ON THE DETERMINATION OF THE PHASE OF A FOURIER INTEGRAL, I(1)

EDWIN J. AKUTOWICZ

1. Introduction. Suppose $\phi(t)$ is a complex valued function on $(-\infty, \infty)$ and let $\widehat{\phi}(x)$ denote its Fourier transform. A question which arises in various physical applications, and which has an intrinsic interest in its own right is: To what extent does the modulus of $\widehat{\phi}$ determine ϕ ? It is inevitable that some a priori conditions be imposed in order to obtain reasonably determinate results, and we shall establish the following

THEOREM 1. Let C(a) be the class of all functions ϕ fulfilling the following conditions:

- α . $\phi \in L^1 \cap L^2$, where L^1 and L^2 are the usual Lebesgue function spaces on $(-\infty, \infty)$,
 - β . $\phi(t)$ vanishes almost everywhere for t < 0(2),
 - γ . $\widehat{\phi}(x) \neq 0$, $-\infty < x < \infty$,
- δ . a(x) is a fixed function such that $|\widehat{\phi}(x)| = a(x)$, $-\infty < x < \infty$. Then if ϕ_1 and ϕ_2 belong to $\mathfrak{C}(a)$ there subsists a relation between them of the form

(1)
$$e^{ic_1+ib_1x}B_1(x)\widehat{\phi}_1(x) = e^{ic_2+ib_2x}B_2(x)\widehat{\phi}_2(x),$$

where c_1 , c_2 , b_1 , b_2 , are real numbers, $b_1 \ge 0$, $b_2 \ge 0$ and $B_1(x)$, $B_2(x)$ are limits as $y \rightarrow 0+$ of certain Blaschke products in the upper half-plane. $B_1(x)$ and $B_2(x)$ are holomorphic functions of modulus identically 1.

Thus ϕ and $\hat{\phi}$ are both partly specified, and the data fall short of determining ϕ (or $\hat{\phi}$) uniquely to the extent of the arbitrariness of the zeros occurring in the Blaschke products, a complex number of modulus 1, and a pure oscillation. The zeros of B_1 and B_2 are not entirely arbitrary (subject, of course, to the convergence of the products), for the regularity of B_1 and B_2 on the real axis excludes the existence of a cluster point of zeros at a real point.

The method of proof depends in an essential way upon a canonical representation of certain holomorphic functions of one variable in the upper half-plane, and the multi-dimensional case remains untouched. This is perhaps

Presented to the Society, October 27, 1956; received by the editors December 5, 1955.

⁽¹⁾ The research in this paper was supported jointly by the Army, Navy and Air Force under contract with the Lincoln Laboratory, Massachusetts Institute of Technology.

^(*) t < 0 can be replaced by $t < t_0 = t_0(\phi)$, for a translation reduces the latter case to the former; the conclusion is altered only by the addition of $t_0(\phi_j)$ to b_i , j = 1, 2.

unfortunate from the standpoint of the crystallographers. (See §6, Example II.)

It would be possibly interesting to determine what happens if $\hat{\phi}$ is allowed to vanish.

2. Statement of several known facts. We begin by recalling certain facts about Blaschke products in the upper half-plane. Suppose a_1, a_2, \cdots is a sequence of complex numbers with Im $a_k > 0$, and

(2)
$$\sum_{k=1}^{\infty} \frac{\operatorname{Im} a_k}{1 + |a_k|^2} < \infty.$$

Condition (2) is necessary and sufficient that the Blaschke product,

$$\left(\frac{z-i}{z+i}\right)^n \coprod_{k=1}^{\infty} \frac{\left|a_k-i\right|}{a_k-i} \cdot \frac{\left|a_k+i\right|}{a_k+i} \cdot \frac{z-a_k}{z-\bar{a}_k},$$

(where z=x+iy and n= non-negative integer) be convergent for y>0 to a holomorphic function B(z). Then |B(z)|<1 and $\lim_{y\to 0} |B(x+iy)|=1$ for almost all x. If there are no zeros we set $B(z)\equiv 1$. Such a function has a simple characterization, embodied in the following theorem.

(A) [1] Suppose 1. F(z) is holomorphic for y>0, $|F(z)| \le 1$, and 2.

$$\lim_{y\to 0} \int_{-\infty}^{\infty} \frac{\log |F(x+iy)|}{1+x^2} dx = 0.$$

Then F(z) is of the form

$$F(z) = e^{ic+i\beta z}B(z),$$

where c and β are real, $\beta \ge 0$, and B(z) is the Blaschke product formed with the zeros of F. Conversely, if B(z) is any Blaschke product in the upper half-plane, 2. holds with F replaced by B.

Subsequent arguments rest upon a number of more or less well-known theorems and formulae, which we proceed to assemble. These need not be read before they are referred to later on.

(B) [2, pp. 18–20]. If ϕ belongs to $L^2(-\infty, \infty)$ and vanishes on a half-line, then

$$\int_{-\infty}^{\infty} \frac{\big|\log \big| \widehat{\phi}(x) \big| \big|}{1 + x^2} \, dx < \infty.$$

(C) [3, Theorem 1, p. 643]. If $\phi(t)/(1+t^2)$ belongs to $L^1(-\infty, \infty)$ and is continuous at x_0 , then

$$u(x, y) \equiv \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{v^2 + (x - t)^2} \phi(t) dt$$

is harmonic for y > 0 and $\lim_{y\to 0} u(x_0, y) = \phi(x_0)$.

An examination of the proof of (C) will disclose that the limit is uniform with respect to x in closed intervals interior to intervals of continuity of ϕ .

(D) [4, p. 106, Theorem IX for p=2]. Let $\Phi(z)$ be a holomorphic function for y>0 subject to

(3)
$$\int_{-\infty}^{\infty} |\Phi(x+iy)|^2 dx \leq M < \infty,$$

where M is independent of y. $\Phi(z)$ can then be represented in the form

(4)
$$\Phi(z) = e^{ic+i\beta z}B(z)D(z)G(z),$$

where

- (i) c is a real number,
- (ii) β is a non-negative real number,
- (iii) B(z) is the (convergent) Blaschke product formed with the zeros of Φ ,

(iv)
$$D(z) = \exp\left(\frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{1+tz}{t-z} \frac{\log |\Phi(t)|}{1+t^2} dt\right),$$

where $\Phi(x) = \lim_{y\to 0} \Phi(x+iy)$ almost everywhere, and

$$\int_{-\infty}^{\infty} \frac{\left|\log \left|\Phi(x)\right|\right|}{1+x^2} dx < \infty, \qquad \int_{-\infty}^{\infty} \left|\Phi(x)\right|^2 dx < \infty,$$

$$(v) \qquad G(z) = \exp\left(\frac{i}{\pi} \int_{-\infty}^{\infty} \frac{1+tz}{t-z} dE(t)\right),$$

where E(t) is a real, bounded, increasing function with derivative E'(t) = 0 almost everywhere. Conversely, every function of the form (4) is holomorphic for y > 0 and satisfies (3).

- (E) [5, p. 44]. If $\Phi(z)$ is holomorphic for y>0 and in the neighborhood of every point on the real axis satisfies $\limsup |\Phi(z)| \le 1$, then either
 - (a) the modulus $|\Phi(z)|$ tends to $+\infty$ so rapidly that

$$\lim_{r\to\infty}\inf\frac{\log M(r)}{r}>0,$$

where $M(r) = \operatorname{Max}_{|z|=r} |\Phi(z)|$, or

- $(\beta) |\Phi(z)| \leq 1 \text{ for } y > 0.$
- (F) [6, p. 152]. If both the upper and lower symmetrical derivates of a function of bounded variation are everywhere finite, then the function is absolutely continuous.
- 3. Proof of the Theorem 1. Let ϕ denote any function of the class $\mathfrak{C}(a)$. Define a holomorphic function of z=x+iy for y>0 by

$$\Phi(z) = \frac{1}{(2\pi)^{1/2}} \int_0^\infty e^{i(x+iy)t} \phi(t) dt.$$

We shall refer to Φ as the holomorphic extension of $\hat{\phi}$. Then by the Parseval identity and Schwarz inequality:

$$\begin{split} \int_{-\infty}^{\infty} | \Phi(x+iy) |^2 dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \int_{0}^{\infty} e^{ixt-y|t|} \phi(t) dt \right|^2 dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \int_{-\infty}^{\infty} \left(\frac{2}{\pi} \right)^{1/2} \frac{y}{y^2 + (x+\lambda^2)} \overline{\phi(\lambda)} d\lambda \right|^2 dx \\ &\leq \frac{1}{\pi^2} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} \frac{y}{y^2 + (x+\lambda)^2} d\lambda \int_{-\infty}^{\infty} \frac{y}{y^2 + (x+\lambda)^2} | a(\lambda) |^2 d\lambda \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} \frac{y}{y^2 + (x+\lambda)^2} | a(\lambda) |^2 d\lambda = \frac{1}{\pi} \int_{-\infty}^{\infty} | a(\lambda) |^2 d\lambda < \infty. \end{split}$$

By (D),

(4)
$$\Phi(z) = e^{ic+i\beta z}B(z)D(z)G(z),$$

where c, β , B, D, G have the properties mentioned in §2. The next paragraph is devoted to showing that $G(z) \equiv 1$; that is, $E(t) \equiv \text{const.}$

In the first place,

$$|D(z)| = \exp\left(\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{y}{y^2+(t-x^2)}\log a(t)dt\right),\,$$

because $\Phi(x+iy) \rightarrow \widehat{\phi}(x)$ as $y \rightarrow 0$, for every x. By (B) and (C) it follows that

$$|D(z)| \rightarrow a(x)$$
 as $y \rightarrow 0, -\infty < x < \infty$.

Since we have |B(z)| < 1, (4) implies:

$$a(x) = \lim \left| \Phi(x+iy) \right| \le \lim \inf \left| \frac{\Phi(x+iy)}{B(x+iy)} \right|$$
$$= a(x) \lim \inf \exp \left(-\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{y(1+t^2)}{y^2 + (x-t)^2} dE(t) \right).$$

Therefore, as $a(x) \neq 0$,

$$\limsup \int_{-\infty}^{\infty} \frac{y(1+t^2)}{v^2+(x-t)^2} dE(t) < \infty, -\infty < x < \infty.$$

A fortiori,

(5)
$$\limsup \int_{-\infty}^{\infty} \frac{y}{y^2 + (x-t)^2} dE(t) < \infty, \qquad -\infty < x < \infty.$$

Since E(x+t) - E(x-t) is an increasing function of t, we can write:

$$\int_{-\infty}^{\infty} \frac{y}{y^2 + (x - t^2)} dE(t) = \int_{0}^{\infty} \frac{y}{y^2 + t^2} d[E(x + t) - E(x - t)]$$

$$\geq \int_{0}^{y} \frac{y}{y^2 + t^2} d[E(x + t) - E(x - t)]$$

$$\geq \frac{E(x + y) - E(x - y)}{2y}, \quad -\infty < x < \infty.$$

Therefore in view of (5), the upper (and lower) symmetrical derivates of E are everywhere finite. By (F), E is absolutely continuous. Since E'=0 almost everywhere, $E\equiv \text{const.}$, $G\equiv 1$.

Hence, if ϕ belongs to the class $\mathfrak{C}(a)$, we have

(6)
$$\Phi(z) = e^{ic+i\beta z}B(z)D(z).$$

From (6), together with the condition $\widehat{\phi}(x) \neq 0$, $-\infty < x < \infty$, it follows that B(z) cannot have zeros which cluster at a finite point of the real axis. But then B(z) is uniformly convergent in a rectangle $|y| \leq \delta$, $a \leq x \leq b$, provided δ is so small that this rectangle is free of zeros(3). Denoting the zeros of B(z) by $a_k = x_k + iy_k$, this follows at once from the identity

$$\frac{\left|a_k+i\right|}{a_k+i} \cdot \frac{\left|a_k-i\right|}{a_k-i} \cdot \frac{z-a_k}{z-\bar{a}_k} = 1 - \frac{iy_k}{1+x_k^2+y_k^2} \cdot \frac{(\bar{i}+a_k)(\bar{i}+z)}{z-\bar{a}_k} \cdot c_k,$$

where

$$c_{k} = \frac{1 + \left| (i - a_{k})/(i + a_{k}) \right|^{2}}{1 + \left| (i - a_{k})/(i + a_{k}) \right|} \cdot \left\{ 1 + \frac{i - z}{i + z} \cdot \frac{i + a_{k}}{i - a_{k}} \cdot \left| \frac{i - a_{k}}{i + a_{k}} \right|^{2} \right\}.$$

Therefore B(z) is holomorphic for $y \ge 0$. By (6),

$$\lim_{y\to 0} D(z) \equiv D(x), \qquad -\infty < x < \infty,$$

exists as a continuous function, and the conclusion of Theorem 1 follows at once from (6), written for ϕ_1 and ϕ_2 with $\gamma = 0$.

REMARK. It can be shown that

$$D(x) = a(x) \exp iH(x),$$

where

⁽³⁾ I owe this remark to a referee.

$$H(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1+tx}{t-x} \cdot \frac{\log a(t)}{1+t^2} dt,$$

the integral being taken as a principal value at t=x. We omit the demonstration of this fact.

4. On the existence of "zero-free" solutions. Formula (1) of Theorem 1 exhibits a relation between any pair of solutions of our phase problem. In this section we seek a single particularly simple solution; to wit, one whose holomorphic extension to the upper half-plane is free of zeros, so that $B(z) \equiv 1$ in (6). Such a "zero-free" solution always exists in $\mathfrak{C}(a)$ whenever a solution exists in $\mathfrak{C}(a)$ whose holomorphic extension has only a finite number of zeros, and we shall show that this is still true whenever some solution has a holomorphic extension with sufficiently sparse zeros, though possibly infinitely many.

The precise condition of sparseness of zeros in the upper half-plane which we take as an hypothesis is that the product $\coprod_{r} \exp{(2i \arg{a_r})}$ be convergent, where $\{a_r\}$ is the set of all zeros of the holomorphic extension of some solution ϕ , i.e., $\phi \in \mathfrak{C}(a)$, the limit being independent of the enumeration of the set $\{a_r\}$. Then the zeros must be on the whole rather close to the x-axis, and since we have proved that there cannot exist a finite cluster point of zeros we must have $|\operatorname{Re} a_r| \to +\infty$. Using this fact we conclude that

$$\prod_{r} \exp \left(i\left[\arg \left(a_{r}+i\right)+\arg \left(a_{r}-i\right)\right]\right)$$

and

$$\prod_{\mathbf{r}} \exp \left(2i \arg \left(x - a_{\mathbf{r}}\right)\right) = \prod_{\mathbf{r}} \frac{x - a_{\mathbf{r}}}{x - \bar{a}_{\mathbf{r}}}$$

are convergent products, the latter being so uniformly with respect to finite x-intervals. It follows that the Blaschke product B(z) associated with ϕ can be written in the form

$$B(z) = e^{i\eta} \cdot \prod_{n} \frac{z - a_n}{z - \bar{a}_n}, \qquad y \ge 0, \, \eta \text{ real.}$$

A "zero-free" solution, q, if it exists in C(a) must, by (6), be of the form

$$\widehat{q}(x) = e^{i\alpha + i\beta x} D(x), \qquad D(x) = \lim_{y \to 0} D(x + iy).$$

We can afford to take $\alpha = \beta = 0$ as the factors $e^{i\alpha + i\beta x}$ are irrelevant for our present considerations, since they correspond to trivial transformations of q. Therefore, taking account of the above assumption on the distribution of the zeros $\{a_n\}$ of the holomorphic extension of $\widehat{\phi}(x)$, we have, by Theorem 1, the necessary condition,

$$\widehat{\phi}(x) = \prod_{n} \frac{x - a_n}{x - \bar{a}_n} \cdot \widehat{q}(x), \qquad \widehat{q}(x) = \prod_{n} \frac{x - \bar{a}_n}{x - a_n} \cdot \widehat{\phi}(x).$$

We proceed to show that such a function q does indeed exist in C(a). Put

$$\sigma_n(t) = \begin{cases} -2y_n e^{-ia_n t} & \text{if } t \leq 0, \\ 0 & \text{if } t > 0, \end{cases}$$

where $a_n = x_n + iy_n$. Then

$$\frac{x-\bar{a}_n}{x-a_n}\cdot\widehat{\phi}(x)=\widehat{T_n\phi}(x),$$

where

$$T_n\phi=\sigma_n*\phi+\phi,$$

" * " denoting convolution in L^1 .

Regarding σ_n and ϕ as functions on $(-\infty, \infty)$, we have σ_n and ϕ belonging to L^1 . Hence $\sigma_n * \phi \in L^1$, $T_n \phi \in L^1$. Since $|\widehat{\phi}(x)| = |(T_n \phi)^{-}(x)|$ and $\phi \in L^2$, it follows that $T_n \phi \in L^2$. By definition,

$$T_n\phi(t) = \int_{-\infty}^{\infty} \phi(u)\sigma_n(t-u)du + \phi(t)$$

$$= \int_{\max(0,t)}^{\infty} \phi(u)\sigma_n(t-u)du + \phi(t);$$

and if t < 0, this is

$$T_n\phi(t) = -2y_ne^{-ia_nt}\int_0^\infty e^{ia_nu}\phi(u)du = 0,$$

because a_n is a zero of the holomorphic extension of $\hat{\phi}$. Obviously

$$\widehat{T_r}\phi(x)\neq 0$$

for all real x. Hence $T_n \phi \in \mathfrak{C}(a)$. It follows at once that

$$\prod_{n=1}^{N} \frac{x - \bar{a}_n}{x - a_n} \cdot \widehat{\phi}(x)$$

is the Fourier transform $\widehat{\psi}_N(x)$ of the function

$$\psi_N(t) = T_1 T_2 \cdot \cdot \cdot T_N \phi(t).$$

and $\psi_N \in \mathfrak{C}(a)$. Clearly, $\psi_N(x)$ converges pointwise everywhere as $N \to \infty$ to the function

$$\widetilde{\psi}(x) = \prod_{n} \frac{x - \overline{a}_{n}}{x - a_{n}} \cdot \widehat{\phi}(x),$$

and since $|\tilde{\psi}(x)| = |\hat{\phi}(x)|$, $\tilde{\psi}$ must belong to L^2 , and hence

$$\widetilde{\psi} = \widehat{q}, \quad q \in L^2.$$

Such q is in the first place defined only to within the class of functions differing from it on null sets. We shall show that under the present circumstances q can be chosen in $\mathfrak{C}(a)$.

First, recall that $\hat{\psi}_N(x) \rightarrow \hat{q}(x)$ uniformly on finite x-intervals and that $|\hat{\psi}_N(x)| = |\hat{q}(x)|$ almost everywhere. Then, given $\epsilon > 0$, split as follows:

$$\int_{-\infty}^{\infty} |\psi_N(x) - q(x)|^2 dx = \int_{-\infty}^{-A} + \int_{-A}^{A} + \int_{A}^{\infty},$$

choosing A independent of N so that the first and third integrals on the right add up to less than ϵ . With such A fixed, for all N sufficiently large the second integral is less than ϵ . Hence $\|\hat{\psi}_N - \hat{q}\|_2 = \|\psi_N - q\|_2 \to 0$. Hence q(t) = 0 for almost all t < 0, and we can redefine q so that it is identically 0 for t < 0.

Clearly, $\hat{q}(x) \neq 0, -\infty < x < \infty$.

Since $\{\psi_N\}$ is a Cauchy sequence in L^2 , there exists a subsequence N, such that $\{\psi_{N_r}(t)\}$ is a Cauchy sequence of complex numbers for almost all $t: |\psi_{N_r}(t)-\psi_{N_\mu}(t)|\to 0$ as ν , $\mu\to\infty$. Application of the diagonal process yields a further subsequence of $\{N_r\}$ (which we denote by the same notation) such that for a countable dense set of t's

(7)
$$|\psi_{N_{\nu}}(t) - \psi_{N_{\mu}}(t)| \downarrow 0 \text{ as } \nu, \mu \to \infty.$$

Since the term $\phi(t)$ cancels out in $\psi_{N_{\mu}}(t) - \psi_{N_{\mu}}(t)$, this difference is a continuous function of t, and therefore (8) holds for all t. By the theorem of Lebesgue on integrating monotonic sequences, it follows that

$$\int_{0}^{\infty} \left| \psi_{N_{\nu}}(t) - \psi_{N_{\mu}}(t) \right| dt \to 0, \qquad (\nu, \mu \to \infty).$$

Therefore ψ_N , tends to some function ψ_0 in L^1 . But ψ_N , tends to q in L^2 . Therefore $\psi_0(t) = q(t)$ almost everywhere, and hence $q \in L^1$. This completes the proof that $q \in \mathcal{C}(a)$. We can thus assert

THEOREM 2. If some function $\phi \in C(a)$ is such that the zeros $\{a_r\}$ of the holomorphic extension of $\widehat{\phi}$ satisfy the condition:

 $\prod_{r}e^{2i\operatorname{arg} a_{r}} \text{ is convergent to a limit which is independent of the enumeration of } \{a_{r}\},$

then there exists a solution $q \in C(a)$ whose Fourier transform is given by

$$\hat{q}(x) = e^{i\alpha + i\beta x} D(x), \qquad -\infty < x < \infty,$$

where α , β are real and D(x) is a continuous function given by

$$D(x) = \lim_{y \to 0} \exp \left\{ \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{1 + tz}{t - z} \frac{\log a(t)}{1 + t^2} dt \right\}.$$

5. On the arbitrariness of B(z). We have seen that for functions ϕ in the class $\mathfrak{C}(a)$ the canonical representation of the holomorphic extension of $\widehat{\phi}$ contains a certain Blaschke product, the limit function of which contributes to the phase of $\widehat{\phi}(x)$. It is natural to inquire whether the special properties of ϕ restrict the Blaschke products appearing, beyond the necessity of continuous boundary values. Explicitly, suppose B(z) is any Blaschke product with continuous boundary values $B(x) = \lim B(x+iy)$.

 Q_1 : Does there exist $\psi \in \mathfrak{C}(a)$ such that

$$\widehat{\psi}(x) = B(x)a(x) \exp i\widehat{H}(x), \qquad -\infty < x < \infty$$

The function H(x) is defined in the remark at the end of §3. A more specific question is

 Q_2 . Given $\phi \in \mathfrak{C}(a)$ and B(z) as above, does there exist $\psi \in \mathfrak{C}(a)$ such that $\psi(x) = B(x)\phi(x), -\infty < x < \infty$?

We are unable to answer these questions. Their difficulty stems from the requirement that ψ belong to L^1 . That such ψ exists in L^2 and vanishes for negative arguments is almost trivial. We consider Q_1 . The function $B(x)a(x) \cdot \exp iH(x)$ is the boundary function of a function $\Phi(z)$ in the Hardy class H_2 ; that is Φ is holomorphic for y > 0,

$$\int_{-\infty}^{\infty} |\Phi(x+iy)|^2 dx \le M < \infty, M \text{ independent of } y,$$

$$\Phi(x) = \lim_{y \to 0+} \Phi(x+iy) = B(x)a(x) \exp iH(x),$$

almost everywhere. Therefore ([7, Theorem 93, p. 125]),

$$\Phi(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\Phi(u)}{u - z} du, \qquad (y > 0)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi(u) \left[\frac{1}{-i(u - \bar{z})} \right] du$$

$$= \int_{0}^{\infty} e^{izt} \psi(t) dt,$$

where

$$\Phi(x) = \lim_{A \to \infty} \int_{-A}^{A} e^{ixt} \psi(t) dt, \qquad \psi \in L^{2}(-\infty, \infty).$$

On the other hand

(8)
$$\Phi(x) = \text{l.i.m. } \Phi(x+iy),$$

and

$$\begin{split} \left\{ \int_{-\infty}^{\infty} \left| \Phi(x) - \int_{0}^{A} e^{ixt} \psi(t) dt \right|^{2} dx \right\}^{1/2} \\ & \leq \left\{ \int_{-\infty}^{\infty} \left| \Phi(x) - \int_{0}^{\infty} e^{ixt - yt} \psi(t) dt \right|^{2} dx \right\}^{1/2} \\ & + \left\{ \int_{-\infty}^{\infty} \left| \int_{0}^{\infty} e^{ixt - yt} \psi(t) dt - \int_{0}^{A} e^{ixt} \psi(t) dt \right|^{2} dx \right\}^{1/2} = J_{1} + J_{2}. \end{split}$$

By (8), $J_1 = o(1)$, $y \rightarrow 0$. By Plancherel, for A > 0,

$$\int_{-\infty}^{\infty} \left| \int_{A}^{\infty} e^{ixt-yt} \psi(t) dt \right|^{2} dx = 2\pi \int_{A}^{\infty} \left| \psi(t) \right|^{2} e^{-2yt} dt.$$

Hence, if $\epsilon > 0$, we can find A_0 such that $A > A_0$ implies that the last integral is $< \epsilon$. Fixing such A,

$$J_{2} \leq \left\{ \int_{-\infty}^{\infty} \left| \int_{0}^{A} e^{ixt} (1 - e^{-yt}) \psi(t) dt \right|^{2} dx \right\}^{1/2} + \epsilon^{1/2}$$

$$= \left\{ \int_{0}^{A} (1 - e^{-yt})^{2} \left| \psi(t) \right|^{2} dt \right\}^{1/2} + \epsilon^{1/2} = o(1) + \epsilon^{1/2}, \qquad y \to 0.$$

Therefore

$$\Phi(x) = \text{l.i.m.} \int_0^A e^{ixt} \psi(t) dt,$$

and by the uniqueness of Fourier transforms we conclude that $\psi(t) = 0$ for t < 0 (after possibly altering ψ on a null set)⁽⁴⁾. The same procedure is valid for O_2 .

- 6. **Examples.** Finally we shall exhibit a couple of examples which serve to illustrate Theorem 1.
- I. The first example is a generalization of one which was pointed out to me by Professor W. Rudin before Theorem 1 was found. Suppose that $\phi \in \mathfrak{C}(a)$, and furthermore $\phi(t) = 0$ for t < n where n is a positive integer. Let a_1, a_2, \dots, a_n be arbitrary real numbers, and let λ be any nonreal complex number. Then the function

$$\phi_{\lambda}(t) = \lambda \phi(t) + \sum_{k=1}^{n} a_{k}(\phi(t+k) + \phi(t-k))$$

⁽⁴⁾ This result can also be derived by use of (D), (iv), in conjunction with a theorem of Paley and Wiener [2, Theorem XII].

belongs to $\mathfrak{C}(a)$, and its Fourier transform is

$$F_{\lambda}(x) = \left(\lambda + 2 \sum_{k=1}^{n} a_{k} \cos kx\right) \hat{\phi}(x).$$

Hence

(9)
$$F_{\lambda}(x) = \frac{P(e^{ix}) - \lambda}{P(e^{ix}) - \bar{\lambda}} F_{\bar{\lambda}}(x),$$

where we have put

$$P(e^{ix}) = -2 \sum_{k=1}^{n} a_k \cos kx.$$

Replacing x by z=x+iy, y>0, in (9) we obtain the corresponding relation for the holomorphic extensions of F_{λ} and $F_{\bar{\lambda}}$. Since Im $\lambda\neq 0$, $P(w)-\lambda$ vanishes for 2n nonreal values of w, none of which can be of modulus 1, and which must therefore be of the form $w_1, w_2, \cdots, w_n, 1/w_1, 1/w_2, \cdots, 1/w_n$, where $|w_1|<1,\cdots,|w_n|<1$. Therefore the only values of z in the upper halfplane for which $P(e^{iz})-\lambda$ vanishes are

$$z = a_n^{(k)} \equiv -i \log |w_k| + \arg w_k + 2\pi n, \quad n = 0, \pm 1, \cdots, k = 1, 2, \cdots, n.$$

Hence the Blaschke product $B_1(z)$ formed with these zeros is convergent. Likewise $P(e^{iz}) - \bar{\lambda} = 0$, y > 0, if and only if

$$z = b_n^{(k)} \equiv -i \log |w_k| - \arg w_k + 2\pi n, \quad n = 0, \pm 1, \cdots, k = 1, 2, \cdots, n,$$

so that the corresponding Blaschke product $B_2(z)$ is defined. Put, for y>0,

$$Q(z) = \frac{B_2(z)}{B_1(z)} \cdot \frac{P(e^{iz}) - \lambda}{P(e^{iz}) - \bar{\lambda}} \cdot$$

Then Q(z) is holomorphic and fails to vanish for y>0. We shall show that Q(z) is bounded in the strip $|x| \le 2\pi$, y>0. By periodicity it will then follow that Q(z) is bounded in the entire upper half-plane. (Note that $B_1(z)$, $B_2(z)$ as well as $P(e^{iz})$ are periodic with period 2π .) Put

$$K = 1 + \max_{k=1,\ldots,n} \{-\log |w_k|\}.$$

Then for $y \ge K$, $|x| \le 2\pi$, $(P(e^{iz}) - \lambda)/P(e^{iz}) - \bar{\lambda})$ is bounded, and in the rectangle

$$|x| \le 2\pi, \qquad 0 < y \le K$$

Q(z) is bounded. It remains to prove that $B_2(z)/B_1(z)$ is bounded for $z \in S_K$: $y \ge K$, $|x| \le 2\pi$, and it is no real loss in generality to take k=1, so that the

zeros $a_n^{(k)} \equiv a_n$, $b_n^{(k)} \equiv b_n$ lie on a single horizontal line in the upper half-plane. Thus

$$\left|\frac{B_2(z)}{B_1(z)}\right| = \prod_n \left|\frac{z-b_n}{z-\bar{b}_n} \cdot \frac{z-\bar{a}_n}{z-a_n}\right|.$$

Let us pair the adjacent zeros lying to the left of S_K into pairs (b_n, a_n) where b_n lies nearer to S_K than the adjacent a_n , and let \prod_1 denote the partial product containing the zeros so paired. For $z \in S_K$,

$$\left|\frac{z-b_n}{z-a_n}\right| \leq \left|\frac{z-\bar{b}_n}{z-\bar{a}_n}\right|,$$

or

$$\left|\frac{z-b_n}{z-\bar{b}_n}\cdot\frac{z-\bar{a}_n}{z-a_n}\right|\leq 1.$$

Hence $\prod_1 \leq 1$. We pair the zeros lying to the right of S_K in a similar way and form \prod_2 , $\prod_2 \leq 1$. This leaves out of account approximately seven zeros which lie nearest the y-axis, but the partial product \prod_3 involving these is clearly bounded for $z \in S_K$. Hence

$$\left|\frac{B_2(z)}{B_1(z)}\right| = \prod_1 \prod_2 \prod_3$$

is bounded for $z \in S_K$.

Therefore $|Q(z)| < M_0$ for y > 0. Putting $M(r) = \operatorname{Max}_{|z|=r} |Q(z)|$,

$$\liminf_{r\to\infty}\frac{\log M(r)}{r}\leqq 0.$$

But

$$\lim \sup_{z \to 0} |Q(z)| \le 1, \qquad -\infty < x < \infty.$$

Hence it follows by the Phragmèn-Lindelöf theorem (E) that

$$(10) |Q(z)| \leq 1 \text{ for } y > 0.$$

Next we show that

(11)
$$\int_{-\infty}^{\infty} \frac{\log |Q(z)|}{1+x^2} dx \to 0, y \to 0.$$

According to (A),

$$\int_{-\infty}^{\infty} \frac{\log |B_i(x)|}{1+x^2} dx \to 0, \ y \to 0, \qquad j = 1, \ 2.$$

By the periodicity of $(P(e^{iz}) - \lambda)/(P(e^{iz}) - \bar{\lambda})$ we have

$$\int_{-\infty}^{\infty} \left| \log \left| \frac{P(e^{iz}) - \lambda}{P(e^{iz}) - \tilde{\lambda}} \right| \left| \frac{dx}{1 + x^2} \right| = \sum_{k = -\infty}^{\infty} \int_{2\pi k}^{2\pi (k+1)} \left| \log \left| \frac{P(e^{iz}) - \lambda}{P(e^{iz}) - \tilde{\lambda}} \right| \right| \frac{dx}{1 + x^2}$$

$$= \int_{0}^{2\pi} \sum_{k = -\infty}^{\infty} \frac{1}{1 + (x + 2k\pi)^2} \cdot \left| \log \left| \frac{P(e^{iz}) - \lambda}{P(e^{iz}) - \tilde{\lambda}} \right| \right| dx,$$

which clearly tends to 0 as $y\rightarrow 0$. By (10) and (11), since Q has no zeros, (A) implies that Q(z) must be of the form

$$Q(z) = e^{ic+i\beta z},$$
 $c \text{ real, } \beta \ge 0,$

so that

$$\frac{P(e^{iz}) - \lambda}{P(e^{iz}) - \bar{\lambda}} = e^{ic + i\beta z} \cdot \frac{B_1(z)}{B_2(z)} \cdot \frac{B_2(z)}{B_2(z)}$$

Passing to the limit $y\rightarrow 0$ this shows that (9) can be written

$$B_2(x)F_{\lambda}(x) = e^{ic+i\beta x}B_1(x)F_{\lambda}(x),$$

as required by Theorem 1.

II. In a rather well-known problem arising in crystallography the function ϕ would stand for electron density, and would be therefore non-negative. We shall show by a simple example that even if we assume $\phi \ge 0$, in addition to $\phi \in \mathfrak{C}(a)$, ϕ is *not* uniquely determined.

Let $b = \alpha + i\beta$ be a complex number such that $\beta > 0$, $\alpha \neq 0$, $|4\beta/\alpha| < 1$. Put $\phi_1(t) = e^{-\beta t}$ for $t \geq 0$, $\phi_1(t) = 0$ for t < 0, and put $a(x) = |1/(ix - \beta)|$. Define $\phi_2(t)$ by the condition

$$\widehat{\phi}_2(x) = \frac{x+\overline{b}}{x+b} \cdot \frac{x-b}{x-\overline{b}} \cdot \widehat{\phi}_1(x), \qquad -\infty < x < \infty.$$

Then ϕ_1 , $\phi_2 \in \mathfrak{C}(a)$, and a calculation shows that

$$\phi_2(t) = \phi_1(t) - 4\beta \int_0^t \cos \alpha (t - u) e^{-\beta(t-u)} \phi_1(u) du$$
$$+ \frac{4\beta^2}{\alpha} \int_0^t \sin \alpha (t - u) e^{-\beta(t-u)} \phi_1(u) du$$

if $t \ge 0$. If we substitute the particular ϕ_1 defined above, it turns out that

$$\phi_2(t) = e^{-\beta t} \left(\left(1 - \frac{4\beta}{\alpha} \sin \alpha t \right) + \frac{4\beta^2}{\alpha^2} \left(1 - \cos \alpha t \right) \right) \text{ if } t \ge 0.$$

Thus $\phi_2(t) \ge 0$.

References

- 1. E. J. Akutowicz, A qualitative characterization of Blaschke products in a half-plane, Amer. J. Math. vol. 78 (1956).
 - 2. R. E. A. C. Paley and N. Wiener, The Fourier transform in the complex domain, 1934.
- 3. L. H. Loomis and D. V. Widder, The Poisson integral representation of functions which are positive and harmonic in a half-plane, Duke Math. J. vol. 9 (1942).
- 4. W. Kryloff, On functions which are regular in a half-plane, Rec. Math. (Mat. Sbornik) N.S. vol. 6 (1939) (in Russian).
 - 5. R. Nevanlinna, Eindeutige analytische Funktionen, 2te Auf., 1953.
- 6. S. Saks, Theory of the integral, Monografje Matematyczne, vol. 7, Warszawa-Lwow, 1937.
 - 7. E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford, 1937.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS.