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Introduction

According to a theorem of Hausdorff every completely monotonic se-

quence,

(1) (-1)*AV.£0 (k = 0, 1, ••• ;j = 0, 1, •••),

has the form

(2) p.=  \    fda(t)

with a(t) nondecreasing. Now consider the following "moment problem": to

determine <p(t) from pe where

(3) n. =  f t'<b(t)dl (s = 0, 1, • • • ).

D. V. Widder [6] has shown that the inversion of (3) may be accomplished

by the use of an operator whose general form is that of the left side of (1).

Thus if one wished to solve the analogous "moment problem" for the Stieltjes

transform one might begin by searching for a theorem analogous to that of

Hausdorff in the hope that it would indicate the general form of the operator.

Now mimicking the proof of D. V. Widder's Theorem 10.1 [7] one can prove

the analog of Hausdorff's theorem, and the analog of (1) is

[4-1,2, ••• '
(4) (-l)*A»+V/». ̂  0 In =1,2, •••    .

U - 1,2, ••• ,

Thus in trying to invert

/' °°    4>(t)-—-dt (5=1,2, ■••)
o     s + t

one would try operators of the form (4). Define Pn,y(p) by

Pn.M = dn(-l)n-* A*s*n.       (y> 0;s = 1, 2, • • • )
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where p = [y log «] (the greatest integer contained in y log n), d„

= (log n)p+1/pT(y), and A"„0 denotes the nth forward difference on j with

mesh one, evaluated at s = 0. Applying P„,„ to (5) one finds

o    t(t+\) • • • (t + n)

But

n'nl
-=->T(t) (»-*<»);
t(t+l)---(t+n)

hence for n large we have approximately

Pn.y(p) = •- I    e-«lT"<-?—4(t)>dt
T(ry+l)Jo W        J

where r = log n. The sequence of functions

f.ry+1

-■-e~r,tr" (n = 1, 2, • • • )
T(ry+l)

is a Fejer sequence of kernels concentrated at t=y and it is thus intuitively

clear that

T(t)
lim Pn,v(p) = —- 0(0       = *(y).
«— r(y) t-v

The "continuous" version of this operator reads as follows:

Tnjf) = c(-i)"-w A" *-/(*?) (« = 1, 2, • • • ).
x-0

where'w= [log «] and c„ = (log n)m+1/m\. Applying T„,v to,

/•w *(0
o     x + t

one has, proceeding as before, the approximate equation

(log«)m+1 C . .
Tn,v(f) = ,        I    «—«H*(yflr(/)}#.

w!        Jo

And it is again intuitively clear that

(7) lim TnM) = *(yflr(0 |„ = *(y).
n—.oo

Having an inversion of the Stieltjes transform leads one to attempt an

inversion of the Laplace transform. Write (6) in the form
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/(*) =  I    e~x"F(u)du
Jo

where

(8) F(u) =  I    e-<"<p(t)dt.
Jo

Proceeding formally

/» 00

Tn,y(e-*»)F(u)du
0

(log n)m+1   1    rK   /«\   dm
= ^-5—;-I   F[—)-(1 - «-)»<*«.

m\ y Jo     \y/ dum

One thus has from (7)

(log m)"^1   1   /•"   fu\  dm
(9) lim^-^-I    W_) (l-e-")»du = 4>(y);

«->*>        ml        y Jo     \y/ dum

i.e., a new inversion of (8).

These inversion formulas may be used in the standard way to obtain

representation theories, and in the case of (9) we state a pair of sample

theorems.

I should like to express my thanks to D. V. Widder for his careful guidance

of this work in thesis form, and to the referee of the present paper, whose

suggestions have resulted in a measurable increase in clarity and elegance.

Theorem 1.

1. y> 0;r = 0;R > y;

2. trT<p(t)dt exists;
J R

3. p = [y log n] (n = 1, 2, • • • );

=>

(logw)p+1   r°° t"nl
In = ^-^-   I -<b(t)dt =   0(1) («->»).

pi       JB   t(t+l)--(t +»)   W

Let cn = (log «)"+> n\/p\ and kn(t) =t'+*[t(t+l) • • • (t+n)]-1. Then

/« =   C„   f     k„(t)t-'<t>(t)dt.
J R

Now
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_TO _ r^ _ J__1_1_ _

kn(t) t t        1+ I t+n

Hence if we define g„(X) by

gnQi) = r + p — I - e~x - e~2X -   ■ ■ ■ - e~n\

we shall have

ki (t)       r "

But for w large g»(A) has exactly one change of sign. Thus by Polya and Szego

[4, book two, problem 80, p. 50] we are assured that ki (t)/kn(t) has at most

one zero in 0<t< «. But for n large (1) is positive for t small and positive

and is negative for / large and positive. Thus (1) has exactly one zero in

0</< oo. Hence if (1) is negative for t=t0, then it will remain so for all

f^to.

Now

r + p      y log n
•-~- (»—»«),

t i

and

1 1 1
-\- ■-(-■•• + ■-— ~ log n (»—><»).
/       / + 1 t + n

Whence at t = R, (1) is negative for all sufficiently large n. Taking to=R we

have that kn(t)Ei [R, °°) if « be large.

Clearly then /„ exists; in fact by the mean-value theorem

In   =   Cnkn(R)    \       t-rd>(l)dt.
J R

Whence

In  =   0[cnk„(R)] (»-*»).

Now by Stirling's formula

CnK(R) = exp } [(y - R) + y(log R - log y)] log n + o(log n)}       (»-*<»).

But

(y-R) + y(log J? - logy) = yUl-j + log—J < 0

since
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1 - z + log z < 0 (2^1).

Thus

cnkn(R)-*0 («-><*>),

and the proof is complete.

Theorem 2.

1. y> 0;s = 0;0 < e < y;

2. I   t'<b(t)dt exists;
Jo

3. p= [ylogn] (•- 1,2, •••);

=>

(log re)**1   /•«              tpn\
In = ±-^-- I    -<p(t)dt = o(l)       (n-*»).

With the notation of the previous theorem

In  =   Cn]      hn(t)f<t>(l)dl,
Jo

where hn(t) =t"~'[t(t-\-l) • • • (t+n)]-1. Proceeding in exactly the same man-

ner as before, one finds that hn(t) is increasing in [0, e]forn sufficiently large.

Thus by the mean-value theorem

In = cnhn(t) I   *•*(*)*;
J l

i.e.,

In   =   0[Cnhn(*)] (»-*«).

But

Cnhn(e) = exp {[(y — e) + y(log t — log y)] log n + o(log n)}    (« —» w),

and the proof is completed as in Theorem 1.

Definition. The Lebesgue set of a function <f>(t) will be denoted \(<p).

Theorem 3.

1. <p(t) E L(l/T, T) for all T > 0;

2. y > 0;   r = 0;    s = 0;

rr<t>(t)dt exists;



6 R. S. PINKHAM [September

4. J    t'<f>(i)dt exists;
Jo

5. p= [ylogn] (n = 1, 2, • •• );

6. y G Xfo)

(logw)p+1     If"                /"«!
/„ =-I      -<b(t)dt ->0(y)       («-»»).

By Theorems 1 and 2 it will be sufficient to show that

/fi GJfit'K-Wdt -» 4>(y) (n -» oo),

where 0<€<y <i?,

(logn)>+i     1
d„ =-

p\ T(y)

and

n'nl
Gn(t) =-

t(t+l)...(t + n)

Now by K. Knopp [3, pp. 440-441 ] we have that if e^tg,R, then

\Gn(t)-T(t)\=o(-^ (»-oo).

Thus

l»n~' | Gn(t)<p(t) - T(t)4>(t) | <fc

(2)

^ 0 (—) dn f   t'n-' | 0(0 | A       (n -» oo).

But by the mean-value theorem and Stirling's formula

/R /• fi<"»-' 10(01 dt = </n{"»-M   10(01 * = o(aogM)1'2)     (»-^oo).

Therefore the right-hand side of (2) tends to zero as n—»». Hence we must

show

dn f   l"n-'T(l)<l>(t)dl->■ 0(y) («->»).

Since
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dn I    t"n-T(y)dl = 1
J o

it will be sufficient to show that

/R
t'n-'[T(t)4>(t) - T(y)4>(y)]dl = o(l) (n -+ oo).

If

a(t) =   f   | T(u)d>(u) - T(y)<p(y) \ du,

then

/X p R

t»n-'da(t) g Mdn I    t" lo* nn-'da(l).

But by Hypothesis 6,

o(0 [«-'/" l0«»]'*   ^ o(l) |    (y - 0[m-'^1o,b]'^ = o(l) (»-♦«>);
f J «

hence

|/»|^»(1) («^oo),

and the theorem is proved.

Lemma 4. If p>k and Ap is the pth forward difference on x with mesh 1, then

xk tkp\

Ap-= (-l)p+*-1--
x+t (x+t)(x+t+ 1) ••• (x+t+p)

Note that

x" /k\ (-1)*/*

and since £ > &

a;* 1 *!
A"-= (-1)*<*A"-= (-i)k+nk-

x + t x+l (x+ t)(x+t+ 1) ••• (x+l+p)

Definitions.

(1) A»F(x) = A>F(x)        =£(P)(-l)>+iF(j);
*=o x=0      ,-_o \ J /
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(log »)m+1

(2) Tn[f(x)} = Tn(f) = —~-(-1)— A" *»/(*),   m = [log n];
ml x=o

(3) Tn,y(f) = Tn[f(xy)] (11-1.2,...).

Theorem 4.

1. 0(0 E L[0, R]for all R>0;

/' °° <t>(t)-dt exists for some x;
o  x + I

3. 1GX(0);

=>

lim Tn(f) = 0(1).
n—.oo

By Lemma 4

(log«)m+l   /•" /otm!

Fn(/) = —- I    -<b(t)dl
ml       Jo  t(t+ 1) •• •(/ + »)

provided the integral converges. It certainly does, for Hypothesis 2 implies
that

r^dt
Ji t

exists, whereas by 1

/4>(t)dt
o

exists. Thus applying Theorem 3 with y = 1

lim Tn(f) = 0(1).
n—>»

Theorem 5.

1. 0(0 £ £[0, -R]/or a// if > 0;

/' °°       0(0
-<f/ exists for some x;

3. u E X(0),       « > 0;

=>

lim T„,n(f) = <t>(u).
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Since

r^Ldt=f^^dt
Jo     xu + t Jo     x -\- t

we have the desired result by Theorem 4.

One wonders whether this inversion formula for the Stieltjes transform

may be interpreted operationally. Since the usual operators involve deriva-

tives rather than differences, we might expect to obtain different results. The

following argument shows that Tn,t(f) may be interpreted as the familiar

— sin irD/ir.

It is well known that

Jt'                         T
-dt =- (- 1 <s <0);

o     1 + t                sin its

or by changing variables of integration

-=  |      -dt (- 1 < s < 0).
sin its      Jo    x -\- t

Thus

(logw)m+1 v (log»)m+1 rx xm
-(— l)«-m+1 An xm+'-=-(— l)"-m+1    I    /' A"-dt

ml x=o        sin ts ml Jo     x=oX-\-t

(log»)m+1   ("°              tm+'nl
=-I-dt.

ml       Jo    t(t + 1) • ■ ■ (I + n)

Now by employing Theorem 3 we have

(log n)m+1 sin rs
(3) - (— l)"-™ An_1 xm+* —>-(n —* oo).

ml i=o t

Let

F(w) = f(ew),       $(w) = <p(ew);

then the statement

lim Tn,y(f) = <b(y)
n—*»

is operationally the assertion

(log n)m+1
lim -(-l)»-mAnxm+DF(w) = $(w);
n->» ml x=0

or by (3)
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sin rcD
-F(w) = 3>(w)

■x

in accord with the Hirschman-Widder convolution theory.

Theorem 6.

1. a(t) is a normalized function of bounded variation in (O^t^R) for every

positive R;

/'"   da(t)
-converges;

o    x + t

=>

lim   f   Tn,u(f)du = «(/) - o(0+).

If

(log w)m+1 r .
Kn(t) = —-mr[t(i + l) • • • (/ + »)]-»,

then

r-..(/) = f    — *„(—)**(?).
Jo        M \U/

Since we may assume a(0) =0,

/•" a(y)   d        /y\-^T-^-( — )*'■
o       m    dy       \ u /

But by Euler's theorem on homogeneous functions

_ ± 1 Kn(i.) = ± 1 kJl) .
u  dy      \u/       y  du      \u/

Thus

TU/),fJy>lKJy\d,.
Jo      y    ou      \ w /

This last integral clearly converges uniformly for e^u^t. Whence we

may integrate under the integral sign to obtain

= /n'   +/n".



1956] LAPLACE AND STIELTJES TRANSFORMS 11

C° a(tx)
Ii   = -^ Kn(x)dx.

Jo        x

/""   a(tx)
-±-- Kn(x)dX.

0 X

/'1 a(tx) C °°   "(e*"1
-^— Kn(x)dx -  I      ——Kn(x)dx

0 X Jx x

= /„' +/»".

Since a(ex)/x is bounded for O^e^l and 1^3C<oo, we may employ

Lebesgue's limit theorem to obtain

C™   1
lim Jn" =  - a(0+) I      — Kn(x)dx.
»-o+ J X      x

Noting that a(ex) is bounded for 0 si eg 1 and 0 = xgl, we find in a similar

fashion that

lim /„' = - o(0+) I    — Kn(x)dx.
«-K)+ Jo      X

Arid by Theorem 3

lim /„" = - «(0+) + o(l) (»-♦ oo),
t->0+

/„' =a(t) + o(l) (n-»«).

Hence

lim   f   r..,(/)rf« = a(fl - o(0+).
n—>w   J o+

To complete the proof it will be sufficient to show that

f    T„,u(f)du =  f   Tn,u(f)du.
J 0+ J 0

Let/(*)=/i(*)+/i(*) where

/>(*) - / -ii ••/<)    * + I

Then by interchanging the order of integration

f    | Tn,«(fx) [dug  f1 \ da(t) |  f   — A-Bf—) <*«.
•'o Jo ^0    « \«/
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But

/'i 1        / t\ rx   1
— Kn ( — )du = —Kn(y)dy.

o   «        \u/ J t      y

Also note

TnAfd = f    — *„(—W(y)
Jl        M \U/

«(D  ^/1\        fM  , .  d  (\ (y/M)"*+1 \

u \u/       J i dy {y     (y/u) ■ ■ • (y/u + n))

since a(y)/y is bounded (1 ^y < oo). But this last integral is equal to

r - odj)  d_ f        (y/u)m+l       \ C" «O0 (y/«)m+1

J i       y    dy \(y/u) ■ ■ ■ (y/u+n)) J\.      y2    (y/u) • • • (y/u+n)

Suppose 0 ̂  u < 1. Then

f"|«(y) (y/«)m+1 .  ^ ,, r°°       ym+1
I-dy g M I      -<fy,

J i   I   y2    (y/«) • • • (y/u + n) Ji    y ■ • ■ (y + n)

and since ym+1[y(y + l) ■ • • (y+n)]~l is decreasing for y>l and n large

f " I «(y) 115/        (y/«)m+1        ) I
I       -   —<->\dy^M.

Ji   I   y   IIdy Uy/tt) • • • (y/u + n)) I

Thus T„,n(f) is integrable in a neighborhood of the origin, and therefore

f    TnAf)du =  f    Tn,u(f)du,
J o+ Jo

which completes the proof.

We now proceed to invert the Laplace transform as indicated in the intro-

duction.

Lemma 7.

dm

1. gm(x) = —- (I - e~*Y;
dxm

2. n>m;

=>

gm(^) = gm(0) = 0 (mZl).

gUx) = Y(-iy(n)(-j)me-*.
1-0 \J /



1956] LAPLACE AND STIELTJES TRANSFORMS 13

Clearly

*-(«)=■ 0 (m^l).

But

gm(o) = (-D-+-S (-i)n+,v/wN)yn-
y-o \ j /

Or

i»(o) = (-D-+»i: (-i)"+'Yw)(a;+i)"'|I-o
;-o \ J /

= (-l)"+mA"a;m|I=o = 0.

Definition.

(log n)m+1 ecv C °°     / *        Wm

Gn(c, y) =-F\— + c)— (1 - e-)*dx
ml        y Jo       \y        / dxm

where

m = [log m] (n = 1, 2, • • • ).

Theorem 7.

1. F(x) =   I    e~xt<j>(t)dt which converges for x > ac;
Jo

2. 4>(t) E L[0, R]for all positive R;

3. c > <rc;    y E H<t>);

lim Gn(c, y) = <b(y).
n—»»

We first show that Gn(c, y) exists. Utilizing the notation and result of

Lemma 7, we have after repeated integration by parts

J    gm(x)F(— + cjdx = (-l)"*1 f   F<"-» (— + cj— (1 - e-*)"dx.

But

d
— (l-e~*)n^0 (x^O);
dx

whence

J'00   d Ix        \ n"   d
— (1 - «-•)•/«—» (— + c) d* « M I      — (1 - e~x)"dx = JW,

o    dx \y        I J o    dx
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since F(m~1)((x/y)+c) is bounded (0^x< oo).

Thus the operator does exist. Let

(logw)m+1  e0"

an =-;-;
ml y

then

— (l-e~x)"dx\    e-^'y^n—)    <p(t)dt
o    dx Jo \y /

/•"   d r °°— (1 — e-1)"^ I    e-xuum-1ye-e""4>(uy)du
o    dx Jo

/'"   d r"— (1 — e~x)ndx I    xe-xuy(u)du

o    dx Jo

where

7(m) =   J    e-cvvvm~l<p(vy)dv.

Jo

Since there exists M such that

| 7(m) | £ M (0 £ u < oo),

we may change the order of integration to obtain

y(u)du I      xe-1"— (1 — e-x)n<fa;
o J o <fo

/•» /•" rf<^7(«) I      e-*"— (1 — e~x)ndx
o Jo dx

udy(u) I    e_IU(l — e_I)n</a;
o Jo

/»!
o      u(u + 1) •••(« + n)

the last equation following from

/» oo /.CO

I    «-*"(l - «-*)"<£* =  I      (-l)nAne-Iurfa;

/> oo
e~xudx

o

«!

w(w +!)•••(« + »)
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Therefore

/"*                      umnl
e-'yu  .    ,  ,.-.    ,    . <t>(uy)du.

o         u(u + 1) ■ • • (m + n)

Or

Gn(c, y) = e°«Tn,y(f)

where

f(x)=\      —^du
Jo      x + u

provided f(x) exists. But if

v(u) =  f   e-"<p(v)dv,
J o

then

/•«  <?,(») =    77(Jg)  .        /»«      y(u)     ^

Jo    x + u      x + R      Jo    (x + u)2

Since -n(u) is bounded, /(#) does exist. Applying Theorem 5 we see that the

proof is complete.

Theorem 8.

1. a(t) is a normalized function of bounded variation in every (0, R), J?>0;

2. F(x) =  I    e~xtda(t) exists x > <rc;
J o

3. c > <rc;

=>

lim   I    Gn(c, y)dy = o(/) - a(0+).

As before

— (1 - e-*)»dz |     f-«'M+**( — )     da(<).
o    rf* Jo \y/

If

j8(Z)-J     «-"(^-j     **W.

then
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/■"   d /•"— (1 - e-*)Hx I    e-w»)(#(0
o    dx J o

/>« d rxx
— (1 - e-*)ndx I    —e~(xl^W)dt.

o   dx Joy

We may interchange the order of integration as in Theorem 7. Hence

G.(c, y) = On f    dfi(t) f   «-<*«' — (1 - e~*)"dx
Jo Jo dx

= a"J0   W (t/y) ■ ■ ■ (Wy) + n) m)

(logn)m+1  ec" f°° ec'(t/y)mnl
=-I       -da(t)

ml yJo     (t/y) ■ ■ ■ ((t/y) + n)

= e°"Tn,y(f)

where

/"" e-c'da(t)—77'
0 X + t

which certainly exists. The desired result now follows from Theorem 6.

In 1940 R. P. Boas and D. V. Widder [l] obtained an inversion of the

Laplace transform which required no knowledge of the derivatives of the

generating function. There the basic kernel was

dk
(sP-ig-.),

dx"

as opposed to our

dm
-(1 — e~x)n.
dxm

There seems to exist no apparent relation between the two kernels except

that they both stem from an inversion of the Stieltjes transform.

In [l ] the authors develop general representation formulas for the Laplace

transform. Their methods are sufficiently general to be readily applicable

to the operator Gn(c, y). We state two sample theorems.

Theorem 9. N.a.s.c. for F(x) to have the representation

/I 00

trxt4>(t)dt
0

with
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I      | 4,(1) \'dt < co (p > 1)
J 0

are

1. F(x)EC(0, =0);

2. F(«) = 0(x1-"i") (x -> oo ; x -» 0+);

3. f    | G„(0, y) |'rfy = 0(1) (n->»).
•/ o

Theorem 10. N.a.s.c. that

e-"da(i) (x > a)
o

with a(t)E T [0> °°) are

1. F(*) = 0 aw<f F(«) G C (a < x < oo);

2. F(«) = 0(1) (*-♦«>);

3. G„(c, y) =0 (c> a;0 <y < oo);

/or a sequence of n's tending to infinity.

In conclusion we give a solution of the "moment problem" for the Stieltjes

transform.

Definition. Let  {ju«}«-i be an arbitrary sequence of numbers, and let

p = [ylogn], y > 0, n = 1, 2, • • • .

Define the following operator

(log n)p+1
PnM =-7— (-1)--" A" S»p..

plT(y) -o

Theorem 11.

1. <p(t) E L[0, R]for all R > 0;

/"* 4>(t)-dt exists (s = 1, 2, • • ■ );
o    s + t

3. yEH4>);   y > 0;

=>

lim Pn.y(p) = <b(y).

The proof is immediate from Lemma 4 and Theorem 3.
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