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Introduction. In [3], the authors discussed a definition of the conformal

differentiability of an arc at a point in the conformal plane. It was based on

the postulation of tangent circles and of an osculating circle. The intersection

and support properties of all the circles through a differentiable point were

studied, and by means of these properties the differentiable points were

classified into various types. Each type was uniquely described by a certain

triple of numbers, the characteristic of that type.

In this paper, relationships between the characteristic of a differentiable

point and its cyclic order are established. In this connection some—partly

familiar—differentiability properties of arcs of order three will be discussed.

Our main results are stated in five theorems; cf. §§2.1, 3.4, 3.5, 5.1, 5.9.

1. Prerequisites

1.1. In the following, P, Q, • ■ ■ denote points in the real conformal

plane, and C, C, • • ■ denote oriented circles. Such a circle C decomposes

the plane into two open regions, its interior C* and its exterior C*, the latter

lying at its right. If C degenerates into a point, then C* is empty. The circle

through three mutually distinct points P, Q, and R, will occasionally be de-

noted by C(P, Q, R).
The set of all circles that intersect two given circles at right angles forms

a linear pencil ir. A pencil ir of the first kind possesses two fundamental points.

It consists of all the circles through these points. A pencil rr of the second kind

has one fundamental point and is the set of those circles that touch a given

circle at that point, [if ir is of the third kind, then any two circles of ir are

disjoint.] For any pencil ir and for any point Q which is not a fundamental

point of ir, there is a circle C(7r, Q) of ir through Q. It is unique except for its

orientation. We consider the fundamental point of a pencil ir of the second

kind a point-circle belonging to ir.

1.2. We call a sequence of points Pi, P2, • • • convergent to P if to every

circle C with PCC* there corresponds a number w=w(C) such that PxCC*

if X>w. In the same way the convergence of circles to a point is defined.
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Suppose C is not a point-circle. Then we call the sequence Ci, Ci, • • ■ con-

vergent to C ii to every pair C £ C* and C" £ C* there corresponds a number

n=n(C, C") such that C'£C*x and C"£CX* for every X>«.

1.3. An arc A is defined as the continuous image of an interval. The

same small italics—except a and n—will be used to denote both the param-

eters, i.e., the points of the parameter interval, and their images on 4. The

end points [interior points] of 4 are the images of the end points [interior

points] of the parameter interval.

A neighbourhood oi p on 4 is the image of a neighbourhood of the param-

eter p on the parameter interval. If p is an interior point of A, this neighbour-

hood is decomposed by p into two (open) one-sided neighbourhoods.

From our definition, different points of A, i.e., points with different

parameters, may coincide with the same point of the conformal plane. How-

ever, we shall assume that each point p of A has a neighbourhood such that

no other point of that neighbourhood coincides with p. (The notation s^p

will indicate that the points 5 and p do not coincide.)

1.4. Suppose p is an interior point of A. Then we call p a point of support

[intersection] with respect to the circle C if some neighbourhood of p is de-

composed by p into two one-sided neighbourhoods which lie in the same

region [in different regions] bounded by C. C is then called a supporting

[intersecting] circle of A at p. Thus C supports A at p ii p(\.C. By definition,

the point-circle p always supports A at p.

It can happen that every neighbourhood of p has points in common with

C. Then C neither supports nor intersects A at p.

1.5. A point p on A is said to be (conformally) differentiable if it satisfies

two conditions:

Condition I. For every point R^p, and for every sequence of points s—>p,

sCA_, st^P, there exists a circle Co such that C(s, p, 72)—»Co.

We call Co the tangent circle of A at p through 22. Condition I implies [3 ]:

(i) There is a unique tangent circle Co= C(t, 22) through each point R^p

and the union r = r(p) of the set of tangent circles with the point circle p is a

pencil of the second kind with the fundamental point p. In particular, the

angle between any two tangent circles is zero.

(ii)  Nontangent circles through p all intersect or all support.

(iii) Let tt be a pencil of the second kind with the fundamental point p;

ir^r. Then \im,,P,,^p C(ir, s)=p.

Condition II. If s—*p, s^p, there exists a circle C(p) such that C(t, s)
->C(p).

We call C(p) the osculating circle of p. C(p) may be the point-circle p.

Differentiability implies:

(iv) The nonosculating tangent circles through p all intersect or all sup-

port. If C(p) 9±p, all of them support.

(v)  C(7r, p) =lim,<p,,?!p C(7r, s) exists for every ir.
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1.6. In [3] the differentiable interior points p of A were classified into ten

types according to the behaviour of the circles through p. We associated with

p a characteristic (a0, ax, a2) if C(p) ^p, or (a0, Oi, a2)o if C(p) =p. The numbers

a0 and ax are equal to 1 or 2, while a2 is equal to 1, 2, or °°. They have the

following properties: a0[a0+ai] is even or odd according as the nontangent

circles [the nonosculating tangent circles] of p support or intersect; a0+ai+a2

is even if C(p) supports, odd if C(p) intersects, while a2= <» if C(p) neither

supports nor intersects. Thus a0+ai+a2 is even if C(p)=p. From 1.5 (iv),

a0 = ax if C(p)r^p.

1.7. An arc A is said to be of finite cyclic order ii it has only a finite number

of points in common with any circle. If the least upper bound of these num-

bers is finite, then it is called the (cyclic) order of A, and A is said to be of

bounded cyclic order. The order of a point p oi A then is the minimum of the

orders of all the neighbourhoods of p on A.

2. The order of a differentiable point

2.1. In this section we shall prove the following:

Theorem 1. Let p be a differentiable interior point of the arc A. Suppose

that p has the characteristic (ao, ax, a2) or (ao, ax, a2)o- Then the order of p is not

less than ao+ai+a2.

The proof of this theorem will yield the following:

Corollary. If the order of pis bounded, then there exists for every neighbour-

hood of p a circle arbitrarily close to C(p) which does not pass through p and

which intersects that neighbourhood in not less than ao+ai+a2 points; cf. 1.4.

2.2. Let B be an arc of finite order. If a circle C intersects B at s, then

every circle sufficiently close to C intersects B in at least one point.

Proof. The end points of some neighbourhood MdB of 5 lie on opposite

sides of C. Hence they also lie on opposite sides of any circle C sufficiently

close to C. Since M and C have only a finite number of points in common,

one of them must be an intersection.

We note that C will intersect T17 in an odd number of points.

2.3. Let trt=T be the pencil of the tangent circles of p; thus C(wt, p)

= C(p). Let 7Ti be any pencil of the first kind such that p is one of its funda-

mental points and C(7Ti, p)^C(p). [Obviously, C(tti, p) is the tangent circle

through the second fundamental point of 7Ti.] Finally, let ir0 be a pencil of

the first kind such that C(ir0, p)<X-T- Let M be a neighbourhood of p on A.

We wish to show that 7r, contains circles C arbitrarily close to but different

from C,-+i = C(7r,-, p) which meet M outside p in not less than a,- points. If p

has finite order and if M is small enough, then C can be chosen such that the

number of intersections of M with C exceeds a, by a non-negative even

integer [i = 0, 1, 2; we assume a2< °° in the case t — 2].
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2.31. Let DiCin, 7>,^C,-+i (t = 0, 1, 2). If i = 2, let £2 = C3 when C3^p,
but let Ei=D% when C3 = p. ll i<2, Et will not be defined. However, we still

define the regions

e* = (c*,-+i r\ d*) \j (c*+i n D*/)

and

£,* = (C*f+1 H 7J>*t) U (C*+1 H 7)*) [cf. Figure 1 J.

P _ _

B*2 j E* j £„• j     E*     J £,( J £*

i = 2 i = 0   or   1

FigI.

Let tt* ,- [ir/*] denote the set of those circles of in that pass through E*,- [£,*].

Then every circle of ir,- except C,+i and Di belongs either to 7r*,- or to 7r*. By

intersecting irt with an orthogonal circle, we can construct a continuous one-

to-one correspondence between the circles of ir*,- [tr*] and the points of an

interval and hence a "betweenness" relation in ir*i[iri*].

We can choose our neighbourhood M so small that Cj+i and Di have no

points in common with the two one-sided neighbourhoods TV and TV' into

which M is decomposed by p. This follows for C3 from our assumption

a2< °°, and for the other circles from 1.5. Thus N[N'] lies entirely in one

of the two regions £*,- and £,*. Let 5 and s' denote the points of TV and TV'

respectively. Thus either all the circles C(ir,, 5) belong to 7r* <, or all of them are

in 7T,*. Without restriction of generality, let NCC*+ir\DtCE*. Then

C(iTi, s) £7Ti* for every 5.

2.32. Let eCN. Then C(tn, e) is the end-circle of a one-sided neighbour-

hood v of d+i in 7Ti. If 5 moves from e to p, then C(7r,-, s) moves in irt from

C(7r,-, e) continuously to C,+i. Hence the circles C(irt, s) omit none of the cir-

cles of v; i.e., every circle of v meets TV.

Let CCv. Thus C lies between C(7r,-, e) and C,-+i=lim,„p C(ir,-, s). If s lies

sufficiently close to p, then s(£C and C will also lie between C(7r,-, e) and

C(ir,-, s). Since e(£C and since the points 5 and e lie in C*+iC\D*, they will also

be separated by C.
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Let the order of p be finite. Then we may assume that T17 also is of finite

order. In particular, C will meet TV in a finite number of points only, and at

least one of them will be an intersection. Replacing TV by the one-sided

neighbourhood of p with the end-point e, we can even state that C will inter-

sect TV in an odd number of points.

Similarly, there exists a one-sided neighbourhood v' of C,+i in m such that

each of its circles meets TV. If p has finite order and if TV' is sufficiently small,

then v' can be chosen such that each circle of v' intersects TV' in an odd num-

ber of points.

2.33. If a, = 1, then one of the circles Ci+X and Di intersects while the other

one supports M atp; therefore TV'CTf*,-. If a, = 2, then d+x and 7\ either both

intersect or both support; hence N'dE*. Thus the circles C(tn, s') belong to

ir*i [i"i*] if a, = l[ = 2]. This holds true, in particular, of the circles of the

neighbourhood v' constructed in 2.32. Since vdtrf, it follows that v and v'

lie on opposite sides of C,+i or on the same side depending on whether a, = l

or =2. This implies our statements 2.3.

2.4. We can now readily verify the assertions of 2.1. Obviously, we may

assume that the order of p is finite; in particular, a2 < °°.

We prove our theorem by first approximating C(p) by a tangent circle,

then the latter by a nontangent circle through p, and finally that circle by

one which does not contain p.

Let Mt be a neighbourhood of finite order of p on A. From 2.3 there exists

a circle C2dr, close to but different from C(p), which intersects Tt72 in not less

than a2 points s2 outside p.

In Mt we construct mutually disjoint neighbourhoods P2 of the points

s2 and Mi of p. Let 7Ti be the pencil of the circles through p and another point

of C2; thus C2 = C(7Ti, p). From 2.3 and 2.2 there is a circle Cxdtrx, close to

but different from C2, which intersects 7l7i in not less than ax points si outside

p and which also intersects each B2.

Finally, construct in T17{ mutually disjoint neighbourhoods Bx about each

5i and T170 about p. Let 7r0 be the pencil of the first kind through two points

T^p of G; thus Ci = C(7r0, p). From 2.3 and 2.2 there is a circle CoC^o, close

to but different from Cx, which intersects Mo in not less than a0 points outside

p and which intersects each of the ai+a2 arcs Bx and 7?2.

Altogether, C0 will be close to C(p) and intersect T172 in not less than

0o+0i+02 points all of which are different from p.

3. Differentiability properties of arcs of order three

3.1. We call C a general tangent circle of an arc A at a point p if there

exists a sequence of triplets of mutually distinct points u, v, Q such that u and

v converge on A to p and that

(3.1) limC(«,»,e) =C.
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If, in addition, QCA also converges to p, then we call C a general osculating

circle of A at p.

We call 4 strongly differentiate at p if the following conditions are satis-

fied:

Condition I'. Let Rj^p, (?—>22. If two distinct points u and v converge on

A to p, then C(u, v, Q) always converges.

Condition II'. C(t, u, v) converges if the three mutually distinct points

t, u v converge on A to p.

The first condition implies that the limit circle (3.1) depends on p and R

but not on the choice of the particular sequences u and v. Specializing Q = R

and u=p, we see that Condition I' implies Condition I and that therefore

(3.2) lim C(u, v, Q) = C(t, 22).

Thus the general tangent circles of a point which satisfies Condition I' are

identical with its ordinary ones.

Suppose 4 is strongly differentiable at p. From the above, Condition I

will hold at p. Suppose a sequence of points u converges on A to p. We may

assume that the circles C(t, u) converge. Each of them can be approximated

by a circle C(p, u, v) with the same limit circle and such that the sequence v

also converges to p. On account of Condition IF, lim C(t, u, v), and in par-

ticular lim C(p, u, v), is independent of the choice of the sequences /, u, v

converging to p. Hence the same will hold true of lim C(r, u), Condition II is

satisfied, and we have

(3.3) lim   C(t, u, v) =  lim C(p, u, v) = lim C(r, u) = C(p).
t,u,t—*p u,v—w u—*p

Thus strong differentiability implies ordinary differentiability and C(p) is the

one and only general osculating circle.

There are other extensions of the above conditions to cases in which some

of the points involved coincide. The reader will readily verify them along

the lines of the preceding proof.

(i) Let p satisfy Condition I'. Let Rp^p, Q—>22. Let u converge on A to p

and let G be a general tangent circle at u through Q. Then lim G = C(t, 22).

(ii) Suppose A is strongly differentiable at p. Let the two distinct points u

and v converge on A to p and let & denote a general tangent circle at u through v.

Then lim d = C(p); cf. (3.3).

(iii) Suppose A is strongly differentiable at p. Let u converge on A to p and

let C3 be a general osculating circle at u. Then lim C3 = C(p).

3.2. Let p he an end point of the arc A of finite cyclic order. It is well

known that 4 is differentiable at p; cf. [2]. For the reader's convenience, we

include a proof.

Suppose Condition I of 1.5 is not satisfied. Then for some point Rj^p

there are two sequences of points s2* and s2k+i different from p and converging

on A to p such that the circles C2k = C(s2k, p, R) and C2k+i = C(sik+i, p, 22) con-



364 N. D. LANE AND P. SCHERK [March

verge to different limit circles C0 and G respectively. We may assume that

5n+i lies between p and 5„. If k is large, G* [G/t+i] will lie close to C0 [G].

Let C and C be two circles through p and 22 which separate Co and G.

Then C^JC will separate C„ and Cn+i and therefore also sn and sn+i for every

large n. Hence the sub-arc of 4 bounded by sn and sn+i will meet C^JC in

at least one point. Thus 4 will meet C^JC infinitely often. This is impossible.

Similarly, the validity of Condition II can be verified.

3.3. In the following, let A% denote an open arc of order three. We readily

verify that a point of 4.3 converges if its parameter tends to one of the end

points of the parameter interval. Thus A3 has two well-defined end points.

Let p denote one of them.

We introduce multiplicities counting p [a point q of .43] three times on

C(p) [on a general osculating circle at q] and twice on any other [general]

tangent circle of A 3 at p [at q ]. We wish to show that wo circle meets A 3\Jp more

than three times, i.e., the inclusion of p and the introduction of multiplicities

do not alter the order of ^43.

Obviously, any circle through q will either support or intersect A3 there.

A general osculating circle at q intersects there while any other general

tangent circle supports. Conversely, any supporting circle is a general tangent

circle.

3.31. Suppose a circle C through p intersects A3 at q and meets .43 in

two more points r and s. Choose disjoint neighbourhoods TV of p and M of

q on .43 which do not contain r or 5. If v converges in TV to p, then C(r, s, v)

converges to C. From 2.2, C(r, s, v) will intersect M if v is sufficiently close to

p. Thus this circle meets A3 in not less than four points. This yields

Lemma 1. If a circle through p meets A3 at three points, then all of them are

points of support.

Similarly, if a tangent circle of p intersects A3 at q and meets A3 also at

r^q, then there will be a circle through p and r which intersects A% near q

and also meets A3 near p. By Lemma 1 this is impossible. This implies

Lemma 2. 7/ a tangent circle of p meets A3 at two points, then both of them

are points of support.

In the same way, Lemma 2 finally implies

Lemma 3. C(p) does not intersect 43.

3.32. If a circle supports 43 at q and also meets AJUp at r and s, then a

suitable circle near it through r and s intersects A3 twice near q. By Lemma 1

and the definition of 43 this is impossible. Hence a circle through three points

of A3yjp does not support .43 at any of them.

Combining this result with Lemma 1 we obtain: No circle meets A3^Jp

in four points.
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Similarly, if a tangent circle of p supports A3 at q, then there is near it

another tangent circle of p which intersects A3 twice near q. This is excluded

by Lemma 2. Thus no tangent circle of p supports A3.

Applying the last result to Lemma 2, we have: No tangent circle of p

meets Ai in more than one point.

The above and Lemma 3 imply that C(p) does not meet A3.

3.33. Suppose C supports A3 at two distinct points q and r. From 3.32,

CC\A3 = q\Jr. Hence -43CCWC*, say. Let T17 and TV be two disjoint neigh-

bourhoods on A3 of q and r respectively. Choose a circle D in C* and suffi-

ciently close to C; cf. 1.2. Since the end points of T17 and TV lie in C*, they will

also lie in D*. On the other hand CC7>* implies c/C7>* and rdD*. Thus D

separates q [r] from the end points of T17 [TV], D will intersect T17 [TV] in not less

than two points, and 7>r^.43 contains more than three points.

3.34. Let C be a general osculating circle of A3 at an interior point q.

Thus C = lim C(qn, cj„', g„") where the three mutually distinct points qn, q„,

(/„'' converge on A3 to q.

Suppose C meets A3Up at a point r^q. Then the normal circle of C

through q and r will intersect C(q„, q„ , g„") at a point Rn converging to r.

Thus

C(qn, qn , qn") = C(q„, qn , Rn).

The circles C(qn, qn , r) will not meet A3^Jp elsewhere and they will inter-

sect A3 at qn and an'. Thus the end points of any small neighbourhood of q will

lie on the same side of C(qn, ql, r) ii n is large enough. Hence any limit circle

D of C(qn, qn , r) will support A3 at q.

Let Qi, Q2, S, T be variable points and let Qi and Q2 converge to the same

point P; Qi?±Q2. Suppose there is a fixed circle separating P from both 5

and T. Then

(3 • 4) lim < [CiQi, Qt,S), C(QX, Q„ T) ] = 0

whether the circles C(QX, Qt, S) and C(QX, Qt, T) themselves converge or not.

In particular

lim £  [C(qn, qi , P„), C(qn, ql, r)] = 0.

Since the angle between two circles depends on them continuously, it follows

that -$.(C, T>)=0. Since C and D have the points q and r in common, this

implies C = D. However, D supports and C intersects A3 at q. Hence C does

not meet A3Up outside q.

3.4. Let A3 again denote an open arc of order three. The preceding sub-

sections enable us to discuss the differentiability of A3.

3.41. We first prove

Theorem 2. Every point of A3 satisfies Condition V; cf. 3.1.
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Proof. Let a£43, eCA3, e^q. Choose two disjoint one-sided neighbour-

hoods TV and TV' of q such that e<X.M = N\Jq\JN'. Let G and G denote two

general tangent circles at a through e. Thus G meets A3 at least twice at q

and altogether at least three times. Hence C, meets A3 exactly twice at q,

once at c and nowhere else. In particular, C,- supports A3 at a. Without loss

of generality we may assume TVWTV'£C*iHC*2 (cf. 3.3).

Suppose Gt^ G. Then there is a third circle G through q and e which does

not meet C*i^C*2. Thus C3 will also support .43 at q. We may assume

TVUTV'CC*-,.
By 3.2, the arcs N\Jq and N'\Jq satisfy Condition I. Thus they possess

two well-defined tangent circles at q through e. At least one of the circles

G, G, C3, say the circle C, is different from them. Let ir denote the pencil of

the second kind of the circles touching C at a.

Let sCNVJN'. Thus s£C* and hence C(ir, s)CC*VJq. By 1.5, (iii),
lim C(ir, s)=qil s approaches a through TV or TV'. Since C(7r, s) depends con-

tinuously on s, there are circles in ir which are arbitrarily small and meet both

TV and TV' near a. Thus they meet M not less than three times. On the other

hand, the end points of M will lie on the same side of such a small circle.

Hence it will meet M with an even multiplicity and therefore not less than

four times. This being impossible we obtain G = G. Thus the general tangent

circle at q through e is unique.

Choose 22, Q, u, v according to Condition I'. Then by (3.4),

lim<£ [C(u,v,Q),C(u,v,e)] = 0.

Thus any limit circle of C(u, v, Q) touches the general tangent circle at q

through e at the point a. It also passes through 22. Hence it is uniquely deter-

mined, q.e.d.
3.42. Continuing the preceding discussion we now study the general

osculating circles of A 3 at q.

By 3.41 and 3.1, .43 satisfies Condition I. The set of the general tangent

circles of .43 is identical with that of its ordinary ones. By 1.5, (i), this set is

a pencil r of the second kind with the fundamental point q. It is identical in

particular with the pencil of the tangent circles of NKJq at q.

By 3.2, N\Jq [N'\Jq] has an osculating circle C=C(q) [C = C'(q)] at q.

It belongs to r and is readily seen to be a general osculating circle of 43; cf.

3.1.
Let D denote any general osculating circle of A 3 at a. Thus 7>£r. From

3.3, D intersects 43 at a and does not meet it elsewhere. Hence

(3.5) D*q

and D^C(t, e). We orient the circle D such that e£7>*. If e and TV, say, lie

on the same side of a, then

(3.6) TV£7>*    and    TV' £ 2V
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Thus sCTV implies C(r, s)dD*\Jq. Letting 5 tend to q we obtain

(3.7) CdD*\JD   and symmetrically   C'CB*W D.

In particular CdC*'\JC and C'CC*UC. Hence C*CC*' and CiCC* and
therefore by (3.6),

(3.8) TVCCCC*'   and   TV' C C* C C*.

By (3.5), C^q and C'j^q. Thus there is a closed subinterval t of r bounded

by C and C which does not contain the point-circle q. By (3.7), every general

osculating circle belongs to i. Conversely by (3.8), every circle of i separates

TV and TV'. Thus it intersects A3 at q. Being a general tangent circle it must be a

general osculating circle. We thus have: The set of the general osculating circles

at q is equal to i. As a corollary we obtain the equivalence of the following prop-

erties :

(i)  C(q)=C'(q),
(ii) A3 is differentiable at q,

(iii) A 3 is strongly differentiable at q.

3.5. In the remainder of this section we shall prove

Theorem 3. Let p be an end point of an open arc A3 of order three. Then

A3VJp is strongly differentiable at p; cf. 3.1 and 3.2.

We prepare our proof by a discussion which will also be useful further on.

3.51. Let B be an open sub-arc of A3 bounded by p and any point e of A3.

Let d be any point of A3 outside B\Je. We orient the circles C with d<X_C such

that ddC*. The set of these circles contains all the circles which meet -43Wp

three times in p\JB\Je. Their orientation is continuous. In particular the

regions C*(r, u) and C*(t, u, v) depend continuously on t, u, v when these

points range through pKJBVJe without all of them coinciding [cf. Theorem 2.

Here and in the following, r indicates the pencil of the tangent circles of

A3UP atp].

Since ddC*(r, e) and ddC*(p), and since C(t, e) intersects A3 at e while

C(p) does not meet A3, we have

« C C*(r, e) r\ C*(p) for every u d B.

Hence

(3.9) c(r, u) d [c*(t, e) r\ c*(p) ] yj p.

Since C(t, u) depends continuously on u, the following converse holds. Let

CO, Cd [C*(t, e)C\C*(p)]\Jp. Then there is a udB such that C=C(t, u).
Formula (3.9) implies in particular

C(t, u) C C*(t, e)VJ p   and   C(t, u) C C*(p) W p.

Similarly
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C(t, e) C C*(t, u) U p.

Also C(t, t)CC*(r, u)\Jp for every t between p and u. If t tends to p, this

yields C(p)CC*(r, u)VJC(t, u) and hence

C(p) C C*(t, u) U />.

On account of these formulas, (3.9) can be reformulated as follows:

(3.10) GO) £ CO, u) C GO, e) [thus C*(r, e) £ C*(r, u) £ C*0) ]

for every m£23.

3.52. From now on, the points t, u, v, e are assumed to be mutually dis-

tinct and to lie on B\Je in the indicated order. The circle C(p, t, v) [C(t, v, e) ]

meets43W£ three times only and intersects A 3 at v [ande]. Hence dCC*(p,t,v)

and dCC*(t, v, e) imply

(3.11) u C GO, t, v) C\ C*(t, v, e).

The circle C(t, u, v) intersects C(p, t, v) and C(t, v, e) at / and v. It is

divided by / and v into two arcs. By (3.11) the arc that contains u lies in

CO, *, v) n C*(t, v, e).

Hence the other arc lies in

C*(p, t, v) C\ C*(t, v, e)

and we have

(3.12) C(t, u, v) C [GO, I, v) C\ C*(t, v,e)]\J [C*(p, t, v) C\ C(/, v,e)]KJt Vv.

In particular C(t, u, v) separates the regions

(3.13) C*(f,l,t)nC,(l,M)

and

(3.14) C*(p,t,v)r\C*(t,v,e).

The above argument remains valid in the case t=p if we interpret

C(p, p, v) to mean C(t, v). Thus

(3.15) C(p, u, v) C [C(t, v) n C*(p, v,e)]VJ [C*(r, v) f\Cm(p,v, e)]\J pVJ v

and C(p, u, v) separates

(3.16) GO", v) C\ CO, v, e)

and

'   (3.17) C*(t, v)r\C*(p, v, e).

The argument leading to (3.12) is also seen to remain valid if the points

v and e are interchanged. Thus
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(3.18) C(t, u, e) C [C*(p, t, e) r\ C*(t, v,e)]U [C*(p, t, e) C\ C*(t, r, «) ] U < VJ «.

3.6. The proof of Theorem 3 naturally splits into two parts. In this sub-

section we show that the end point p oi A3 satisfies Condition I'.

We first prove

(3.19) lim C(u,v, e) = C(r, e).
u,v—*p

Let D denote a limit circle of C(t, u, e) as t and u tend to p. By (3.18) D

lies in

[C«(r, e) C\ C*(p, v,e)]\J [C*(r, e) C\ C*(p, v, e)} \J C(r, e) U C(p, v, e).

This holds for every choice of v in B while D is independent of v. Letting v

tend to p, we obtain DdC(r, e). Since D passes through p and e, this implies

D = C(t, e). Changing our notation we obtain (3.19).

Let P, Q, u, v be defined according to Condition I'. We apply (3.4) with

P=P, Qi = u, Qt = v, S = e, T = Q. Thus

lim     < [C(u,v,e),C(u,v,Q)] = 0.

This relation and (3.19) imply: The circle C(t, e) forms the angle zero with

any limit circle of the circles C(u, v, Q). Since such a circle contains p and P,

it is uniquely determined. This proves our statement.

3.7. Let Ci = C(p, u, v) and C2 = C(t, u, v). We prove simultaneously

(3.20) lim Ci =C(p)
«,p—*p

and assuming (3.20)

(3.21) lim   C2 = C(p).
t,v,v—>p

Thus p also satisfies Condition IF.

By (3.15) [by (3.12)], the circle G [C2] lies in

C*(t, v) \J C*(p, v,e)\J pKJv [C*(p, t, v) VJ C*(l, v,e)Vt\Jv]

and it separates the regions (3.16) and (3.17) [(3.13) and (3.14)]. By 3.2,

(3.20), and (3.19) we have

lim C(t, v) = lim C(p, I, v) = C(p)

and

lim C(p, v, e) =   lim C(t, v, e) = C(t, e).
v—*p t, v—*p

Hence any limit circle 7>,- of the circles C< has the following properties:
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(i) Di will lie in the closure of C*0)UC*(r, e) = C*(r, e),

(ii) Di will separate the regions

GO) r\ C*(t, e) = GO)    and   C*(p) H C*(r, e) = C*(r, e)

unless one of them is void, i.e., unless CO) =p; cf. (3.10).

Since pCDi, (i) implies

DiCr.

If Di is equal to C(t, e) or passes through C*(p)KJC*(r, e), then it inter-

sects .43 at another point r [cf. 3.51 ]. By 2.2, a circle G sufficiently close to

Di would meet A3^Jp three times near p and also near r. Hence

Di C GO) \J CO).

On account of (ii), this formula implies Di=C(p), whether CO) =p or not.

4. Lemmas on arcs of order three

In this section we collect additional material on arcs .43 of order three

needed in the last part of this paper. Letp denote an end point of A3. The

arc B and the points d and e are defined in 3.51. If sCB and P^s, B has a

well-defined tangent circle C(s, s, P) = C(P, s, s) at 5 through P; cf. Theorem

2.
4.1. We first extend the formulas (3.12) and (3.15) of 3.52 to certain limit

cases in which some of the points involved coincide.

4.11. If / and v are kept fixed while u tends to t [v], the right-hand sides

of (3.12) and (3.15) are not affected while C(t,u,v) tends to C(t,t,v) [C(t,v,v)].

Hence C(t, t, v) and C(t, v, v) [C(p, v, v) ] lie in the closures of the regions given

in (3.12) [(3.15)]. Since the circles which enter these formulas are mutually

distinct, it follows that (3.15)  [(3.12)] remains valid for u=v[or u=t].

We now keep t and u fixed. Then C(t, u, v) and the regions of (3.12) and

(3.15) depend continuously on v. Letting v tend to e, we find, e.g., that

C(t, u, e) lies in the closure of

[GO, t, e) r\ C*(t, e,e)]\J [C*(p, I, e) f\ C*(t, e, e)].

But CO, /, e) and C(t, e, e) are distinct from C(t, u, e); cf. 3.3. Thus (3.12)

and similarly (3.15) remain valid for v=e.

4.12. Let sCB and let G denote any general osculating circle of B at s.

Thus G will be the limit of C(t, u, v) if t, u, v converge to 5 in a suitable fashion.

By Theorem 2 and 3.42, CO, t, v) [C(t, v, e) ] then converges to G = CO, s, s)

[C3 = C(s, s, e)] and the circles G, G, G touch at s. Furthermore pCC*3

and e£G* imply G£C*3Ws and G£G*W.s.
From (3.12), G lies in the closure of (C*2r\C3*)\J(C2*nC*3). Since

C*2f~\C* is void and G^G, G, this implies

G £ (C* n C*3) U s.
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Thus G will separate C*2fNiC*3 = C*2 and C2*nC3* = C3*. Replacing s by v, we

obtain: (3.12)—(3.14) remain valid for t = u=v ii C(v, v, v) is interpreted to

mean any general osculating circle of B at v.

4.2. The following remarks continue the discussions of 3.5. Using 4.1, we

do not exclude the possibilities t = u, u=v, v=e or t = u=v.

By 3.5, one of the regions (3.13) and (3.14) will lie in C*(t, u, v), the other

one in C*(t, u, v). Since d lies in C*(p, t, v), C*(t, v, e) and C*(t, u, v), these

relations imply

(4.1) C*(p, t, v) r\ C*(t, v, e) C C*(t, u, v)

and therefore

(4.2) C*(p, /, v) r\ C*(t, v, e) d C*(t, u, v).

Specializing t=p, we obtain

(4.3) C*(r, v) C\ C*(p, v, e) C C*(p, u, v)

and

(4.4) C*(t, v) r\ C*(p, v, e) d C*(p, u, v).

Applying the case v=e oi (4.3) and (4.4) and replacing afterwards u by v,

we obtain

(4.5) C*(r, e) f~\ C*(p, e, e) C C*(p, v, e),

(4.6) C*(r, e) C\ C*(p, e, e) C C*(p, v, e).

We now combine (4.5) with (4.3) and (4.6) with (4.4). This yields on

account of (3.10)

C*(t, e) C\ C*(p, e, e) = C*(t, e) C\ (C*(r, e) n C*(p, e, e))

(4.7) dC*(r,v)r\C*(p,v,e)

C C*(p, u, v)

and

C*(p) r\ C*(p, e, e) C C*(p) H (C*(t, e) C\ C*(p, e, e))

(4.8) dC*(T,v)C\C*(p,v,e)

C C*(p, u, v).

4.3. The following relation is similar to (4.2):

(4.9) C*(p, /, u) C\ C*(p, u, v) C C*(t, u, v).

Proof. We assume first that p, t, u, v are mutually distinct. The region

(4.10) C*(p, I, u) r\ C*(p, u, v)

is bounded by two arcs of the circles C(p, t, u) and C(p, u, v) with the com-
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mon end points p and u. Since tCC*(p, u, v) and vCC*(p, t, u), these arcs

do not contain t and v respectively. Hence they meet C(t, u, v) only at u and

the region (4.10) is contained in one of the two regions bounded by C(t, u, v).

Since the boundary point p of (4.10) lies in C* (/, u, v), this implies (4.9).

The arguments of 4.1 now show that (4.9) remains valid if the points

p, t, u, v cease to be mutually distinct.

By (4.4), (4.9), and (4.2),

GO, v) n co, v, e) = (GO, v) r\ CO, v,«)) n co,»,«)

£ CO. t>») ̂  C*(P< v>e)

= co.'.«0 ^ OCO. t, v) n GO, o,«))
£ GO,'.») ^ c*(',».«)

£ G(c, «, »).

This relation holds for any choice of e between v and d. Letting e tend to v,

we obtain

(4. ll) GO, v) n CO. »,») £ Cft «,»).

4.4. Let o denote the pencil of the orthogonal circles of r. Making B small

enough, we may assume that C(o, d) does not meet B. By Theorem 3, BVJp

satisfies Condition I at p. Hence by 1.5 (iii),

(4.12) lim C(o, j) = p.
s—*p

Let vCB. If 5£C*(o, v)C\B, the points s and d lie on the same side of

C(o, v). Since B is connected, 5 will lie in the region bounded by C(o, v) and

C(o, d). Hence C(o, s) will then lie in the union of this region with p. Thus

(4.12) implies

(4.13) s£G(o, v)

for every s sufficiently close to p. As the circle C(o, v) meets ^43 not more than

twice, this implies that it meets B exactly once at v and nowhere else. Hence

(4.13) holds true for every sCB between p and v.

Suppose the circle C(t, u, v) meets B three times and the points p, t, u, v, e

lie on the closure of B in the indicated order. Two or even all of the points

t, u, v may coincide.

Since C(t, v) meets C(t, u, v), the pencil t contains a circle lying in C* (r, v)

\JC(t, v) and touching C(t, u, v) from within, say at R. Thus

(4.14) R = C(r,R)f\C(t,u,v),

(4.15) 22 £ G(r, v) \J C(t, v).

The circle C(o, R) can be characterized as the unique circle of o normal to

C(t, u, v). We wish to prove the following:
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Lemma. C(o, R) intersects B.

By (4.12), RdC*(o, s) for every s close to p. Hence it suffices to prove

(4.16) R(£C*(o,v).

Proof of (4.16). Let s move on B between p and v. The circle C(p, s, v)

meets C(t, v) and C(o, v) at p and v. By 3.51 and (4.13), 5 lies in

C*(t, v) C\C^(o, v).

Hence C(p, s, v) meets this region. The argument of 3.52 now shows that

C(p, s, v) does not meet the region

(4.17) C*(t, v)f\C*(o, v).

Thus (4.17) lies in either C* (p, s, v) or C*(p, s, v). The region C*(p, s, v) de-

pends continuously on s and tends to C* (r, v) if 5 converges to p. Since the

region (4.17) lies in C*(t, v), it will therefore lie in C*(p, s, v) for every 5 be-

tween p and v. Letting s tend to v, we obtain

C*(r, v) C\ C*(o, V) dc*(p,v,v).

Combining this formula with (4.11), we have

C*(t, v) r\ C*(o, v) = C*(r, v) r\ [C*(r, v) f\ C*(o, v)]

d c*(r, v) r\ C*(p, V, v)

d C*(t, u, v).

In particular, RdC(t, u, v) implies

(4.18) R C C*(t, v) H C*(o, v).

li PCC*(t, v), our assertion follows from (4.18). Let PC|IC*(r, v). Then

by (4.15), PCC(t, v) and hence by (4.14)

v c c(t, v) r\ c(t, u, v) = c(r, R) n c(t, u, v) = p.

Thus R=v and (4.16) becomes trivial.

5. Conformally elementary points

5.1. A point p oi an arc A is conformally elementary if a neighbourhood

of p exists on A which is decomposed by p into two one-sided neighbourhoods

of order three. By Theorem 3, their closures are strongly differentiable at p.

Let p be a differentiable conformally elementary point of an arc A and let

(ao, 0i, at) or (aB, 0i, a2)o be the characteristic of p. Then Theorem 1 can be

sharpened. We shall prove that p has the cyclic order a0+ai +a2. This Theorem

4 remains valid if a point q^p is counted twice on any nonosculating general

tangent circle of q and three times on any general osculating circle of q and if

p itself is counted a0  [ao+0i; 0o+01+02] times on any nontangent circle
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through p [on any nonosculating tangent circle of p; on CO)].

We may assume that A itself is decomposed by p into two open arcs .43

and A{ of order three. Thus the order of A and therefore that of p is not

greater than six. By Theorem 2, each point q^p ol A then satisfies Condition

I'. The set of the general osculating circles of q is described in 3.42.

5.2. Let M he a neighbourhood of p on A. For any circle D let p,(D)

=p(D, M) denote the multiplicity with which D meets M.

5.21. Suppose the circle C does not pass through the end points of M.

Then

(5.1) p.(D) = ix(C) (mod 2)

for every D sufficiently close to C.

Proof. Suppose C meets M at the points 5 with the multiplicities a(s) and

nowhere else. Thus

M(C) = E a(s).
i

Construct disjoint neighbourhoods M, in M about the points s. The end-

points of M, lie on the same side or on opposite sides of C depending on

whether a(s) is even or odd. If D is sufficiently close to C, then D will not

pass through the end points of M, and they will lie on the same side of D if

and only if they lie on the same side of G On the other hand, D will meet

M, with an even or odd multiplicity according as its end points lie on the same

side or on opposite sides of D. Thus D will meet Ms with a multiplicity

p(s) =<r(s) (mod 2) if D lies sufficiently close to G

If each Ms is omitted from the closure of M, we obtain a closed set

which has no points in common with G Hence, if D is sufficiently close to C,

this set does not meet D and we have

P(D) = zZp(s) - E *0) - M(C)  (mod 2).

5.22. We continue the preceding discussion. Let Cj^C(p). Then

(5.2) M(D) ̂  p.(C)

for every circle D sufficiently close to C unless

do = ai = 1,        C Cr    and    p (£ 2)

[cf. 5.9; for the multiplicity with which C meets If at £ cf. 5.1 ].
Proof. Let sCC(~\M; s^p. Suppose there is a sequence of circles D\ con-

verging to C and a sequence of neighbourhoods M\ of 5 converging to s such

that each D\ meets M\ at least p times; pS3. Then each 7)x can be replaced

by another circle which meets M\ in not less than p distinct points and such

that the sequence of the new circles also converges to G Thus C will meet

Mat least p times at 5; i.e.,p^cr(s). Hence we have: There exists a neighbour-
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hood of 5 on T17 which is met not more than a(s) times by every D sufficiently

close to C.

Let pdC; C(X.t. Then C meets M at p with the multiplicity a0. On the

other hand, by Theorem 3, there exists a neighbourhood of p which is met not

more than twice by any circle sufficiently close to C. By 5.21, we may also

assume that D meets this neighbourhood with a multiplicity=a0 (mod 2).

Hence this multiplicity is ^a0. This proves (5.2) unless CCt.

From now on let CO, C^C(p). Let Tl7o = TV0WpUTVo' be a sufficiently

small neighbourhood of p. Let D be sufficiently close to C. If pdD, D(\_t,

then D will meet TV0 and TV0' not more than once each. Hence D meets 7170

with a multiplicity ^ao + 2 and = ao+ax (mod 2). Thus this multiplicity is

^0o+0i. If Ddr, D will not meet TV0 and TV0', Thus D then meets T170 with

the multiplicity a0+ai. In either case we obtain (5.2).

Suppose now pC\.D. Then D will meet TV0 and TV0' not more than twice

each. Hence D meets TI70 with a multiplicity =4 and =a0+ai (mod 2). This

again yields (5.2) unless a0=ai = l.

5.3. Let A =A3\JpKJA( ; cf. 5.1. There exists a neighbourhood Tl7i = N-XJp
VJTVj' [TViC-43, TVi' dA{ ] such that every tangent circle of p which meets

TViWTVi' meets A3\JA( exactly a2 times. In particular, no tangent circle of p

meets T17i more than a2 times outside p.

Proof. A circle of r meets ^4 3 or A( not more than once each. Thus it meets

A3UA3 not more than twice. By 5.21 a circle will meet A with a multiplicity

= a0+ai+a2 (mod 2) if it is sufficiently close to C(p). Hence C(r, t) will meet

^43^-^3' with a multiplicity =a2 if / is close enough to p. Such a circle will

therefore meet A3UA3 exactly at times.

5.4. There exists a neighbourhood MtdMx which is met at most (a0+ai

+a2) times by every circle through p.

Proof. On account of 5.3, it suffices to consider nontangent circles. Hence

it suffices to construct one-sided neighbourhoods TV2CTVi and TV2' CTV/ of p

such that any circle D through p that meets TV2 or N{ twice will meet Mx at

most (00+01+02) times.

By (3.20) and (5.1), TV2 and TV2' can be chosen so small that any such

circle D is so close to C(p) that it meets T17i with a multiplicity =ao+0i+a2

(mod 2). Since D meets TVi and Nx not more than twice each, it will meet T17i

at most (a0+4) times. This yields our statement if ai+a2>2.

Let ax+at = 2, i.e., ax=at = l. Let edenote the end point of TVi and suppose

the points u, v, e lie on Nx\Je in the indicated order. Making TV2' still smaller,

we may assume that it does not meet C(p, e, e) [cf. 4]. Obviously, TVS' has no

points in common with C(p) and C(t, e).

We have

TVi C C*(p) H C*(r, e) f\ C*(p, e, e).

Since p has the characteristic (1, 1, 1) or (2, 1, 1)0, it follows that
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Ni C GO) r\ GO, e, e)    or    Ni £ C*(r, e) (~\ C*(p, e, e).

Hence (4.8) and (4.7) imply that Ni lies either in GO, u, v) or in C*0, u, v).

Thus N2 does not meet CO, u, v).

Any circle D through p and two points of Ni meets Mi with a multiplicity

= ao+l+l (mod 2); i.e., it meets TViWTVi an even number of times. It meets

TV/ exactly twice. From the above, D cannot meet TVi twice. Hence D and TVi

are disjoint and D meets Mi with the total multiplicity a0 + 2 =a0+ai+a2.

5.5. We can now prove Theorem 4 if a0+ai+a2>4.

It suffices to show that there is a one-sided neighbourhood TV3' £TV2' of p

such that no circle D through three points of TV3 \Jp meets Mi more than

(ao+ai+a2) times. On account of 5.4, we need only consider circles D which

do not pass through p.

By (3.21) and (5.1), TV3 can be chosen such that any D meets Mi with a

multiplicity =a0+ai+a2 (mod 2). Since p<$.D and since D meets TVi and N{

at most three times each it will meet TI7i at most six times. This yields our

assertion.

5.6. The case a0+ai+a2 = 4; a0 = l. Let M3CMi be so small that 4.4 can

be applied tp TV3 = M3(~\N2 and TV3 = M3C\Ni. Thus some circle of o does not

meet N3\JN3. Since ao = l, it will intersect M3 at p. Hence no circle of o can

meet both TV3 and TV3 and the lemma of 4.4 implies that no circle will meet

TV3 and TV3 three times each. Taking 5.4 into account, we have: No circle

[through p] meets M3 more than five [four] times.

By Theorem 3 and 5.2, a neighbourhood MiCM3 of p exists such that

every circle through three points of M^Nz or of Mtr^N3 meets M3 with an

even multiplicity, i.e., four times. Hence Mt has the order four.

5.7. The case (2, 1, 1)0. Let eCN2, e'CTV2',. Let M. denote the neighbour-

hood of p with the end points e and e'. By 5.3, C(t, e) [C(r, e')] meets M2

exactly three times at p, just once at e [e'] and nowhere else. By 5.22, any

circle through e [e'] sufficiently close to C(t, e) [C(r, e')] meets M2 not more

than three times near p, exactly once at e [e'] and nowhere else, altogether at

most four times. Thus by Theorem 3, there exists a neighbourhood M3CMe

such that a circle through e or e' and two points of N3 = M3C\N2

[TV3 = M3C~\Ni } can meet Af2 only once more.

Choose m£TV3 and m'£TV3 arbitrarily. Let ir denote the pencil of the cir-

cles through u and u'. By 5.4, CO, p) meets Mi only four times. Thus it meets

Mi exactly twice at p, once each at u and u' and nowhere else.

Let t lie on TV3 and sufficiently close to p. Then C(ir, t) meets M2 with an

even multiplicity ^4 and hence exactly four times. With t, the fourth point

lies close to p. Since C(ir, p) (J>, that fourth point will lie on Ni and hence on

TV3 [cf. 5.2 and Theorem 3]. In particular, e and e' will not lie on C(ir, t)

and we have

(5.3) The points p, e, e' lie on the same side of C(ir, t).
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Obviously, (5.3) remains valid if t lies on TV3' sufficiently close to p.

From the above, C(ir, p) is distinct from C(ir, e) and C(ir, e'). Let ttx denote

the set of those circles Cdir such that p, e, e' lie on the same side of C. Thus

(5.4) C(tt, /) C iri

for every / sufficiently close to p[^p]. Hence Ti is a nonvoid open interval

on ir bounded by C(ir, p) and either C(ir, e) or C(7r, e'). Without loss of

generality assume that C(7r, e) is a boundary circle of n.

Suppose C(7r, e) meets TV3 twice. By our construction of T173, C(7r, e) then

meets N'2\Jp exactly once at u' and nowhere else. Hence it separates p and e'.

The same will hold true of any circle of ir sufficiently close to C(7r, e). But this

is impossible because any neighbourhood of C(7r, e) will contain circles of

iri. Hence C(w, e) meets TV3 only once.

Let t move on TV3. By Theorem 2, C(7r, t) depends continuously on t even

when t passes through u. Since C(7r, t) meets TV3 twice, we have C(7r, t)

T*C(ir, e). From the above, C(ir, t)^C(ir, p). Hence (5.4) will remain valid

for every tdN3. This yields (5.3) for every such t. Hence C(ir, t) meets

M„r\N2 [MeC\N2 ] with an even multiplicity, i.e., exactly twice. Thus every

circle of ir which meets TV3 twice will meet T17, exactly four times. Hence no

circle of ir can meet T173 more than four times. Our construction of Tt73 being

independent of ir, T173 therefore has the order four [cf. 5.4].

5.8. The case a0+ax+at=3.

5.81. Suppose the points p, t, u, v lie on N2VJp in the indicated order. The

points /, u, v need not be mutually distinct.

By 5.4, the circles C(p, t, u) and C(p, u, v) meet T172 exactly three times and

do not meet TV2. Using on TV2 the orientation of 3.5 we obtain

N{ dC*(p,t,u)r\C*(p,u,v).

Hence (4.9) implies TV2' CC*(/, u, v). In particular, C(l, u, v) does not meet

N2, Symmetrically, any circle through three points of TV2 does not meet TV2.

5.82. Let eCTV2, e'CTV2',. Let Tt7„ denote the neighbourhood of p bounded

by e and e'. By 5.3, C(r, e) [C(t, e')] meets T172 exactly twice at p, once at e

[e'] and nowhere else. Thus by 5.2, any circle through e [e'] sufficiently close

to C(t, e) [C(t, e') ] meets Mt with an even multiplicity near p, exactly once

at e [e'] and nowhere else. By 5.81 and 5.4, the order of T172 is not greater

than four. Hence such a circle meets Mt not more than twice near p. Theorem

3 therefore implies the existence of a neighbourhood Tl73C7t7« such that the

circles through e or e' and two points of TV3 = M3r\N2 [TV3' = M3f^Nt ] do not

meet Tt72 elsewhere.

Let «CTV3, u'dNZr By 5.4, C(p, u, u') meets T172 exactly three times.

Thus it separates e and e'. From the above, a circle C(t, u, u') does not pass

through e or e' if tdNt\JN{r Let t move on T173. Then the circle C(t, u, u')

depends continuously on t [cf. Theorem 2]. Thus it always separates e and e'.
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Hence it meets M, an odd number of times. Since MeCMi, the order of M„

is not greater than four. Thus C(t, u, u') meets M, and hence also M3 only

three times. This implies that M3 has the order three.

5.9. The following remarks may be of interest. We omit their proofs as

no new methods are involved.

Theorem 5. Let p be a conformally elementary point on the arc A. Then

(i) p satisfies Condition V if and only if it satisfies Condition I and a0 = 1.

(ii) A is strongly differentiable at p if and only if it is differentiable at p and

ao=ai = 1.

We note that ao is defined if Condition I is satisfied; cf. 1.5 (ii). The case

a2 = 2 of part (ii) can be verified by means of an argument similar to that

leading to (3.19).

Formula (5.2) can now readily be extended.

Given an arc 4 divided into two open arcs of order three by the differenti-

able point p. Let p(D) denote the multiplicity with which a circle D meets 4.

We then have the

Corollary. Suppose the circle C does not pass through the end points of A.

Then p(D) ^p(C) for every D sufficiently close to C.
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