
SEMI-GROUPS OF MEASURES ON LIE GROUPS

BY

G. A. HUNT(')

This paper grew out of discussions with S. Bochner. It would be hard

now to disengage his contributions from mine.

We shall characterize those families (pt)o<t<«, of finite positive measures

on a Lie group Q which are weakly continuous and form a semi-group under

convolution. No generality is lost in assuming that the pt are probability

measures.

Paul Levy [3] obtained a characterization when Q is 'R., the additive

group of reals: The characteristic function <pt(^)=fcii"pt(d<r) has the form

(1) <pt(t) = exp iitai, - lb? + I f (e* - 1-*-^JG(do-)l

where b is non-negative and G is a positive measure on <r\ such that G(0) =0

and f<r2G(da) is finite.

Let us translate this result. The definition Stf- (t) = ff(r+a)pt(da) yields

a semi-group (St) of transformations which are defined at least for bounded

continuous functions. It is easy to prove that the limit

Mf-(r) = lim- [<>,/• (r)-/(r)]
t\o   t

(2)

= af (r) + bf"(r) + J   [f(r + *)- f(r) - ^-jG(d<r)

exists if/ is the Fourier transform of a function vanishing rapidly at infinity.

Moreover, M determines the family (pt).

This second form extends to a semi-group (pt) on a Lie group Q. Let us

first assume

(3) lim pt(E) = 1, E a neighborhood of t,

(here e is the neutral element). Then the pt define a semi-group (St) of trans-

formations on a Banach space J of functions with the property that S(f—>f

as / decreases to 0. Thus (St) has an infinitesimal generator; one would ex-

pect it to have an expression like (2).
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The first part of this paper proves that this is indeed so when J is the

space of continuous functions on the one point compactification of Q. The

subject proper is begun in §2 after disposing of a good many preliminaries in

§1. The main argument is carried out in §§3,4 and the results are summarized

in §5, especially in Theorem 5.1. This choice of J facilitates the proofs; but

it has the drawback that J, though adequate for the characterization of (pt),

is rather small—for example, when Q is 5R. it does not contain the characters

e'**, so that Levy's formula is not an immediate consequence of Theorem 5.1.

The second part brings two complements. First, in §6 we prove a version

of Theorem 5.1 with another choice of J; the new statement implies Levy's

formula at once. Next, we deal briefly with the L2 theory in §7, showing for

example that the pt define self-adjoint operators if and only if M has a cer-

tain symmetry.

The last part deals with the (pt) which do not satisfy (3). It turns out

(§10) that as / decreases the p( tend weakly to the Haar measure of a compact

subgroup A^ of Q and that the homogeneous space Cj/K^ is the proper place

to look for a semi-group representing (pt). We begin by laying the necessary

foundation in §8. Then §9 states the analogue of Theorem 5.1 and sketches

the proof. The results are translated back to Q in §10. What we have said

in §§6, 7 can also be carried over to homogeneous spaces.

One could present matters in the reverse order. I have not done so for

two reasons. The preliminaries, which are long already, would then delay

too much the coming to grips with the problem. Next, the expression for the

infinitesimal generator under the hypothesis (3) is a little more satisfactory

than the one in §9.

Levy's result is more complete than I have indicated. He showed that

an infinitely divisible measure on "R. may always be taken to be px in a semi-

group (pt). This statement and its extension to Abelian Q can be fairly

easily derived from Theorem 5.1. Simple examples show that when C^is not

Abelian some restriction must be placed upon the infinitely divisible measure

p. For Q compact it suffices to assume that p factors into parts which com-

mute one with another. I have not included the proof because it rests on the

fact that Q has sufficiently many finite-dimensional representations and does

not carry over to arbitrary Lie groups.

Semi-groups on Q

1. Preliminaries. This section deals with matters which otherwise would

interrupt the argument. §§1.1-1.5 fix the notation and remind the reader of

those facts which will be used without mention. §1.6 shows how to approxi-

mate certain differential operators. §1.7 summarizes what is needed from the

theory of semi-groups of transformations. And §1.8 proves, in the generality

we require, a lemma familiar from the theory of parabolic differential equa-
tions.
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1.1. Q is a Lie group with neutral element e. If Q is not compact Qc is

its one point compactification. We shall always suppose that a homeomor-

phism of Q onto Q is extended to Qc by making the point a at infinity cor-

respond to itself; accordingly we set o-co=o}cr=(i) for every cr in Cj/C. If Q is

compact take Qc to be Q itself; in this case all statements concerning co are

to be disregarded.

Q is the Banach space of continuous functions on Qc, with norm ||/|| the

maximum of |/(cr)|. A function belonging to Q is of course uniformly con-

tinuous in both the right and left uniform structures on Q. For a in Q the

translations Re and Lc of Q are defined by

R*f- to = /(rcr),        L.f- (t) = /(<r-to, r £  £,

where i?„/- (t) denotes the value of the function R,f at r.

1.2. The space of finite measures on the Borel sets of Qc is given the usual

weak topology. Thus the sets comprising those measures p. for which

a<ff(a)p.(dcr) <b form a sub-basis for the topology; here/ ranges over Q and

a, b over the reals.

If p. is a finite measure the associated transformation R„,

r»i-(t) = f' /(ttmao, zee,

is a continuous linear transformation of (^ into itself whose bound is the total

variation of p. The convolution p. * v is defined by

p.*v(E) - fu(dir)v(<r-lE), ECg,

H*v(u>)  = m(co)v( </<••) + >'(co)M($r).

The last equation reduces to /**y(co) =/j(co)+?(«)— ^(co^co) if both jit and v

are probability measures. Convolution is associative and Rliif, = R^R,.

We shall be concerned only with positive measures. It can be shown that

the variable positive measure /x tends to the measure v if and only if the

associated transformation i?M tends strongly to R„ provided that ju(co) tends to

v(o}). It follows that p.*v is continuous in the pair (p, v) if both p. and v are

positive and if p(u) and p(co) vary continuously.

1.3. Let F be an element of the left invariant Lie algebra of Q and set

X(s) =exp sY. Ii f is in Q define

Yf = lim - (7W - /)
•-•o  s

provided the limit exists in the metric of Q. Note that Yf- (co) must vanish.

Qk is the set of those/ for which YX(Y2 ■ • • (Ykf) ■ ■ ■) makes sense for every

choice of the F< in the Lie algebra. Qk is a dense linear manifold in Q, for it
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includes every function which is sufficiently differentiable on Q and constant

near co. Let us take once for all a basis Xx, • • ■ , Xd of the Lie algebra and

define on Qk the norm

II/IUHI/II + EM + ---+ Z \\XiX---xikf\\,
i »l. ■■■.»'*

thus making Qk a Banach space. Left translations leave Qk invariant, and

||T,„/— /||jb—»0 as <r—»e, provided / belongs to Qk.

1.4. In several proofs we shall use the space Qi, whose definition parallels

that of Qk. With Y in the Lie algebra of Q and f (s) = exp 5 Y define

Y'f = lim - (Lt (J)/ - /)

whenever / is in Q and the limit exists in the metric of Q. Then Qi and

||/||fc' are defined just as Qk and ||/||* were before. Qi is invariant under right

translations. Of course, Qk and Qi coincide if Q is compact or Abelian.

1.5. We shall be particularly concerned with differential operators of the

form

Af=Y ^Xif + Y OiiXiXJ

= Aif+Atf, fdQt,

where the a,- and a# are constants. We assume that a,;=ciji, for terms

(aij — aji)(XiXj — XjXi) are elements of the Lie algebra and may be adsorbed

into the first sum; with this restriction the representation of A is unique once

the basis Xi is given.

Let p be the right invariant Haar measure on Cj[. li f and g belong to Qx

and vanish near co then

fGYf-Mg(a)p(d<r)  =   - f«o-)Yg-(a)p(dv)

for every Y in the Lie algebra of Q. It follows that

JV'WiWpW = - f f(<r)Axg(o-)p(d<r),

fA2f-(o-)g(<T)p(d<r) = j f(c)A,g-(a)p(d<r)

if / and g are in Qt and vanish near co. Thus A2 is formally self-adjoint with

respect to p and the decomposition A=Ai+A2 is quite independent of the

basis Xi.

1.6. Consider a A for which the matrix (ay) is positive semi-definite. In

another basis we may write
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A = A, +   Y   YiYi
lS.Si

where I is some integer between 0 and d. Now let f, =exp sAx and f* = exp 5 Ft.

Then 'for every / in Qt

Af-(r) = Jim—[/fa.) -/(r)]
»->o  s

+ lim-   E   [/faV) - 2/(r) +/(rf:.)]
s—0 Sz lgjg;

and the limits exist uniformly for t in Qc. On taking into account the form

of the coefficients on the right, we see that there is a sequence of finite positive

measures p„ on Q— {e} such that

A/-(r) = lim    f [/(rcr) -/(r)K(aV),

the limit being in the metric of Q provided / is in Qt. This result will be used

in §4.
1.7. Let T be a Banach space and (Tt)o<t<* a semi-group of linear trans-

formations on T. Under the hypotheses

(1) IMI^l, 0</<oo,

lim Tty = y, y d T,
i\o

the limit

1
(2) Ny = lim — (Tty - y)

<\o   /

exists on a dense linear subset D of T. The operator N, defined on <D by (2),

is the infinitesimal generator of the semi-group (Tt), and

Tty — y =   I    T,Nyds
J 0

for y in <D.
1.8. LetXbe a compact space, / the interval 0g/< 00, and/a continuous

function on IXX. Moreover, let/ have the property that at those points

(s, y) of IXX satisfying

s > 0,        f(s, y) = min/(s, x)

the derivative df(s, y)/dt exists and is non-negative. Then min* f(t, x)

is at least minx/(0, x) for all t.
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In the proof we may add a constant to/ and take min/(0, x) = 1. Let c be

positive and consider the function g(t, x) =ectf(t, x), which achieves its mini-

mum for a given t at the same points of X as does/(/, x). If g is somewhere less

than 1 there exist 5, s, y such that 0<8<1, s>0, g(s, y)=8, and g(t, x)>d

for all x and all / less than 5. Consequently dg(s, y)/dt is not positive. On the

other hand g(s, y) =minx g(s, x), so that/(s, y) =minI/(5, x) and

dg df
— (s, y) = e" — (s, y) + cg(s, y)
at dt

^ c8 > 0,

and we have a contradiction. Therefore g is never less than 1; letting c de-

crease to 0 we obtain the same result for /.

Now let the Banach space T of §1.7 be the space £(X) of continuous func-

tions onX and (Tt) a semi-group which satisfies (1). We keep the notation of

§1.7.

Lemma. The semi-group (Tt) has the property

(3) min  TJ- (x) ̂   min /(*), f C (?(*), t > 0,

if and only if

(4) Nf-(y) S 0 wheneverf C *D andf(y) = min f(x).

That (3) implies (4) follows from the definition of N. Note that dTtf/dt

coincides with NTtf for all/ and all positive / whenever/ belongs to O. Thus

if (4) is true and/£D the function f(t, x) = Ttf- (x) fulfills the conditions at

the beginning of this paragraph, so that (3) must hold. Then (3) is true for

all/ because D is dense in Q(X).

2. Positive semi-groups. Let (pt)o<t<«, be a family of positive measures

on the Borel sets of Qc which form a semi-group under convolution and satisfy

(1) pt(Qc) = 1, t>0,

(2) lim pt(E) = 1, E a neighborhood of e.
<\o

It follows from (2) that the family is continuous in the weak topology of

measures. Also the definition of convolution implies that pt((j) is a bounded

solution of the functional equation u(s+t) =u(s)u(t), so that pt(<a) = l—pt(Q)

varies continuously.

2.1. The measures pt give rise to a strongly continuous semi-group of

transformations St of the Banach space Q:

(3) Stf- (r) = j    f(ro-)pt(do-), fGQtTegc.
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This definition and the properties of the pt imply that

(4) lim Stf = f, fee,
«\o

(5) min S,f-(cr) ^   min /(<r), l>0,/GC,

(6) LJSt = StL„ t > 0, cr G Q-

The inequality (5) is equivalent to the statement that St leaves constants

invariant and transforms positive functions into positive functions.

2.2. Conversely, suppose we are given a semi-group of linear transforma-

tions St of Q for which (4), (5), and (6) are true. From (5) it follows that the

bound of each St is 1 and that for each positive / and each r in (Jc,

S,f(r) = j    f(a)qt(r, d<r)

with qt(r, E) a positive measure of total measure 1. Then (6) implies that

g*(crr, aE)=qt(r, E) for cr in (j and r in Qc; so there is a measure pt(E)

= g«(e, E) such that qt(r, E)=pt(r~1E) whenever r belongs to Q. As for

g<(co, E), it must be 1 or 0 according as E contains co or not. Otherwise

qt(w, E) would be strictly positive for some compact set E not containing co;

there would be a sequence cr„ such that the sets cr„£ were pairwise disjoint,

and from (6) we should derive the absurd conclusion

1 = qt(<*>, gc) = Y ?((«>. °"»-E) = Y 9i(". E) = CO.
n n

Since St and pt clearly stand in the relation (3) to one another, the fact that

the St form a semi-group implies that so do the pt. Finally, (2) follows at once

from (4).

2.3. Thus there is a one-to-one correspondence between semi-groups of

positive measures on (jc which satisfy (1) and (2), and semi-groups of linear

transformations of Q which satisfy (4), (5) and (6). We shall call (St) a posi-

tive semi-group and the pt the associated probability measures.

We intend to characterize all positive semi-groups on Q by writing down

explicitly their infinitesimal generators. In the next section it will be shown

that the generator—or rather a corresponding linear functional—must have

a certain expression, then in §4 that every transformation of this form

generates a positive semi-group. The results are summarized in §5.

2.4. A finite measure on Q must vanish on all but a countable number of

cosets of the connected component X of e. Thus if the pt are the associated

measures of a positive semi-group, the collection ffrf of those cosets of 3C on

which pt differs from zero for some rational t is countable. Let Q' be the sepa-

rable group generated by the elements of cosets in M and let Q'c be the com-

pactification of Q' using the same point at infinity as for Q. Now consider



1956] SEMI-GROUPS OF MEASURES ON LIE GROUPS 271

any function/ in Q which vanishes outside some compact set not intersecting

Qi. The integral Jf(a)pt(da) must vanish for all t, because it is continuous in

7and vanishes for rational t; so for every t the measure pt is confined to Qi.

It is easy to see that the pt define a positive semi-group on Q' from which the

original semi-group on Q can be obtained by left translations by elements

oig.

We may therefore, without loss of generality, restrict our consideration to

separable Lie groups whenever this proves convenient.

3. The infinitesimal generator. Let (St) be a positive semi-group on G

with associated measures pt. According to §1.7 the domain D of the infinitesi-

mal generator M is dense in Q; we need however more precise information.

3.1. If / belongs to Q{ and F to the Lie algebra of C^then

Y'Stf = lim — (Lmv.YStf - S,f)
«-K)   5

1
= St lim — (Lexp.y/ — /)

«->o s

= StY'f

because St is a bounded linear transformation which commutes with left

translations. Similarly S,(Y'Z'f) = Y'Z'(Stf) if / belongs to Qi, so that Qi is
invariant under all St.

It follows from the definition of the norm that ||5(/||2' ^||/||2' and that

llSf/— /1I2'—*0 as t—>0, for every/ in Qi. Therefore the restrictions of the St

to Qi form a semi-group whose infinitesimal generator is defined, according

to §1.7, on a dense linear subset D' of Qi. Now D includes D', because con-

vergence in Qi is stricter than convergence in Q; so Of~\Qi is dense in Qi.

3.2. Let us set fj = exp sX(, where X\, • • • , Xd is a basis,of the Lie algebra

of Q, and define

Dif = lim - [f(& - f(e)},
j-«0    5

Dijf - lim — [f(titi) - /(f)) - f(ti) + /(e)]
*->o s'

tor every function / which is twice differentiable in a neighborhood of e. Note

that Dif is Xif • (e) and T>„/ is XiXjf- (e) if / belongs to Q2, whereas D,f

is -Xif- (e) and Dtf is XJXlf- («) if / belongs to Qi. The restriction of D{
or D^ to Q2 or Qi is a continuous linear functional.

The following lemma is a consequence of the preceding number and of the

elementary geometry of Banach spaces.

Lemma. For every fin Qi and every positive 5 there is agin OC\Qi such that

\\f-g\\i <S, Dig=Dif, Diig=DiJ.
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An appropriate use of this lemma yields the existence of a function <f> in

Or\Qi which satisfies

*(«) = Di<b = 0,        Da<t> = 2,        D^ = 0 if i?zj,

and which is strictly positive on Qc— {«}• In coordinates x4 adapted to the

basis Xi at e—that is to say, x,(e) =0 and Z),x, = 5i3—the function <f> behaves

like Yx\ near «.
3.3. Let £ be the class of functions which belong to Q and are twice con-

tinuously differentiable on Cf~. Once the function <j> has been fixed, it follows

easily from the lemma that for every / in £ and every positive 5 there is a g

in Df^Qi such that

(1) 1/W -g(r)|   £«*(t), rd  Qo-

This being so, we prove that the limit

Af = lim- [Stf(e) -/(«)]
i\o   t

(2) i r
= lim- [f(<r) - f(e)]pt(da)

<\o t J yc

exists for every/ in £. Given 5>0 take g in <DC\Qi to satisfy (1). Then

— J I Ji") - g(cr) | p((dV) =S -j f <b(<r)pt(dv)

and the right member is 0(5) because # is in D. Consequently the functions

'-1/[/(°") -/(«) ]/>«(Ar) and ^^[gCcr) -g(e) ]p,(c7cr) differ by 0(5) ; since the latter

function has a limit as t decreases to 0 (because g is in G) and since 5 is

arbitrary, the limit in (2) must exist.

3.4. Consider the family of positive measures

Ft(E) =— f <b(o-)pt(da), Ed Qc
t Je

Because rlf<ppt(da) has a limit the family is uniformly bounded in /, and

according to relation (2) the integral

f f(<r)Ft(da) = - f'f(<r)4>(o-)Pt(d<T)

converges, as t decreases to 0, for every/ in £. Hence the Ft converge weakly

on Cjc — {e} to a finite positive measure F and consequently

(3) -  f _ f(<r)4>(*)pt(da) -+ f f(<r)F(d<r)
t J yc J \jc-\t\
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for every function / belonging to Q and vanishing at e.

We make use again of the lemma in §3.2 to determine elements Xi and

xn of <DC\Qi such that

Xt(e) = Xij(e) = DiXjk = 0,        DtXj = 5^,

,0, {i,j} * \k,l\,

DijXkl = <1, {i,j}  = [k,l},i^j,

(2, i=j=k = l.

Thus the Xi serve as coordinates near e and the Xij behave like the products

XiXj through terms of the second order at e. We set bi = Axt and bij=Axtj by

way of abbreviation.

Take any/in £ and set c=f(e), ct = Dif, 2dj = Dij(f— ^c4x*).Then the

function f—c— zZc'xi~ zZcaxn belongs to £ and has the form fop with h

belonging to Q and vanishing at e. Therefore

Af = A(c + zZ c'xi + IZ Cijxn) + lim — |      h<ppt(d<i)
I\0    t   J  \jc

=   zZ bic< + zZ bijCn +1 (/ — c - zZ c'xi — zZ Ciixij)<t>-1F(do-)
J Qc-w

where h has been written out explicitly in the last integral.

Each integral fxij-<t>~1F(do-) makes sense, because xa/4> is bounded and

continuous on Qc— {«} • So we may drop the terms fcijXij<l>~1F(d<r) from the

last integral in (3) if we agree to adsorb them into the sum zZbijCa by chang-

ing the values of the 6,-y appropriately. After making this change we write

(4) Af=zZ a/Dif + \Z otflaf +  f [/to - /(e) - IZ (Dif)Xi(a) ]G(d<r)
J Qc-u\

where G is the positive measure G(da) =<p~1(o-)F(do-) on Qc— {«}• The coeffi-

cients atj we take to be symmetric in the indices, for Dij — Dji is a linear

combination of the Dk.

3.5. It is easy to verify that the matrix (a,-,-) is positive semi-definite by

considering those / in £ for which f(r) ^0 for all t and /(e) =7?,/ = 0. Since

Stf is positive,

(5) zZaiiDiif+ f f(o-)G(da) = lim r-i5</-(e) ̂  0.
J Qe-W 'NO

Assume, for the purpose of arguing by reductio ad absurdum, that zZaaDijf

is strictly negative for some/. Take a sequence of functions,/„=/exp ( — n<j>2)

say, which satisfy the same conditions as/ and are such that Dijfn = Dijf

and JfnG(d<r)—>0; then the left member of (5), written with f„ replacing/, is
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less than 0 for large n. This is a contradiction; consequently Yfla^aJ 1S

never negative. Now, as/varies the matrix (DaJ) ranges over all symmetric

positive semi-definite matrices; since y^AnDaf remains non-negative, the

matrix (a ,7) must be positive semi-definite.

3.6. It is clear that MJ-(r_1) =A(LTf) whenever Mf is defined and r be-

longs to Q, so that the expression (4) of A can be translated into one for

MJ-(t) provided / belongs to Df^£. Although it would not be difficult to

prove at this point that D includes Qt, and thus to obtain the expression of M

restricted to Qt, we prefer to wait until §4. There, however, we shall need to

know that the restriction of the linear functional A to Qt determines the semi-

group (St). We proceed to the proof of this statement.

Once the x,- have been chosen, A on Qt determines the constants a», ay

and the measure G; so A on Qt determines A on £. Now consider any function

/ in £ which is constant near co; since such functions are dense in Q it suffices

to prove that A on £ determines Stf for all t. We have already observed that

Sff■((!}) has the constant value /(co). Moreover, Stf belongs to £ because/

belongs to Qi and St transforms Qi into itself. Hence, setting/0(r) =/(r) and

ft(r) =S(f- (t), we obtain a continuous function on [0, <x>)x(jc which satisfies

the equations

a/«(«)
-^-^ = 0, / > 0,

dt
(6)

-^— = lim — [S.ff ir) - ftir)] = A(LT-ift),      rg^OO,
at »\o   s

where/( stands for ft(a) considered as a function of cr. It suffices to compute

the derivative with respect to t on the right as we have done, for the resulting

expression is continuous in t for fixed r since A o Lr-i is a continuous linear

functional and (St) a strongly continuous semi-group on Qt.

The fact that A on Qt determines the St is therefore equivalent to the

statement that the system (6) has a unique solution once /o is prescribed—

that is to say, to the statement: Let gt(r) be a continuous function on the space

[0, oo) X Qc such that g0(r) = 0 for all t, gt(co) = 0 for all t, dgt(r)/dt exists for

all t and all positive t, and gt(r) is twice differentiable on Q for each t; if also

^^ = A(Lr-*gt), rdg,l>0,
dt

then gt(r) vanishes identically.

This last statement is an instance of the assertion in the first paragraph of

§1.8 (not of the lemma there), for ALr-xgt is non-negative if gt takes on its

minimum at r.

4. The generation of positive semi-groups. The preceding section showed

that a positive semi-group defines on Qt a linear functional which determines
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the semi-group. Turning matters around, we prove that every linear func-

tional satisfying the necessary conditions gives rise to a positive semi-group.

The argument depends on the following lemma.

4.1. Lemma. Let (Sf) be a sequence of positive semi-groups whose infinitesi-

mal generators Mk are defined at least on Q2. Suppose moreover that for each fin

Q2 the sequence Mkf converges, say to M'f, in the metric of Q. Then Sff converges,

say to Stf, for every f in Q and every positive t, and the transformations Stform

a positive semi-group whose infinitesimal generator is defined at least on Q2 and

coincides there with M'.

For / in Q2 we have

j/tf   = \\Sk,Mkf\\ * \\Mhf\\,
dt

so that the Sff, considered as functions of t, have a common modulus of uni-

form continuity.

A subsequence of the associated measures pf converges weakly for every

rational t. In order not to complicate the notation we assume until the end of

the argument that the full original sequence so converges.

The inequality above implies that for / in Q2 and t in Qc the functions

Sff- (r) of t have a common modulus of continuity independent of k; so the

sequence (pf) converges weakly for all /, say to pt. Clearly each pt is positive

and pt(Qc) = l. Let St be the transformation Stf-(T)=ff(T(r)pt(da) of Q into
itself, so that Sff converges weakly to SJ lor every / in Q. We obtain

(1) Stf-f= f's.M'fds, fCQ*,

with a weak integral by writing the same equation for the pair Sf, Mk and

then passing to the limit. This equation implies that

/t+h
\\S.M'j\\ds£\\M'f\\h, fCQ2,

so that Stf is strongly continuous for each / in Q2—hence also for each / in

Q, because Q2 is dense in Q and St has bound 1. Equation (1) shows too that

Stf converges strongly to/ as f—>0, first for/ in Q2 and then for/ in Q. We may

now interpret the integral in (1) as a strong integral and obtain

i i r'
(2) lim — (Stf - /) = lim — j   S.M'fds

«\0    / t\0    t   J 0

= M'f, f C Qi,

the limit being in the metric of Q.
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The last relation enables us to prove that p](Q) tends to pt(Q). Since

p<((/)Sslim inf p"t(Q) by the definition of weak convergence, it suffices to

prove that pt(Q) s^lim sup plt(CJr). From §3 we have the representation

Mkf. (e) = A*/. (e) +   f [/(,) _ /(e) _ £ Xif- (e) Xi(a) ]G*(do-)
J g<r-\*\

for / in Qs. Each Mk is a bounded transformation from the Banach space Qt

to the Banach space Q and the Mk converge strongly to M'. It follows easily

that M' too has the form

M'f- («) = A/- (e) +  f [/(<r) - /(e) - Y X<f- (e) ]G(flV)
J c^r-M

with A and G satisfying the conditions derived in §3, and that in particular

G*(co)->G(co).

We first suppose that G(co) =0. Let A be a compact neighborhood of e in

gand take/in Qt so that 0 £/(t) = 1 for all t,/(t) = 1 for r in A, and/(co) =0.

Equation (2) implies

lim inf — [pt(Q) -l]= lim — [£«/■(«) - l]
<\o     / i\o   t

= M'f -(e)

= f      [/(*) - 1]GW

Since G((^—.4) can be made arbitrarily small it follows that

lim —[1 - pt(Q)} = 0.
<\o   t

Let us fix s and write p,(G/) =e~" with c^O. Let B be any compact set in

Cj and C the set of products err with both factors in B. The definition of con-

volution shows that [p*/2(5)]2^p*(C) for each k. Consequently

k
P>it(Q) = sup lim sup p.itiB)

r   * ,n\ l1'2
= sup hm sup [p, (C) J

_   g-"/2_

Repetition of this argument gives the inequality p,/tn(Q) ^e~"12", which in

turn implies
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liminf — [pt(Q) - l] ^ - c.
i\o      t

On comparing this result with the former equality we find that c must vanish.

Thus p,(Q) = 1 and consequently pf(Q)-*p>(Q) for every 5.

When G(co) differs from 0 the proof is a little more complicated. Using

the fact that G*(co)-»G(co) and that pf(Q)=exp { -Gk(co)t} one throws the

proof back upon the case we have dealt with. We omit the details.

From the convergence of pf(Q) to pt(Q) follows the strong convergence

of Sf to St. Since the bound of each St is 1 we now obtain the equation

S,St = St+t by passing to the limit in the equation SfSf = Sf+i. Therefore the
family (St) is a positive semi-group; and by (2) the restriction of the gener-

ator of (St) to Q2 is precisely M'.

We have proved the lemma with the original sequence replaced by a sub-

sequence. But note that M', according to §3.6, determines the limit semi-

group (St). Thus our construction is quite independent of the particular

subsequence which may have been chosen. This being so, a familiar argument

can now be used to prove that the full original sequence of semi-groups must

converge strongly to the semi-group (St). This completes the proof of the

lemma.

4.2. Let Xi, • ■ ■ , Xd be functions in Q2 such that Xi(e)=0 and X,Xj-(e)

= D{Xj=5ij, and \etcp be a function in Q2 which is strictly positive on Qc— {«}

and behaves near e like zZxl through terms of the second order. (The x,- and

<t> occurring in §3 were required to be in Of^Qi ; once formula (4) of §3 has

been proved, however, that restriction may be replaced by the present one.)

Let N he defined on Q2 by the equation

Nf- to = IZ atXif- (r) + JZ auXiXjf- (r)

(3) C
+      „        I7(to - /to - £ Xif- (r) xM ]G(da)

J Qc-M

where (a,-,-) is a symmetric positive semi-definite matrix and G is a positive

measure on Qc— {e} for which the integral f<pG(d<r) is finite. Note that

Nf(u)=0. It is clear from the definition of Q2 that N is a bounded linear

transformation from the Banach space Qi to the Banach space Q. If G and

the Xi are the same in (3) and in equation (4) of §3, then Nf • (r) =A(LT-^f)

for t in Q.

We shall prove that N is the restriction to Qi of the infinitesimal generator

of exactly one positive semi-group.

4.3. First consider an N which can be written

(4) Nf-(r)=f \f(ra) - f(r)]F(do-), r C  Qc,
Qc~^
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with F a finite measure on Qc — {e}; such an N is obviously an instance of

(3). Equation (4) defines A7 as a linear transformation from Q2 to Q whose

bound is twice the total measure of F when Q2 is considered a submanifold

of Q. Consequently A^ extends by continuity to a linear transformation N' of

Q into itself with the same bound as before and the same expression. It

follows that the transformations 5f= YitN')n/n\ for 2 = 0 form a semi-group

of transformations of Q which is continuous in the uniform topology of oper-

ators. Since Nf- (t) is non-negative whenever the minimum of / occurs at r,

the lemma of §1.8 implies that equation (5) of §2 holds. Finally, St commutes

with left translations because N' does so.

Thus N is the restriction to Qt of the infinitesimal generator of a positive

semi-group.

4.4. We settle the general case by approximation, using the result in §1.6

and the lemma in §4.1. If

(5)      Nf- (t) = Y OiXiJ- (r) +  f [f(ra) - f(r) - X>i/- (r)xi(«r) ]F(da)
J gc-u\

with F a finite positive measure, we may write

Nf- (r) = Yf- (r) +   f [f(rc) - f(r) }F(dc),
J g^-u)

with Y in the Lie algebra of g. There is a sequence of finite positive measures

ju„ on gc— {«} such that f[f(ra) — f(r)]pn(da) tends to Yf in the metric of Q

for every / in Qt, and by §4.3 the transformations

Nnf- (r) =   f [f(ra) - f(r) ] [G(da) + ^(da) ], / G Q,
J gc-u\

are the generators of positive semi-groups. So the lemma ensures that N also

is the restriction to Qt of the infinitesimal generator of a positive semi-group.

Consider finally the general case of (3). Take a sequence of finite

positive measures pn on gc— fe} so that /[/(rcr) — /(r)]p„ tends in Q to

YaaXiXjf for every / in Q2, and let G„ be the finite measure (1 — e-"*)G(cfcr)

on ge — {e}. If we define

Nnf- (r) = Y "iXif- (r) +  f [f(rc) - f(r) ]y.n(da)
J Gc-i«)

+   f U(ja) - fir) - Y Xif- (r)Xi(cr) ]G.(*0
J gc-u\

then Nn coincides on Qt with the infinitesimal generator of a positive semi-

group and also Nnf^>Nf in the metric of Q for every/ in Q2. Hence N itself is
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the restriction to Qi of the infinitesimal generator of a positive semi-group.

4.5. At this point we verify that the infinitesimal generator of a positive

semi-group is always defined on Qi. Let (St) be the semi-group and A the

linear functional defined in §3.3 but restricted now to Q2. We take the a,-, a,-,-,

and G in (3) so that Nf-(e)=Af. Now, N is the restriction to Qi of the

infinitesimal generator of some positive semi-group, say (Si). But, according

to §3.6, the two semi-groups (St) and (Si) must coincide, for they both induce

the linear functional A on Q2.

This argument also proves that the N of (3) is the restriction to Qi of the

infinitesimal generator of only one probability semi-group.

5. Statement of results. As usual Xi, - • • , xd are functions in Q2 for which

Xi(e) =0 and XtXj- (e) =otj, and <p is a function in Q2 which is strictly positive

on Qc— {e} and behaves near e like £xf.

5.1. Theorem. Let (St) be a positive semi-group on the Lie group Q. Its

infinitesimal generator M is defined at least on Qi and has there the representation

Mf- (r) = zZ «iXif- to + IZ aaXiXjf- (t)

(l) r
+     „       [/(to - /to -zZXif- to X.-(cr) ]G(da).

J Qc-U)

Here the matrix (ai/) is symmetric positive semi-definite and Gis a positive meas-

ure on Qc— {e} for which the integral f(p(o-)G(da) is finite. The measure G and

the operator A2 = zZaijXiXj are determined by M independently of the choice of

the basis Xi, • • • , Xd and the functions x,-. Moreover, the restriction of M to Qi

determines the semi-group (St).

Conversely, if the transformation M:Qi—*Q is defined by (1) and if the

matrix (a,-y) and the measure G satisfy the conditions above, then M is the restric-

tion to Qi of the infinitesimal generator of exactly one probability semi-group.

We have proved all the statements of the theorem except the uniqueness

of A2 and G. To see that G is unique we need only observe that Mf- (e)

is just Jf(a)G(da) if the function / vanishes near e. This being so, the part

of M not accounted for by the integral is determined once the Xi and x,

have been fixed. But changing the x, changes only the first order operator

Ai = zZaiXi, so that A2 depends at most on the Xf. In performing a substitu-

tion on the Xi we may subject the x< to the contragredient substitution; the

integral then remains invariant, so also Ai+A2, and the discussion in §1.5

shows that A2 does not depend on the choice of the Xi.

The term Ai depends of course on the choice of the functions x{. For cer-

tain groups—for example, compact semi-simple Lie groups—or for positive

semi-groups with certain properties of symmetry, one can choose the x,-

"naturally" for each basis Xi, ■ ■ ■ , Xd so that Ai becomes uniquely deter-

mined.
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5.2. We add a few remarks whose proofs are easy.

First, G(co)=0 if p4(co)=0 for some /; conversely p,(co)=0 for all t ii

G(co)=0.

Second, If is a bounded operator on Q if and only if

(2) Mf-(r)=f [f(ra) - f(r)]F(d<r), r d £„
J gc-u\

with Fa finite positive measure on gc— {e}. li G is discrete then M necessar-

ily has this form.

Third, the set of generators of positive semi-groups on g is a convex

cone in which operators of the form (2) are dense. To be precise, let VYl be the

set of restrictions to Q2 of the infinitesimal generators of all positive semi-

groups on g. Then "M is a closed subset in the space of continuous linear trans-

formations from the Banach space Qt to the Banach space Q (in the strong

topology of operators); "M is closed under the operation of forming linear

combinations with positive coefficients; and transformations of the form (2)

are dense in Vft (see the argument in §4.1). It can even be shown that the M

of the form Yc> (R<n~l) with positive d are dense in 'M.

5.3. We sketch the probability interpretation of our results under the

hypothesis that p<(co)=0. The definition qt(r, E)=pt(r~1E) yields stationary

Markoff transition probabilities on g which are invariant under left transla-

tions: qt(ar, oE) =qt(r, E). Conversely, left invariant transition probabilities

qt(r, E) define a semi-group of measures pt(E) =qt(e, E) which satisfy (1) and

(2) of §2 provided qt(r, £)—»1 as /—>0 whenever £ is a neighborhood of r. On

an appropriate probability space one can realize the transition probabilities

by a stationary process of random variables f (t) with values in Q and inde-

pendent increments. This is to say, Pr {f (s)~^(t)dE} =pt-,(E) for 0=5 <t

and the increments f(0)-1f(<i), ■ • ■ , (~(/„_i)_1f (tn) are independent if the tk

are increasing.

When M = cR„ — c with positive c and f(0)=e, the f(f) form a Poisson

process in the following sense. If the cyclic group {cr*} is infinite then

stJ-(r) =e-'Y -~rJi^k)

and f (t) takes on the value cr* with probability e~ct(ct)k/kl for non-negative k.

If {cr*} has finite order r then

StJ-(r) =    Y  Pk(ct)J(rak)
0^k<r

with Pk(u)=e-"Yun/n^-, the sum being extended over the non-negative n

congruent to k modulo r.
If M=Ai then $(t) =exp tAx and 5, is just right translation by the group

element. The processes for which M=Ai+A2, the Brownian motions in the
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group space, have been treated in detail by K. Ito [2]. He has proved that

f (t) can be constructed so that each sample path is continuous in t; it is not

difficult to show that this is possible only when M=Ai+A2.

Complements

6. The Levy formula. Theorem 5.1 as it stands does not include the

formula of Levy, for the characters e^" do not belong to Q2. We proceed to

strengthen the theorem under the hypothesis that pt(co)=0.

6.1. The group Q.v/as compactified in order to achieve a perfect reciproc-

ity between measures and certain transformations, and to catch masses

escaping to infinity. If we consider only measures confined to Q it is better

to dispense with co altogether and to replace Q by Q, the space of functions /

which are bounded on Q and are uniformly continuous in the left uniform

structure on Q, that is to say, f(ia) —/to is small for all t if a is sufficiently

close to e. It is a little more convenient later on to define Q in the following

way: Choose a left invariant Riemannian metric on Q and take Q to be the

space of functions which are bounded and uniformly continuous in this

metric.

Q is a Banach space with the norm ||/|| =sup |/(r)| ; it includes Q in an

obvious fashion. Clearly left translations leave Q invariant. To see that so do

right translations, express R,f ■ (t%) — R,f ■ (t) as /(rcr • a~1^a) —f(ra) and note

that every neighborhood of e includes a neighborhood of the form cr_1Fcr.

Indeed, one neighborhood F will serve for all a in a given compact set; thus

as cr ranges over a compact set the functions R,f have a common modulus of

uniform continuity. It follows that g(r) =ff(ra)p(da) lies in Q if/ does so and

p, is a finite measure. For the integral may be split into two, one over a com-

pact set E and the other over Q—E; the first is uniformly continuous by the

remark just made, the second is uniformly small if p(Q—E) is small.

The spaces Qk are defined as in §1.3. Each element of the Lie algebra of

(^ defines a continuous transformation of Qk into Qt-i by the first equation of

§1.3.
6.2. If (pt) is a semi-group of positive measures on Q, so that pt(oi)=0,

and if (1) and (2) of §2 hold, then the equations Stf- (t) =ff(ra)pt(do-) define

a semi-group (St) on Q which satisfies (4), (5), and (6) of §2, with the mini-

mum in (5) replaced by infimum.

Theorem. Let the associated measures of the positive semi-group (St) satisfy

pt(u)=0. Then Theorem 5.1 remains true with St, Q, Qi, Qc replaced by St,

We shall prove only that the domain of the infinitesimal generator of (St)

includes Q%. The rest of the proof follows easily from Theorem 5.1 and the

estimates we produce.

First let us limit the behavior of pt near co. The G occurring in Theorem 5.1
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now has the property that G(co)=0. Let 5 be positive and U a compact

neighborhood of e in g such that G(g~ U) <5/14. There is a compact V in

g whose interior includes U; let ^bea function in Qt which vanishes in U,

takes on the constant value 1 in gc — V, and elsewhere lies between 0 and 1.

Then

5/14 =   f +(<r)G(do-)
J g-u

1   r
= lim — I yp(a)pt(do-)

t\o   t J Q-u)

= lim sup— I      pt(da),

so that pt(g~ V) <t8/7 for small t.

Assume that for some/ in Q2 bounded by 1 the limit of ^(StJ—J) does

not exist in the metric of Q. There are then a positive 5 and sequences (r„),

(sn), (tn) such that 0<5„, tn<l/n and

(1) -  [StJ- (Tn)   ~ J(Tn) ]   ~  -   [S,J- (Tn)   - J(tn) ]   >   8.
tn Sn

We shall prove this leads to a contradiction.

The functions fn=LTJ, Xtf„, XiXjf„ have a common modulus of uniform

continuity independent of n. We may therefore assume, passing to a sub-

sequence if necessary, that as n increases these functions converge uniformly

on a compact neighborhood V of e (we suppose V chosen as above) to a func-

tion g and its derivatives X.g, XiXjg. We alter g on (/c— V so that it becomes

a function in Qt bounded by 1. Write

(2) /„ = g + Y £** + Y eaXiXj + hn

where the c", cj are chosen to make hn vanish at e through terms of the second

order. (The x,-, and later <b, are those at the beginning of §5.) The c™ and Cy

clearly tend to 0. Also | h„(r)\ <5„0(t) for r in V, with 5„ tending to 0, and

h„(r) is bounded by 3 for large n.

We abbreviate <~1 [S tu -(e)—u(e)] to [w, t] and | [m,s]— [u, t]\ to [u, s, t].

Then (1) and (2) imply, for large n, that

5 < [fn, sn, tn]

^   [g, Sn, tn]   +   Y   I  C<\   [*« Sn, tn]  +   Y   |  di]   [xiXj, Sn,  tn]

+ 5n |  [<*>, Sn] |   + 5n |  [<p, tn] j   + 65/7,

where we have used the limitation on pt in estimating [hn, sn, tn] by the last



1956] SEMI-GROUPS OF MEASURES ON LIE GROUPS 283

line. Since x„ x,Xj, <f> all belong to Qi, every term in the last member except

6S/7 tends to 0. We have arrived at a contradiction; therefore ^[Sf—f]

converges uniformly on Q and the domain of the infinitesimal generator of

(St) includes Qi.

If we had used the right uniform structure instead of the left the above

proof would fail at the point of asserting that LrJ, • • • have a modulus of

continuity independent of n. Theorem 5.1 can be modified to deal with the

space of bounded functions uniformly continuous in the right uniform struc-

ture, but it is apparently difficult to pick out a sufficiently large recognizable

class of functions included in the domain of the infinitesimal generator.

6.3. The Levy formula now follows easily. Let Q he the reals and write

a, b, a/(I +o-2) for ai, an, xx in (1). Denote by e% the character ei(a; it belongs

to Qi and

Aet = Mer(0) = «»{ - b£2 + f (e*° - 1-—|G(d(r).
J Q-{0\  \ 1  + cr2/

Moreover 5<e{- (a) = et(<j)Sfit (0), because ej is a character. Therefore

d _
— S,*f(0) = MSter(0) = (Aet)S,ei-(0).
dt

Consequently fe^"pt(da) =Ste(- (0) =exp (tAet), the result of Levy.

7. Normal and self-ad joint semi-groups. When the measures associated

with a positive semi-group (St) are symmetric in the sense that pt = ptO J

—here J is the involution t—^t-1 extended to Qc by setting 7(co)=co—the

linear functional Af=Mf-(e) can be written in a particularly simple form

From the symmetry of pt follows that of G, so that in (1) of §5 the integral

may be written for r = e

V  f/-    ,,{/(*> +/to_1) - 2/(0 - zZXif-(e)[xi(a) + *,.(«r-i)]}GO).

The integrals /[xi(cr)+x,((r_1)]G:((fcr) exist in the ordinary sense because

Xi(a) +x,(cr~1) is of second order at e. This being so, we adsorb the last terms

under the integral into Ai and write

Af= Aif- (e) + A2/- (6) + I  f [f(c) + /(„-!) _ 2/(e) ]G(da)
(1) 2 J G/-(«l

+ G»[/(co) -/(e)].

It is clear that A must take on the same values for/ and /'=/ o /. In view

of the facts that A]/'- (e) = — Ai/- (e), that A2 is a second order operator, and

that the last two terms of (1) remain unchanged when /' replaces/—we must

have Ai = 0; then A2 must satisfy A2/'- (e) =Aif- (e). So we may say:

If pt o J = pt then
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Af = A2f- (*) + - f [f(<r) + /(cr'') - 2/(e) }G(d<r)
(2) 2 J Cr-i.)

+ G(co)[/(co) -/(e)],

w/sere the functional /—^2/'■ (e) arccf /&e measure G are invariant under J. More-

over, the semi-group (St) is determined by the restriction of A to those func-

tions in Qt satisfying/=/o /.

Symmetry implies many interesting properties, both probabilistic and

analytical, of the semi-group (St). In the simplest case, that of discrete g and

p((co) =0, it is equivalent to symmetry qt(a, t) =pt(a~1r) =qt(r, a) of the tran-

sition probabilities. In more general situations it expresses itself most sig-

nificantly in terms of a Markoff process inverse to the one introduced in

§5.3. To carry out this interpretation would lead us too far astray; instead

we develop one of the analytical consequences.

7.1. Let (St) be a positive semi-group whose associated measures are con-

fined to g and let L2 be the Hilbert space of functions on g which are square

integrable with respect to the right-invariant Haar measure p. The equation

TtJ-(r) = J'    J(ra)Pt(da), f d L2,

where the integral is taken in the sense of Bochner, defines Tt as a linear

transformation, with bound 1, of L2 into itself. The Tt clearly form a semi-

group converging to the identity as / decreases to 0; so the infinitesimal gen-

erator N is defined on a dense subset of L2. It is easy to verify (because a

subspace of Q is dense in L2) that N coincides with the infinitesimal generator

M of the semi-group (St) on the set of those functions/ in Q2 which together

with Xif and XiXJ belong also to L2 (and hence vanish at infinity).

We shall find conditions for the Tt to be normal or self-adjoint. Since

ff gV)f(r<r)pt(da)p(dr)  = J J f(T)&F*)pt(d<r)p(dT), .

the adjoint of Tt is

T*f(r) = J   f(r<r)p't(da),

where pi =pt o J, a notation we shall employ for other measures also. A

simple calculation shows that Tt is normal if and only if pt * pi =pi * pt and

that Tt is self-adjoint if and only if pi =pt.
7.2. Let us assume that all Tt are normal and draw some conclusions

about N. Zero is never a characteristic value of Tt, because Ttf—*f as /—>0;

consequently Tt=Je''E(dz) and the spectral measure E is confined to the

half-plane i?z = 0, because each Tt has bound 1. It follows that the infinitesi-
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mal generator N is the normal transformation fzE(dz), defined for every/ for

which the integral f\ z\ 2(E(dz)f,f) is finite. One can verify this in the follow-

ing way: If the integral is finite then

-(Ttf-f) ~  fzE(dz)f\\   =  f- | e»- 1 - tz\2(E(dz)f,f),
I J J t1

and the last integral tends to 0 with t because the integrand does so while

remaining less than \z\2 for Rz^O. Conversely, if ^(Ttf—f) converges then

for some constant K

II 1 2
K ^ lim sup   — (Ttf-f)

i\o    11  t

= lim sup   f- | e" - 112 (E(dz)f, f)
i\o     J t2

>  f lim- \e"- l\2(E(dz)f,f)

= f \z\2(E(dz)f,f).

Thus/ belongs to the domain of JzE(dz) and the first argument applies.

7.3. We translate the conditions on the pt into ones on M or N by means

of two remarks, the proofs of which we leave to the reader.

First, consider two positive semi-groups (S\) and (S2) with generators

M1 and M2. For S\ and S2 to commute for all 5 and t it is necessary and

sufficient that M1M2f=M2M1f for all/ in fr.
Second, let St, pt, M, A have their usual meaning. Then A'f=A(f o J) is

obviously a linear functional defining the generator M' of a positive semi-

group (Si). The measures associated with (Si) are precisely the pi =pt o J.

From these remarks it follows that the statements pt*pi =pi *pt and

pi =pt lor all t are equivalent respectively to StSi =SiSt and Si =St for all

t, and hence also to MM' = M'M and M = M'.

Let us consider the special case in which Af=f\f(a) —f(e)]G(da) with G a

bounded measure on Q— {e}. The Tt are normal if and only if G*G' = G' *G.

The necessity follows from the fact that G is the weak limit of the measures

f-1£<; the sufficiency, by noting that the infinitesimal generator is bounded

and then using the same reasoning in §7.2. The commutativity of M and M'

in the general case, written in terms of the three components of M, is too

cumbersome to be of use.

The condition M=M' is equivalent, we have seen, to the fact that A

can be written in the special form (2), with G(co) =0 if we are dealing with

semi-groups on L2.
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We have proved incidentally that the Ax and A2 in the resolution of the

generator N are always normal, the first "imaginary" and the second self-

adjoint.

Homogeneous Spaces

8. Preliminaries. Let A^ be a compact subgroup of the Lie group g and

5W the homogeneous space of left cosets aK^. The group K^ is denoted by 0

when considered as a point of "M. If M is not compact let 9fic be its one point

compactification; the point 0' at infinity is to be kept fixed under the action

of g. li 5W is compact take 2*fc to be M itself. Q is the Banach space of con-

tinuous functions on f7ifc. For a in g and f in Q the function L„f is defined by

LJ- (P) =f(a'1p).
Most of §1 carries over to homogeneous space. There are, however, a few

points, notably the definition of Q2 and the approximation of differential

operators, which require elaboration. We shall use the same symbols as be-

fore except when the danger of ambiguity is too great.

8.1. Let p be a finite measure on VYlc with the property p(-nE) =p(E) for

every 77 in K^. For each point p of fftf we define a measure pP on Vtic by setting

pP(E) =p(r_1£), where t is an element of g carrying 0 into p; the measure

pp depends only on p and p, for two allowable choices of r are related by

t' =tjj with 7) in 1^. We define p0< to be the measure whose total mass pCMc) is

concentrated at 0'.

By means of the family (pp) we associate with p the continuous linear

transformation

RJ-iP) - L/(?)/»,(<*?)

oi Q into itself. Clearly L„S„ = SI1L<, for all cr in g. Conversely, every continu-

ous linear transformation of Q into itself which commutes with all L, can be

so obtained from some measure invariant under A^.

We define p * v by

H*v(E) -   f   Vp(E)it(dp), EdM,

p*v(o') = n(o')v(Mc) + pCM)v(o'),

so that R^y = R^Rr. The remarks of §1.2 concerning topology and continuity

still apply.
8.2. Select arbitrarily a Riemann metric on "M which is invariant under

g„ one can do this because K^ is compact, and the particular choice is irrele-

vant at this point. Let b(p) be the distance from 0 to p in this metric and let

Zi, • • ■ , Z( be normal coordinates at o, valid in the neighborhood 5(p)<3a

say. Let \p(u) be a twice differentiable function of the real variable u which
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is 1 for u^a2 and 0 for MJ^4a2; define x, to be \f/( zZz))zi, and extend xt to a

function in Q by setting x,(o') =0. We shall say the xt are modified normal

coordinates at o.

An element r\ of A^ induces an isometry p—*t]P OI 5W which leaves o fixed.

Since the x< are normal coordinates near o, so also are the functions L,x,-. A

moment's reflection shows that Lvx,= zZca(rl)xi with (c,;) an orthogonal

matrix. Consequently, for every sufficiently differentiable function / the

quantities

E(f)'.     2(^5-)'. -
are unchanged when the x,- are replaced by the L,x,-. This is true also of the

function f(o\q) of q

f(o | q) = /(c) + 1^ (o)xi(q), q £ 5KC.
dx,

The coordinates x< can be transported to any point p of M by forming

yt=LTXi with ro = p. The y, depend upon the choice of r, but (according to the

same reasoning as above) the quantities

.v,(,/)-{r(f)'}"',   ^-{r(-^-)T!,...
v.   .• \dyi/p) \ i.j \dyidyi/p)

and the function f(p\ q) =f(p)+ zZ(df/dyi)Pyi(q) of q are the same for all

allowable choices of r. We shall say that f(p\q) is the first order part of / at q;

it depends not only on /, p, q but also on the Riemannian metric and the

function \p.

Qk is the space comprising those functions f in Q with continuous deriva-

tives on 9it tor which the norm

Il/H* =   max   \f(p)\+    IZ      sup   NT(f, p)
pGMc lUrlik    PGM

is finite and for which Ni(p,f), ■ ■ ■ , Nk(p,f) all tend to 0 as p approaches o'.

Clearly Qk is a Banach space; it is also a dense subset of Q.

8.3. We shall say that an operator T on Q is invariant if its domain E is

invariant under the L, and if LcTf= TL„f for cr in Q and / in E. Such an

operator is determined by the functional Bf=Tf- (o) on E,

Tf- (P) =B(L,f), pCM,oo = p,

Tf-(o') = lim Tf(p).
p—*0'

On the other hand, suppose that £ is a part of Q invariant under all Lc

and that B is a functional on E. If B is invariant in the sense that B(LJ) =Bf

for every r\ in A^ then the equations (1) define a function Tf on TJL. provided the

limit exists. In the examples we encounter it will be evident that the function
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lies in Q, so that (1) defines a transformation from E to Q.

In particular take E to be Qt and

(2) Bf = Y fl<— i°) + Y aOT—— io), an = an,
dXi dXiOXj

where the xt are the coordinates introduced in §8.2. We have seen that

Lvxt= Yciiirl)xj for 17 in A^; so B(Lvf) is given by the right member of (2)

with a, and ciy replaced by YakCki and YakiCkiCij. For B to lead to an invari-

ant operator A it is necessary and sufficient that as= YakCki(v) and ay

= Yakt Ckiiy)cij(ri) for all -n in K^- If this is so, A is a continuous linear trans-

formation from the Banach space Qt to Q. Note that Af-(o')=0 according

to the definition (1).

8.4. Consider a functional Bf= Yan (d2f/dxidxj)„ where the matrix (a^)

is positive semi-definite of rank r. After subjecting the Xi to an orthogonal

substitution we may write Bf= Y\ A»(d2//dyi)o. Let p" be the point y,(p?)

= n~xbij and qi the point yXg") = — w_15y. Observe that for a function of one

real variable

*"(0) - - [giv) ~ 2g(0) + g(v)] = - f \v -  \u\) [g"(0) - g"(u)]du

and that the right member is majorized by the oscillation of g"(u) on the

interval—y = M=f. Consequently the difference

(3) Bf-n2Y U[j(p") ~ Vio) + Jiql)]
i

is majorized by X Y osc (d2//dy?), where X is the greatest of the X, and the

oscillation is taken over the neighborhood 8(p) ^lll2/n of o.

Let us assume further that BLvf = Bf for every rj in K^, so that B defines

an invariant operator A. Denote by p" the measure which for i = l, • • ■ , r

assigns to pi and qi each the measure X,«2. Then the difference above may be

written Bf—ff(p)nn(dp), if we assume, as we shall until equation (5), that

/ vanishes at o. Observe now that

Bf - j f(p)p"(vdp) = BLJ - j LJ- (p)^(dp)

and that there is a constant a such that X Y osc i^2Lvf/dy2) is majorized by

a Y osc id2f/dxtdxj) provided all oscillations are over the same small neigh-

borhood of o. Consequently

(4) Bf -   f f(p)n»(r,dp)    = a       Y      OSC (V^-)
J S(.p)^lUi/n \dXidXj/

for every r\ in f^.
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Take finally p." to be the measure pn(E) =f pn(t]E)d-n, where drj is the

normalized Haar measure on A^. Each /Z" is invariant under A^j and the

difference Bf—ff(p)pn(dp) is majorized by the right member of (4). Trans-

porting to an arbitrary point p oi 9tt and taking into account the definition

of Q2 we obtain

(5) lim   f [f(q) - f(p)]ih(dq) = Af-(p), f £ Qi,
n—*w   J

the limit existing uniformly on "M. Since both members reduce to 0 for p=o',

the convergence is actually in the metric of Q.

There is a similar approximation to A/ for a B of the general form (2) if

the matrix (an) is positive semi-definite.

9. Positive semi-groups on M. A semi-group (St) of bounded linear trans-

formations of Q is positive if

(1) lim Stf = /, /EC,
i\o

(2) min Stf- (p) ̂    min f(p), t>0,fCQ,

(3) LaSt = S,L„ t > 0, cr £ Q.

It can be shown as in §2 that a positive semi-group has the representation

(4) Stf-(p)= J^f(q)Qt(p,dq)

where the Markoff transition probabilities Qt(p, E) are derived from a posi-

tive measure Pt exactly as the pp were derived from p. in §8.1. The family

(Pt)o<t<«, has the following properties:

(5) Pt(Mc) = 1, t>0,

(6) lim Pt(E) = 1, Ea neighborhood of o,
t\o

(7) P,(vE) = Pt(E), r, C K,

(8) P,*Pt = Ps+t, s,t>0.

In particular, Pt is weakly continuous in t. Also, P((5W) and Pt(o') vary

continuously, for P<(9>X") is a bounded solution of the functional equation

u(s)u(t)=u(s+t).

Conversely a family (Pt) of positive measures satisfying (5) through (8)

leads to a positive semi-group when (4) is taken as a definition.

9.1. Let Xi, • • • , xi be modified normal coordinates at o and <j> a function

in Qi which is strictly positive on Mc — {o} and behaves like zZxi near o.

Theorem. The infinitesimal generator M of a positive semi-group on Jit is
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an invariant operator which is defined at least on Qt and can be expressed at o as

(9)    Mf-(o) = Yai~(o) + Yaa-T^io) + f \jiq)-Jio\q)]Gidq).
dXi dXidXj JMC-M

The matrix (a^) is positive semi-definite; the linear functional

Bf = Y «•' (df/dXi)0 + Y an (d2f/dXidXj)0

satisfies BLvf = Bf for all rj in Aj and G is a positive measure, JcpG(dq) is

finite, and G(r\E) =G(E) for 77 in 1^.

Conversely, let M be an invariant operator defined on Q2 by (9) with at, a^,

G satisfying the conditions above. Then M is the restriction to Q2 of the infinitesi-

mal generator of exactly one positive semi-group on VA.

The proof is so like the one of Theorem 5.1 it suffices to indicate the

changes required beyond the replacement of g by M, e by 0 and so forth.

Y'J, QL ||/||' being defined word for word as in §1.4, but in terms of the

new Q and L„, the argument of §3.1 shows that the restrictions of the St to

Qi form a semi-group to which §1.7 applies. Let Zi, ■ ■ • , z; be a fixed system

of modified normal coordinates at 0 and set Z>,/= (d//dz,)0 and

DnJ = (d2f/dZidZi)0;

the lemma in §3.2 remains valid—there is even the added simplicity that

Dij = Dji. The function <j> is chosen as before and £ is the set of all func-

tions in Q which are twice continuously differentiable on 5W. The argument

now proceeds as in §3 through equation (4). At that point it is no longer

necessary that the x,- be in <Dr\Q2 ; so we take them to be the coordinates z,-,

which are in Qt. Equation (4) of §3 becomes

(4') Af = Y °iD<f + Y *ifliif +  f [/(?) - /(" I q) )P(dq)-

Making use of the relation A(LJ) =Af for 77 in A^, one proves that G is in-

variant under t^ by considering those / in Q2 which vanish near o; at the

same time one proves that A determines G. It follows, on taking into account

the properties oif(o\q), that also Bf= Ya<Dif+ Yaa^ajsatisfies the equa-

tion B(L^f) =Bf for r) in A^. The rest of §§3, 4 carries over to complete the

proof.

It is easy to see that Mf- (0') =0.

9.2. The remarks of §5.2 still apply. So does §5.3, with the exception that

part of the probability interpretation is lost because there is no composition

of random variables with values in 3W. The elementary process corresponding

to the Poisson may be described as follows: The process is specified by a set

F of the form f^J> and a positive number c. Let G be the measure on F such
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that G(F) =c and G(rjE)=G(E) tor r\ in A^. The functional (9) for the process

is Mf-(o)=fF\f(q)-f(o)]G(dq).
9.3. As an example, take UKt to be a sphere, Q the group of rotations of

JA, and A^ the subgroup of Q leaving the point o fixed. Now (9) simplifies a

good deal. The group A^ operates transitively on the unit tangent vectors to

M issuing from o; so the term zZa* (df/dxi)0 disappears (see §8.4). A similar

argument shows that zZaij (d2f/dx,dxj)0 reduces to a positive multiple of the

ordinary Laplacian on 5W. Also, G must be a zonal distribution centered at o.

This example has been studied by Bochner [l ] from the point of view of

spectral analysis. Because of the zonal symmetry the manifold M may be

replaced by the interval [0, 1 ]; the convolution of invariant measures on *M

is commutative and when transported to [0, 1 ] makes the space of finite

measures on [0, 1 ] a commutative ring.

The spectral theory often contains results that our method does not sug-

gest. Here, for example, formulae are true which correspond formally to

spheres of fractional dimension.

10. Translation to the group space. The preceding theorem enables us to

characterize a weakly continuous semi-group (pt) of probability measures on

Qc which does not satisfy condition (2) of §2.

10.1. There is certainly at least one probability measure p. and a sequence

sn tending to 0 such that pln tends weakly to p. We also verify that p,n(u)

—>/i(co). Observe first that pt(Q), being a bounded solution of the functional

equation u(s+t)=u(s)u(t), must either vanish identically or have the form

pt(Q)=e~ct. It is clear that p(o})=pSn(w) = l under the first alternative, so

that we need consider only the second. Let A be an open set whose closure

does not contain co and B a neighborhood of co in Qc such that err £.4 for cr in

A and r in B. Then pt+8(A) =pt*ps- (A) ^l—pt(A)ps(B). Consequently

pt(A) = lim inf pt+,J,A)
n—»«

g 1 - pt(A) lim sup p.n(B)
n—»»

^ 1 - pt(A)n(u).

By letting A swell to Q and then letting / decrease to 0 we obtain successively

Pt(Q) = 1 —pt(Q)p(u>) and 1:51 —p(w), from which we conclude that p.(io) =0.
So again p,n(u>) = l—e-ct—>p.(u).

It follows that

pt*p = lim pt*ps„ = lim /><+,„ = pt, I > 0,
7—»0O

by the remark at the end of §1.1; similarly p*pt = pt- If/*' and sn are another

such measure and sequence,

p*p' = lim p,n* fi' = lim pSn = n
n—»oo n—» qo
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on the one hand, and p * p' =p' on the other; hence p =p'. A familiar argument

now proves that pt tends to p as / decreases to 0.

We have incidentally proved that p*p=p and that p(co) is either 0 or 1.

10.2. We shall prove that if p(co) =0 then p is the Haar measure of a com-

pact subgroup of g. Let A^ be the support of p in g, that is to say, the support

of p in gc with a deleted if necessary. Since p is positive and finite the function

p(aE), with E a fixed compact set in g, is upper semi-continuous and ap-

proaches 0 as cr approaches co. Consequently the supremum of p(aE) over the

closed set A^ is attained at some point t oi J(^. The facts that p is positive and

p(AQ is 1 and the equation

h(tE)  = J   u(«r-»r£)MW

together imply that p(cr_1r£) =p(rE) almost everywhere on A^ with respect

to the measure p, therefore on a dense subset of A^ (since A^ is the support of

p). The upper semi-continuity of p(aE) now implies that the equality holds

without exception on A^.

It follows that A^ is compact. For if not, we may take E so that p(E) is

strictly positive and a sequence (an) in A^so that the sets cr~V.E are disjoint;

but this leads to

1 = /»(£) 2 Ypi<^rE) = YpirE) =  oo.
n n

It is easy now to prove that A^ is a group. Note that 1 =p(A^) =p(cr_IA^) for

every cr and that p(IQ = J/j.(o-~1IQp(da); the preceding argument shows that

n(a~1fQ =p(Kj for almost all cr in A^, hence without exception on A^. This

implies that A^ is included in each <r_1A^, or that KJ^ is included in IQ. Conse-

quently A^, being compact, must be a group.

The equation ^(o—V-E) =h(tE), for a certain r in A^ and all cr in A^, shows

that p is invariant under A^. So p restricted to A^ is the normalized Haar

measure of A^.

10.3. Let us consider g as a fibre space over the homogeneous space ?&

of cosets crA^. The natural projection ir extends to a continuous map of gc

on fTjrfc on setting tt(co) =o'. We identify the space of continuous functions on

"Mc, denoted now by Q(MC) to avoid ambiguity, with the subspace of Q(gc)

comprising the functions satisfying RJ=J for every 77 in A^ by means of the

isomorphism g<->g o w; under this identification Qt(Mc) becomes QtiQc)

H\QCMC). There is a natural continuous projection II,

H/(r) = j   J(rV)p(dv),

of Q(gc) on QWC) which maps Q2(gc) on Q2(MC).

The transformations
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(1) Stf- to =   f_ f(r<r)Pt(do-), t>0,fCQ( Qc),
J  \jc

satisfy conditions (5) and (6) of §2, but (4) only if A^ reduces to {e}. How-

ever, HSt = SJI = 5( and St converges strongly to II as / decreases to 0, so

that the restrictions of the St to Q(MC) form a positive semi-group on M..

Conversely, let A^ be a compact subgroup of Q with Haar measure p. and

let (St) be a positive semi-group on the homogeneous space "M of cosets crA^.

If we define II as before and set 5j = 5|II, the St satisfy equations (5) and (6)

of §2 and St converges strongly to II as / decreases to 0. It is clear that the

St have the representation (1), that the pt in that representation form a

weakly continuous semi-group of probability measures on Qc, that pt tends

weakly to p, as / decreases to 0, and that pt(oi) =m(co) =0.

The two correspondences just described are inverses one to the other.

10.4. In the exceptional case of the limit measure p. concentrated at co

we make the following convention: The quotient space of Qe modulo the

equivalence relation ao} = Tu reduces to a single element co. We consider {co}

to be a homogeneous space on which f^acts trivially and {co} to be a subgroup

of Q. The only positive semi-group on {co}—that is, one satisfying (1) to (3)

of §9—is the one whose transformations are all the identity. With this con-

vention the following statement is true without exception.

There is a natural one-to-one correspondence between the weakly continuous

semi-groups of probability measures on Qc and the pairs comprising a compact

subgroup of Qc and a positive semi-group on the corresponding homogeneous

space. Thus the theorem in §9.1 may be taken as a characterization of the weakly

continuous semi-groups of probability measures on Qc.
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