges to zero in this topology if and only if for each m

the sequence of rath derivatives /tm) converges uniformly to zero. The injec-

tion D—>A is continuous by the closed graph theorem, and D is dense in A

because even the algebra generated by characters is dense. Write H for the

intersection /HD, and write H for the closure of H in the proper topology

of D. H is the /G-D that vanish at o together with all derivatives. Since the

topology of D is stronger than that induced by A, then HdJ implies HdJ-

Hence there is a natural homomorphism D/H—►A//. Since D is dense in A,

then the image of D/H is dense in A/J. But since A/J has finite dimension,

the homomorphism D/H-^A/ J must be onto.

A useful representation of D/H can be obtained by taking a coordinate

system x = (xi, • • • , x„) for T„, and choosing w functions /i, • • • , JndD
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which near o imitate the coordinate functions. That is, there exists some

neighborhood of o on which the/,- are defined by/,(x) =x<. Let Xi be the image

of fi in D/H. It is not hard to prove that under this representation D/H is

precisely all formal power series in Xi, • • • , X„. And the homomorphism

D-+D/H takes every /CD into its formal maclaurin power series expansion.

Automorphisms of the group Tn induce unimodular substitutions on the

formal power series. It is important to note that the quotient topology

D/H is different from what we have called the valuation topology on formal

power series.

Consider now the ideal 7 in D/H which is the kernel of the homomorphism

D/77—>A//. We claim that this ideal I is invariant under unimodular substitu-

tions on the formal power series. For suppose /£D can be approached in the

norm of A by gkCJ (i.e. by functions in A vanishing on neighborhoods of o),

and let L he an automorphism of A induced by some automorphism of T„.

Then L(gk)CJ (since neighborhoods of o go onto other neighborhoods of o

under automorphisms of Tn), and L(gk) approaches L(f) in the norm of A.

Also, L(f)CD. Hence JC\D is invariant under the automorphisms of A in-

duced by automorphisms of Tn. A similar argument shows that His invariant

under these same automorphisms. But JC\D is the kernel of the composite

mapping:

D->D/H->A/j.

And since the first mapping is onto, the kernel I of the second mapping is

(JC\D)/H. I is clearly invariant, being the quotient of an invariant algebra

by an invariant ideal. Hence our claim is established.

By Theorem 2, I must for some m consist of all power series of order

Si m. Hence A/J is the commutative algebra generated by n linearly inde-

pendent elements Yi, • • • , F„ with the sole rule that all m-lold products are

zero. (Or more strictly, M/J is this algebra, and A/J is M/J with unit

adjoined.) Furthermore, under the mapping A-^A/J, each /£D maps onto

a truncated version of its maclaurin expansion, all terms of degree ^m being

set equal to zero. Because A is of type C, the above information guarantees

that A is exactly Dm.

6. Counter-examples and remarks. Notice the one-dimensional case in

each of our three theorems. Since T\ has no oriented automorphisms except

the identity, the invariance of A with respect to automorphisms of the under-

hying group need not be postulated explicitly in Theorem 1 and Theorem 3.

Theorem 2 for formal power series in one variable can omit the hypothesis

about unimodular substitutions; the theorem is well known and states that

every ideal in K [ [X ] ] is principal with generator of the form Xm. But when

the dimension of the underlying torus is 2:2, the invariance with respect to

automorphisms of Tn (or with respect to unimodular substitutions) cannot

be omitted. A counter-example to Theorem 1, for instance, could be con-



330 K. DE LEEUW AND H. MIRKIL

structed on the 2-torus by taking the tensor product of a regular algebra with

a quasi-analytic algebra. A counter-example to Theorem 3 would be furnished

by Silov's vectorially-smooth functions [3] on the 2-torus. The above counter-

example to Theorem 1 makes use of algebras that behave differently pn

different components of the underlying group. Similar counter-examples for

both theorems can be found when the group is a general compact Lie group

instead of a torus, even though all automorphisms of the group are admitted.

Suppose, for instance, that we have the direct product of two centerless Lie

groups. Then each factor is (setwise) invariant under automorphisms of the

product group, and we can as before take the tensor product of two algebras

that are completely different on the two factors. It might seem that we could

sharpen our theorems, since the proofs have used only a restricted kind of

unimodular substitution. But the unimodular group is actually generated by

substitutions of the form

Xi -^Xi± Xk, i ?* k,

Xj—* X„ j 9^ i.

Nonetheless it is likely that Theorem 1 will hold when only rigid automor-

phisms of Tn are used, even though there are examples to show that Theorem

3 is false under these circumstances.

Krull's theorem was an essential link in the proof of Theorem 2. Krull

proves in fact that every noetherian local algebra is hausdorff in the valuation

topology, and because quotients of local algebras are again local it follows

immediately that ideals are closed in the valuation topology. On the other

hand the fact that the formal power series are hausdorff in the valuation

topology is an easy consequence of our Theorem 2, since the intersection of

all powers of the unique maximal ideal is clearly an ideal invariant under

unimodular substitutions. It would be interesting to find a simple formulation

and proof of Theorem 2 for arbitrary noetherian local algebras.
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