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1. Introduction. A description of the free lattice, FL(m), generated by n

unordered elements has been given by P. M. Whitman [5; 6] for any cardi-

nal, m. A description of a free lattice, FL(P), generated by any partially

ordered set, P, has been given by R. P. Dilworth [2]. This lattice has three

chief properties: (1) P is embedded^) in FL(P), (2) least upper and greatest

lower bounds existing for pairs of elements in P are preserved in FL(P), and

(3) any lattice providing a minimal embedding for P with property (2) is a

lattice homomorphic image of FL(P). In that same paper Dilworth called

the completely free lattice, CF(P), generated by P, the lattice whose three

chief properties are: (1') P is embedded in CF(P), (2') the ordering of P is

preserved in CF(P), and (3') any lattice providing a minimal embedding for

P with property (2') is a lattice homomorphic image of CF(P). Thus in

CF(P), the only least upper and greatest lower bounds which are preserved

are those between comparable elements. The present paper investigates these

completely free lattices. In §§2 and 3 the techniques of Whitman [5; 6] are

applied to these lattices and many of his results are easily extended to this

case. In particular, the word problem is solved in these lattices, a canonical

form is shown to exist for each word, and necessary and sufficient conditions

are given for a finite subset of CF(P), considered as a partially ordered set,

to generate a completely free sublattice.

When P has no bounds, other than between comparable elements, to be

preserved, CF(P) and FL(P) are identical and in this event the solution to

the word problem in CF(P) becomes very useful and provides a decision meth-

od easier to employ than that given by T. Evans [3]. Moreover the class

of lattices for which the word problem is solved by the present method con-

tains some lattices to which Evans' method is inapplicable. An example is

the lattice FL(P) when P consists of any number of disjoint infinite chains.

In §4 two examples are given in which the decision method is particularly

effective. The first partially ordered set considered is the set P consisting of

two disjoint chains of two elements each, t>u and v>w. The second set Q

consists of two disjoint chains, one of four elements, a>b>c>d, and the

other of a single element, e. CF(P) is identical with FL(P), and CF(Q) is

identical with FL(0;). Sorkin [4] showed that these lattices contain chains
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of infinite length. Here it is shown that FL(P) is a sublattice of FL(Q), and

infinite chains are constructed in FL(P).

2. CF(P). Let P be a partially ordered set with elements(2) pi and order

relation ^. Words or lattice polynomials on the elements pi and their lengths

are defined inductively by Definition 1.

Definition 1. (i) For all i, pi is a word of length 1.

(ii) If A and B are words of length ~K(A) and X(P) respectively then

A\JB and AC\B are words of length \(A)+\(B).

Next the relation (^) is extended to the set of words formed from the pi.

Definition 2. Let A and B be two words on the pi. A^B if and only if

one or more of the following hold(3):

(i) A =pi and B=p, and pi^pj in P.

Proceeding recursively:

(ii)  (2.1) A=Ai\JA2and Ax = B or A2^B,

(2.2) A =AxC\A2 and ^i^P and A2^B,
(2.3) P=PiWP2and^[^Piand^^P2,

(2.4) B=.BxC\B2 and A ^Pi or A ^P2.

Lemma 1. A ^PiWP2 implies A^Bx and P2. Dually AxC\A2^B implies
Ax and A2=zB.

Proof. A proof is given for the first half of the lemma and the second half

then follows by duality. The proof proceeds by induction on X(^4). When

X(^4) = 1, A =pi, for some i. Thus pi^BxVJB2 and from Definition 2, the only

applicable rule is (2.3). Assuming the result when X(^4) < A, let \(A) = A.

Case 1. A =Ax^IA2. From Definition 2, A ^PiUP2 implies either (2.1) or

(2.3) holds. If (2.3) holds the result is true, thus assume that (2.1) holds,

and without loss of generality, that Ax^.Bx^JB2. Then by induction Ax^B(,

i=l and 2, and by (2.1) again Ax^JA2^Bit i = l and 2.

Case 2. A =AxC\A2. From Definition 2, A ^PiVJP2 implies either (2.2) or

(2.3) holds. If (2.3) holds the result is true; thus assume that (2.2) holds.

Hence for i=l and 2, ^4,^PiWP2. Hence by induction, A^Bj, for/= 1 and

2. Hence by (2.2), ,4if\42^P.,-, for j=l and 2.

Lemma 2. (1) A=AxOA2^BxC\B2=B implies one of the following:

(i) A^Bitfori = l or 2,
(ii) Aj^B,forj=l or 2.

(2) p^Bx(~\B2 implies p^Bit for i=l or 2.

(3) Ax\JA2}zp implies Aj^p for j=l or 2.

Proof. (1), (2) and (3) simply list the possibilities afforded by Definition 2.

(*) In this paper p, subscripted or not, will always denote an element of the partially

ordered set P.

(») ( = ) denotes logical identity.
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Lemma 3. The relation (S) on the words on the pi is reflexive and transitive.

Proof. Part I. A S4. The proof is by induction on \(A). For \(A) =1,

A =pt and the result follows from that property for the set P. Assume there-

fore that the result is verified when \(A) <k, let \(A) =k.

Case 1. A=AiUA2. By induction hypothesis .4iS.4i. By (2.1), AiKJA2
S4i. Similarly, AAJA2^At. Thus by (2.3), AAJA2^AAJA2.

Case 2. A =AiC\A2. This case is the dual of Case 1.

Part II. A SB and BSC implies A SC. The proof is by induction on

\(A)+\(B)+\(C)=\. When X = 3, A=p{, B=ph C=pk and the result fol-
lows from that property of the set P. Assume therefore that the result is

verified when \<k and that \ = k.

Case 1.1.1. B=pi, A=pj, C=CiWC2. From ^iSCiVJC2 and Lemma 1,
p.S Ci and C2. Then, by induction hypothesis, p,S Ci and C2, thus pyS dWC2

by (2.3).
Case 1.1.2. B=pi, A=pj, C=CiC\C2. From pi^CiC\C2 and Lemma 2,

piSCi or C2. Then, by induction hypothesis, £,SCi or C2, thus pJSCif>\C2

by (2.4).
Case 1.2. B=pit A=Ai\JA2. From .4iW-42Sp; and Lemma 2, ^4i or

-42Sp;. Then, by induction hypothesis, Ai or A2^C, thus .4iU.42SC by

(2.1).
Case 1.3. B=pt, A =AiC\A2. From .diD^Spi and Lemma 1, .4i and

^42Spi. Then, by induction hypothesis, .4i and -42SC, thus Ai(~\A2^C by

(2.2).
Cases 1.1.1, 1.1.2, 1.2, and 1.3 exhaust all possible forms with B=p,-.

Case 2.1. B=.BAJB2, C^p;. From ,4 SBAJB2 and Lemma 1, .4 SBX and

B2. From BiWB2Spjand Lemma 2, Bi or B2Sp;. Then, by induction hypoth-

esis, .4 Sp;.

Case 2.2. B = Bi\JB2, C=CiUC2. From BSCAJC2 and Lemma 1,

B S Ci and C2. Then, by induction hypothesis, ^4 S Ci and C2, thus A S CiWC2

by (2.3).
Case 2.3. B=BiWB2, C=CinC2. From BAJB2SCiP»C2 and Lemma 2,

BSCi or BSC2 or BiSC or B2SC. If either of the first two alternatives

holds, by induction hypothesis, .4SCi or C2, hence A^CiC\C2 by (2.4). If
either of the last two alternatives holds, consider A SBiUB2. From Lemma 1,

A SBiand B2. Hence whichever of the last two alternatives holds, the induc-

tion hypothesis yields A S C.

Cases 2.1, 2.2 and 2.3 exhaust all possible forms with B=B^JB2. The

forms with B = Bi(~\B2 are duals of these cases.

Now the relation (S) on the words may be extended to a partial ordering

in the usual (4) way.

(4) For example, see Birkhoff [l, p. 4].
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Definition 3. Two words A and B are equal if A S^P and B^A, written

A=B.
It should now be verified that this is an equivalence relation and all

further work should be carried out on the resulting equivalence classes. The

elements of the lattice CF(P) will be these equivalence classes and the ele-

ments can only be represented by a word in that equivalence class. However

no confusion will result if the terms "word" and "element" are used inter-

changeably. The formal details are left to the reader.

Theorem 1. FAe partially ordered set obtained from the set of words on a

partially ordered set P by Definitions 2 and 3 is a lattice in which AKJB and

AC\B are the least upper and greatest lower bounds, respectively, of A and B.

This lattice will henceforth be denoted CF(P).

Proof. AKJB^A and B by Definition 2. Let C^A and P. Then by
Definition 2, C^A\JB. Hence A\JB is the least upper bound of A and P.

A dual proof shows that ^If^P is their greatest lower bound.

Because the definition of equality depends only on (^) and because the

criteria for (=■) is recursive and all words have finite length it is easily seen

that we have proved

Theorem 2. The word problem, i.e. the problem of deciding in a finite num-

ber of steps whether two given words are equal, is solved in CF(P).

Definition 4. A partially ordered set P with elements pi is said to be

embedded in a lattice L, if L possesses a subset of elements 5i such that

Si<r-rpi is a 1-1 correspondence with the property that pi^pj implies Si^sj.

The embedding is called minimal if the sublattice generated by the Si is L.

Theorem 3. P is minimally embedded in CF(P) and moreover any lattice

in which P can be minimally embedded is a homomorphic image of CF(P).

Proof. The first part of the theorem follows immediately from the con-

struction of CF(P). To prove the second part, let L be any lattice in which P

is embedded. Let P have elements pi, the corresponding subset of L, ele-

ments 5,-, and let pi*-*Si be the required correspondence. By assumption

S= {si} generates L. The correspondence pi<->Si induces a natural cor-

respondence between words on the p, and words on the Si, hence a cor-

respondence between the elements of CF(P) and L. If/(xi, • • • , x„) denotes

a lattice polynomial or word on indeterminates Xi, • • • , x„, the mapping

described is

(M) f(piv ■■ ■ , pin) <-yf(siv • • • , Si J

or simply

f(P) <->/(S)
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for any substitution piv • • • , pin for X\, • • • , x„. Now/(5<lt • • • , sin) is some

element a of L. It will be shown that the mapping

(N) }(ph, ■■■ , pO -> a

obtained in this way is a homomorphism of CF(P) onto L. Clearly every

word in CF(P) has an image in L and since S generates L, every element in

L is expressible as a word on the Si, hence has a mate in CF(P).

It will be shown first that the mapping (M) preserves the order relation

(^) on the elements of CF(P). That is, iff(P) and g(P) are two words, and

f(P)^g(P) in CF(P), then f(S)^g(S) in L. The proof is by induction on

X[f(P)]+X[g(P)]=X. When X = 2, f(P)^Pi, g(P)=-p}- and p^P; implies
5,-^5y by the embedding property. Assuming the result for X<A, let X = A.

Case l./(P)=./i(P)fy2(P). By Lemma l,/i(P) and /2(P) ^g(P). Hence

by induction hypothesis fi(S) and /2(5) ^g(S). Since /i(S), f2(S) and g(S)

are elements of a lattice L,fi(S)r~\f2(S) ^g(S). But f(P)->f(S) =fi(S)C\f2(S).
The case g(P) = gi(P)Wg2(P) is the dual of Case 1.

Case 2. f(P)=pi and g(P) =gi(P)C\g2(P). From Lemma 2, p^gi(P) or

g2(P). Hence, by induction hypothesis, Si^gi(S) or g2(S) and thus Si^gi(S)

Hg2(5). But g(P)^g(S) =gi(S)ng2(S). Thus s^g(S). The case g(P) =pt and

f(P) =f1rP)\jf2(p-) is the dual of Case 2.

Case 3. f(P)=fx(P)Vf2(P) and g(P)^gx(P)C\g2(P). By Lemma 2 four
possibilities must be examined. Suppose/(P) ^gi(P). By induction hypothesis

f(S)^gi(S) and thus/(5) ^gi(S)f~\g2(S). The other possibilities are handled

similarly.

Since (M) preserves the order in CF(P) it is clear that (N) does also.

Thus, equality in CF(P) implies equality in L, conversely distinct elements

in L cannot correspond to equal words in CF(P).

It will now be shown that the correspondences (M) and (N) preserve

unions and intersections in CF(P). Let f(P)—>f(S) =a, g(P)-+g(S) =b and

f(P)KJg(P)=h(P)—>h(S)=c. It is to be shown that c = aVJb. In any event

f(P)^g(P)^f(S)^Jg(S) =aVJb. Since/(P)Ug(P) = A(P), the preceding para-
graph shows that h(S)=ayJb. Similarly intersections are preserved.

Theorem 4. FL(P) and CF(P) are identical if and only if P has the follow-
ing two properties:

(i) pi = l.u.b. (pj, pk) if and only if i=j or A.

(ii) pi = g.l.b. (pj, pk) if and only if i=j or A.

Proof. Necessity. Suppose that FL(P) and CF(P) are identical and that

p, = l.u.b. (pj, pk). Then pi = pj^Jpk in FL(P), since it is to preserve all exist-

ing bounds of pairs of elements. But in CF(P), pi = pAJpk implies pj\Jpk^pi,

hence, pjt^pi or pketpi, while on the other hand, pi^pj and pk. Thus p, = pj

or pk, i.e. i=j or A. (ii) is established in a dual way.

Sufficiency. Since the elements of FL(P) and CF(P) are represented by
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the same set of words it suffices to prove that equality of words in FL(P) is

equivalent to equality in CF(P). Since FL(P) provides a minimal embedding

for P, by Theorem 3, CF(P)—>FL(P), hence equality in CF(P) implies equal-

ity in FL(P).
The converse is established by showing that for words A, B, A^B in

FL(P) implies A SB in CF(P). The notation used in this proof follows Dil-

worth's [2, p. 126].

Lemma 4. If v(A) exists, i.e. A =v(A) =pitfor some i, in FL(P), A =p, in

CF(P).

Proof. The proof is by induction on \(A). When X(.4) — 1, A=^pi and

v(A)=pi in FL(P), hence A =p{ in CF(P). If A=AAJA2 and v(A) exists,

then v(Ai), v(A2) exist and l.u.b. [»(4i)-, fl(-42)] exists in P and equals v(A).

Let v(Ai) =pj, v(A2) =pk- Then l.u.b. (pj, pk) =pj or pk, from the assumption

(i) on P. Without loss of generality, let p, = l.u.b. (pj, pk) so that pj-Sp*.

Thus in CF(P), by induction, Ai = pj, A2 = pk and thus in CF(P), A-AJA2
= pjOpk=pj. Thus A=pj in CF(P) as was to be proved. A dual proof

handles the other case when A =Aif~\A2.

Now suppose A SB in FL(P). By virtue of (iii) in Dilworth's definition

(1.5) .4SB(m). Proceeding now by induction on n, let ^ISB(I). If A=B

there is nothing to prove. If v(A), v(B) exist and v(A)^v(B) in P, then in

CF(P), by Lemma 4, A =v(A), B=v(B), then A ̂ v(A) ^v(B) SB in CF(P).
If .4SB(m) one of (l)-(5) must hold. Induction hypothesis gives the cor-

responding result in CF(P), and either the transitivity of S or one of (2.1)-

(2.4) in our Definition 2 implies A SB in CF(P).

In what follows it is convenient to consider expressions of the form

AAJ • • • yJAm, m finite. While such expressions are not words as defined

they shall be used here to represent a word of the form

( ■ • ■ (Ai\JA2)\J ■ ■ ■ \JA^KJAm

or any word obtained from this form by use of the associative and commuta-

tive laws. In the sequel ( = ) shall be used to denote not only logically equi-

valent words, but also words which become logically equivalent when ap-

propriately operated upon by the associative and commutative laws alone,

writing AAJ • • • KJAn for any one such word, more frequently U< A{, tacitly

assuming that only a finite number of At are involved.

Lemma 1 and (1) of Lemma 2 then may be extended by an easy induction

to any finite number of terms, rather than just 2. Much use will be made of

these two lemmas and special reference to them will be omitted.

3. Canonical forms and sublattices in CF(P).

Theorem 5. Let P be any partially ordered set. In CF(P), if A = \Ji Ai,

^4» = riy a,y or Ai = p, an element of P, then there is a shorter word B equal to A

if and only if one or more of the following hold:
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(1) For some i, Ai is equal to a shorter word, Ai.

(2) Ak^Akfor some h and k, h^k.

(3) A = U,- Ai^a„kfor some h and k where Anj^p.

Proof. (1) and (2) are clearly sufficient. To see that (3) is sufficient consider

B = \jiy.h Ai\Jahk- B has shorter length than A since \(ahk) <\(Ah) as Ah^p.

A^B since A SaAt by hypothesis, and A SU,^, Ai. Conversely BS.4 since

a«bSfly ahj = Ah and therefore U.y* 4,UaM^Uw Ai\JAh = A. Thus A =B.

To prove the necessity, take B to be the shortest (and shorter than A)

word equal to A.

Case 1. B=p. Thus p = U, Ait hence £SU< A( and p=At ior all i. Con-
versely Ui -4,-Sp and hence Ah^p ior some h. Thus ^ASpS^,- for some h

and all i, in particular condition (2) is satisfied.

Case 2. B = l~)i Bi. From B S.4 it follows that B^Aj for all i and/. From

A SB it follows that either .4 SBn for some h or Ak>B for some &. When the

first alternative holds, f). Bt = BS^4 SBASf|i Bi, thus .4 =B=Bh, contrary

to the choice of B as the shortest word equal to A. When the second alterna-

tive holds, A S^tSBS^. Hence A =Ak and Ak = Ai, for all i, in particular

condition (2) is satisfied.

Case 3. B = Ur BT. It may be assumed Br = f\s br, or Br=p. From A SB it

follows that Ui .4iSBr = n« bT, for all r. Thus either: (i) for all r, there exists

an index/(r) such that AJir) SBr, or (ii) the first alternative does not hold and

for some r and /, U,- ̂ 4,S&rt and X(6r<) <X(Br). (For if the lengths were equal

then Br = brt=p and for this r, there would have to be a/(r) such that/ly(r) SBr

= p.) Similarly from BS.4, Ur BrS^4, = r|y a,,- for all t, two alternatives are

possible: (iii) for all i, there exists an index k(i) such that B^.-jS^i or (iv)

the third alternative does not hold, and for some i and h, Ur BrSa,t and

\(aih)<MAi).
Suppose that alternative (ii) holds. Thus Ui BjS6rt and, as in the proof of

the sufficiency of (3), U, Bi = Utyr Bi\JbTt, contrary to the choice of B as

the shortest word equal to A. Suppose that alternative (iv) holds. Thus

Uy Aj$zaih, which is condition (3).

Thus it may be assumed that (i) and (iii) hold simultaneously. Hence,

combining, Br = ^4y(r) =B*[y(r)] for all r. If, for some r, r^k[j(r)]=t, then

Br = Bt, r^t and B = U, Bs = U,^r B„ contrary to the choice of B as the short-

est word equal to A. Hence assume that r = k[j(r)] for all r.

Now suppose that, for some r, there exist distinct indices jx(r) and j2(r)

such that Ail{r) SBr and Aji{r) SBr. Then from (3)

B*[,-,(,)] S AjlM S BT,

BklhWi  = -^I'iOO S Br.

But k[ji(r)]=r = k[j2(r)] as was just shown. Hence Ajllr)=Ajl(r) and in

particular, condition (2) holds. Thus without loss of generality suppose in

(i) that for every r there is a unique index j(r).
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Similarly, Ai^Bk(i)^Aj[icli)]. If, for some i, i9*j[k(i)]=h, then Ai^Ah
and condition (2) holds. Hence assume i=j[k(i) ] for all i. If there are distinct

indices kx(i) and k2(i) such that Bkl(i) =^A, and P*2(t) ̂ -4,-, then from (1)

A ,[*,(,•)] = ^i^j) = yl,-,

^j[i2(0]  =■  P*2(»>  ^ ^4».

But *=/[Ai(t)] =j[k2(i)] as was just shown, hence Bkl(i) = Bklii) and therefore

B=-[)r Pr = Ur^1(i) Pr, contradicting the choice of B as the shortest word

equal to A. Hence, in (iii), for every i, there exists a unique index k(i). More-

over from

Ai = Ajik(i)] =■ Bkd) ^ At; B, = Bk[j(T)] ^ -4y(r) _• Br

it follows that Ai = Bk{i-, and Pr=-4y<r), and i«->A(/) is a 1-1 correspondence

between the A is and Pr's. But since \(A) >X(P) it follows that for some i,

\(Ai)>\(Bk{i)), which is condition (1).

The dual theorem is of course valid.

Corollary 1. If A=B then either A=B or there exists a C such that

A=B = Cand X(C) <\(A) or X(P).

Proof. It may be supposed that X(^4) =X(P), for if not, take C to be the

shorter word. The proof is by induction on \(A)'=\(B) =X. When X = l,

A =B implies A =B=p. Assuming the corollary when X<A, let X = A. Taking

P as in the theorem, it is easily seen that a word shorter than A or shorter

than B is produced, except perhaps in the last case where it might occur that

\(A)=\(B) and Ai = Bk^ all (i). But then, by induction either a shorter

word d exists or by application of the commutative and associative laws A ,•

may be derived from Bk{i). If the latter alternative holds for all i, A can be

derived from B by application of the associative and commutative laws alone.

If the former alternative holds for one index i, replacing Ai or Bk{i) by &

gives a word shorter, but equal to A and B.

Definition 5. A word W is canonical if A = TF implies X(^l) ̂ X(IF).

Corollary 2. If Uy A, = U, B{ and U< Bi is canonical, then for every i there
exists a j such that B^Aj.

Proof. If Bi=.p, then the result follows from the extended form of Lemma

2. If Pi = flr bir, consider Uy Aj^Bi = f]r bir. Either Aj^Bt for some j or

Uy Aj^bir for some i. The first case is the desired conclusion. The second

yields the condition U,- P,^Air, which, by Theorem 5, is sufficient to con-

struct a word shorter than U,- P< and equal to it.

Corollary 3. If A = UiAi = HyP/ = P and fljPy is canonical, then
Ui Ai = Anfor some A.

Proof. For allf and/, Py = 4,asP^4. From^^P, U,-v4,^Dy Py. From
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Lemma 2, either A ^Py, for some j, or Ah^B. If the first case holds, P ^.4

^Py^P and B=Bj, but B was assumed canonical. Therefore A^Ah^B^A

and A = Ui At = Ah.
Dual corollaries hold of course.

Lemma 5. Let P be a partially ordered set with elements pt. In CF(P),for

any index j and for any word A,

(1) PjZA or

(2) there exists a finite subset of indices R such that R has no indices in com-

mon with Sj= [k\pj^pk in P] and A^U^r pi.

(1) and (2) are mutually exclusive.

Proof. To show that (1) and (2) must be mutually exclusive let R be any

subset of indices disjoint from Sj and suppose that (1) and (2) both hold.

Thus pj^Ui^R pi, which implies that there exists an index i£P such that

Pi^pi- But then iESj, contrary to the supposed disjointness of R and Sy.

That (1) or (2) must hold is proved by induction on \(A). When X(.4) = 1,

As.pk. Now either pj^pk or pj%pk. In the second case let R consist of A

alone and (2) holds trivially. When A =Ax<JA2 and pj%Ax^JA2 then pj^Ax

and Pj%A2. Hence by induction there exist finite index sets Pi and R2 each

disjoint from Sj such that -4i = U,es, pi and ^42=Uigie, pi- Let R be the

(finite) set composed of the indices in Pi and P2. Clearly R is disjoint from

Sj and ^4i^U,e«l £,^U<e« p{ while A2^UiQR2 pi^U^R Pi- Thus ^4iU^42
^U,e* pi. When A=AxC\A2 and pj^AxC\A2 then pji$.Ah, h=l or 2. Then
by induction there exists a finite index set R disjoint from Sj such that

Ak^Ui(=R pi and so Ax(~}A2 = U.-^r pi. A dual lemma holds of course. When

P is a finite set, the subset R may always be chosen to be all subscripts not

in Sy.

Theorem 6. Let T = {tt} be any subset of CF(P) with the property that, for

any finite subset of indices R, tj^Ut^R tt implies that there exists kER such

that tj^tk in T, and the dual property. Then the sublattice L(T) of CF(P) gener-

ated by T is lattice isomorphic to CF(Q) where Q is a partially ordered set order

isomorphic^) to T.

Proof. Let the elements of Q be denoted by qi and the correspondence

q&^ti. It is clear that L(T) provdes a minimal embedding for Q; hence L(T)

is a homomorphic image of C¥(Q) through the mapping generated by

qi-+tt. To show that this is indeed one to one it only remains to be shown

that equality of words in L(T) implies the equality of the corresponding

words in CF(Q). Using the notation for words employed in Theorem 3, it

suffices to show that for two words/(F) and g(T),f(T) £g(T) in L(T) implies

f(Q)£g(Q) in CF(Q). The proof is by induction on \[f(Q)]+\[g(Q)] =X.

(*) The elements of Q and Tcan be placed in a 1-1 correspondence so that order is preserved

in both directions.
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When \ = 2, f(T)=ti, g(T)=tj and ti^tj implies g<^gy because T and Q are

assumed isomorphic. Assuming the result when \<k, let \ = k.

Case 1. f(T)=tj. From Lemma 5, in C¥(Q), either qj^g(Q) or g(Q)
= U.-gfl qt, ior some finite set of indices R, disjoint from 5y. If the latter

alternative holds then g(F)gUig« ti in L(T), since L(T) is a lattice homo-

morphic image of CF(Q). This, together with the assumption tj^g(T) and

the hypothesis of the theorem implies that tj^ti for some iER contrary to

the condition that R he disjoint from Sj. Hence the first alternative must

hold, as was to be shown. The case g(T) =tj is the dual of Case 1.

Case 2. f(T)=fi(T)\Jf2(T)^g(T). Since L(T) is a lattice /X(F) and

f2(T)Zg(T). Then by induction, fi(Q) and f2(Q) Sg(Q), hence f(Q) =fi(Q)
Vf2(Q) Sg(Q). The case g(T)=gi(T)r\g2(T) is the dual of Case 2.

Case 3. f(T)=fi(T)r\f2(T)Zgi(T)KJg2(T)=g(T). Since L(T) is a sub-
lattice of CF(P) the words/,/i,/2, gi, g2 and g, up to now regarded as words

on the ti, may also be regarded as words on the p,-. Rewriting the condition of

Case 3,/(P)=/i(P)n/2(P)ggi(P)Ug2(P)sg(P). By Lemma 2, either/(P)

= gi(F), i=l or 2, orfj(P)^g(P),j = l or 2. These words may again be con-

sidered as words on the U,/(F)^gi(F), i = l or 2 and/,(F) Sg(T),j=l or 2,

and applying the induction hypotheses to whichever condition holds, obtain

f(P)Sg(P).   _
The conditions of Theorem 6 are clearly necessary for L(T) to be iso-

morphic to CF(Q), for in CF(Q), gy2=U«g« ?• implies ffy^ff*, for some kER,

and dually.

This section is concluded with a theorem giving sufficient conditions for

a sublattice of CF(P) to be isomorphic to FL(P). The proof will require

Lemma 5 stated for FL(P). This follows by the homomorphism CF(P)

—>FL(P); however it is no longer true that (1) and (2) are mutually exclusive.

The following lemma is also needed.

Lemma 6. In FL(P),for any subscripti and any word A either

(1) PiSA or

(2) there exists a finite set V of pairs of indices (m, n) such that V has no

pair in common with

Ti = [(;', k) \l.u.b.(ph pk) = ph in P, pi =" ph in P]

and A gU(m,„)er (pnSJpn).

Proof. If pi$ph, then (h, h)ETi. Thus if pt^A, for the subset V use the

indices of the finite set R given by Lemma 5 and take F= [(h, h) \ hER]- Thus

V and Ti are disjoint and UAGr ph = \Jlh,k)^v (phSJph)=\Ja,k)Gr (pAJpk),

and the result follows from Lemma 5, restated for FL(P).

Theorem 7. Let P be a partially ordered set of elements pi. In CF(P) let

there exist a subset S of elements Sj such that pi*^Si is a 1-1 correspondence and

(1) Sk=sAJsj if and only if pk = l.u.b. (pi, pj), and dually, and
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(2) 5,^U(yii)g7- (sj^Js/i), where T is any finite collection of pairs of indices

implies for some pair (j, A) in T and some A, Sh = Sj[Usk and Si^sk in CF(P),

and dually.

Then the sublattice L(S) of CF(P) generated by S is lattice isomorphic to

FL(P).

Proof. Clearly Pis embedded inL(S) and by condition (1), L(S) preserves

least upper and greatest lower bounds existing in P; hence pi—'S, generates

a homomorphism of FL(P) into L(S), and equality of words on the pi in

FL(P) implies equality of the corresponding words on the 5». To prove the

converse it suffices to show, using the notation of Theorem 3, that/(S) ^g(S)

in L(S) implies f(P)^g(P) in FL(P). The proof is by induction on \[j(P)]

+X[g(P) ] =X. For X = 2,/(P) =Si, g(P) =Sj and the result follows from condi-

tion (1). Assume the result for X<A and let X = A.

Case 1. f(S)sEs,^g(S). Consider pi and g(P). By Lemma 6, pi^g(P) or

g(P) ^U(y,jb)£v (pj^Jpk) for some finite subset V disjoint from Ti. If the

latter condition holds then g(S) ^ U(y,*)£>. (sj\Jsk) where F is disjoint from

Ti, where now

Ti = [(m, n)/ 3t3'-st = sm*U sn   and   st = 5; in L(S)],

by condition (1) and the definition of T,. This, together with the assumption

Si^g(S) and the hypothesis of the theorem, implies that there is a pair

(j, A)EVsuch that sn = SjyJsk and Si^Sh, or that (/, k)ET't, contrary to the

condition that V and T't are disjoint. Hence the first condition must hold,

as was to be shown. The case/(S) ^g(S) =5,- is the dual.

The remainder of the proof is analogous to that given for Cases 2 and 3

in the proof of Theorem 6.
4. Examples. Consider the partially ordered set, P, consisting of four

elements, t, u, v, and w, with t>u and v>w as its only order relations. By

Theorem 4,'CF(P) is identical with FL(P). Four infinite descending chains

in FL(P) will now be constructed. Let Ax = t, Bx = t^Jw, Cx = (tyJw)f~\v,

Dx=[(tyJw)r\v]KJu and for «^2, An = Dn-xf^t, Bn = An^Jw, Cn = Bnr\v,

Dn=Cn^Ju. Clearly Al=A2^ ■ ■ ■ ̂ An^ ■ ■ • ;Pi^P2^ ■ ■ • ^Bn^ ■ ■ •;
Ci = C2= • • • ^C„= ■ • • ; F>i = P2= • • ■ =P„^ • • • . The following

lemma shows that all these containing relations are proper.

Lemma 7. An, Bn, Cn, Dn are in canonical form, for all n.

Thus, since the lengths of the words are strictly increasing no equality

could hold.
The proof of Lemma 7 is made by a straightforward induction on n, using

Theorem 5 and its dual to show, in turn, that A„, Bn, C„, and D„ are in

canonical form.

Consider the partially ordered set, Q, consisting of five elements, a, b, c, d,

and e with a>b>c>d as its only order relations. By Theorem 3, CF(@) is
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identical with FL(0. Consider the elements T=b, U=c, V=e\Jd and

W=aC\e. The sublattice they generate is isomorphic to CF(P), where P is the

set described above. This is proved by verifying the criteria of Theorem 6. It

is easy to see that the set T, U, V, W is order isomorphic with P. The other

criteria then reduce to verifying o^cU(eWd) and its dual which can be done

by inspection.

Bibliography

1. G. Birkhoff, Lattice theory, rev. ed., Amer. Math. Soc. Colloquium Publications, vol. 25,

New York, 1948.

2. R. P. Dilworth, Lattices with unique complements, Trans. Amer. Math. Soc. vol. 57

(1945) pp. 123-154.
3. T. Evans, The word problem for abstract algebras, J. London Math. Soc. vol. 26 (1951)

pp. 64-71.
4. Yu. I. Sorkin, Free unions of lattices, Rec. Math. (Mat. Sbornik) N.S. (72) vol. 30 (1952)

pp. 677-694 (Russian).

5. P. M. Whitman, Free lattices, I. Ann. of Math. (2) vol. 42 (1941) pp. 325-330.
6. -, Free lattices, II. Ann. of Math. (2) vol. 43 (1942) pp. 104-105.

California Institute of Technology,

Pasadena, Calif.


