
SOME THEOREMS CONCERNING BROWNIAN MOTION

BY

G. A. HUNTC)

Given a random time T and a Markoff process X(t) with stationary

transition probabilities, one can define a new process X'(t) =X(t + T). It is

plausible, if T depends only on the X(t) for r less than T, that X'(t) is a

Markoff process with the same transition probabilities as X(t) and that, when

the value of X'(0)=X(T) is fixed, the process X'(t) is independent of the

history of X(t) before time T. Although mathematicians use this extended

Markoff property, at least as a heuristic principle, I have nowhere found it

discussed with rigor. We begin by proving a precise version for Brownian

motion (Theorem 2.5,with an extension in ^3.3). Our statement has the good

points that the hypotheses are easy to verify, that the proof is thoroughly

elementary (it even avoids conditional probabilities), and that it holds for all

processes with stationary independent increments (see §3.1). I have not

pushed the scope of the proof to the limit because it requires continuity of the

sample functions on the right and it is probable that a version of the extended

Markoff property holds for processes which are only separable.

In §4 and §5 we use the extended Markoff property to study the transi-

tion probability density q(r, r, s) oi a Brownian motion in 7^n in which a par-

ticle is extinguished the moment it hits a closed set E. It turns out that

c7(r, r, s), which can be defined without ambiguity for every r and 5 in Rn, is

the fundamental solution of the heat equation on R" — E with boundary

values 0 (at the regular points of E), and that G(r, s) =/o q(r, r, s)dr is the

Green's function for the Laplacian on R" — E. The content of these sections

must be considered more or less as common knowledge; however, I believe

some of the details are new, especially those concerning irregular points and

the probabilistic interpretation.

In writing §4 and §5 I profited from many discussions with Mark Kac and

Daniel Ray. Had I known of Doob's fundamental paper [4] on the heat

equation it is likely that these sections would have been cast in a different

form.

Kac has made the following conjecture. Consider in the plane a closed

bounded domain E and a point r outside E; the probability that a Brownian

motion starting from r does not meet E by time t is for large t asymptotic

to 27r77(r)/ln r. Here 77(r) is the Green's function of R2 — E with pole at in-
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finity. In §6 we prove a slightly more general statement: Let/ be a bounded

Borel measurable function defined on the compact set E of R2 and let F(r)

be the solution of the Dirichlet problem on R2 — E with boundary value/.

The function F(r) is the limit, as r becomes large, of the solution F(t, r) of

the heat equation vT = Aa/2 on R2 — E with initial value 0 and boundary value

/. Both F(r) and F(r, r) can be defined naturally for every point r in the

plane. Then without exceptions the product [F(r) — F(t, r)] In t approaches

2-irH(r)F(*x>), where F(<x>) is the limit of F(r) as |r|—*oo and H(r) has the

meaning given above.

1. Preliminary. This section presents the definitions and the elementary

statements which are used in §2. The phrases in italic are defined by the

sentences in which they occur.

1.1. A space is a set Z together with a Borel field *B(Z) of subsets of Z

which has Z as a member. If Z is a topological space we shall take <B(Z) to

be the Borel field of the topology. If Zi and Z2 are spaces we make Z1XZ2 a

space by taking ©(ZiXZ-j) to be cB(Zx)XcB(Zi). A measurable function/ from

the space Zi to the space Z2 is a function with the property that/-1(.4) G'B(Zi)

for every A in £B(Z2).

1.2. A triple (ft, J, <P) is a probability field if the pair (ft, J) is a space and

if 'P is a positive measure on J such that <P(ft) = l. We write du instead of

cP(dui) for the element of measure; thus the expectation of a random variable

X is written JaX(w)du.
1.3. A random point of the space Z over (ft, J, <P) is a measurable function

Z from the space ft (with Borel field J) to the space Z. We shall ordinarily

omit the phrase "over (ft, J, <P)." The measure fi(A)=(P{Z~1(A)} on <B(Z) is

the distribution of the random point Z.

1.4. If Zi and Z2 are spaces, Zx a random point of Zi, and /:Zi—>Z2 a

measurable function, then the composition Z2=f o Zx is a random point of

Z2. If Zi is a random point of Z,- (for l=i = &) then Z = (ZU • • ■ , Zk) is a
random point of the product space ZiX ■ • • XZ*. The family (Z,)igig* is

independent ii

<?{Z-\AX X ■ • ■ X Ak)} =   II H^iKA,)}
liiSk

whenever the A, belong to <B(Z,). In proving independence we shall use the

fact that it suffices to verify this equality for A < restricted to a ring of subsets

of Zi which generates 33(Zi) and which has Z,- as an element.

1.5. We shall be concerned with spaces of curves in number space R" of di-

mension n. If r = (/i, • • ■ ,rn) and s = (sx, ■ ■ ■, sn) are two points of R", set r±s

= (rx + sx, • • ■ ,r„ + s„) and |r| =( 2Zr2)1/2. Let/„ be the interval 0 =r=o: (the

interval 0 = t< 00 if a is infinite) and X* the set of continuous functions from

/„ to Rn. We take <B(X") to be the least Borel field containing all sets

{x||8<Xi(r)<7}, where (Sandy are real, l=i = «, and rdla- LetWl be the
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subspace of X^ comprising those curves which begin at the origin of R".

1.6. The Borel field <B(X£) is generated by the sets

(1) {x | Pi, < Xj(Ti) ̂ y,jfor 1 S i = k, 1 ^ j ^ n}

where k is arbitrary, the p\y and y,j are reals or + oo, and the r» are taken

from Ia. Finite disjoint unions of such sets form a ring of sets having X£ as

an element; consequently a measure on <B(X^) is determined by its values on

the sets (1).

1.7. For x in XI and j3 in 7„ define the element Xp olXI by Xp(r) = x(r+/3).

The mapping <p(x, (3) =x$ of X£ X70O into XZ is measurable (see the proof in

§3.1). Also define x„' in X£ by xj3'(r)=x(r) for 0^r^/3; it is clear that

x—>(xg , Xg — x(P)) is a one-one measurable mapping oi XZ ontoX^xS^™.

1.8. A random point X of X^ may be considered a measurable function

from IaX& to Rn. We write X(t, co) to denote the value of this function at

the point (r, co) and X(t) to denote the random point X(t, ■) of Rn. Of course

X(u) denotes the curve assigned to co by X, but there is little danger of con-

fusing X(t) with X(w). We also write X = (XU ■ ■ ■ , Xn) to display the

coordinates of X.

1.9. We define a Brownian motion in Rn to be a random point

X = (Xi, • ■ • , Xn) oi X„ with the properties

(i) for 0<ri< ■ • - <rk<a the random points

X(0), X(n) - X(0), ■■■ , X(rk) - X(rk_i)

of R" are independent;

(ii)  for 0^<r<T<a the random variables

Xi(t) - Xi(o-), ■ ■ ■ , Xn(r) - X„(cr)

are independent and each is Gaussian with mean 0 and variance t — o~.

The usual definition of a (separable) Brownian motion requires continuity

of the sample paths only with probability 1. Such a process, after being

modified on a set of probability 0, becomes a Brownian motion in our sense

and it will be clear that the results we obtain apply to all separable Brownian

motions.

It follows from §1.6 that conditions (i) and (ii) and the distribution of

X(0) on R" determine ^{X'^A)} for every A in <B(X").

A Wiener process in Rn is a Brownian motion whose range is in WZ,, that

is to say, a Brownian motion starting at the origin of Rn and defined for all

positive time.

2. The extended Markoff property. The first four numbers of this section

are the hypotheses and definitions of Theorem 2.5. The space V, function g,

and random point F are introduced only to make precise a certain inde-

pendence. It is / and T that are important. Indeed, the theorem should be

thought of as a statement concerning only the random time T and the
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Brownian motion X. In §2.10 we restate a part of Theorem 2.5 from this

point of view in the language used in [2].

The conditions in the first number, which are a little too stringent for

most applications, will be weakened in §3.3.

2.1. Let V and V be spaces. Let /X'.X'U^UJ oo } and g:XZXV->V

be measurable functions with the property: If f(x, u) =a and x'(r) =x(t) for

0=r = a then f(x', u) =/(x, u) =a and g(x', u) =g(x, u).

2.2. Let X:ft—>X£ be a Brownian motion, U a random point of V, and

(X, U) an independent pair.

2.3. Let W={a\f(X(w), C/(co))<oo}. We assume that <P{ft'}>0 (note

that ft'GJ) and define a new probability field (ft', J', <P') by taking J' to

comprise the sets A =5Hft' with B in J and setting <P'(A)=<P(A)/<P(Q').

2.4. Define functions T:Q'-*Im, F:ft'^V, W'.Q.'^Wl, by

r(co) = f(X(w), u(co)),

F(co) = g(X(co), U(w)),

W(r, u) = X(t + T(w), co) - X(T(a), co).

2.5. Theorem. T, V, W are random points of I„, V, WI over (ft', J', <P');

the pair (V, W) is independent; and Wis a Wiener process.

2.6. The restrictions X', U' of X, U to ft' are random points over (ft',

J', ¥'); thus §1.4 implies that T and V are random points. So (X', T) is a

random point of XZ Xlx; it follows from §1.4 and §1.7 that XT' is a random

point of XZ if we define XT' (t, co) = X'(t + T(w), co) for co in ft'. Consequently

Xt (0) is a random point of R", and finally W=Xt —Xt (0) is a random point

oiWl over (ft', J', <P').
The rest of the proof is broken into three steps; only the second requires

some ingenuity. We assume without loss of generality that V has at least two

points, for a second point may be adjoined toV if necessary.

2.7. f is constant. The value a of / must be finite, so that ft' = ft. The ran-

dom point W of WI is W(t, co) =X(r+a, w)-X(a, co). Define also the ran-

dom point XJ of X* by XI (r, co) =X(t, co) for 0=r = a. It follows at once

from the definition of Brownian motion that the pair (Xi , W) is independent;

since (U, X) is an independent pair and both Xi and W are functions of

X, the triple (U, Xi, W) is also independent. There is clearly a function

g':X"XL>—>V such that g(x, u)=g'(xi, u), where x« is x„'(r)=x(r) for

0=r = a. So V(co) =g'(Xi (co), U(u>)), and consequently the pair (V, W) is

independent. It is also clear that IF is a Wiener process.

2.8. / takes on countably many values. Let Ad'B(W%) and let BGU(V)

with B a proper subset of V. We shall verify

(1) <P {W~\A) C\ V-^B)} = Of?' {V-\B)},

where Q is the probability that a Wiener process belongs to A. This is enough
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to prove the theorem. For equation (1), written both for B andV — B, implies

<P'{ W(A)} =Q, so that IF must be a Wiener process. Then (1) shows that

V and W are independent.

Let cti, a2, ■ ■ ■ be the finite values of / and let v be a point ofV not in B.

For each i define the random point F, of V over (ft, J, <P) by setting

j'F(co)  if co £ Q' and T(co) = a,-,

\v otherwise.

Let Wi he the Wiener process Wi(r, co) =X(T+ait co)—X(a;, co).

The justification of the following computation becomes clear if we define

the Vi in another way. hetfi'.XZ XV^>IX he the constant function with value

«, and let gi'.XZ Xli^V be the function

(g(x, «) */ /(*. «) = on,
gi(x, u) =  I

\V tf f(x, U)  7± Cti.

It is easy to verify that the pair (fi, gi) satisfies the conditions of §2.1 and

that Vi, Wi are defined by fi, gi precisely as F, W are defined by/, g. Accord-

ing to the preceding number the pair (F„ Wi) is independent and IF, is a

Wiener process. Note also that the condition {IF,(co)£^4, F,(co)£5, co£fl',

r(co)=at} on co can be simplified to {lF,(co)£^4, F,(co)£5} since F<(co)£5

implies both co£fl' and T\co) =a<.

Matters being so, we have

^{^^'{W-KA) rW-^B)} = <P{W(w) CA,V(u>) £5,co£fi'}

= zZ <P{ W(u) £ A, F(co) £ B, co £ 0', T(u) = <*}
i

= Y.'PiWfa) GA,Vi(<*) G B}
i

= zZV{Wi(u) CA}V{Vi(o) c b}
i

= QzZcP{Vi(<*)CB}
i

= Q<P{ Fi(co) £ B for some i}

= (3'p{F(co)££,co£fi'}

and this equation becomes (1) upon dividing by 'P(fi').

2.9. / is arbitrary. Let A be a set in WZ defined by inequalities

Pa ^ wyto) ̂  7.-,-, 1 = i = k, 1 g / ^ », t< > 0

and let A° he the interior of A, that is, the set defined by similar relations

with strict inequalities. Assuming that <P'{IF(co)CA } =<P'{W(u)CA°} we

verify equation (1) for A and an arbitrary B in <B(iS).
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Define fm by

{oo            if f(x, u)  =   oo ,

- if — = f(x, u) <-
mm                            m

Since/m=/ the pair (fm, g) satisfies the conditions of §2.1. If Wm is defined in

terms of fm as W in terms of /, the preceding number shows that the pair

(V, Wm) is independent and that Wm is a Wiener process over (ft', J', CP').

For every co in ft' and every r, moreover, Wm(r, w)—*W(t, co) as »»—><». So

IF(co)G^4 if Wm(co)dA for all large m, and Wm(u)dA° for sufficiently large

m if W(o>) dA°. Denoting by Q the probability that a Wiener process belongs

to A or to A ° (the two events have the same probability), we have

<P'{W(w) d A0, V(w) dB} = lim <P'{Wm(w) G A°, F(co) G B)
m—>«

= 0<P'{V(o) dB}

= lim P'{jFm(co) G A, F(co) G 5}
m—*<x>

= <P'{lF(co) G^, F(co) G 73}.

Our assumption implies the equality of the two extreme members. Thus (1) is

established.

For a fixed choice of the n the equation <?'{ W(a) dA } = <?'{ W(a>) dA0}

holds for all but countably many choices of the j3y and 7,7. This implies by

an easy passage to the limit that (1) is true whenever A is a set of the type

mentioned in §1.6. The remark of that number then shows that (1) must be

true for every A in <B(W1).

The proof is completed by a repetition of the beginning of §2.8. Note

that the proof has used only the facts that the theorem is true for each pair

ifk, g), that fk and/are infinite together, and that/* tends to/.

2.10. The following is the most useful version of Theorem 2.5, rephrased

in the language used in [2].

Let Tbea non-negative random variable and let {X(r);TdIx} be a separable

Brownian motion with initial position independent of the later motion. Define

X*(t) to be X(t) if t<T and to be X(T) if r^T. If T is measurable on the

sample space of the X*(t) then [X(t+T); tG^oo} is a Brownian motion in

which the initial position is independent of the later motion.

We have simplified the statement by assuming that the stopping time T

is always finite and does not involve the auxiliary variable U and by asserting

only a part of the independence of the future and the past. The phrase "T is

measurable on the sample space of the X*(t)" is equivalent to "either T can

be defined as in §2.4 (with / satisfying the first part of the condition in §2.1
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and not involving u) or T is equal almost everywhere to a random variable

so defined."

3. Complements and examples. We first sketch the changes to be made

in adapting the preceding sections to processes with stationary independent

increments, and then discuss two examples of stopping times for Brownian

motion. The first example presents an instance in which the auxiliary variable

actually occurs. The second is the "first passage time" and is used throughout

the rest of this paper. Its treatment requires the weakening of the conditions

of §2.1 which is carried out in ^3.3.

3.1. In [2] Doob proves that a process in R" with stationary independent

increments can be so normalized that the sample functions are continuous on

the right. (His proof for R1 extends without change.) For the normalized

process Theorem 2.5 and its proof hold with a few modifications of the defini-

tions. Take X„ to be the set of functions from 7„ to Rn which are continuous

on the right and define <B(X") as in §1.5 to be the Borel field generated by the

sets A(j, t, 7, 5) = {x|7<x,(r) <§} with/ r, 7, 8 fixed but arbitrary.

The mapping cj>:XZ X 7M—OC introduced in §1.7 still has the property that

<t>-\B) belongs to <B(Xl)X<B(I*) whenever B belongs to <B(XZ). It suffices to

verify this statement for B=A(j, r, 7, §), in which case the proof goes this

way: Each set

E(k, I, m) =  {(x, j8) I (m - I)/I ^ 0 < m/l, 7 +  1/k < Xj(m/l) <b - 1/k}

belongs to <B(XZ) X®(7„) and moreover

<t>-KA(j, t, 7, 8)) = {(x, p) I 7 < x0 + r) < 8}

= U   U   0   U E(k, l, tn)
k       p    t>p     m

because each element of X", considered as a function, is continuous on the

right.

The notion of Wiener process has an obvious analogue. Now the proofs in

§§2.6-2.8 are valid without change; the only change in §2.9 is that A must

first be assumed to be an interval of continuity for the analogue of the Wiener

process.

3.2. The equation vT=Av/2 — k(r)v on IMXR", where A is the ordinary

Laplacian and k a positive Borel measurable function on Rn can be studied

in terms of Brownian motion [7]. The appropriate stopping time is defined

in this manner: Let/(x, u) be the least value of r such that flk(x(o-))da = u, or

00 if there is no such t. Then T(o))=f(X(u), U(u)), where U is a positive

random variable with the distribution function *P{ U(w) <u} =1— e~u for

m^O. The physical interpretation is this: A particle wanders according to

Brownian motion and is subject to extinction, the probability of extinction

in the time interval (r, r+dr) being approximately k(r)dr if the particle finds

itself at the point r at time r; then 7\co) is the lifetime of the particle co.
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3.3. We shall prepare for the next example by weakening the conditions

of §2.1. Let TJ be a space Rk and let (fm, gm) be a sequence of pairs of functions

such that Theorem 2.5 holds for each pair (fm, gm), the limits

f(x, u) = lim/m(x, u)    and    g(x, u) = lim gm(x, u)

exist for all x and u, and/(x, u) is infinite if and only if each/m(x, u) is infinite.

The functions/ and g need not satisfy §2.1; however, Theorem 2.5 re-

mains true. To see this define Tm, Vm, Wm in terms of the pair (fm, gm); then

Tm(u), Fm(co), Wm(u) tend to T(a>), F(co), W(co) for every co in ft'. The argu-

ment of §2.9 now establishes equation (1) of §2 whenever A is chosen as in

§2.9 and B is an interval of continuity for the distribution of V. It is then easy

to prove that the equation holds generally.

We shall use this result in the next number; there all the gm are the same

and the argument sketched above becomes a mere repetition of §2.9.

The argument can be modified to allow exceptional sets of measure 0 or

to permit the sets on which the/m are infinite to vary with m.

3.4. Let £ be a closed set in Rn and X a Brownian motion. Take 7\co)

to be the infimum of those strictly positive r for which X(r)dE, or oo if

there are no such r. We assume that ft', the set on which T is finite, has

probability greater than 0. (This condition is independent of the choice of X.)

Let Fbe the random point V(u) = (X(T(u), co), T(oi)) of RnXR1 over ft'.

We verify that Theorem 2.5 is true with these definitions. For x in X"

take/(x) to be the infimum of the strictly positive r for which x(r)dE, or oo

if there are no such r, and let/m(x) be the maximum of l/m and/(x). The/m

decrease to/, and it is clear that 7"(co) =f(X(co)). Let Ek be the set of points in

R" at a distance not greater than 1/k from E and let a be greater than l/m.

Then

{x|/m(x) = «} = U   0   V {x\x(P)dEk},
I       k       f

where p runs through the rationals in (l/l, a), and k and / run through the

natural numbers. Since each set {x| x(p) G-E*} is a Borel set in X^, this repre-

sentation of the set on which fm is not greater than a shows that fm is Borel

measurable. Consequently so is /.

If g is the function

~    t(*(0), 0) if f(x) = oo

from XI to RnXR\ then g(X(u)) = V(u) for each co in ft' and each pair

(fm, g) satisfies §2.1. According to the preceding number Theorem 2.5 holds

in the present situation.

It is the minimum of this stopping time and the one defined in §3.2 which
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is used in studying the equation vT=Av/2—k(r)v on Rn—E (see [6]).

3.5. We remark that the foregoing result still holds for an arbitrary Borel

set E. The functions fm need not be measurable then, but if XZ is given the

compact-open topology they have the property that fmX(A) is an analytic

set in XZ whenever A is an open set in 7M. This property serves as well as the

measurability we have used, in proving thatfm(X(co)) and g(X(co)) are random

points, provided the probability field is complete.

4. The stopped Brownian motion. We study the transition and absorption

probabilities of a Brownian motion in R" which is stopped at the moment it

hits a given set. Let us fix the notation.

£ is a closed set in R", W a Wiener process in Rn, and r a variable point of

R". Denote by XT the Brownian motion

(1) Xr(r, co) = r + W(t, co), t ^ 0, co £ Q,

and by 7V(co) the infimum of those strictly positive r for which Xr(r, co)££

(or oo if there are no such r). We assume that 12', the set on which T is

finite, has probability greater than 0; this condition does not depend on r

(see [3]). On 12/ define

(2) Fr(co) = Xr(7V(co), co),

(3) Wi (r, co) = Xr(r + TV(co), co) - Xr(7V(co), co), r ^ 0,

so that Fr is a random point of Rn and IFr' a random point of WZ over 12/ •

According to §3.4, Wi and the random point (Fr, Tr) of RnXl„ are indepen-

dent over 12, and Wi is a Wiener process.

4.1. We shall use the following results, which are proved in [3]. For every

r the probability that TV(co) =0 is either 0 or 1. Of course the probability is

0 if r lies outside E. A point r oi E is regular if the probability is 1, irregular

ii it is 0. The irregular points of E form a set which is negligible in the sense

that no Brownian motion has a positive probability of hitting it at some posi-

tive time; one easily verifies that a negligible set has Lebesgue measure 0.

The measure

(4) p(r, A) = <p{co £ Qi, Fr(co) C A],

defined for the Borel subsets A of E, is concentrated on the boundary of E;

for each A it is harmonic in R" — E. If / is a bounded Borel measurable func-

tion on E then the function

(5) F(r) =  f   /(Fr(co))c*co =   f f(s)n(r, ds)

is bounded on R" and harmonic on Rn—E. If E is compact then as \r\ be-

comes large F(r) approaches a limit, which is 0 if n>2. See [3] for the sense

in which F is the unique solution of the Dirichlet problem on Rn—E with
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boundary values/ on E. Note that (5) defines F(r) for every r in Rn.

The reference to [3] is not quite exact, for there Doob discusses a Brown-

ian motion on a connected open set D which is stopped at the moment it hits

the boundary of D. However, the translation to the present situation is easy.

Rn—E has a countable number of connected components. Let r be an

irregular point of E. It follows at once from Doob's results that there is

exactly one component D with the properties: (i) r is a boundary point of

D and (ii) for almost all co there is a positive a(co) such that Xr(r, co) lies in D

for 0<t <«(«). We shall say that r belongs to D; it will turn out that r be-

haves very much like an interior point of D.

4.2. The transition probability density of Brownian motion in Rn is

(6) p(r, r, s) = 1/(2ttt)"'2 exp (- | r - 5 |2/2r), r > 0.

It is symmetric in r, s and satisfies

(7) f   p(a, r, l)p(r, t, s)dt = p(a + r, r, s), a, t > 0,

d 1
(8) — p(r, r,s) = — A,p(r, r, s), t > 0,

ar 2

where dt is the element of Lebesgue measure andA, is the Laplacian operating

on the variable 5.

4.3. For r in Rn and 0 < £ < 77 < 00 define

P(r, £, v) = <P{Xr(r, co) G E for some rG[^]|.

It follows from the equation

P(r, I v) =   f   P(t, r, s)P(s, £ - e, 77 - e)ds, 0 < e < £,

that P(r, £, 77) is continuous in r. Since P(r, £, 77) is an increasing function of

77 and a decreasing function of £, the limits

P(r, r) = lim P(r, £, r) = <P{ Tr(co) = r},
f-K)

P(r) = lim P(r, r) = <P{rr(co) < 00 }
T—.00

are lower semi-continuous in r. If r is a regular point of E then P(r, r) = 1 for

every positive r; thus, given the positive numbers e and r there is a neighbor-

hood U oi r such that P(s, t) > 1 — e for every 5 in U.

4.4. For r in Rn define the measure

Q(r, A, B) = P{ 7» G A, Fr(co) dB}, A C Ix, B d E,

on the Borel field of IKXE. It is clear that Q(r, IT, E) =P(r, t).
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Given a regular point r of E, a neighborhood Voir in E, and two positive

numbers e and a, one can find a neighborhood U of r in J?" such that the func-

tion Q(s, I,, V) exceeds 1 — e for all 5 in U. This follows from the last sentence

of the preceding number: Take 0 positive so that F includes all points of E

distant less than 35 from r, then choose t less than a so that

<P< max I W(rf)\   > s\  < e/2.

Let U be a neighborhood of r not including points at a distance greater than

5 from r and so small that P(s, t) > 1 —e/2. It is easy to see that Q(s, 7T, V)

exceeds 1 — e for s in U, a result slightly stronger than the one to be proved.

4.5. For r in R" and r>0 define the measure

q(r, r, A) = <P{ 7/r(co) ^ r, Xr(r, co) £ A }

on the Borel field of R". Then p, q, Q satisfy the relation

(9) f p(r, r, s)ds = q(r, r,A)+ f ds f      p(r, - a, t, s)Q(r, da, dt)
J A J A        JjrXB

where JT is the interval 0t^<t<t. To see this let <j> be the function

M     x(a)CA,
4>(x, a) =   <

10    x(a)CA

on X^, X7„o and let A be the set on which 7V(co) <t. For s in R" and any Wiener

process W

6{<p(s+ W(w), a)} =   f p(a, s, t)dt.
J A

Note also that 0(Zr(co),T)=0(Fr(co) + IFr'(co),r-rr(co)) for coin A. Hence by

Theorem 2.5

I   p(r, r, s)ds =   j <p(Xr(o>), r)do>

=   f     c6(Xr(co), r)cfco +  f <KFr(co) + Wi (co), r - rr(co))rfco
JQ-A J A

= q(T, r,A) +  fcfco I  p(r - 7r(co), Fr(co), s)ds
J A        J A

and this is (9) except for the notation.

The details of later applications of Theorem 2.5 are similar to those above

and will be omitted.

4.6. Since the left member of (9) is absolutely continuous so also is the
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set function q(r, r, A). Thus q(r, r, A) =fAq(r, r, s)ds for some point function,

and

(10) q(r, r, s) = p(r, r,s) -  I        p(r - a, t, s)Q(r, da, dt)

for almost all 5. We take this equation to define q(r, r, s) for every 5 in Rn.

The integral on the right is lower semi-continuous in 5 by Fatou's lemma; so

q(r, r, s) is upper semi-continuous in 5 and consequently never negative. Also

q(r, r, i)=p(r, r, s). If r is a regular point of E then Q(r, A, B) attributes

measure 1 to the point (0, r), the integral in (10) reduces to p(j, r, s), and

q(r, r, s) =0 for all s.

If r and s are in distinct components of Rn — E then q(r, r, s) vanishes. This

follows for almost all 5 from the probability interpretation; since c7(r, r, s) is

continuous in 5 on Rn — E (see §4.9) the statement is true without exception.

4.7. Probability arguments usually establish a statement concerning

q(r, r, s) only for "almost all s." In order to pass from "almost all" to "all" we

show that

(11) q(r, r, s) = lim    f   q(r - e, r, t)p(t, t, s)dt.
«\0    J R"

To prove this relation, first replace q(r — e, r, t) by the right member of

(10) with r — e written for r and t for s; then (7) implies

(12) I    q(r - e, r, t)p(e, t, s)dt = p(r, r, s) -   f p(r - a, t, s)Q(r, da, dt)
J Rn J Jt-iXE

and the right member obviously tends to q(r, r, s). One obtains another proof

that q(r, r, s) is upper semi-continuous by noting that the right member of

(12) is continuous in 5 and decreases with e.

We use (11) to prove

(13) I    q(<r, r, l)q(r, t, s)dt = q(<r + r, r, s).
•/ R"

The probability interpretation shows that for a set A in Rn

Jds I        q(o-, r, t)q(r, t, s)dt =   I  q(<r + r, r, s)ds.
A        J R"-E J A

Here the integration on / may be extended over Rn, because q(r, t, s)=0 ii t

is a regular point of E and the irregular points form a set of measure 0. It is

now obvious that (13) is true for almost all 5. This being so, we have

/q(a, r, t)dt j    q(r — t, I, u)p(e, u, s)du =   j    q(a + r — e, r, u)p(e, u, s)du
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for every 5. This relation becomes (13) as e decreases to 0; the passage to the

limit under the integral sign (in the first member) is justified by the major-

ization

/q(r — e, t, u)p(e, u, s)du 5= max p(r, t, s).
R" a£B"

In (13) the integration on t may be extended over Rn — E rather than over

Rn, indeed over the component of R" — E to which r belongs (the empty set

if r is a regular point of E).

4.8. Differentiating q(r, r, A) with respect to the measure JaP(t, r, s)ds

instead of Lebesgue measure gives a conditional probability relative to

Xt(t)=s. Consequently

(14) q(r, r, s) = p(r, r, s)V{ Tr(») ^ r | Xr(r) = s}

for almost all s. We use this interpretation to prove that c7(t, r, s) is symmetric

in r and s.

For every positive a let Za be the random point

Za(a, co) = W(a, co) - — W(a, co), 0 g a ■= a,
a

of X". Then Za is a Markoff process with the properties:

(i) Za and W(a) are independent;

(ii) Zd, defined by Zd (cr) =Za(a—a) lor O^a^a, is distributed like Za

on X„;

(iii) the density function of Za(a—e) on Rn is p(e—t2/a, 0, t);

(iv) Za_e(cr) =Za(a)— cr/(a — e)Za(a — e) tor 0^cr^a — e;

(v) Za-t and Za(a — e) are independent. These facts, which are well known,

follow at once from Paul Levy's beautiful construction of the Wiener process

in [5].

Property (i) implies

V{Tr ^ r\Xr(r) = s}

= <P{Xr(cr) £ E, 0 < cr < T I Xt(t)  = s}

= P{r + ZT(<r) + (o-/r)(s -r)£7i, 0<cr<r| W(r) = s - r]

= <P{r + ZT(<r) + (<t/t)(s - r) £ E, 0 < a < t}

for almost all 5. Let us denote the last member, which is an ordinary probabil-

ity and therefore defined unambiguously, by R(t, r, s). Then (14) becomes

(15) q(r, r, s) = p(r, r, s)R(t, r, s).

We are going to show that this equality holds for every s.

A repetition of the argument leading to (15) yields
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/q(r - «, r, t)p(e, t, s)dt
Rn

(16)

= p(r, r, s)<P{r + ZT(a) + — (s - r) <£ E, 0 < <r < r - e}
T

for almost all 5, where e is any number in the'interval (0, t). Here the left

member is continuous in 5. In view of (iv) and (iii)

<P{r+ZT(<i)+ — (s - r) d E, 0 < a- < r - e}
T

= <P{r + ZT-t(a) +— -Zr(r - e) + — (s - r) $ E, 0 < cr < r - e}
t — e t

=   f   A(t)p(t-e2/r,t,---s + —r)dt
J R" \ T T      /

where A(t) is the conditional probability of the event

r + Zr^(a) -\-— (t - r) G -E, 0 < cr < r - e,
r — e

under the condition that

Zr(r-e)+^^- s + —r = t.
T T

By (v) this probability is just R(r — e, r, t) for almost all t, so that A(t) does

not involve 5. Hence the last integral is continuous in 5 and (16) holds for

all s. Now (15) is proved for all 5 by letting e approach 0 in (16) and taking

(11) into account.

Finally, (ii) implies R(t, r, s)=R(t, s, r). Consequently q(r, r, s) is sym-

metric in r and 5.

4.9. We prove

dq 1
(17) — (r, r, s) = — A,q(r, r, s), r > 0, r d R", s d Rn - E.

or                      2

For \t — s\ bounded below by a positive constant, p(r — a, t, s) is a well be-

haved function of t, s and a (with 0 = crO). Thus-the integral in (10) is a

smooth function oi s on R"—E and differentiations with respect to 5 may be

interchanged with the integration over JTXE. This gives

1 1 r        1
(18) — Asq(r, r,s) =— Aep(r, r, s) -   I — A,p(r - a, t, s)Q(r, da, dt)

2 2 J JtXE 2
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for 5 in R" — E. Let us also compute dq/dr. If e>0 then

-      f P(r + e - cr, t, s)Q(r, da, dt) -   f     p(r - cr, t, s)Q(r, da, dt)\

(19) =| — [p(T + e- a,t,s) - p(r - a, t, s) ]Q(r, da, dt)

+ — f      P(<r, t, s)Q(r, t - da, dt).

If 5 is the distance from s to E then

p(a, t, s) g- e-i2<2', 0 < a < e, t £ E,
(27r€)"'2 - -     .

for sufficiently small e, so that in (19) the last term on the right vanishes with

e. In the first term on the right the limit on e may be carried under the integral

sign. Thus differentiation of (10) with respect to r gives

dq dp r      dp
(20) -i (r, r,s) = - (r, r, s) - — (r - cr, I, s)Q(r, da, dt)

or                      dr                     ''JtXB °t

for s in Rn-E. Now (17) follows from (18), (20), and (8).

4.10. The following facts will be useful in the next section.

0 ^ p(r, r, s) - q(r, r, s)

=   f      P(t ~ o, t, s)Q(r, da, dt)
(21) JjrXB

1
<  _ e-«2/2r

(27rr)"'2

for small values of t, where 8 is the distance from s to E.

In particular, if rCR" — E then

(22) q(r, r, r) ~ p(r, r, r) = 1/(2xt) "'2, r -> 0.

This relation is also true if r is an irregular point of E. The simplest proof is

probably conducted in terms of the process introduced in §4.8. According to

(15) we must prove that i?(r,r,r)—»l. From the definition of Zr and property (i)

f   R(t, r, s)p(r, r, s)ds = <P{Xr(a) £ E, 0 < a < r},

where the right side tends to 1 because r is irregular. Thus

f   [1 - R(t, r, s) }p(r, r, s)ds -^0, r -> 0.
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On the other hand

(23) <?{r+Z2r(a) G -E, 0 < <r < t} =   \    R(t, r, s)p(r/2, r, s)ds
J Ra

by (iii), (iv), and (v). Since p(r/2, r, s)=2n/2p(r, r, s), also

f   [1 - R(t, r, s) ]p(r/2, r, s)ds -+ 0, r -> 0,
J R"

or, what is the same, the right member of (23) tends to 1. From (ii) of §4.8

it follows that cP{r+Z2T(a)dE, t<ct<2t} also tends to 1. Finally the proba-

bility that r+Z2r(r) belongs to E2 tends to 1, because r is an irregular point

of E. These three facts imply that R(2t, r, r) approaches 1, which is what had

to be proved.

5. The Green's function of Rn—E. We shall prove that

s» oo

(1) G(r, s) m   I     q(r, r, s)dr, r, s d Rn
J o

is the Green's function of Rn — E. Note that (1) defines G(r, s) for all r and s

in R" and that G(r, s) is symmetric. If / is a non-negative Borel measurable

function on R" then

f cfco f f(Xr(r,o>))dr =   f   dr f   q(r, r, s)f(s)ds
J a     J o J o        J R"

(2)

=   f G(r, s)f(s)ds.
Jr."

It is this interpretation which enables one to use probability arguments to

establish a property of G.

We shall deal only with the case n — 2. For ra>2 the proofs can be simpli-

fied because then fop(r, r, s)dr is finite if r^s, and for n = l straightforward

calculation gives the facts at once.

From now on we assume E to be compact. Once this case is settled the results

for unbounded E are obtained immediately by considering larger and larger

bounded portions of E.

What makes w = 2 especially difficult is the proof that G is finite for r^s.

We shall first augment £ by a large circumference; inside the circumference

the integral defining G converges rapidly. We shall use without mention the

fact that Tr is finite with probability 1.

5.1. Let C be a circumference of radius p (greater than 1) enclosing E.

Let E' =£UC and define 77, q'(r, r, s), G'(r, s) and so forth in terms of E'.

Every point of C is a regular point of E'.

Until §5.3 we consider only points of D, the interior of C.
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We first show that q'(r, r, s) decreases exponentially in r. It is clear that

1
max c7'(t, r, s) ^ max p(r, r, s) =-•
T^P1 rgp* 2irp2

If r>2p2 we write r = kp2+a with p2^cr<2p2 and have

q'(r, r,s) =   f q'(a, r, t)q'(kp2, I, s)dt
J D

^   I    -max q'(kp2, t, s)dt
J D   2irp2     t

1
= — max q'(kp2, t, s).

2     t

Applied to r = (k + l)p2 this inequality shows that

1
max q'((k + l)p2, r, s) ^ — max q'(kp2, r, s).
r,s£D 2  r,s£J9

Consequently q'(kp2, r,  s)^21~k/(2irp2).  The inequality then implies the

existence of a positive 7 such that

(3) q'(r, r, s) < <r>\ r ^ P2;r,sCD.

For r^p2 there is the obvious majorization

(4) q'(r, r, s) g p(r, r, s).

Now set G'(r, s) =/"g'(T, r, s)dr. The majorizations of q'(r, r, s) ensure

that the integral is finite for s different from r. Also G'(r, r) =0 if r is a regular

point of E, for then q'(r, r, s) vanishes identically in t and s; and G'(r, r) = 00

if r is an irregular point of £ or a point oi D — E by the asymptotic relation

(22) of §4.10.
5.2.  It is well known that if a is finite and positive

C 1 1
(5) p(r,r,s)dT = — \n-.-r + fa(r - s), r, s £ R2,

J 0 ir        ] r — 51

where fa(t) is a continuous function of the point t. Thus (2) and (3) imply

1 1
(6) G'(r, s) ^ — In-r + K, r, s £ D,

ir        I r — s I

for some constant K.

G'(r, s) is upper semi-continuous in s (for r, s in D). If r is a regular point

of E then G'(r, s)=0 for all s. If r is an irregular point of £ or a point of

D — E then G'(r, r) = «>, so that G'(r, s) is upper semi-continuous at s=r. We
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are left to consider continuity at a point 5 distinct from r. Then in a neighbor-

hood U of s which is at a positive dis.tance from r the majorizations of q'

above provide a majorization q'(r, r, s') <f(r) lor all t and all 5' in U, with

/ an integrable function. Now Fatou's lemma and the upper semi-continuity

of q' yield

/>   CO £%  00

qf{r, r, sr)dr g   I     lim sup q'{r, r, s')<It
0 •/ 0       *'—**

^   I    ?'(t, r, j)^t.
J 0

Since the upper limit may be replaced by limit and the inequalities by

equalities when 5 belongs to D — E, the argument proves also that G'(r, s) is

continuous in s on D — E— {r}.

If rCD—E then irG'(r, s)+\n \r — s\ is continuous at s = r. Equation (5)

and the inequality at the beginning of §4.10 together imply that the function

Tr/oVto r, s)dr + ln \r — s\ is continuous at s=r. Also fiq'(r, r, s)dr is con-

tinuous at s=r by the same argument as in the preceding paragraph.

Before establishing other properties of G' we make a remark. Even in the

general case—that is, without adjoining C to £—for every r and 5 in R2

f G(r, t)q(e, t, s)dl =  f   dr j    q(r, r, t)q(e, t, s)dt
J R? J 0 J R1

q(r, r, s)dr

increases to G(r, s) as e decreases to 0. If we are dealing with G' and if either

r or 5 lies in D the integration may be extended over D instead of R2.

If sCD then G'(r, s) is subharmonic in r on D—{s} and harmonic in r on

D — E—{s}. Let r be a point of D— {s} and C a circumference lying in D

and centered at r which separates r from 5. Denote by S(u) the least t such

that Xr(r) CC (or 00 if there is no such t), by A the set on which 5 is finite.

Then ^A} =1 and the random point Z(co) =Xr(S(co), co), defined on A, is

uniformly distributed on C'. We shall use Theorem 2.5 with S as the stopping

time. Let us first assume that no point of £ lies on or inside C. Then S(u)

does not exceed 7"r(co) and

jG'(r,t)q'(€,t,s)dl=fdwf q'(e,Xr(T,o>),s)dr

(7) =   fdu C     q'(€,Xr(r,a>),s)dr

/. /. r'r(ai)

c7co q'(e, Xr(r, co), s)dr.
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The first term of the last member may be written JD>G"(r, t)q'(e, t, s)dt,

according to (2), where D' is the interior of C and G" is defined relative to C

(with E disregarded). Here G"(r, t) is integrable over D' since there is a

majorization like (6) for G", and q'(e, t, s) tends to 0 with e uniformly on D'

because of the inequality in §4.10. So the first term approaches 0 with e. As

for the second term, Theorem 2.5 and equation (2) show that it is

\ du f G'(Z(co), t)q'((, t,s)dt.

This tends to /AG'(Z(co), s)du as e—»0 because the inner integral increases to

G'(Z(co), 5). Finally

G'(r, s) = lim   f G'(r, t)q'(e, t, s)dt
«-»0   J D

=  f G'(Z(u), s)du,

so that G'(r, s) is equal to its average over C, for Z is distributed uniformly

on C. Thus G'(r, s) is harmonic in r on D — E— {s}.

li points of E lie inside C, in particular if r££, it may happen that 5(co)

is greater than Ti (co) for certain co. It is easy to see that (7) still holds with

the second equality replaced by =. The argument then proves that G'(r, s)

is subharmonic on D— {s}.

5.3. Let Cx be a circumference, with interior Dx, which encloses E and is

included in D. We shall express G(r, s) in the form

(8) G(r, s) = G'(r, s) +  f G'(t, s)vr(dt), r G R2, s d Dx,

with vr a certain positive finite measure on Cx. The properties of G can then

be inferred from those of G'.

In order to justify the passage from "almost all" to "all" easily, we argue

at first with the functions

Jt oo
e~^q(r, r, s)dr

o

and Gi, with p positive. It is clear that G„ increases to G as p tends to 0;

also, G„ has a probability interpretation similar to that of G. Now, the inte-

grand in (9) is less than e~pr for large values of r, uniformly in r and 5. Because

of this the arguments of the preceding section apply to G„; they show that

Gp(r, s) is upper semi-continuous in 5 on R2 and subharmonic in r on R2 — {5}.

Clearly G„(r, s) is symmetric.

For a given r in R2 let
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Si(u) = Ti (oi) be the "least" t such that Xr(r, co) £ £' = £ VJ C,

Si (co) be the least r > Si(co) such that Xr(r, co) £ Ci,

Sk(co) be the least t > .Sfc_i(co) such that Xr(r, co) £ £',

S£ (co) be the least r > Sk(co) such that X,(t, co) £ C\.

Since £ is not negligible for the Sk are finite with probability 1; moreover

Sk(o>) tends to °° if all 5t(co) are finite, or else X(r, co) would not be continuous

in r.

Let Vk he the measure

vk(A, B) =<P{Si(*)CA, Xr(Sk' (co), co) £ B, Xr(r, co) £ E for 0 < r < 5*' (co)}

on the Borel sets of 7„X G. If p'(t, A) is harmonic measure relative to £' then

*(/., Ci) =p.'(r, C) and

(10) vk+i(Ix,Ci) =  f p.'(t,C)vk(Iwdt)

by Theorem 2.5 with stopping time Sk'. Observe that p'(t, C) is a harmonic

function on D — E which is bounded by 1 and tends to 0 as / approaches a

regular point of £. Therefore a, the maximum of p.'(t, C) for t on G, is strictly

less than 1, and (10) implies Vk+i(I„, d) ^cwi(700, G). Accordingly the sum

v = zZvk is a positive measure on Ix X Ci which has a total mass not greater

than p'(r, C)/(l —a). Note that v vanishes if r is a regular point of £.

Consider a set A in 7>i with characteristic function <j>. If S*(co) <r<S* (co)

then either TV(co) <t or Xr(r, co) lies outside A. Thus, using Theorem 2.5

with stopping time Si and setting ek(u>) = 1 if Sk (co) < TV(co) and 0 otherwise,

we have

G,(r, s)ds =   I  da>  J e~"r4>(Xr(T, ta))dr
a J a     J o

rfco e-^<p(Xr(T))dr + zZ «*(«) e-^0(Xr(r))cir
n     L•/ o * •'S't J

J/» /• Sn-i-S't
Gi (r, s)ds + JZ  I  «*(«)«-'*'*<fc)  I e-<"4>(Xr(r + Si ))dr

A k   J a Jo

=  ( Gi (r, s)ds + zZ f       e-»°vk(da,dt) f Gi (t, s)ds
J A k   J J.xCi J A

=  J G; (r, s)cfe + j d5 f        «r/-G; (r, ,)„(<*„, <ft).
J A J A      J UxCi

It follows that
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(11) G,(r, s) = Gi (r, s) + f       er"G; (t, s)v(da, dfi

for almost all 5 in Dx. The integral is upper semi-continuous in s on Dx; this

is proved by using the semi-continuity of G„' (t, s) and Fatou's lemma, the

majorization (6) providing the justification. The integral is subharmonic in 5

on Dx because each G„' (t, s) is so. We have noted before that G„ and G/ are

upper semi-continuous in s on D and subharmonic on D— {r}. Consequently,

the fact that (11) holds almost everywhere on Dx implies that it holds for

every 5 in Dx except possibly for s=r. But if r is an irregular point of £ or a

point of D—E both G„(r, r) and G/ (r, r) are infinite by (22) of §4.10, and if

r is a regular point of E both members of (11) vanish.

Letting p approach 0 we obtain (8) by monotone convergence. The meas-

ure vT is vT(A) =v(In, A).

5.4. We list the properties of G.

(i) G(r, s)=G(s, r) for r, s in R2.

(ii) G(r, s) is upper semi-continuous in s.

(iii) G(r, s), as a function of s, is subharmonic on R2— {r} and harmonic on

R2-E-{r}.

(iv) For r in R2 — E the function irG(r, s)+ In \r — s\ is continuous in s at

s = r.

(v) For every compact set A in R2

(12) G(r, s) = - (1/x) In  | r - s \   + K, r d R2, s d A,

with K depending only on A.

(vi) G(r, r) = oo if r is an irregular point of E or a point of R2 — E, and

G(r, s) = 0 for all s if r is a regular point of E.

Statement (i) is implied by the symmetry of q(r,r, s), and (vi) by (22) of

§4.10. The upper semi-continuity and the majorization (6) of G' allow one to

apply Fatou's lemma (with upper limits) to the right member of (8) when s

is in Di, and thus prove (ii) with s restricted to Dx. (Note that G'(r, s) =0 if

sdDi and rG-O, so that no restrictions need be placed on r.) Likewise (8)

and the properties of G' show that G(r, s) is subharmonic in s on Di— {r} and

harmonic on Di — E—{r}. The integral in (8) is continuous in 5 on Di — E,

so (iv) is true if rdDi — E by what we know of G'. If A is a compact set in-

cluded in Di the majorization (6) of G' shows that G'(t, s) is bounded for t

on Ci and s in A; also vT(Cx) = 1/(1 —a) for every r in R", and G'(r, s) =0 if

sdA and r£Z>. These facts and (6), applied to the representation (8), prove

(12) if AdDx. Finally, statements (ii) through (v) are proved by letting D

and A swell to all of R2.

5.5. In the two-dimensional case we are treating there is also a Green's

function with singularity at infinity. Take any point 5 in the unbounded

component of R2 — E and define
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H(r) = G(r, s) + — In | r - s\-f In | Fr(co) -s\du.
ir ir J a

The integral, considered as a function of r, is the solution of the Dirichlet

problem on R2 — E with boundary values In \r — s\ on E. Hence the function

irH(r) — In | r — s\ is bounded for large \r\ ; it follows that the difference, being

harmonic, must approach a limit as | r | —* <*>. Clearly H(r) vanishes if r is a

regular point of £ or a point of a bounded component of R2 — E. It is also

easy to see that H(r) does not depend on the choice of s. (The calculation

in the next section incidentally proves this fact.)

This is the definition of H which we shall use in §6. One arrives at a more

natural definition on noting that fc In \t — s\$(ds), where f is the uniform

distribution of mass 1 on a circumference C, does not depend upon the choice

of t inside C. This being so, choose C to be a large circle enclosing £; averaging

H(r) with respect to s over C gives

(13) H(r) =   fG(r, OfW
J c

for every r inside C. Also

(14) H(r) =   lim G(r, s)
Ul—o

because of (13) and the fact that the limit exists.

The last equation shows that H(r) formally has the same probability

interpretation (2) as G(s, r), but with the Brownian motion starting from

the point at infinity. If one considers Brownian motion on the Riemann

sphere this interpretation becomes rigorous.

6. Solutions of the heat equation. Let / be a bounded Borel measurable

function on £ (which we still assume compact) and define

(1) F(t, r) =   f      f(s)Q(r, da, ds), r > 0, r d R".

We show first that F should be considered the bounded solution of the heat

equation on Rn — E with initial values 0 on Rn — £ and boundary values/ on

£. If p(r, A) =Q(r, Ix, A) is harmonic measure relative to £ then

(2) F(r, r) ->F(r) =   f f(s)»(r, ds), " t-+ oo.
J E

Our main result is that in two dimensions the difference F(r) — F(r, r) is

asymptotic to 2irF(<x>)H(r)/ln t, where E(o°) is the limit of F(r) as |r| —»oo.

6.1. Theorem 2.5 with stopping time r proves that

(3) n(r, A) = Q(r, IT, A) + f n(s, A)q(r, r, s)ds.
J Rn



316 G. A. HUNT [March

It follows that

(4) F(r) = F(t, r)+ f F(s)q(r, r, s)ds.
J R«

Here we may differentiate under the integral sign with respect to r and r,

provided r lies outside £. Since F(r) is harmonic on Rn — E and q(r, r, s) satis-

fies the heat equation on Rn—E, we obtain

dF 1
(5) — (t, r) = — AF(t, r), r > 0, r £ R" - E.

dr 2

It is clear from (1) that F(t, r) =f(r) for all r if r is a regular point of £.

Also F(t, r) tends to 0 with r if r is an irregular point of £ or a point of

Rn — E. The inequality at the end of §4.4 shows that F(t, r')—*f(r) if r'

approaches a regular point r of £ at which/ is continuous; it is proved in [4]

that F(t, r) is the unique solution of a boundary value problem for the heat

equation.

6.2. Theorem. If n = 2 then

(6) lim [F(r) - F(r, r)] In r = 2vF(«>)H(r), r £ R2.

The theorem is trivial for a point r at which 77(r) vanishes. Such a point

is either a regular point of £, and then F(r) — F(r, r) =0; or it is a point (pos-

sibly an irregular point) belonging to a bounded component of R2 — E, and

then F(t, r) approaches F(r) exponentially. (To see this, first show by the

argument of §5.1 that fq(r, r, s)ds decreases exponentially.)

The proof of the theorem occupies the next three numbers. First we estab-

lish (6) by a Tauberian argument when /, and hence F, is identically 1; the

theorem is then a statement about Q(r, JT, E). The general result follows

easily. The proof for the simple case can be extended to cover the general one,

but at the cost of obscuring the core of the argument.

6.3. From now on we assume that r is a point of R2 — E or an irregular

point of £. Fix a disc A in the component of R2—E to which r belongs and

at a positive distance from r; let | A \ he the area and <p the characteristic func-

tion of A. For p>0

dw J e->T<j>(Xr(T, o)))dr
a     Jo

dw I     e-"T<p(Xr(T, w))dr —   I dw I        e-"T<p(XT(r, w))dr
a     J o J a     J ttu>)

J a {* OO f% e\ X

ds I     e-"rp(T,r,s)dr -   I  e-"T'^dw I    e->r<p(Xr(T + Tr(w),w))dr,
a     J o J a Jo
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an equation we abbreviate to B =Bi—B2.

The asymptotic expansion

1    r"> dr
K(a) = — «-("+«*> —

2ir J o r

1 1
= —In —+ y + 0(l)

27T       a

(as a decreases to 0) is well known. So

Bi=fAK(±\r-s\>)ds

= — I   In -.-r ds + \A\ {— In — + 0 + o(l) }
w J a        \r — s\ \2ir       p )

as p-»0. Here 0 is 7+(2tt)-1 In 2.

By Theorem 2.5 with stopping time Tr

B2 =  \ e~"T'Mdo) I  ds f   e-"Tp(r, Yr(o>), s)ds
J a J a     J o

=   f e-tfrWfo C k (— | Fr(co) - 5| A ds

= — \ ds \  e-"TrM In -:-r cfco
tt J a     J a I Fr(co) — 5 I

+  |^| i— In-\- P + o(l)\   f e-'f'^du.
Uir       p )   J a

Thus Bi — B2 may be written

—      In-,-r<fo-I   cfc  I  e-"T'^ In -,-, da,
tt J a      \r — s\ t J a     J a I Fr(co) — s |

+  | ^4 |  j— In — + b\ jl -   f e-"T'^\ +o(\A\).

As p—>0 the second term of this expression approaches

tt"1 f cfr jln [ Fr(co) - s\da

by dominated convergence and B approaches jAG(r, s)ds. Consequently, by

the definition of H(r) in §5.5,
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(7) {— In — + p\ \l -  f e-"T^dw\ -* -.—, f H(r)ds = 77(r)
Uir       p )    (        J a ) \A\Ja

as p—>0.

6.4. Let us rewrite (7). First, j3 may be deleted because In (1/p) becomes

infinite. Next

1 -   \ e-"T'Mdw = 1 -   j    e-"rdTP(r, r)
J !! J 0

/»  00

[l - P(t, r)]e-»rdT

o

where P(t, r) =P { Tr(u) <t }. Thus

Cx r . 2ir77(r)
(8) I     [1 - P(t, r)]e-"rdT-, p-> 0.

J o p In 1/p

Since In 1/p varies slowly, Karamata's Tauberian theorem  [l, Satz 2,

p. 208] implies

f\ , 2irH(r)r
[1-P(a,r)]da-, r -> oo ,

^o In r

and since 1—P(t, r) decreases in t it follows that

1 - P(T,r) = P{Tr> t\(9) l      -    '

-~ 2ir77(r)/ln t, t —* oo .

This is the special case of the theorem.

6.5. Relation (9) is equivalent to

(10) f   q(r, r, s)ds ~ 2irH(r)/ln r, r -> oo.
J R*

We now write

F(r) - F(r, r) =   C f f(s)Q(r, da, ds)
J r     J E

=   f   q(r,r,t)dt f f(s)p.(t, ds)
J R? J E

=   f F(t)q(r, r, t)dt
J R>

=   f      F(t)q(r, r, t)dt +  f F(t)q(r, r, t)dt,
J E?-D J D
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where D is a large disc. (In the first transformations we have used Theorem

2.5 with stopping time r and obvious relations between Q and the harmonic

measure p. relative to £.) Since q(r, r, s) is not greater than l/(27rr) the inte-

gral over D is majorized by | D\ M/t, where M is a bound for F. (Note that

this, for F identically 1, implies (10) with R2 replaced by R2 — D.) Take D so

large that | F(t) — F( oo) | <e for t outside D. Then the integral over R2+D

lies between (F(<x>)—e) and (F(«>)+e) times /;j2_Dg(T, r, t)dt; since e is

arbitrary Theorem 6.2 is proved.

6.6. In the preceding number we have used of F only the facts that it is

bounded and that F(r) has a limit as | r| —><». Thus, if g(r) is a bounded Borel

measurable function on R2 — E which has a limit g(<x>) as |r|—»oo, the func-

tion

G(t, r) =   f       g(t)q(r, r, t)dt
J R*-E

has the asymptotic expression 2irH(r)g( oo )/ln t. Now, it is easily seen that

F(t, r)+G(r, r) is the solution of the heat equation on R2 — E with boundary

values/(r) on £ and initial values g(r) on Rn — E (in the sense that it ap-

proaches g(r) for almost all r in R2 — E). So Theorem 6.2 could have been

stated a little more generally.
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