
GENERALIZED ANALYTIC FUNCTIONS

BY
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1. Introduction. The theory of functions holomorphic in the unit disc

1.1 f(z) = ao + aiZ + a2z2+--- (\ z \ < 1)

can be regarded as emanating from the study of such trigonometrical series

1.2 zZaneinl

where a„ = 0 for n < 0. Abstract harmonic analysis treats the generalization

of 1.2 where the unit circle is replaced by any (abelian) locally compact

group r while the set of indices (n) is taken as the character group, G, of T.

Just as 1.1 is obtained from 1.2 by requiring the { ■ ■ ■ , a_2, a_i, ao, ai,

a2, ■ • • } to be nonzero only on the subset 0, 1, 2, • • • , so we study here the

special properties of algebras of functions (the operations being addition and

convolution on G and addition and multiplication on T) whose support in

G lies always in a fixed semi-group G+ of G (corresponding to the class of

indices 0, 1, 2, ■ • • in the classical case). The general idea is to note the

form in which classical objects reappear.

The disc \z\ ^1 becomes the space A of maximal ideals of the function

algebra; the group T becomes the boundary of the disc, and all functions take

their maximum modulus on V.

For interior points f of the disc, there is a measure on V such that the

value at f is given by an integral of the boundary values. This "Poisson

integral" is studied in detail, and it is shown that one of these "generalized

holomorphic" functions/cannot vanish on an open set of the boundary which

has positive measure with respect to all of these harmonic measures. More-

over, when G has sufficiently many continuous "characters" (with values in

the unit disc), and/vanishes on a nonvoid open set, then/ = 0. In particular,

the algebra becomes an integral domain. We can thus make arbitrarily huge

(semi-simple) Banach algebras which are integral domains.

We wish to cite some work related to ours done by Goldman [VI ] and

by Mackey [VII]. Goldman states 3.1 when G is a totally ordered discrete

group. Moreover, our 4.6 was motivated by a discussion with him concerning

possible generalizations of the classical case of the disc. Mackey also states

3.1 and has a complicated Cauchy integral formula. His point of view is much
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different from ours; briefly put, he considers all the orderings on G at the

same time, whereas we assume a given G+ as intrinsic part of the structure

of G.
In later papers we shall present results on the automorphisms of the alge-

bras considered here, their ideal theory, and generalizations of other classical

theorems in complex variables.

2. The algebras to be studied. Let G be a locally compact abelian group,

and let G+ be a subset of G such that

2.1. G+is a closed subset of G;

2.2. the interior of G+ is dense on G+ and also generates G;

2.3. x, y in G+ implies xy in G+.

Let .4i be the algebra (under convolution, using the left-invariant Haar

measure) of those summable functions which vanish outside G+. Then Ax

is clearly a closed subalgebra of Li(G, C), and is a Banach algebra with the

norm

11/111=  f \f(x)\dx.
J a

As is well known (cf. Ill), elements of 7i determine operators in Lt(G, C),

wherein / gives rise to Ts, T/(g) =/*g. The bound of the operator Tt we will

denote by |/|. Then |/| ^||/||i. The completed operator algebra will be de-

noted by Ao- Both algebras are invariant under translation by elements of

G+, that is, if /<,(*) =J(ax), Ja(x) =f(xa~1), then / in .4i gives fa in Ai if ar1

is in G+ and gives/" in Ai ii a is in G+.

These algebras are subalgebras of well-known algebras, and are both

representable as algebras of continuous functions, vanishing at infinity, on

the character group T oi G. It is not easy, in general, when looking at a par-

ticular <f> in £o(T, C) ( = continuous functions on T vanishing at infinity,

complex values) to tell whether it is a representing function—particularly not

for the case of Ai. When G is the group of integers and G+ is the set of non-

negative integers, then the representing functions are those defined on the

unit circle and (extendable to) the interior so as to have absolutely con-

vergent Taylor series [III, p. 81]. The situation for Ao is always simpler. In

the special case mentioned, the functions one gets are just the continuous

functions on the unit circle which can be extended to the interior so as to be

analytic there, or what is the same thing, whose Fourier coefficients

1    r2T
2.4 — I     4>(ei()e-Mdt

2irJo

vanish for w= — 1, —2, • • • .
In general, the norm in-40 is exactly the "sup" norm of the Fourier trans-

form
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2.5 /(a) =   |  f(x)(a, x)dx
J a

tor those operators 7/ which arise from/ in 4i. This results from a considera-

tion of the Plancherel theorem [III, p. 145]. Loosely speaking one obtains,

even after completion, those functions in fj?o(r, C) (defined above) whose

(inverse) Fourier transforms are supported on G+. Rather than make this

precise, we content ourselves with the following which is completely adequate

when G is discrete.

2.6. Theorem. 4ray function <f> in Qo(T, C) which is summable and uni-

formly continuous corresponds to an operator T in A0 (under the representation

defined where possible by 2.5), provided for all x not in G+:

I  <b(a)(a, x)dx = 0.

Proof. Obtain a continuous \p with compact support such that

2.7 ||^*0 -*||. < e.

Then\p = g where g is in L2(G). Moreover, gf is in7-i(G+) and the bound of the

operator Tg/—T is given by 2.7.

Finally, because of 2.2, we can also say this:

2.8. Theorem. The functions representing Ax (and a fortiori, A0) separate T.

Because T is contained in char C-+, 2.8 also follows from 4.1, below.

3. Characters of G+. When G is abelian we can call a character of G+ any

continuous complex valued function £ on G+ such that £(xy) =£(x)£(y),

\i-(x)\ gl, which is not (identically) zero. This generalizes the ordinary con-

cept of character group (when G+ = G); and many notions of the theory of

character groups may be carried over. In particular, the class of these, to be

called A, is locally compact, and a Hausdorff space, with the topology of uni-

form convergence on compact sets.

Because of condition 2.2, characters of G+ have a polar decomposition

exemplified in the classical case by writing z=reie.

3.1. Theorem. Let G be an abelian locally compact group, and let 2.1, 2.2,

2.3 hold. Then any character f of G+ can be written as a product

3.2 f = pa( = ap)

where a is a character of the whole group G, while p is a uniquely-determined non-

negative character of G+.

Proof. The "modulus" p can be at once obtained as p(x) = | f (x) |. We have

now to extend

3.3 t/p
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from that part of G on which it is uniquely determined, to a character of G.

If f^O, then f(x)y^0 on some open part (of G+) which generates an open

subgroup Go (of G) on which 3.3 is uniquely definable yielding a continuous

character of G0. This can be extended to all of G [IV, p. 142] (the extension

is not necessarily unique). In any case, the p is unique.

4. Complex homomorphisms of Ao and ^L. Let Horn (A, C) or, more

briefly, Horn (A) be the space of continuous homomorphisms of a normed

algebra A on the complex numbers C. One of the central results of general

harmonic analysis [cf. Ill, p. 136] is that for a locally compact abelian group

G, if A =LX(G) then Horn (A) corresponds in a natural one-to-one way to T.

In this section, we show that the same type of correspondence holds between

Horn (Ax) (and also Horn (A0)) and A. This new result generalizes the known

result about LX(G), since one may take G+ = G. On the other hand, the gen-

eralization is so easy (although independent) that we can afford to give a

brief exposition.

4.1. Theorem. There is a homeomorphism between Horn (.4i) (and Horn

04 o)) and A, of a form given below.

Proof. A continuous homomorphism of A0 immediately defines one of Ax,

so we may begin by taking a continuous homomorphism £ of Ai. Select an/

in A such that £(/) ^0. Define

4.2 {•(*)= $(/x)/K/) (xinG+).

(For/1 see §2.) This is a continuous character of G+ and does not depend on

the/ chosen.

Now begin with a f from A. We define

4.3 £(/) =   f f(x)t(x)dx
J a

for/ in .4i. This obviously defines an element of Horn (A). It is very easy

to see that the relation of f to £ is given also by 4.2.

The dual question, whether the definition 4.2 implies the relation 4.3, is

treated as follows. Let 4.2 hold. Then

4.4 J* S(x)f(x)dx-S(f) = J S(J*J(x))dx.

Making use of the fact that £(h) =foh(t)m(t)dt, for some bounded measurable

m, we can interchange the order of integration on the right, and obtain

j f(x)Ux)dx-^f) ={(/*/)

which gives 4.3.

Every continuous homomorphism £ of .4i is bounded in the ^40-norm, since
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4.5 |fC/)|   =   U(/("))|l'"-^limsup|]/H|i/»=   |/|

as the Plancherel theorem shows.

There remains the question of whether the locally compact spaces A and

Horn (4i), Horn (^40) are homeomorphic under these mappings. Considering

.4i, first, we state that the proof of [ill, 34C] can be immediately adapted

(because the compact set C can be chosen inside G+, and the integral 4.3 can

be used). Finally, Horn (^4i) and Horn (40) are already in one-one correspond-

ence, and a subbase for the weak topology induced by 40 can be chosen using

only (the densely situated) elements coming from .4i. This completes the

proof of 4.1.

We shall henceforth always consider A as the space Horn (^4i) or Horn (A0)

itself, and may even call the points thereof maximal ideals of these algebras.

Different characters of G will be distinct even on G+. Moreover, the topol-

ogy is also the same (because of 2.2). The subset of A corresponding to T

will be denoted also by T.

The analogy to analytic functions begins to take a more concrete form

with the following statement.

4.6. Theorem. For either algebra, T is the Silov boundary in (or, of) the

space of maximal ideals A. In other words, for each element f (of Ai,for example)

the maximum modulus of the representing function

4.61 /(f) (f»A)

is taken on the set T; and T is the least closed set in A having this property (uni-

formly for all ring elements).

Proof. The maximum modulus is in any case given by (for an element/ in

Ax)

v      ll/(n)ll1/n I  rlllmll/     111      =1/1

and this is certainly taken on T, since it is the space of maximal ideals of 7,i(G)

as a whole. Therefore T contains the Silov boundary F, which is not void (see

[III, 24E]). Now the class of representing functions is surely invariant under

translation in T since this means merely multiplication by characters in G

and does not move the support off G+. Thus F itself is translation invariant,

and hence must be all of T.

The reader may find it convenient to associate "A" with "disc" and 'T"

with Silov's word for "boundary."

The situation presented in 4.6 fulfills the condition of a general result

[I, 7.1], showing that Poisson-integral-like representations are possible.

4.7. Theorem. For each point f of the disc A there is a measure m^ (in this

paper, that shall always mean a regular Baire measure) defined on the boundary

r such that for each representing function of an element of A0 (and thus, a

fortiori, of Ai), <j>,
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4.71 j 4>(a)mt(da) = *(f).

Moreover, Jor any such measure satisjying 4.71 (we shall say mx represents X)

and Jor each x in G+ there holds

4.72 I  (a, x)mr(da) = f(x).

Finally, if mt, w, represent f, -n (respectively) then the convolution (produit

de composition [V, p. 47]) of these measures represents {n.

Proof. There remains merely to derive 4.72 as well as the last assertion

from 4.71. 4.72 results from using an "approximate identity" [III] trans-

lated to an interior point of G+, followed by a limit. The remainder is a

simple formal matter. It says in particular that if r\ belongs to T itself (so

that the passage from f to f?j is a "rotation") then the measure for mx can be

rotated to provide one for f??.

4.8. Corollary. If G+WG+1 = G then the measure, for each f, is unique.

Proof. Although Radon-measures (complex valued) can be found to repre-

sent f, 4.7 mentions only real ones. For these, taking conjugates in 4.72

yields

4.81 J  (a, x)mx(da) = {■(*)

for x_1 in G+, and thus for all x. Now a measure is determined by its Fourier-

Stieltjes coefficients (left side of 4.81), which are by 4.81 the same for all

measures representing f.

An example of nonunique measures can be easily given [I, p. 740].

We have not seriously attempted to survey the (convex closed) set of

measures representing a given f. In the next section we provide an independ-

ent proof of the existence of one particularly attractive measure (for each f),

to be called the harmonic measure, at this stage merely on its aesthetic merit.

5. The harmonic measures. Let p be a point of the "positive axis" in the

disc, that is, a character of G+ which is real and non-negative. We wish to

construct a particularly simple measure representing p.

There is an open subgroup G„ of G generated by those points of G+ at

which p is positive. A unique continuous homomorphism

5.1 r„

of Gp into the group of positive real numbers exists, which is an extension

of p to Gp.
By an adaptation of Pontrjagin's argument [IV, p. 142, Lemma] we can

extend this to a continuous homomorphism
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5.11 r

of the whole group G into the positive reals. (This extension is not always

unique, but the result will be independent of the manner of it.)

Then, for each real number v, we can define a character of G

5.12 k(v) = riv (- oo < v < oo)

where (k(v), x) =eMo»^x\ xCG.

Now let Tp be the group of characters of G which are 1 on G„. Since G„

is open, Tp is compact (being isomorphic to the character group of G/Gp).

Moreover, if GP = G, Tp reduces to the identity.

Recall the function

5.2 c(v) =  [ir(l + V2)]-1

(known as Cauchy's probability density [II, 19.2.1]). It has the property

that its Fourier transform

5.21 ~c(x) = <r-l*l (*real).

We are now ready to define an integral 7P representing p. For <p any com-

plex-valued, bounded Baire function on T, let

5.3 I„(<p) =\l   4>(yriv)dyc(v)dv.
J -oo J rp

The first integration is with respect to the normalized Haar measure of

rp, and not with respect to the Haar measure of Y (which wouldn't make sense

most of the time anyway. Sometimes rp = r, however.)

Formula 5.3 clearly defines an integral on V. Moreover,

5.31 Og^l    implies   0 g Ip(<p) = 1.

Our primary concern is whether, for/ in A0 or A\, we have

5.32 I„(f) = p(f).

Since (at least for/ in Ai) we have 2.5, it will clearly suffice to prove that

5.33 Ip(x) = P(x) (xCG+)

where x on the left is the bounded continuous function defined, of course,

by x(a) = (a,x). Then 5.32 will follow by inversion of the order of some

integrations for/in .4i, and for Aa, by uniform approximation and use of 5.31.

Now (for xCG+)

Ip(x) =  \  \  (yr"< x)dyc(v)dv

5.34

=   j   (y, x)dy   I  e"l0* rMc(v)dv.



386 R. ARENS AND I. M. SINGER [March

The first factor is 0 for x££G„, and so is 7„(x). When xdG„, then (7, x) = 1 for

all 7 in Tp, so the first integral is 1. The second (by 5.21) is

5.35 min (r(x), r(x)_1)

and for x in G+C\Gp, this reduces to p(x) as desired, since |p(x)| :£1.

We shall also compute the Fourier-Stieltjes transform of (in classical ter-

minology, the measure pp corresponding to) 7P. We use the formula 5.34, and

obtain the result

(0 (xdGp)
5.36 Ip(x) =   1

(min (rp(x), rp(x)~1) (x d Gp).

Here the values of rp are uniquely determined by p, since we are on G„.

Thus lp and pp are independent of the mode of construction of r.

For a point f dA which is not real and non-negative, we perform first the

polar decomposition

5.4 f = pa (p = |f I, «er)

and define

5.41 Ix(4>) = 7,0«)

where <btt(P) =<p(Pa) for <f> as before (5.3).

We formulate our findings in the following way.

5.5. Theorem. Let f be any point of A. Then there is an integral Ix on T

which represents f (in the sense of 4.7), having these properties:

For a bounded Baire function on T,

5.51 It(<t>) =   I      I   <t>(yar™)dyc(v)dv
7 _„ J Tt

where rr is the (compact) subgroup of T of those characters which are 1 on the

subgroup Gx generated in G by those x in G+ on which f (x) 5^0, and "07" refers

to the normalized Haar measure in Tp; and a is selected so that 5.4 holds, while

r is any extension (5.11) to G of the unique continuous multiplicative homo-

morphism defined by p on Gx, to all of G; and c(v) is Cauchy's distribution 5.2.

The Fourier-Stieltjes transform of the measure px associated with 5.51 is as

follows:

r (0, xe Gx,

Jv \(P, x)min (r(x), r(x)"1), xdGs,

(and it should be borne in mind that r(x) is uniquely determined by f for x in Gx).

It is formally interesting that the combination ar" is an extension of

rlrl"-1.
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The measure /xf we might call the harmonic measure for f. This is only a

slight abuse of classical terminology. The integral itself is of course to be

called the Poisson integral (with parameter f).

Let us consider briefly the carrier of an harmonic measure. We first look

at it from a measure-theory position. The measure p„ is evidently the "prod-

uct of composition" [V, p. 47] of the Haar measure of r„ (regarded now as a

measure in T, usually singular with respect to the proper Haar measure of T)

and the measure obtained by placing Cauchy's distribution on the one-

parameter subgroup 5.12. Each one of these two subgroups may degenerate

down to the identity. For example, if p(x) is never 0, then Tp= {1}, while if

p(x) is identically 1 on Gp (and of course 0 outside), then r (see 5.11) can be

chosen to be 1. Thereupon the group 5.12 degenerates, and p,p becomes the

Haar measure of Tp. This case occurs precisely when p =pp, and is not limited

to the case p=0 or 1 in general. (Of course it is so limited when G is archi-

medean linear ordered and G+ is the set of elements not less than the neutral

element.)

In the topological sense, the carrier of a Baire measure is the complement

of the union of all open sets of measure 0. For the harmonic measures, this is

not usually as small as the subgroup of 5.12 (even when rp= {l}) for this

need not be closed, nor is it usually as big as T, as the previous paragraph

points out. It is, however, actually a (closed) subgroup, which we now de-

scribe.

Return to a p as at the start of this section, and consider the subgroup

Gp of Gp consisting of those x in Gp at which r(x) = 1 (see 5.11). This is closed

(but not generally open). Let Yp be the class of those a in V which are 1 on G".

This, too, is closed (but not always compact).

5.6. Lemma. Let 77 be the class of all a in T for each of which a real number

v can be found such that (ct,x) =r(x)iv for all x in Gp. Then His a dense subgroup

ofT".

Proof. Any a. of this form is certainly 1 on G", whence 27 is included in T".

Suppose for a moment that it were not dense.

Then there exists a continuous character of T which is 1 on 27, and not

identically 1 on I>. (We apply twice Pontrjagin's [loc. cit. ] extension theorem

for closed subgroups.) This character is an element x of G. If x£G> we could

make a character a that is 1 on Gp and not 1 on x. This a belongs to 77(z; = 0),

so we reject the possibility, and conclude xCGP. For every real v, r(y)iv always

defines an element of 77. Hence r(x)" = l (for all v), which implies r(x) = l,

or xCd1. But then x defines the unit character on T*. This contradiction

shows that 77 is dense in T".

Thus 5.6 is proved.

Now suppose <j>^0 and <p(a) >0 for some a in T^. Then for at least for a
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nonvoid, open set of pairs (v, 7) (ydTp) we have <p(yr")>0, by 5.6. Hence

Ip((p) is surely positive. This enables us to assert the following.

5.7. Theorem. The carrier of the measure defining the integral 7f(f =pa in

its polar decomposition) is the coset aT' of the closed subgroup T'ofT.

5.71. Corollary. Let G be a linearly ordered group. Let £dA be such that

I f (x) I 9^1 except for x = 1. Then every open nonvoid set in T has positive measure

with respect to the measure defining Ix-

Proof. Gr reduces to the identity in this case, and so Tf = T. Hence the

carrier, being just a coset, is T.

In a general context, it was established [I, 7.1] that there always exist

representing measures m such that, for any representing function <j> for the

ring Ao (and hence a fortiori for <j>=f, fdAx)

5.72 log        4>(a)m(da)   ^   I    log | <j>(a) \ m(da)
\Jv I      J T

or

5.73 log |/f(0)|   £7,(log |*|).

Both sides may have the value — °°. The left side is of course log |</>(D|

if the measure m is supposed to represent f.

We are about to assert that this property 5.72 is enjoyed by our harmonic

measures. There would be no need for anything more than a reference to

[I, 7.1] if G+VJG+1 were all of G, for then by 5.52 there could be no other

measure than pf representing f and so pj- would have the property 5.72 predi-

cated for at least one such measure [I, 7.1]. The general case will be reduced

to this special situation.

5.8. Theorem. For each f, the measure pf satisfies 5.72 and 5.73 whenever

<p is a function representing on A any element of Ao or of Ax.

Proof. It will suffice to consider f of the form of p. Let an r (see 5.11) be

constructed. Let us enlarge G+ to the set Gi generated by G+ and those places

where r(x) = 1. Then G satisfies the conditions 2.1-2.3 and gives rise to a new

(.4 0)1 containing the old A0. The new Ai is contained in the old A, but the

Silov boundary is still T.

Now define cr(x) =0 for x£Gi but x££Gp, and a(x) =r(x) for xdGp and

r(x) =1. Then cr£Ai, and cr, confined to A0, is the original p. The subgroups

G,, r, are the same as for p, and the same r can be used to define I„. But

GX^JGX1 = G (with even some overlap, but this was never excluded) so that

there is only one 7, possible (by 5.52) and so (as remarked earlier), by [I,

7.1], 5.72 and 5.73 must hold for a function representing an element of

(A0)1, and p„. But by 5.3 or even 5.36, 7„ = 7P, and on the other hand, At is a

part of (^4o)i- Thus 5.8 is proved.
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6. Homomorphisms. Suppose we have two locally compact abelian groups

G, 77 with G+, 77+ subsets satisfying 2.1-2.3; and suppose there is a homo-

morphism

a:G^H

preserving the relevant structure, that is

6.1 a(G+)CH+.

Then, of course, we obtain dual homomorphisms of the discs

6.11 a*:An —>AG

and of the character groups

6.12 a*:TB-+Te.

Let cr£Aff. We intend a*(a)(x) =<r(a(x)) for x in G, by 6.11. Let us con-

struct the Poisson integrals for cr and a*(or) =<r o a. Now let <j> be a bounded

Baire function on r0. Then yp, defined by <p ° a*< ls a function of the same

sort on TH. The natural thing would be

6.2 I,(<t>Oa*) = Iaoa(<t>)

and this would be immediate if there were only one way, in each case, of ex-

tending the Poisson integrals from the class of representative functions (but

this is not generally true, as we have pointed out before). 6.2 can be proved,

nevertheless.

6.3. Theorem. In the circumstances above, 6.2 is true.

We provide only that part of the proof which is not automatic, in that it

involves an arbitrary extension. We prove

6.31 a*(T.) = r„0„.

We may presume cr here of the form 0go\ It is rather clear that "£"

holds in 6.31. Approaching the converse, we select /3 from the right-hand side

of 6.31. Then /3 = 1 on G„OB (by definition) and the latter quite evidently

is a_1(77(r). Therefore (3 defines a character of the discrete group G/a-1(27,),

which in turn is isomorphic (by a, and an isomorphism theorem) to the dis-

crete group 77/77,. Thus we obtain a character of the latter which defines a

character B of 77. Clearly B belongs to r„ (more fully, (rff),) and also

j3 = B oa=a*(B). This proves 6.31.

The remainder of the proof consists merely of automatic manipulations

with the two members of 6.2, each written in the form 5.3.

We insert here some comments on the possibility of a Poisson kernel for

the integral.

In the classical case (G the integers, G+ the non-negative ones) the Poisson
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integral 5.43 has a kernel,

6.4 f <j>(a)Kp(a)da = Ip(<t>),

integration being with respect to (usually, the normalized) Haar measure. In

general, 6.4 is possible whenever pp is absolutely continuous with respect to

Haar measure in T. For this to be possible, Gp (see 5.42) must be cr-finite (since

it carries the Fourier transform of the summable kernel Kp). However, we are

not prepared to have a general discussion on this level.

We content ourselves with the following observation which deals with

cases that can hardly be called bizarre.

6.5. Theorem. Let G be discrete and have no elements of finite order (which

is the same as saying that T is compact and connected). Let GP = G for some p

in A (see 5.4). Then, unless G is the integers and T is the circle group, pp is

singular with respect to the Haar measure of T.

Proof. Since Gf = G there is no need to integrate over Tp, which reduces to

one element. Hence the complement of the subgroup {riv} (see 5.61) is of

measure 0. If this subgroup has infinitely many cosets, then it is of Haar

measure 0, and our measure is singular. In the contrary case, T is exhausted

by finitely many cosets. By a proof like that of the Baire density theorem,

one of these must have an interior, so all are open. Because T is connected,

there can be only one, and the homomorphism sending v into r" must be

open. It follows that it is not one to one, whence T is the circle.

In the circumstances of 6.5, there can clearly be no Poisson kernel unless

we have the classical case. In particular, when G is archimedean linearly

ordered, and not the integers, there is a kernel only for that one p in A (the

center of the disc) whose measure is the Haar measure in T. This p has

p(x)=0for *>1.
7. Mapping a half-plane into A. Let p be a non-negative element of A. In

terms of it, we can define (for x in G+)

10 ifp(x)=0,

P(X) =  il if p(x) H 0.

Then p°EA, and p=pp°. For real v we have already considered p", and we

can also define (m^O, v real)

(exp {(u + iv) log P(x)} if p(x) ^ 0,
7.1 Pu+"(x) = <

(0 if p(x) = 0.

This provides a continuous mapping of the half-plane m = 0 into A. To

study its range (in A) we recall the group r* (see 5.6).
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7.2. Theorem. For each w2?0 the family

7.21 {pu+iv; vreal}

lies densely in the subset puT" of A.

Proof. The polar decomposition of pu+iv is of the form p"a. If xCG<" then

x=yz~x where y, zCGPC\G+ and p(y) =p(z) whence (a, y) = (a, z). Therefore

a belongs to T", and pu+iv to p"Tp.

Moreover, the a can be chosen to have the form riv (see the proof of 5.6),

hence the totality of these a is dense in rp, by 5.6. And if the a is close to some

j3 (of T), then pu+iv is at least as close to pufi, in the topology of A. Hence the

pu+iv are rjense ;n p"rp, q.e.d.

When G is archimedean-ordered then all but at most two p's satisfy the

hypothesis in the following.

7.3. Corollary. 7/p never assumes the same value more than once on G+,

then {piv} lies densely in the boundary T.

For in this case rp=r while p°=l.

We consider the effect of this mapping on the representing functions

(4.71). The result is very simple.

7.4. Theorem. Let <p be the representing function for an element of A0. Then

7.41 <l>(pu+iv)

is holomorphic for u>0, all v, and continuous and bounded for m^O, all v.

Proof. When <p represents an element/ of Ai, then 7.41 becomes

7(p«+i») =  j   f(x)p(x)u+"dx = fp(u + iv).
J Op

This fp certainly has all the stated properties when / has compact support.

The function in the general case is the uniform limit of such /p as these, and

hence shares the properties stated. Of course, the (operator) norm of the

element in question provides an upper bound for the analytic function (and,

in the circumstances of 7.3, the least upper bound).

In another paper we shall utilize the fact that when G is discrete, these

analytic functions are almost-periodic in the half-plane.

8. Boundary zeros. A function, continuous on the closed unit disc, holo-

morphic inside, and vanishing on an open subset of the boundary, vanishes

identically. A simple proof of this well-known proposition is obtained by

considering its Cauchy integral representation. Another is obtained by apply-

ing 5.72 to the Poisson formula.

This classical result will be utilized and generalized here.

We begin by supposing <f> to be as in 7.4, but we suppose <j> vanishes on a
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neighborhood of 1 in T. Be it noted that we do not require cp to vanish on an

open set of A. For each p in A, <f> vanishes on a set of positive pp measure, by

5.7. Hence the right side of 5.73 (f =p) is — », and so (by 5.8) the left side

also. Thus <p(p) =0 for every p.

It follows that the holomorphic function 7.41 vanishes along the positive

real axis, and hence (pip0*") =0. By 7.2, <p vanishes all along pT' for every

P (O^pgl, in A).

If we define To as the closed subgroup which is the limit of all these p0T",

8.1 r0 = rn ( U p°r>)-

then (p vanishes on r0. The reasoning can be repeated for every point in V,

whence

8.11. Lemma. If <p = 0 on a neighborhood V of 1 in T, then <p=0 on VT0.

The subgroup 8.1 may not be all of T. For example, let G be the class of

pairs of integers, with G those pairs (m, n) with m>0 or m=Q and w>0. Let

a(m, n) =zm, P(m, n)=wn where z, w are complex numbers of absolute value

not greater than 1. Then

8.12 (b(z, w) = zg(w) (| z |   =   \ w\   = 1),

where g is any continuous function, is a representative function (r is the

torus). If g vanishes on an open set, so does cp, but still <p need not vanish

(identically). We leave it to the reader to find 8.1.

8.2. Theorem. IfTa (see 8.1) =T and <p vanishes on a nonvoid open set, then

<p = 0.

This is obvious.

Proposition 8.2 says a lot more than the following, which is nevertheless

of interest.

8.3. Theorem. If r0 = r then Ao and Ax are integral domains.

Proof. If (pxft = 0, and <p t^O, then \p vanishes on an open subset of T (indeed,

even of A). Then 8.2 can be applied.

What conditions imply r=r0? We content ourselves with a sufficient

condition.

8.4. Theorem. Suppose that for every z in G (z^l) there is a real-valued,

continuous homomorphism h on G such that h(z)^0 and h(x) ^0 for each x in

G+. Then To = T (see 8.1) so that 8.2, 8.3 hold.

Proof. For each such h we can make a p in A by defining p(x) =e~Hx)-

It follows that z is excluded from G", whence the intersection of all these G"

is the identity, in G. For such p as these, the subset pT" of A coincides with

the subgroup T? oi the boundary T. The closure of the union of the T' is all
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of r. (This property is the dualized form of the stated property of the G.)

Thus To = r.
The situation described in 8.4 can be created very easily. Let T be any

set, and let G he any linear space of real-valued functions on T, and let G+

be the class of non-negative functions. Define the discrete topology in G.

Then the conditions 2.1-2.3 are fulfilled. Moreover, for z£G, zt^O, there is a

t in T such that z(t) j^O, while x(t) ^0 if x^O. Thus 8.4 applies, and the en-

suing ring A0 is an integral domain.

8.5. Corollary. There exist Banach algebras A0of arbitrarily high dimen-

sion which are semi-simple operator algebras in a Hilbert space, and which are

integral domains.
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