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1. Introduction. Many ordinary linear differential equations that are im-

portant in pure and in applied mathematics are of the type

dnu dn^u
(1-1) —+ *Pl(z, X)- +   ■   •   ■   + \npn(z,  X)«   =   0,

dzn dz"-1

in which X is a parameter whose absolute value is large, and the coefficients

pi(z, X) are either functions of z alone, or series in powers of 1/X with coeffi-

cients that are functions of z. The forms of the solutions of such an equation,

as they depend asymptotically upon X in a given region of the variable z,

are known to be determined in large measure, though not entirely, by the

configuration of the roots of the auxiliary algebraic equation

(1.2) xn + pi(z, °o)x"-1 H-h pn(z, 00) = 0,

in the given z-region. If the roots are all simple (distinct) for every z, the

asympototic forms of the solutions are derivable by well established theory

[l ]. The same is true if some roots are multiple, but every multiplicity among

them maintains identically over the region [2]. The cases for which relatively

complete theory exists are therefore those in which the auxiliary root con-

figuration is of an invariant kind.

More recent investigations [3; 4; 5; 6] of differential equations (1.1) have

been directed toward determining the forms of their solutions in z-regions

over which the configuration of auxiliary roots is not invariant, but in which

there is a point—a so-called turning point or transition point—at which the

configuration is different than it is elsewhere. Among turning points the

simpler ones are those in which just two roots that are otherwise simple coin-

cide. Even these fall into different categories, depending both upon the number

of other roots that are involved (namely the order of the differential equa-

tion), and upon the degree to which the discriminant of the auxiliary equa-

tion vanishes where the multiplicity of roots occurs. The solutions, at least

in the case of differential equations of the second order, are known to have

quite different forms when this degree is 1 and when it is 2.
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Differential equations of the second .order with turning points are impor-

tant in a number of applied fields, notably in quantum mechanics and the

theory of micro-wave propagation [7]. Such equations of the fourth and sixth

orders have roles in hydrodynamics, where they arise in connection with the

phenomenon of turbulence. Far from being rare, turning points present them-

selves in connection with many of the standard differential equations, such

as the equations of Bessel, Legendre, Mathieu, Hermite, Laguerre, Whittaker,

etc.

Since, for a differential equation of the second order, there are only two

auxiliary roots, a turning point in connection with such an equation simply

marks the conjunction of these two roots. For differential equations of higher

orders a variety of coincidence configurations is possible, the number of pos-

sibilities increasing rapidly with the order of the equation. For example, in

the case of a differential equation of the third order the roots may be simple

except at the turning point, with the multiplicity there involving either just

two or all three of them. Or a root which is simple except at the turning point

may coincide there with one that is identically double over the region. The

fourth order differential equation of hydrodynamics is featured by a turning

point in which two roots that are otherwise simple and one that is identically

double over the region fall into a four-fold multiplicity.

If the number of auxiliary roots that are involved in coincidences at a

turning point is m, we shall say that the coincidence pattern at the point is

w-fold. For m>2 a variety of such patterns exists, for, as has already been

remarked, the roots may fall into a single multiplicity in which they all coin-

cide, or they may fall together in several separate sets in various ways. Any

particular w-fold pattern may present itself in connection with a differential

equation (1.1) of any order that is greater than or equal to m. If n>m there

is an excess of auxiliary roots to the number (n — m) that remain simple. Any

specific m-iold pattern therefore evidently presents itself in its simplest form

in the instance of a differential equation of the order m, since there are then

no additional roots to engender accompanying complexities.

A method that has been used with some success for deriving the forms of

the solutions of a differential equation (1.1) in a region containing a turning

point is that of "related equations." This method requires, in the first place,

the construction of a differential equation—known as a related equation—

whose solution forms are known, and which, at the same time, has coefficients

that are identical with those of the given equation to the extent of all terms

to some prescribed degree in 1/X. From the known solution forms for this

related equation the corresponding ones for the given equation are then de-

duced. The possibility of the construction of a related equation is thus a pre-

requisite for applicability of the method. Whether this construction can be

made, and if so how it is to be made, in the instance of a given differential

equation with a specific coincidence pattern, largely remains a matter for
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research. The construction has been given only in connection with a few of the

simpler configurations. This is so, specifically, for equations of the second

order whose auxiliary equations have discriminants that vanish to the first

or second degree; for equations of the third order in which those same coin-

cidence patterns are present; and for certain differential equations of the

third and fourth orders with rather particular three-fold and four-fold coin-

cidence patterns respectively.

The purpose of the present paper can now be explained. It is to show, for

any differential equation (1.1) of the wth order with an ra-fold coincidence

pattern, m<n, that the construction of a related equation is possible—and

how it is to be made—if such a construction is known for a differential equa-

tion of the lower order m having the same coincidence pattern. In effect it

therefore disposes of the complications that are generated by the presence of

(n — m) simple auxiliary roots, by referring the construction of a related equa-

tion to a corresponding case in which no such roots are present. This at once

greatly widens the category of differential equations (1.1) for which related

equations are constructible. For instance, the problem for any differential

equation (1.1) whose coincidence pattern is two-fold is hereby referred to its

counterpart for differential equations of the second order. The constructions

that are known for the second order case when the discriminant of the auxili-

ary equation vanishes to the first or second degree are thus made available

for equations of all orders. Similarly, in the case of those three-fold and four-

fold coincidence patterns for which the construction of a related equation has

been accomplished in connection with respective differential equations of the

third and fourth orders, the constructions are hereby extended to equations

of higher order. The extension is, in fact, given in advance, for all construc-

tions that may in the future be discovered in connection with differential

equations of specific orders.

2. A differential form L(u) and its derivatives. With D denoting the

operator of differentiation, so that D'u signifies the ith derivative of u, and

7)°« is u itself, the given differential equation (1.1) can be written as

(2.1) •£(«)=<>,

with

(2.2) ■0)^i>,M*.X)7J»-'«.

With respect to this we assume that X, which may be real or complex, is

bounded from zero in absolute value, and is otherwise unbounded. The

coefficients pi(z, X) we take to be representable by power series in 1/X. Thus

po= 1,

(2.3) -   pUz) .
Pi(z, X) = Z, -r—' t = 1, 2, • • • , «,

>-o     X'
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these several series being convergent when |\| is sufficiently large. As to the

functions pij(z), we assume them to be analytic in the z-region in which the

differential equation is being considered. This region we shall think of as

bounded and closed, so that functions that are analytic in it are bounded.

The phrase "for all z" shall be understood to mean all z in this region.

The auxiliary equation (1.2) is, therefore,

(2.4) 0(x) = 0,

with

(2.5) a(x) = x" + pi.o(z)x"-1 + • • • + PnM).

We suppose that within the z-region there is a turning point, at which coin-

cidences not maintaining elsewhere occur among the roots of this equation

in accordance with some w-fold pattern, with m<n. The (n — m) roots,

Xi(2)> ' ' " i Xn-m(z), that are not involved in this pattern are taken to be

distinct for all z, whereas the m roots Xn-m+i(z)> ' ' ' > Xn(z), that are involved

in the pattern are each either otherwise distinct or are part of an identical

multiplicity over the region.

Let the integer r be chosen arbitrarily, but, once chosen, let it be fixed.

We shall be concerned with the construction of a related equation whose

coefficients are the same as those of the given equation (1.1), to the extent of

all terms of degree less than or equal to the rth in 1/X.

Consider a differential form

m

(2.6) L(u) = 1Z\iqi(z,-X)D^tu,

that conforms with the following description. Of its coefficients the leading

one is 1, and the others are expressible in powers of 1/X, thus

Qo = 1,

(2-7) -   qUz) .
?,(z, X) = 2^     . .    > i = 1,2, - • - ,m.

j-0       A'

The functions g,-,,(z) are to be analytic for all z. Those with subscripts/ = r

are to be, for the moment, undetermined, and are to be subject to later

specifications. Those with subscripts j>r may be specifically assigned at

once any values for which the series (2.7) converge. A particular assignment

that may be made is ffi,y = 0 for j>r, but this we do not insist upon.

The derivatives of the form (2.6) are given by the formula

m+k      . —A.t—i

(2.8) DkL(u) = Y a<3< 'D        u,   k=l,2,--. ,(n - m),

in which the coefficients are
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,_o\j/    X'

The symbol

0
designates, as usually, the coefficient of x> in the binomial expansion of

(l+x)k. It is to be understood, of course, that in any formula, qt = 0, for

i<0, and i>m.

For many of the considerations that we shall have to make, the matters

of essential moment will be the particular arguments from which certain func-

tions are constructed, and the characters of the constructions. To indicate

that, a generic notation is convenient. We shall therefore reserve the symbol

7 with any set of analytic arguments a\, • • • , a3, thus 7(ai, • • ■ , a,), to

signify a (some) function that can be generated solely by means of additions,

multiplications and differentiations from constant multiples of the arguments

indicated, possibly in conjunction with known functions (not indicated) that

are analytic in z and are power series in 1/X. It will be clear that any function

7(ai, • • • , as) is analytic, and that the symbol for the function itself applies

also to the derivative. Also any sum or product of functions 7 is again such a

function, the arguments of which include all those of the terms or factors.

As is usual, of course, a function, though denoted by 7(cti, • • • , as), may, in

fact, actually depend only upon a sub-set of the indicated arguments.

In terms of the notation thus described, it will be seen from (2.9) that

Qo    = 1, for k = 1, 2, • • • , (n — m),

(*)                1    / 1\Qi    = qi-]-2( oi, • • • , g,_i, — 1, i = 1,2, ■ • ■ ,m,

(2.10)

Qi ' = —1( ?i, • • • ,qm, — J, i = m+l,   ■•-,»+*,

Qi    = 0, for i < 0, and for i > m + k.

3. The differential operators Ok. Let the functions of a set cri(z, X), • • ■ ,

an-m(z, X) be expressible in powers of 1/X, thus

(3.1) (n(z,\) = zZ^~> i= 1,2, ■■■ ,(n-m),
j-o      X'

with coefficients cr,-,3(z) that are analytic for all z. Of these coefficients, let

those for which j^r be undetermined, whereas the remaining ones are given

any values for which the several series (3.1) are convergent when  |x|   is
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sufficiently large. The particular assignment cr,; = 0 for j>r is admissible. In

terms of these functions we define the differential operators ©* by the for-

mulas

k

(3.2) <Dk = II (D - Xcr,), k = 1,2, ■ ■ ■ , (n-m),
i=i

the order of the symbolic factors being that in which i increases toward the

left.

Every such operator is, of course, expressible as a polynomial in D, thus

*     ....

(3.3) Ok=Y*9>D     ■

In fact on applying this form to the relation

(3.4) <Dk= (D- \<rk)Ok-i,

it is found that the coefficients 04w conform to the recurrence relations

do     = 1, for k — 1, 2, • • • , (n — m),

,~      -s (*) (*-D (*-l) 1      „     (*-D .       „
(3.5) e\    = «•       - (rjffi-i  + —7>0,_i   , i = 1,2, • • • , k,

A

(it)
0,-    = 0, for t < 0, and for i > k.

From these the functions $*' would be obtainable. We merely observe, how-

ever, that 04w is constructed of only those functions a, for which j ^ ^, namely

that

(3.6) $f! =l(*i, ••• ,cr*,—Y

The result of the direct application of the operator Ok to the form L(u)

may be taken from the relations (3.3) and (2.8) to be the formula

k      m+-k—i . , ...

VkL(u) = Y    Y   X    t?,-   Gj      7> u.
t'=0     j'=0

To rearrange the terms of this into an order of descending powers of D, we

begin by replacing the upper summation limit on i by m + k. This is permis-

sible, because the terms that are thereby formally added each contain a

factor 04(i:) which vanishes for the index i in question. If a new summation

index / is then introduced to replace/ by virtue of the relation i+j = l, and

the order of summation is thereafter interchanged, the resulting form (with

i and j written again in the places of / and i) is
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(3.7) OkL(u) ^zZ^D^'u,
t'-O

with

(3.8) r4W-2>JW\
j-o

In the initial term of the formula (3.8) the factor Qf* is, by (2.10), of the

form aj+(l/X)7(ai, • • • , aj_i, 1/X)> and its multiplier 8^ is 1. In each sub-

sequent term the factor Qfsf depends only upon functions qh for which

h^i — 1, and its multiplier is of the form (3.6). We see thus that

(3.9) Ti      = Oi + 7ffll, ••• ,0,-1,(7!, ••• cr*,—J.

Now since each function a,- and <n is expressible as a power series in 1/X, the

same is true of any function 7 with these arguments. It is, in fact, readily

seen that

(1 \       A 7(c/i,o, • • • , qh.j, 0-1,0, ■ • • <Tk,j)
ii, • ■ ■ , qh, o-i, • ■ ■ , <rk, — 1 = 2-i -—-'

X/        ,_o                            X'

it being an important feature that the coefficient of 1/X' on the right involves

the functions qt,h and o-,-,* only for h^j. Thus, by (3.9)

00     1

(3.10) Ti       =   zZ   —  {°i.i + -f(?1.0.   •   '  *   , ?<-l./i <Tl.0,   •  •  •   , 0-k,j)}.
;=0    X'

The relations (2.2) and (3.7) permit us to write

n

(3.11) JZ(u) - <Dn-nJ(u) = zZ^iD'-'u,
<-0

with

(3.12) (n—m)
e0 = 0, e, = pi — Tf       , t = 1, 2, • • • , n.

4. Some formal evaluations. If the relations (3.12) are respectively multi-

plied by con-i, where co is any function of the form

(A  « -  V   "M(4.1) a = 2-, —TT'
j-0        A»

their resultant sum is

n

(4.2) Z)«wB_i = Ei(o}) - E2(o>),
1-0
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with
n

Eii<c) = Y Pf^t

(4.3)
.   . ^->     (n-mt    n-t

E2(U))   =   2-1 Ti W

t-0

We need to analyse each of the functions (4.3) as a power series in 1/X-

From the formula (4.1) it follows that for any integral exponent h

h „       "    hca0   co,- + 7(co0, ■ • • , co,_i)
(4.4) co   = coo + Y -:-

j=i X'

This can be proved by induction. Since the functions pij(z) are known, and

therefore need not be indicated as arguments in a function 7, it follows that

»-t n-.       A (n — i)piouo      co,- + 7(co0, • • • , co,-_i)
pi"     = p,-,oco0    + 2j -'-rr-•

,-i X'

Accordingly

(4.5) Ei(a>) = 0(co0) + 2-, ■-—-'
j-i X'

where fi(x) has been given in (2.5), and

(4.6) 0(x) = wx""1 + in - l)pi.o(z)x"-2 + • • • + pn-i.oiz).

Consider now the function E2(ui). By (4.3) and (3.8) the formula for this is

E2(o)  =  2-, 2-,ei        Qi-i        u      ■
i=0   ,'=0

An interchange of the order of summation, followed by the introduction of a

new summation index I to replace i by virtue of the relation i = l+j, gives it

the form

Et(<>>)   =   2j 2-i*i Qt <°
,_0  1=0

In this the upper summation limit upon j can be reduced to (n — m), since

the terms that are thereby formally omitted contain factors 0Jn-m) which

vanish for these indices/ By use of the evaluations (2.10) it may then be

seen that

n—m    m _ J   n—m   n— i / J\

£2(co) = Y  Yo" " W       +-S  Y^i" m l(qi, • ■ ■ , qt-i, —)«"  '
j-o   j-o X   ,-_o   i-o \ X /



402 R. E. LANGER [March

The first double sum in this formula is factorable. We see thus that

™ _ 1    / 1\
(4.7)     E2(u>) = 5„_m 2^ q.i°>m ' -\-71 ai, • ■ • , qm, ai, • • ■ , an-m, co, —1,

i_o X    \ X /

where

(4.8) s*(«) = i>r«w.
J=0

We may obtain an evaluation of the factor Sn-m(co) by suitably operating

upon the function exp {\fwdz}. Thus it follows readily that

D'expfX I cocfzj = expf X  I  cods j <X'co'+ X'-^fco,—ji .

By (3.3), therefore,

Ok exp (X judz j = expf X   f cocfzj-|x*S*(co) + X^lfd^, ■ ■ ■, 0*', co, — ji .

This, however, implies that

(D — Xcrt)C/i_i exp (X I   coifz j

/       C \   {    k k-l    (   (4-1) <fc-l) 1\)
= expIXI   cocfe j <X (co — <r*)5jt_i(co) + X     7 I di      , ■ ■ ■ 9k-i   , <r», co,—j> .

Because the left-hand members of the two latter relations are the same, by

(3.4), it may be seen from the right-hand members that

1      / 1\
Sk(u>) = (co — crk)Sk-i(o>) -\-7 I tri, • • • , <r*, co, — j .

Since 5i(w) = (co— a/), it is provable by induction that

(4.9) 5A(co) = II (co - cr,) + — iLi, ■ ■ ■ , ak, co, —).
i-l X        \ X /

With this evaluation (4.9), the formula (4.7) becomes

n—m m

e2(co) = n (« - 'H zZ <n"m~l

(4.10)
i   / i\

-\-7 I  01,   •   •   •   , 0m, (Ti,   •   •   •   , cr„_m, CO, — j .

Expressed in powers of 1/X, this is
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n—m m

Et(cS) =  XI   (wo — cf,0) Y ?i.ocoo

^->   7(c/i,o, ■ • • , c/m,y, cri.o, • • • , cr„_m,y, co0, • • • , coy)

5. Determination of the functions gf and cr,-. By virtue of the relations

(2.3), (3.10) and (3-.12), the coefficients e< in the equation (3.11) have the

forms

.      .      «<(z, X) = Y — [pi,i ~ ?>,j + Tiqi.o, • ■ • . 9,-i, y, o-i.o, • • • , <r„_m,,)},
(5.1) ,_o  X'

i = 1, 2, ■ ■ ■ , n.

We propose to determine the functions g,- and cr,-; namely the first (r + 1)

hitherto undetermined coefficients of the formulas (2.7) and (3.1), in such a

way as to reduce each function e, to be of the order of l/X*4"1. Insofar as the

functions «?< are concerned, this will be done indirectly. Their coefficients

°i.iiz) wul nrst De determined in terms of those of the functions cri.y, • • • ,

cr„_m,y. These latter will thereupon be determined, wherewith the actual

determination of the functions c/,- will, of course, then also be accomplished.

Consider the coefficients of the terms in 1/X' for 0, 1, 2, • • • , r, in the

formula (5.1) for ci. They are the left-hand members of respective equations

Pi.i — <?i,j + ^Ori.o, • • • , <Tn-m,j) =0,     j = 0, 1,2, ■ ■ • ,r.

We assign to the functions quiz) the values which fulfill these equations.

This determines them in terms of the functions cri.o, • • • , an-mj- Suppose,

now, that the functions qh,j{z) have been determined for all h^i — 1. The

coefficients of the terms in 1/X1 in the formula (5.1) for ti are then the left-

hand members of respective equations

(5.2) pij — c/,-,,- + I(qx,o, ■ ■ • q,-X,j, <rx,a, • • • , o-«_m,y) =0,  j = 0, 1, 2, ■ ■ • , r,

and by assigning to the functions g,-,i, • • • , qt,r the values which fulfill these

equations they are determined in terms of the at,,. In this way the functions

c7,-,y may be determined for i = 1, 2, • • • , m, and as a result we have

(5.3) €i(z, X)   =  ——- I ( <Ti,   ■   •  •  , (Tn-m, — ) , *  =   1, 2,  •  •  •  , M.
\r+1    \ X /

The first m of the functions e< have thus been given the desired form. The

remaining (n — m) of them have still to be considered.

With any one of the functions cr* in the role of co, the indicated product in

the formula (4.10) vanishes, and accordingly

17'/     \ *    ■£">   ^("LO,   '  '  '   '   °"n-m.,-)
E2(ak) = — 2-i-;-■

\ fo X'
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By virtue of the relations (4.2) and (4.5), therefore,

V^      "-'      ~/       x   ,   v^ ^(o-fc,o)cr*.i + 7(<ri,o, • • • , <r„_m,,-_i)
,, ,, 2-,^0-k    = n(«r*.o) + 2^-—-'
(5.4) ,_0 ,_i X'

k = 1, 2, ■ ■ ■ , (n — m).

To make the leading terms in these formulas vanish, we choose each o-*,o(z)

to be the respective function x*(z)i a simple root of the equation (2.4). The

coefficients of the terms in 1/X' are then the left-hand members of respective

equations

(5.5) fi(x*)<r*,,- + 7(cri,o, • ■ • , <rn_m,,_i) =0, k = 1, 2, •••,(» — m).

Since the root x*(z) is simple, the relation £2(x*) ̂ 0 is fulfilled for all z. There-

fore, when the functions ak,\ for h^j—1 have been determined, the equations

(5.5) determine the functions ak,j. In this way the undetermined coefficients

of the functions o~i(z, X) may all be determined, and these functions, as well

as the functions qf(z, X), may henceforth be dealt with as known. The basis

of the determination has been the reduction of the right-hand members of

the formulas (5.4) to be of the order of 1/Xr+1- With the use of B(z, X) as a

generic symbol to signify a (some) function which is expressible as a power

series in 1/X with coefficients that are analytic in z, we may therefore write

"       „_<     B(z, X)
(5.6) Z./6^*    =-—' k = 1,2, ■ ■ ■ ,(n - m).

.-0 X*"1

Now because the at have been determined, the relation (5.3) shows that

B(z, X)
(5.7) ei(z,\) =^—-,

at least for i = l, 2, • • • , m. By the transposition of the first (r+1) terms

from the left of the equations (5.6) we therefore obtain the set of equations

" „_,       B(z, X)
(5.8) 2^   e.°>     = -—'      k = 1,2, ■ ■ ■ , (n — m).

,-m+l X^1

This is a linear algebraic system for the unknowns em+i, ••-,€„. The deter-

minant of the system, namely | a1~m~i(z, X)|, is expressible as a power series

in 1/X. The "constant" term of this series is the determinant |Xt~m~J(z) \,

and this is different from zero for all z because the roots x<(z) are distinct

for * = 1, 2, • • • , (n — m). The system (5.8) is therefore solvable, at least

when |X| is sufficiently large. Its solution establishes the relations (5.7) for

the remaining values i = m + l, • ■ • , n.

By the determinations that have been made the differential operator

On-m and the differential form L(u) have both been made specific.
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6. The differential equation L*(u) =0. The differential equation

(6.1) L(u) = 0

is now one in which the coefficients are known. Its auxiliary equation is

(6.2) ao(x) = 0,

with

(6.3) 0„(x) = Y ?<.o(*)x—'•
«=o

We have the means for analysing this auxiliary equation at hand. In the rela-

tion (4.2), with any function x(z) in the place of w(z, X), each member is

expressible as a power series in 1/X. For the left-hand member, the constant

term of that series is zero, since each e< is of the order of l/X1^1. The constant

terms of Ei(x) and £2(x) are therefore the same, namely, by (4.5) and (4.11),

and the fact that cr,-,o = x*(z)>

n—m m

fl(x) = IT (x - x.) Y qi.oxm-'-
t=l 1=0

Now the functions x<(z) are the roots of the equation (2.4), and hence

fl(x) is the product of all the factors (x — X<) f°r <'■ = L 2, • • ■ , w. We conclude,

therefore, that

m n

(6.4) Y qi.ox^1 =    II   (x - X.).
1=0 i—n—m+1

This is to say, that those auxiliary roots of the differential equation (2.1)

that are involved in that equation's coincidence pattern at the turning point

under consideration are precisely the auxiliary roots of the differential equa-

tion (6.1). This latter is therefore an equation having the same coincidence

pattern as the originally given differential equation. It is evidently of the

minimum order m in which this pattern can occur.

It is the purpose of this discussion to show how a related differential equa-

tion can be constructed for a given equation (2.1) if that can be done for the

simpler equation (6.1). We now assume, therefore, that a differential equa-

tion

(6.5) L*(u) = 0

whose solution forms are known, and those coefficients are identical with those

of the equation (6.1) to the extent of all terms up to those of the rth degree in

1/X, is constructible.

From the formulas (3.7) and (3.10), the coefficients of the differential

forms VkL*(u) and <DkL(u) may be seen to be identical to the same extent in

powers of 1/X, as are those of L*(u) and L(u). Therefore, in the relation
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(6.6) £ (u) - <Dn-mL*(u) = JZ X^7> ""*«,
i—1

the left-hand member has coefficients that differ from those of the corre-

sponding member of (3.11) only by terms that are of higher degree in 1/X

than the rth. The same therefore maintains as to the right-hand members,

namely, by (5.7),

*      B^ X)
(6.7) «,»___ i=l, 2, •■•,».

Xr+1

7. The functions «i(z, X), • • • , un-m(z, X). Let the functions w,(z, X) be

taken to be of the forms

(7.1) Ui(z,\) = exp(\ I a-i(z, X)dzjAi(z,X), i = 1, 2, •■•,(« — m),

with each A((z, X) a power series in 1/X, thus

(7.2) Ai(z, X) = ± 2*EL .
,-o      X'

The coefficients oti,j(z) are to be analytic, and those for which j<r are to be

left undetermined. Those for which j^r may be specified in any way that

makes the several series (7.2) convergent. In particular, they may be assigned

the value 0.

The set of evaluations

(7.3) DkUi = X* exp (\ j <ndz) <<TiA(-\-7 (a„ — ji

are easily established by the method of induction. Since the leading term of

the formula (3.1) is Xf(z), it follows that

fc k 1
a = Xi + —B(z,\),

X

and therefore that

k
k k A  Xi<Xi,j + I(cxi,o, •     ■ , ai,j-i)

o-iAi = x<«i,o + 2-i -:-"
j=i X'

In accordance with this, a more explicit form of (7.3) is

*

(7.4) DkUi = X*expfxl <ndz\Wiaifi + JZ -;-\ ■

A consequent evaluation is
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L*(Ui) = Xmexp(X  |   a-idz J <fi0(x.)a.-,o

(7.5)
A  fio(x«)«f,j + 7(a,-,0, • • • , a,-,y_i)"k

y=i X' j '

That L(ui) has the form of the right-hand member of this equation would be

found from the formulas (2.6) and (7.4). That the evaluation (7.5) applies

to L*(ui) follows, therefore, from the fact that the coefficients of the latter

differ from those of L(u/) only by known functions that are analytic in z

and of degrees higher than the rth in 1/X. By induction it can now be proved

that

(7.6) OkL*(Ui) = X">+* exp (\ f o;dz\ |fl»(x.-)«.\o

Y*  ttk(Xi)ai,i+ 7(a,-l0, • • • , a,-,y_i)!

+ h £ j'
with

k

(7.7) Q»(x) = fio(x)   IT (x - Xy),       *= 1,2, •••,(« -m).
;'=i

From (6.3), (6.4), and (7.7), it may be seen that £2*(xi) vanishes when i^k,

and when i>n — m, but that, on the contrary,

(7.8) a*(x<)^0, for * = k+ 1, k + 2, ■ ■ ■ , n - tn.

With any index i from the set 1, 2, • • • , n — m, and with k=i— 1, the

coefficients of the first r powers of 1/X in the series within the brace of the

formula (7.6) are the left-hand members of respective equations

,? 9) fii-i(x<)a;,o = 1,

Q<-i(xi)a»,y + 7(a,-,0, • • • , a,,y_i) =0, j = 1, 2, • ■ • , r — 1.

Because  of   (7.8)   we  may  determine  the  functions «,-,,-  successively for

j=0,  1, 2, • • • , r — 1, to fulfill these equations, and we may do this for

i = l, 2, ■ ■ ■ , n — m. Herewith the functions w,-(z, X) are determined.

The formulas (7.6) are now evidently of the forms

(7.10) <DkL*(u,) = X-+* exp (\ f ^dzj B(z, X),

for every i and k. By virtue of the relations (7.9), however, they are, more

explicitly,

(7.11) <DkL*(u>) = \m+" exp (\f o-idz\ jl H-^—1 ,        when k = • - 1,
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whereas it may be found from this that

(7.12) <DkL*(ut) = \m+" exp (\ f adz j     ^   , when k > i - 1.

8. The related differential equation. Let the determinant A(u) be defined

thus

L*(ui) ■ • • 7*(«_m) L*(u)

,n 4N , , OiL*(m.)     • • • DiL*(«n-».)        Di7*(«)
(8.1) A(m) =

Dn-^^Ml)   •  •  • On-mL^^n-n,)      ©„-„,7*(m)

and let A,_i signify the cofactor of the element in the ith row and last column.

Then with

A(«)
(8.2) £*(U)=.±1,

A„_m

the relation

(8.3) jC*(u) = 0

is a linear differential equation of the order n, which admits as solutions the

functions (7.1), as well as all solutions of the differential equation (6.5). For

this latter equation let the solutions of any fundamental set (linearly inde-

pendent) be denoted by w„-m+i(z, X), • • • , u„(z, X). These, as well as the func-

tions (7.1), fulfill the equation (8.3). We wish to show that the members of

this entire set are linearly independent.

The Wronskian W of the functions ut(z, X) for * = 1, 2, ••-,«, is the

determinant |7?<_1m,| . By adding to each one of the last (n — m) rows of this

determinant a suitable linear combination of preceding rows, and observing

that <DkL*(uj) vanishes for every k when/ = n — m + l, ■ ■ ■ , n, because L*(u,)

is then identically zero, we see that

Ml •  •  •  «n-m M»-m+l '  '  '  «n

D«l •  •  •  DUn-m DUn-m+1 '   '   ' Dun

D^Ul ■   ■  ■  D-^Wn-m Dm-1Un-m+l  '   ■   ' D^U*       .

(8.4)   W =
L*(ui) ■ ■ ■ L*(un-m) 0 ■■■     0

<DiL*(ui)     • ■ ■ ViL*(un-m) 0 ...     0

On-^-lL*(Ul)   •  •  • <DnZm-lL*(Un-m) 0 •  •  • 0
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In this the m rowed minor in the upper right-hand position is the nonvanish-

ing Wronskian of the functions Mn_m+i, • ■ ■ , un- The (w — m) rowed minor in

the lower left-hand position is An_m, and is nonvanishing by virtue of the

evaluations (7.10), (7.11), and (7.12). Thus Wj*0, and the functions Ui(z, X),

i = l, 2, ■ • ■ , w, accordingly comprise a fundamental set of solutions of the

differential equation (8.3). This equation is therefore solvable, in the sense

that its solution forms are completely known.

The cofactor An-m has in its main diagonal elements of the form (7.11).

Its elements below .this diagonal, and above it, are respectively of the forms

(7.12) and (7.10). The cofactor A,_i is obtainable (except for sign) from

A„_m by replacing the elements of the latter's ith row by the respective ones

of the set <Dn-mL*(uj),j = l, 2, ■ • • , (n — m). This replacement substitutes in

the main diagonal the element Dn_mZ*(w,-) which is of the form

/    C    J\B(z,X)

X»expvXJ  '*)-&T'

for the element D,_i7,*(m.) which is of the form

x*+i-i exp A ca.dz\ l + fo '\ .

This is the significant feature of the whole replacement. We see from it that

Ai-i B(z, X)
(8.5) —, Xn-m-w .

An-m X'«

Now the expansion of the determinant A(u) by the elements of its last column

yields the formula

n~m A _   _;

(8.6) j[Z*(u) = On-mL*(u) + Y ^-Vn-m-iL*(u).
!=1    A„_m

By (8.5), this has the form

n-m        CB(Z   X)

•C(«) =On-m7*(M) + Y \l——<Dn-m-iL*(u),
i=i Xr+

and since

n-l

<Dn-m-iL*(u) = Y VB(z, \)D"-'u,
1=0

it follows at once that

(8.7) £*(«) - <Dn-mL*(u) =-Y A*a(8, X)7J-'«.
X1^1 ,_i
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This result may now be compared with the relation (6.6). Because of (6.7)

the comparison shows that

A      B(z, X)
(8.8) £*(«) = CM + IZ X* -^ 7>-X

namely that the solvable equation (8.3) has coefficients which differ from

those of the given differential equation (2.1) only by terms that are of at least

the (r+l)th degree in 1/X. The differential equation (8.3) is therefore the

related equation whose construction we proposed to accomplish.
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