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Introduction. This paper consists for the main part of a proof of a result

in the theory of several complex variables that was obtained as an essential

link in a study of the classification of homogeneous Banach algebras on com-

pact abelian groups. (For applications of the result, see [3] and [4].)

Let X be a compact subset of Cn, the space of M-complex variables.

Cp(X) will denote the set of all points y in Cn that satisfy for each polyno-

mial/

I f(y) I = Sup | /(*) |.

Equivalently, Cp(X) is the intersection of all sets of the form

{z: | f(z) |   ^ r, f a polynomial}

that contain X. Thus Cp(X) is closed and will be compact since it is contained

in any cube {(z\, • • • , z„): | z<| =i£} that contains X. (Cp(X) can be identi-

fied in a natural way with the maximal ideal space of the algebra obtained by

taking the uniform closure of polynomials on X. However we shall not go

into this here. See [7].)

It is not hard to see that in the case n = 1, Cp(X) consists of the union of

X and all of the bounded components of the complement of X. For n> 1 no

such simple result can be expected. Our main theorem shows that if X is

circular in a certain sense, Cp(X) is essentially the intersection of all sets of

the form

{I     m\ mn I j

(zi, • • ■ , zn): [ zi   ■ • • zn   I   g r\

which contain X. The second theorem below characterizes the circular sets

X that satisfy Cp(X) =Zas the domains of convergence of power series of a

certain type. In [4] we study the representation of functions by power series

and Cauchy-type integral formulas on such domains. In all that follows the

letters t through z will be used to denote points in C, the space of M-complex

variables. The letters a through d will denote points in Rh, Euclidean space

of dimension k. The ith coordinate of a point will always be denoted by the

name of the point with  the subscript i attached.  Thus z is the point
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(zi, • • • , zn). It will be convenient to define addition and multiplication of

points coordinatewise. Thus z-\-w is the point that has z,+w< as its ith co-

ordinate and zw is the point that has z,«\ as its ith coordinate.

1. Identification of Cp(X) in the circular case. Let H be a finitely

generated abelian group and {si, • • • , sn} any set of elements that generate

H. Let 5 be the subsemigroup of H generated by the Si. That is, 5 consists

of all s?1 • ■ ■ s'Z" with the w, non-negative integers not all zero. We shall

denote by Horn (S, C) the set of all maps <f> of S into the complex numbers

that satisfy

<p(ss') = *(*)*(/)

and which take the value one on the unit of H if it is in 5. If the unit of H is

not in 5 we do not exclude the case of <p being identically zero.

Horn (5, C) will be considered to be imbedded in C" by the map p defined

by

p(<t>) = (*(*,), • • • , </>(*»))•

p is one-one because the s< generate 5. We shall denote the image ot

Horn (S, C) by V and in all that follows consider Horn (S, C) to be identified

with this subset of C". V will later be shown to be a subvariety of C". In the

simplest case when there are no relations between the s„ that is when they

are free generators for H, V is all of C".

A subset IF of C" is called V-circular if IF is contained in V and if when-

ever the point w is in IF, the point v is in Vand | »,| = | av,-| for all i, the point

v must be in IF. In the case that V is all of C" this is the circularity condition

that appears in the definition of a Reinhardt domain [l].

For X a compact subset of V, denote by Cm(X) the intersection of V and

all sets of the form

{z: | Zi' • • • zn" |   ^ r, mt non-negative integers}

that contain X. Note that Cm(X) is compact and F-circular. Our main result

is

Theorem 1. Let X be a compact subset of C" which is V-circular. Then

Cp(X) = Cm(X).

This result, even for the special case V=Cn, does not seem to appear in

the literature. For a somewhat related result concerning the characterization

of maximal Reinhardt domains see [2, p. 103].

The proof proceeds by a sequence of lemmas. In all that follows we shall

assume that X is a subset of C" that satisfies the hypotheses of Theorem 1.

The first lemma deals with properties of V which will be used often in

the constructions that follow. They are immediate consequences of the cor-

responding properties of Horn (S, C).
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Lemma 1.1. Let the z and w be points in V. Define x by xt = 0 if z, = 0 and

x,-=l otherwise. Define y by yi = 0 if z< = 0 and y.^z,-1 otherwise. Define u by

Ui = exp (t log |zj|) if ZiT^O and «, = 0 if z, = 0, where t is a complex number.

Then the points x, y and u are in V and the point zw is in V unless perhaps all

of the ZiWi are zero.

Proof. The point x is in V because if d> is in Horn (S, C), the function yp

defined on S by yp(s) =0 if </>(s) =0 and yp(s) = 1 otherwise, is in Horn (S, C).

The point y is in V because for <j> in Horn (S, C), the function yp defined on 5

by yp(s) =0 if <p(s) =0 and ^(5) = (^(s))-1 otherwise, is in Horn (S, C). Simi-

larly the point u is in V, because if <f> is in Horn (S, C), the function yp defined

on S by yp(s) =exp (t log \<t>(s)\) is in Horn (S, C). The last assertion of the

lemma follows because if <pi and <p2 are in Horn (S, C), the function yp defined

on 5 by yp(s) = d>i(s)<p2(s) is in Horn (S, C) except perhaps if it is identically

zero.

Lemma 1.2. V is a subvariety of C".

Proof. We shall consider here monomials X?1 • • • X^n with the mt non-

negative integers not all zero. Let M be the set of all pairs (h, j) of such

monomials which satisfy in S

h(su ■ ■ ■ , Sn) = j(si, ■ ■ ■ , sn).

If the unit of H is in S, there is a monomial g of the same type such that

g(si, • • ■ , sn) is equal to the unit. Then V is the set of all points z in Cn that

satisfy for all (h, j) in M

h(zi, ■ ■ ■ , z„) = i(zi, • • • , z»)

if there is no unit in 5 and that satisfy these conditions plus the condition

g(zi, • • • , zn) = 1 if 5 has a unit.

Lemma 1.3. Cp(X) is contained in Cm(X).

Proof. First, Cp(X) is contained in V. For if the point z is not in V, be-

cause V is a variety, there is a polynomial Q that satisfies Q(z) ?±0 while van-

ishing on V and thus X. Therefore any z not in V is not in Cp(X). By defini-

tion Cp(X) is the intersection of all sets of the form

{z: I f(z) I   ^ r, f a polynomial}

that contain X. But Cm(X) is the intersection of a smaller class of sets and V.

Since Fhas been shown to contain Cp(X), it follows that Cp(X) is a subset of

CM(X).

Lemma 1.4. To prove Theorem I, it suffices to prove that Cm(Cp(X)) = Cp(X).

Proof. Since XECP(X), it follows that CM(X)ECM(CP(X)). Thus if it is
true that Cm(Cp(X)) = Cp(X), we have Cm(X)ECp(X). This in conjunction
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with Lemma 1.3 shows that Cm(X) = Cp(X), which is the conclusion of Theo-

rem 1.

The next lemma is a criterion that is sufficient to insure that a subset Y

of C" satisfy Cm(Y)=Y. This criterion will later be shown to hold for

Y=Cp(X) and Lemma 1.4 will complete the proof of Theorem 1. This cri-

terion will also be used in the next section in the discussion of power series.

First some definitions are needed. Let k be any integer satisfying l^k^n.

Let K be any A-tuple of distinct positive integers (rx, • • • , rk), where each of

the r.^n. Let CK be the subset of Cn that consists of those z having zm7»^0 if

and only if m occurs in K. Define the map LK:CK^>Rk by

LK(z) = (log | zri| , • • • , log | zr„| ).

Lemma 1.5. Let Y be a compact subset of C" that is V-circular. Assume that

Y satisfies the two hypotheses: 1. If zis in Y, w is in V and \ Wi \ :£ | z,-1, then the

point w must be in Y. 2. For each K, the sets Lk(CkC\ Y) are either empty or

convex. Then Cm(Y) = Y.

Proof. Let x be any point in V that is not in Y. To prove the lemma,

it is sufficient to find a monomial/ that satisfies

| /(*) |   >   Sup   | f(y) | .

Let K be the set of all m with xm9±0. We shall assume that the coordinates

have been rearranged so that K is (1, 2, • • • , A). With LK as defined above,

the set LK(CKr\V) will be denoted by VK and the set LK(CKC\ Y) by YK. It

will first be shown that Vk is a linear subspace of Rk. Take any point w in

CKC\ V. Let r be any real number and define u in CK by «,- = | w,|r if Wi9^0 and

Ui = 0 if Wi = 0. Because of Lemma 1.1, u is in CK(~\V, and LK(u)=rLK(w).

This together with the fact that LK(xy) =LK(x)-\-LK(y) for any two points

x and y in CK(~\V show that Vk is a linear subspace of Rk. It will be shown

next that any point a having a.-^log | Xi| and lying in the subspace Vk must

be in YK. Let a = LK(v) for some v in CKC\ V. Then exp (ai) = \ v,\ for i g A and

because of Lemma 1.1 the point

u = (e"\ • • • , ea\ 0, • • • , 0)

will be in CKC\V. Since |eoi| ^|x;| and the point (|xi|, • • • , |x»|) is in Y,

hypothesis 1 shows that u will be in CKC\ Y. Thus a = LK(u) is in YK and we

have shown that any point a in Vk with dialog |x,| must be in YK. At this

point the convexity of Yk given by hypothesis 2 will be used. The point

LK(x) is not in Yk, because if it were, by the circularity of Y, we would have

x in Y. Yk is closed and because it is convex there is a hyperplane in Vk that

separates the point LK(x) from the set YK. That is, there is a linear functional

y. Vk-^R that satisfies y(LK(x)) > C and y( YK) < C, for some constant C. If

a is any point in VK with all tii<0, 7(a) must be nonpositive. For if X is suffi-
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ciently large, Xa<<log |x,| so that the point Xa, will be in YK- Since y(\a)

= X(7(a)), 7(a) must be nonpositive since y is bounded from above on YK.

It is known(2) that such a linear functional can be extended to a positive linear

functional y on all of Rk. That is, y(c) =y(c) for c in VK and y(c) ^0 if c<^0

for all i. There are non-negative constants a"i so that 7(a) =<fiai+ • • • +0^0*.

The composite mapping yLK on CK is

k

yLK(z) = Y di log \zi\.
1=1

It has been shown that this function is greater on the point x than its sup on

CKC\Y. The function g:C->R defined by

«(*) = n 1 z< \di
i-i

thus also satisfies

Sup     I g(y) I   <  I g(x) I .
vGCKnr

Since this property remains valid if all of the di are increased slightly, we

may assume that all of the a", are strictly positive. We shall use the fact that

|g| depends on all Zi for i^k and is independent of the Zi with i>k to show

that its sup on Y is no greater than its sup on CKC\ Y. Take any point y in F.

Assume first that none of the y, for i^k are zero. Then because of Lemma 1.1

the point y' = (yi, • • • , y&, 0, • • • , 0) is in F. Hypothesis 1 insures that the

point y' is in F and thus in CK(~\Y. Since g(y') =g(y), no point y in F with

y,5^0 for i^k can increase the value of |g| over its sup on CK(~\Y. If on the

other hand the point y has y, = 0 for some i^k, g(y) =0. Thus

Sup  I g(y) I   =     Sup     j g(y) \   <  \ g(x) \ .
V&Y vGCKnY

By taking positive rational approximations d to the di one can find a func-

tion g': C—>R defined by

g'(z) = ni*h
«•—1

that also satisfies

Sup I g'(y) I   <  I g'(x) I .

Let d=fi/u with the fi and u non-negative integers. Then the monomial

f(zi, • • • , z„) =zf1 • • • z»* has the property that is wanted:

(2) A proof of this is given in [5].
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|/(x)|   > Sup  |/(y)|.
ver

This concludes the proof of Lemma 1.5.

It can be shown that a converse to Lemma 1.5 is valid, namely that if F

is a subset of Cn that satisfies Cm(Y) = Y, then F must satisfy hypotheses 1

and 2 of Lemma 1.5.

Before we shall be in a position to prove that hypothesis 1 of Lemma 1.5

is valid for F= Cp(X), two preliminary results are needed.

Lemma 1.6. Let T be the set of all z in V that satisfy | z,| = 1 for all i. A sub-

set Y of V is V-circular if and only if it satisfies the following criterion: If w is

in Y and t is in T, the point tw is in Y.

Proof. The criterion is satisfied for a F-circular set, for tw must be on V by

Lemma 1.1 and | tju>i\ = | wi[ for all i. For the converse, assume that a subset

Y of V satisfies the criterion. Let z be in V and w be in F with \zt\ = | w,-|.

We shall have shown F to be F-circular if a point (onf can be found that

satisfies zt = tiWi for all i. Let K be the set of all i with Wi9*0. Let HK be the

subgroup of the group H defined previously that is generated by the s< for i

in K. There is a character <Pk'-Hk—>C determined by <l>K(si) =Zi/Wi. This can

be extended (see [6]) to a character <p of H. If <p is restricted to SCH it can

be considered to be an element in Horn (S, C). Let ti = <f>(si). Then t is in T

and satisfies Zi = t{u>i.

This proof shows that T acts as a group of homeomorphisms of F if F is

F-circular. It can also be shown that under the identification of Horn (S, C)

with F, a subgroup of Horn (S, C) that is canonically isomorphic to H*, the

dual of H, is identified with T. Thus H* acts on all F-circular sets.

Lemma 1.7. Cp(X) is V-circular.

Proof. If we are given any points w in Cp(X) and t in T, Lemma 1.6 shows

that to demonstrate that Cp(X) is F-circular it is sufficient to show that the

point tw must be in Cp(X). Since w is in Cp(X), iff is any polynomial

(1) | f(w) |   =  Sup  | f(z) | .

Let g be any polynomial.  Define a function / in  C" by f(z\, ■ • • ,  z»)

= g(hzi, • • • . tnzn). Then/ is a polynomial and because of (1)

| g(tw) |   ^ Sup | f (fa) | .

But because X is F-circular, Lemma 1.6 shows that the points tz cover X as

z runs over X. Thus we have

| g(tw) |   g  Sup  | g(z) |
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so that tw is in Cp(X), proving that Cp(X) is F-circular.

We are now in a position to prove that hypothesis 1 of Lemma 1.5 is

valid in the case Y=Cp(X).

Lemma 1.8. Let z be any point in Cp(X). Let w be a point in V that satisfies

\wi\ ^ | zt\ for all i. Then w must be in Cp(X).

Proof. We shall show first that it is sufficient to prove this in the case

that the z< and Wi are non-negative real numbers. By the circularity of Cp(X)

proved in Lemma 1.7, if zis in Cp(X), the point (|zi|, • • • , |z„|) is in Cp(X).

Ii w is in F, Lemma 1.1 shows that (| w>i|, • • • , | wn\) is also in F. Thus if we

knew Lemma 1.8 to be valid in the case that all of the components of w and z

were non-negative real numbers, we could conclude that (| Wi\, • • • , \ wn\)

would be in Cp(X). By the circularity of Cp(X), w would be in Cp(X). We

may therefore assume that w.^0 and Zi^O. The result wanted will be shown

to follow from the two extreme cases that will be treated first. Case I, te< is

equal to either z< or zero; Case II, «/,• is zero if and only if z< is zero. These

cases will be treated simultaneously. Because of Lemma 1.1 there is a 0 in

Horn (S, C) that satisfies 4>(si) =0 if wt = 0 and <t>(si) = 1 if Wi^O. Lemma 3.2,

which will be proved later, shows that there is a homomorphism g oi S into

the additive semigroup of non-negative reals that satisfies g(si) =0 if Wi^O

and g(si)>0 ii a\ = 0. In case I let X<= — g(si). In case II let X» = log (wi/zt)

ii Zi is nonzero and X; = 0 otherwise. In both cases the association 5j—>X; in-

duces a homomorphism of 5 into the additive reals, so that for every complex

number u there is a yp in Horn (S, C) with

yp(si) = eXi".

This observation and Lemma 1.1 show that in both cases, for every complex

number u, the point

(2) (2lex'", • • ■ , znex»")

will be in F. Since z is in Cp(X) which is F-circular, if Re (u) =0, this point

will actually be in Cp(X). For any polynomial/ in C", define/* by

/*(«) = /(zieXlM, • • • , z„ex»").

/* is an exponential polynomial which is bounded in the half-plane Re (u) ^0

since the Xi are non-positive. Thus by the maximum modulus principle, if

Re (u)^0,

| f*(u) |   =•    Sup    | f*(v) I .
Re(«)-0

In case I,

f(w) =   lim   f*(a + iO)
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so that

(3) | f(w) |   g    Sup    | f*(v) |   =    Sup     | f(x) | ,
Re(r)=0 iGCPfX)

the second inequality following from the previous observation that the point

(2) is in Cp(X) if Re (u) =0. Since this inequality holds for all polynomials/,

w in case I is in Cp(Cp(X)) which is Cp(X). In case II

f(w) = f*(l)

so that again one has the inequalities (3) and w is in Cp(X). The general

case now follows from I and II. Define the point v by vf = Zi if Wi9±0 and v, = 0

if Wi = 0. Lemma 1.1 shows that v is in V. By case I applied to z and v, the

point v must be in Cp(X). Now case II applied to v and w shows that w must

be in CP(X). Thus Lemma 1.8 is proved.

It will now be shown that the second hypothesis of Lemma 1.5 is valid for

CP(X).

Lemma 1.9. LK(CKf~\Cp(X)) is either empty or convex.

Proof. Let w and z be any two points in CKC\Cp(X). It suffices to show

that the point

tLK(w) + (1 - t)LK(z)

is in LK(CK(~~\Cp(X)) for 0 =5f =? 1. We may assume that w,^0 and zB = 0 since

Cp(X) is F-circular and

Lr(Zi,   ■   ■  •   , Zn)   =  Lr( I Zl |  ,  •  •  •   ,    |  Zn \  )■

Let Xi = log (zi/wi) if i is in K (that is, if z, and Wi are nonzero) and Xi = 0 other-

wise. Several applications of Lemma 1.1 show that for every complex t, the

point

p{ = (wieXlt, ■ ■ • , wneXn<)

is in F. Since w is in Cp(X) which is F-circular, if Re (t) =0, pt is actually in

CP(X). lft = l,ptisz which is in CP(X). Thus if Re (/) = 1, pt is also in CP(X).

For any polynomial/ in Cn define/* by

f*(t) = f(Pi).

f* is an exponential polynomial with real exponents and so is bounded in the

strip O^Re (0 = 1- Thus, because of the maximum modulus principle, if

0g<gl,

\f(pt)\  =  |/*(0|   =       Sup       \f*(v)\   =    Sup    |/(y)|
Re(c)=0 or 1 vE.CpW

with the last inequality following from the previous observation that if

Re (v) is 0 or 1 that pt is in Cp(X). Since this is valid for any polynomial/,
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pt is in Cp(Cp(X)) which is Cp(X). Thus

LK(pt) = lLK(w) + (1 - t)LK(z)

is in Lk(CkC\Cp(X)) and Lemma 1.9 is proved.

It is now possible to complete the proof of Theorem 1. Because of Lemma

1.4 it suffices to prove that Cm(Cp(X)) = Cp(X). Lemma 1.5 gives a criterion

that is sufficient for Cm(Y) = Yand Lemmas 1.7, 1.8 and 1.9 show that the

criterion is applicable to Y=Cp(X).

2. Power series in Horn (S, C). We shall be concerned here with formal

series

(i) Y«.'

where the a, are complex numbers. The convergence set oi such a series is the

set of all 0 in Horn (S, C) that satisfy

Y    I OCs<t>(s) |     <   00 .

If <p is in the convergence set, the series /,as<t>(s) converges to some value

f(4>), independently of the order of summation, so that the series can be con-

sidered to define the function/ on its convergence set.

Let si, • • • , sn be the generators of 5 that were discussed earlier. To

each s in S associate some one M-tuple of non-negative integers (mi, ■ • ■ , mn)

which has the property that s=sfl • ■ ■ s^. Define a(«i, • • • , mn) to be a,

in this case. Then the subset of V that corresponds to the convergence set of

(1), under the identification of Horn (S, C) with F given by

M(0) = (<t>(si), • • ■ , <h(sn)),

is precisely the set of points in C" which lie on V and at which the series

Z mi mn
a(mu • • • , mn)zi   • • • z„

converges absolutely. The following characterization of compact subsets of

V that are identified with convergence sets is an immediate consequence of

known results in the case that V is all of C" (see [l ]). Using Lemma 1.5 it is

not much harder in the general case.

Theorem 2. Let Ybea compact subset of V that is identified by the mapping

H with the convergence set of a series Ya's- Then Cm( Y) = F. Conversely let Y

be a compact subset of V that satisfies Cm( Y) = Y. Then there is a series Yass

which has the property that Y is identified with its convergence set by p.

Proof. Lemma 1.5 will be used to establish the first implication. It is

clear that F is F-circular and that hypothesis 1 of Lemma 1.5 is satisfied.

The convexity in hypothesis 2 is proved exactly as in the classical case (see
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for example [8]) and Cm(Y) = Y follows. Now let F be any compact subset

of F that satisfies Cm(Y) = Y. The second implication will be established by

constructing a series that has p~l(Y) its convergence set. The fact that

Cm(Y) = Y implies that u~l(Y) is the intersection of all sets of the form

{<p: | <p(s)\   ^ r, s fixed in S}

that contain it. Let£(s)=Sup |t£(j)| with <p running over p.~1(Y). It is finite

since F is compact. Then

pr\Y) =  n  {*:|*M|  £#(*)}.

Let sx, St, • • • ,sr, • • ' be a particular enumeration of 5. For fixed r the con-

vergence set of the series

"In
E "-— sr
B=1   M2^(sr)»

is {t&: |</>(sr)| ^p(sT)}. Thus the series

which is of type (1) when rearranged, has /u-1(F) as its convergence set. The

proof of Theorem 2 is complete.

3. Convex cones and homomorphisms of 5. This section is devoted to

the proof of a result, which concerns the existence of homomorphisms of S

into the additive semigroup R+ of non-negative reals and which was used in

the proof of Lemma 1.8. Let g'.S—*R+ be such a homomorphism. Define the

function <p on S by <p(s) = 1 if g(s) =0 and <f>(s) =0 if g(s) >0. Then <p is an

element of Horn (S, C) that takes on only the two values 0 and 1. The result

that we shall prove is that every such <p arises in the manner indicated from

a homomorphism g:S—>i?+.

Before proving this, it will be necessary to establish an analogous result

for finitely generated subsemigroups in real vector spaces. Let U be a finite

dimensional vector space over the reals. Let pu ■ ■ • , pn be a finite set of

points in U, and P be the set of all points in U having some representation of

the form Er»£i with the r, = 0. P is to be considered as a semigroup under

addition. Let 6:P—»(0, 1) be a homomorphism of P into the semigroup con-

sisting of the two numbers 0 and 1 under multiplication. We shall assume

that 65(0, • ■ • , 0) = 1. Denote d'^O) by P0 and 0~l(l) by Pi. The geometrical

content of the next lemma is that there is a hyperplane in U that contains

Pi and which has P0 properly on one side.

Lemma 3.1. There exists a linear functional y\ U—*R that satisfies y(u)=0

if u is in Pi and y(u)>0 if u is in P0-
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Proof. Let IF be the subspace of U that is generated by Pu Then IF con-

sists precisely of all Ui — u2 with «i and u2 in Pi. We shall show that IF and

Po have no elements in common. Assume to the contrary that there is a uz

in P0 that satisfies u% = Ui — u2 with U\ and u2 in Pi. Then u3+u2 = Ui. But

8(u3+u2) =6(uz)d(u2) =0 while 6(ui) = I so that no such u3 exists. Thus WC\Po

is void. Consider the natural projection ir: U—+U/W. Let P' be the subset of

U/W that consists of all

Y  rnr(pi)

with Yr*— 1> p< = 0. The origin is not in P'. For if some Yr&(Pi) m P' were

zero, then Yr'Pt would be in IF and the intersection of IF and P0 would be

nonvoid. P' is a compact convex subset that does not contain the origin and

thus can be separated from it by a hyperplane. Equivalently, there is a linear

functional 5 to the reals that is positive on P'. Then Sir(pi)>0 for all the

pi in Po. The linear functional y that is needed can be taken to be

7 = 8v:U-*R.

If u is in Po there is some positive multiple \u which is such that ir(Xw) is in

P'so that7(w) >0. If wis in Pi, then7(w) =0 because it(m) =0. Thus 7 satisfies

the needed conditions.

We can now prove the result used in Lemma 1.8. Let <f> he an element in

Horn (S, C) that takes only the values 0 and 1. Denote <p_1(0) by So and <p~'(l)

by Si. Let R+ he the semigroup of non-negative reals under addition.

Lemma 3.2. There is a homomorphism g:S—*R+ that satisfies g(s)=0 if s

is in Si and g(s) >0 if s is in S0.

Proof. Recall thai: 5 is a subsemigroup of a finitely generated abelian

group H. Let F he the subgroup of il consisting of all elements of finite order.

Denote by S' the image of 5 under the canonical map ir:H^>H/F. The func-

tion <f>' defined on S' by <j>'(ir(s)) =4>(s) is well defined and a homomorphism.

H/F is a finitely generated free abelian group. Let t\, • • • , tk be a particular

set of generators. Let U be a ^-dimensional vector space over the reals and

Mi, • • • , up a particular basis. There is a unique group homomorphism

a: H/F-+ U that is determined by a(tf) = My. Denote the images under the

composite map air: H—>U oi the elements si, • ■ • , snin Shy pi, • • • , p„. Let

P be, as in the preceding lemma, the set of all Yr>Pi with r<^0. The homo-

morphism <f>' on S' determines in a natural manner a homomorphism 6 oi P

as follows: Define 8 on a(S') by 6(a(s')) =<j>'(s'). For every p in P except per-

haps p = (0, ■ ■ • , 0), there is a positive integer m such that mp is in a(S').

Define 6(p) =6(mp) and 0(0, • • • , 0) = 1. Then 6 is well defined and a homo-

morphism. If ^ is in S, then 0(air(s)) =<j>(s) and 0 is the only homomorphism of

P into the semigroup consisting of 0 and 1 that has this property. We shall
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now use the preceding lemma on the map 6. There is a linear functional

y.U^R that satisfies, for all p in P, y(p)=0 if 8(p) = 1 and y(p)>0 if

8(p) = 0. Thus the composite map

yair'.S —» R

satisfies all the conditions demanded of the map g that is sought.

With a slight modification of the above argument a g can be found that

takes only integral values.
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