
ON THE DETERMINATION OF THE PHASE OF A
FOURIER INTEGRAL, IQ)

BY

EDWIN J. AKUTOWICZ

1. Introduction. Suppose <j>(t) is a complex valued function on (— «>, =°)

and let <p(x) denote its Fourier transform. A question which arises in various

physical applications, and which has an intrinsic interest in its own right is:

To what extent does the modulus of # determine <f>? It is inevitable that some

a priori conditions be imposed in order to obtain reasonably determinate re-

sults, and we shall establish the following

Theorem 1. Let e(a) be the class of all functions <f> fulfilling the following

conditions:

a. tpEL^CSL2, where Ll and L2 are the usual Lebesgue function spaces on

(-oo,  oo),

8. <j>(t) vanishes almost everywhere for t <0(2),

y. 5(x)^0. — =°<x<oo,

5. a(x) .is a fixed function such that |#(x)| =a(x), — oo <x< oo*. Then if

4>i and <p2 belong to 6(a) there subsists a relation between them of the form

(1) eiei+iblxBi(x)<j>i(x) = eic*+ihiXB2(x)4>2(x),

where a, c2, bi, b2, are real numbers, 6i^0, b2"^0 and Bi(x), B2(x) are limits as

y—*0+ of certain Blaschke products in the upper half-plane. Bi(x) and B2(x)

are holomorphic functions of modulus identically 1.

Thus <f> and <f> are both partly specified, and the data fall short of deter-

mining <f> (or $) uniquely to the extent of the arbitrariness of the zeros occur-

ring in the Blaschke products, a complex number of modulus 1, and a pure

oscillation. The zeros of Bi and B2 are not entirely arbitrary (subject, of

course, to the convergence of the products), for the regularity of Bi and B2 on

the real axis excludes the existence of a cluster point of zeros at a real point.

The method of proof depends in an essential way upon a canonical repre-

sentation of certain holomorphic functions of one variable in the upper half-

plane, and the multi-dimensional case remains untouched. This is perhaps
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unfortunate from the standpoint of the crystallographers. (See §6, Example

It would be possibly interesting to determine what happens if <f> is allowed

to vanish.

2. Statement of several known facts. We begin by recalling certain facts

about Blaschke products in the upper half-plane. Suppose cu, a2, • • • is a

sequence of complex numbers with Im ak>0, and

A     Imat

*_i 1 + I ak\2

Condition (2) is necessary and sufficient that the Blaschke product,

/ z — »\" "    | ak — i \   | ak + i \   z — ak

\ z + if   i=i    ak — i      ak + i    z — ak

(where z = x-\-iy and n = non-negative integer) be convergent for y>0 to a

holomorphic function B(z). Then |5(z)| <1 and lim„,0 |-B(x+iy)| =1 for

almost all x. If there are no zeros we set B(z) = 1. Such a function has a simple

characterization, embodied in the following theorem.

(A) [l] Suppose 1. F(z) is holomorphic for y>0, \ F(z)\ ^1, and 2.

r log | F(x + iy) |
lim -dx = 0.
*-K>   J_M 1 +  X2

Then F(z) is of the form

F(z) = e'*+**.B(z),

where c and /3 are real, /3^0, and B(z) is the Blaschke product formed with the

zeros of F. Conversely, if B(z) is any Blaschke product in the upper half-plane,

2. holds with F replaced by B.
Subsequent arguments rest upon a number of more or less well-known

theorems and formulae, which we proceed to assemble. These need not be

read before they are referred to later on.

(B) [2, pp. 18-20]. If <p belongs to L2(— °°, °°) and vanishes on a half-line,

then

r»   | log 1 4>(x) 11
I      -■ dx < oo.

J-„ 1 + x2

(C) [3, Theorem 1, p. 643]. If <p(t)/(l+t2) belongs to L\- oo, oo) and is

continuous at x0, then

1     /»« y
u(x, y) = - I      ——- <t>(t)dt

tr J-a y2+ (x - t)2
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is harmonic for y>0 and lim„,0 u(x0, y) =<6(x0).

An examination of the proof of (C) will disclose that the limit is uniform

with respect to x in closed intervals interior to intervals of continuity of <p.

(D) [4, p. 106, Theorem IX for p = 2]. Let 4>(z) be a holomorphic function

for y>0 subject to

I *(*+ iy)\2dx g M < oo,
-00

where M is independent of y.$(z) can then be represented in the form

(4) $(z) = eu+i^B(z)D(z)G(z),

where

(i) c is a real number,

(ii) $ is a non-negative real number,

(iii) B(z) is the (convergent) Blaschke product formed with the zeros of &,

/ 1   r °°   1 + tz  log I *(<) I     \
(iv) D(z) = exp (- I-'     t     *).

\ici J _M   t — z        1 + t2        /

where $(x) = lim„,0 &(x-\-iy) almost everywhere, and

/°°  | log | $(x) || rw.        .
-dx < oo,          l| $(x) \2dx < oo,

1 + x2                                   J _M

/ i   rM   1 + tz \
(v) G(z) = exp(-j      ——dE(t)y

where E(t) is a real, bounded, increasing function with derivative E'(t) =0 almost

everywhere. Conversely, every function of the form (4) is holomorphic for y>0

and satisfies (3).

(E) [5, p. 44]. If <i>(z) is holomorphic for y>0 and in the neighborhood of
every point on the real axis satisfies lim sup | $(z) | ^ 1, then either

(a) the modulus |$(z)| tends to + oo so rapidly that

log M(r)
lim inf-> 0,

r—*« T

where M(r) = Max|*|=r \$(z)\, or

03)  |*(z)|^l/cry>0.

(F) [6, p. 152]. If both the upper and lower symmetrical derivates of a func-

tion of bounded variation are everywhere finite, then the function is absolutely

continuous.

3. Proof of the Theorem 1. Let <f> denote any function of the class

Q(a). Define a holomorphic function of z = x+iy for y>0 by
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1      rK
$(z)  = -:-  I      ««*+<»>'$(/)<*/.

(2ir)1'2J0

We shall refer to $ as the holomorphic extension of <j>. Then by the Parseval

identity and Schwarz inequality:

/OO

| <S>(x -f* iy) \2dx

= — I        I    eix,-vW<h(t)dt  dx
2ir J _w IJ o

1   /""I r°°/2\1/2 y ^—     2
= — I        I    ( —)      ---4>(\)d\   dx

2irJ_J./_00W      y2+(x+\2)VK;

1    /•»        f» y /•» y
g — I    dx I- d\-    a(\) \2d\

t2J-„    J-„y2+(x+\)2      J_M y2+(x+X)2 '

-— I    J* , ■   /  ■  xn, la(X)NX = ~        |a(X)|2<TX< oo.
x J-x    J-K y2 + (x + \)2 ir J _„

By (D),

(4) #(*) = cic+*s'B(z)D(2)G(2),

where c, 8, B, D, G have the properties mentioned in §2. The next paragraph

is devoted to showing that G(z) = l; that is, £(<)=const.

In the first place,

I D(z) I   = exp ( — I      -log a(t)dt),
1    W1 PVt J_„ y2+(t- x2) J'

because $(x+ty)—><p(x) as y—*0, ior every x. By (B) and (C) it follows that

| D(z) | —> o(x) as y —> 0, — oo <x< oo.

Since we have |i?(z)| <1, (4) implies:

i i .   I *(* + iy)
a(x) = lim | <i>(x + iy) \   ^ lim inf-

I B(x + iy)

/    i r"    y(i + *2) \..Mite, ta, „P(-_J__—1-_- im).

Therefore, as a(x)s»*0,

/"    y(l + *2)-dE(t)  <oo,—   co   < X <   °°.
-«, y2 + (x - <)2

A fortiori,
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/y
-dE(l) <oo, —  oo  < x < oo.

-« y* + (x - t)2

Since E(x-\-t) —E(x — t) is an increasing function of t, we can write:

f-dE(t) =  f    —-— d[E(x + t)- E(x - t)\
J_M y2+(*-/2) Jo    y2 + t2

=  fV -^—d[E(x + t)-E(x-t)}
Jo    y2 + t2

E(x + y) - E(x - y)
^ -j — oo   <  X <   oo.

2y

Therefore in view of (5), the upper (and lower) symmetrical derivates of E

are everywhere finite. By (F), E is absolutely continuous. Since E' = 0 almost

everywhere, £ = const., G=l.

Hence, if <p belongs to the class 6(a), we have

(6) $(z) = eic+i»'B(z)D(z).

From (6), together with the condition <f>(x)9*0, — oo <x< oo, it follows that

B(z) cannot have zeros which cluster at a finite point of the real axis. But

then B(z) is uniformly convergent in a rectangle |y| ^8, a£xi%b, provided 5

is so small that this rectangle is free of zeros(3). Denoting the zeros of B(z)

by ak = xk-\-iyk, this follows at once from the identity

|a*+t|   | a* — t|   z — ak iyk- (i + ak)(i + z)

-r~--:-~~ = 1 — ~~r~,—r~,—2-:-c*>
ak + i      ak — i    z — ak 1 + x\ + y% z — ak

where

1 + | (i — ak)/(i + ak) |2   [        i — z i+ ak    i — ak\)
ck =-1-r- <1 H-  > .

1+ \(i — ak)/(i+ ak)\    {        i+z   i—ak    i+ak\)

Therefore B(z) is holomorphic for y ^0. By (6),

lim D(z) m D(x), - oo < x < oo,
V-0

exists as a continuous function, and the conclusion of Theorem 1 follows at

once from (6), written for t£i and tf>2 with y = 0.

Remark. It can be shown that

D(x) = a(x) exp iH(x),

where

(') I owe this remark to a referee.
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1   f °°  1 + tx log a(t)
H(x) = — I-dt,

ir J-x   I- x    l + t2

the integral being taken as a principal value at t = x. We omit the demonstra-

tion of this fact.

4. On the existence of "zero-free" solutions. Formula (1) of Theorem 1

exhibits a relation between any pair of solutions of our phase problem. In

this section we seek a single particularly simple solution; to wit, one whose

holomorphic extension to the upper half-plane is free of zeros, so that B(z)

= 1 in (6). Such a "zero-free" solution always exists in Q(a) whenever a solution

exists in Q(a) whose holomorphic extension has only a finite number of zeros,

and we shall show that this is still true whenever some solution has a holo-

morphic extension with sufficiently sparse zeros, though possibly infinitely

many.
The precise condition of sparseness of zeros in the upper half-plane which

we take as an hypothesis is that the product XI* exp (2i arg a,) be convergent,

where {a,} is the set of all zeros of the holomorphic extension of some solution

<t>, i.e., <pEG(a), the limit being independent of the enumeration of the set

{a,}. Then the zeros must be on the whole rather close to the x-axis, and since

we have proved that there cannot exist a finite cluster point of zeros we must

have | Re o,| —>+ oo. Using this fact we conclude that

JJexp (i[arg (a, + i) + arg (a, - i)])
9

and

TJexp (2i arg (x - a,)) = JJ —-—
y p Jv    "~~~     \JVff

are convergent products, the latter being so uniformly with respect to finite

x-intervals. It follows that the Blaschke product B(z) associated with <p can

be written in the form

z — an
B(z) = e1"- ]T-, y ^ 0, n real.

n   z — dn

A "zero-free" solution, q, if it exists in Q(a) must, by (6), be of the form

q(x) = eia+i^xD(x),        D(x) = lim D(x + iy).
v->o

We can afford to take a = 8 = 0 as the factors eia+0x are irrelevant for our

present considerations, since they correspond to trivial transformations of q.

Therefore, taking account of the above assumption on the distribution of the

zeros {an} of the holomorphic extension of <$>(x), we have, by Theorem 1,

the necessary condition,
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*(*) =  H^^-q(x),       q(x) =  II     _      -<*(*)•
n   #      ctn „   x      an

We proceed to show that such a function q does indeed exist in Q(a). Put

f-2y„e-«»' if / ^ 0,
"MO =  i

(0 if <> 0,

where fln = x„+iy„. Then

a; — a„ _ ^
-t>(x) = Tn<p(x),
x — a„

where •

F„t6 = crn * c£ + <p,

" * " denoting convolution in Ll.

Regarding an and c5 as functions on (— °o, oo), we have cr„ and c6 belonging

to LK Hence an*4>CL\ Tn<pELK Since |£(*)| = |(Fn0)~(x)| and <6£L2, it

follows that F„c6£L2. By definition,

Tn4>(t) =  f   <*>(»K(< - «)A» + <t>(t)

=   I <t>(u)<rn(t — u)du + t6(0;
•J m«i(0,l)

and if t<0, this is

Tn<f>(t) = - 2yne-ia"* J    eia»u<p(u)du = 0,
J o

because a„ is a zero of the holomorphic extension of <p. Obviously

f\<t>(x)  9* 0

for all real x. Hence F„t&£e(a). It follows at once that

£x - a„
I —-<t>(x)

„_i x — a„

is the Fourier transform ^jv(x) of the function

+N(f) = TiT2- ■■ TN<p(t),

and ^iv£e(a). Clearly, \Ajv(*) converges pointwise everywhere as N—>oo to

the function

_ x — a„  „

*(*)= n-*w.
n   x — an
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and since | yj(x) | = 14>(x) \, \J must belong to L2, and hence

+ = q,        qEL2.

Such q is in the first place defined only to within the class of functions differ-

ing from it on null sets. We shall show that under the present circumstances

q can be chosen in <S(a).

First, recall that \pw(x)—>q(x) uniformly on finite x-intervals and that

|^at(x)| =| q(x)\ almost everywhere. Then, given e>0, split as follows:

/» /• —A /»A /• oo

\Mx)-q(x)\2dx = J       +J     +J     ,

choosing A independent of N so that the first and third integrals on the right

add up to less than e. With such A fixed, for all AT sufficiently large the second

integral is less than e. Hence ||^Ar — ?||2 = ||^— ^||2—*-0. Hence q(t)=0 for al-

most all t<0, and we can redefine q so that it is identically 0 for t<0.

Clearly, q(x)^0, — =° <x< 00.

Since {ypx} is a Cauchy sequence in L2, there exists a subsequence A7, such

that {ypt/,(t)} is a Cauchy sequence of complex numbers for almost all t:

\ypff,(t) — ypN^l —>0 as v, p—>oo. Application of the diagonal process yields a

further subsequence of {N,} (which we denote by the same notation) such

that for a countable dense set of t's

(7) I ypN,(t) - ^m(<) I    |0asv,^oo.

Since the term <j>(t) cancels out in ypNr(t) —ypN (t), this difference is a continuous

function of t, and therefore (8) holds for all t. By the theorem of Lebesgue on

integrating monotonic sequences, it follows that

f   I iMO - <M01 dt -+ 0, (v, n -> 00).
j 0

Therefore yps, tends to some function ypo in Ll. But ypN, tends to q in L2. There-

fore ypo(t) = q(t) almost everywhere, and hence qEL1. This completes the proof

that qEG(a). We can thus assert

Theorem 2. If some function <f>EQ(&) is such that the zeros {a,} of the holo-

morphic extension of <p satisfy the condition:

[T e2i ,rg ar is convergent to a limit which is independent of the enumeration of {a,},

then there exists a solution q E 6(a) whose Fourier transform is given by

q(x) = eia+VxD(x), — 00 < x < <»,

where a, 8 are real and D(x) is a continuous function given by
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(1   r °° 1 + tz log a(t)    \
D(x) = lim exp   {— |- -^—^-dtK .

»-* WiJ _„,  t — z   1 + f    )

5. On the arbitrariness of B(z). We have seen that for functions <p in the

class 6(a) the canonical representation of the holomorphic extension of <t>

contains a certain Blaschke product, the limit function of which contributes

to the phase of t^O*). It is natural to inquire whether the special properties of

c6 restrict the Blaschke products appearing, beyond the necessity of con-

tinuous boundary values. Explicitly, suppose B(z) is any Blaschke product

with continuous boundary values B(x) =lim B(x+iy).

Qi\ Does there exist ^£<S(a) such that

4>(x) = B(x)a(x) exp iH(x), — oo < x < oo?

The function H(x) is defined in the remark at the end of §3. A more specific

question is

Q2. Given <f>EQ(a) and B(z) as above, does there exist ^£6(a) such that

f(x)=B(x)<f>(x), -00<X<00?

We are unable to answer these questions. Their difficulty stems from the

requirement that \p belong to LK That such \p exists in L2 and vanishes for

negative arguments is almost trivial. We consider Qi. The function B(x)a(x)

■exp iH(x) is the boundary function of a function $(z) in the Hardy class H2;

that is <i> is holomorphic for y>0,

I $(x + iy) \2dx g M < oo, M independent of y,
-CO

$(x) = lim *(x + iy) = B(x)a(x) exp iH(x),

almost everywhere. Therefore ([7, Theorem 93, p. 125]),

l   r  *(«)
*(a) = — I      ■-du, (y > 0)

2iri J _M u — z

=—i *(«) r-1 du
2w J -M L— i(u — z)J

/. ooeuti(t)dt,
o

where

$(x) = l.i.m.   f   eixV(t)dt, $ £ L2(- oo, oo).
A—r*>      J _ji

On the other hand



188 E. J. AKUTOWICZ [September

(8) $(x) = l.i.m. $(x + iy),
y-H)

and

/    /» oo I ~A | \   1/2

<  I       $(*) -  I    eix'yp(t)dt\2dx\

[ C °° I /* °° I      ) 1/2
^ <  I       $(x) -  I    eixi-<"\P(t)dt\2dx\

Uoo I      y» oo /» A | 2        ~i    1/2

I     eizt-vty^dt -  j     eix'yp(t)dt \  dx\       = /! + /.,.

By (8), /i = o(l), y^O. By Plancherel, for A >0,

/oo I      y» oo 2 /» oo

I    eixi-"^(t)dt  dx = 2ir |     | ^(0 |V-2«"<T/.
-oo I ̂  X ^ X

Hence, if e>0, we can find .4 0 such that A >A0 implies that the last integral is

<e. Fixing such A,

r     /. oo |     tkA 12       \   1/2

j2=  \\        I    «fa,(1 - e-"")^(0^   <**f     + «1/2

=   { f   (1 - <r<")2 I i(t) \2dt\      + e1'2 = o(l) + e1'2, y -> 0.

Therefore

$(x) = l.i.m.   J    eixi\p(t)dt,
A—**        J  0

and by the uniqueness of Fourier transforms we conclude that yp(t) = 0 ior

t<0 (after possibly altering^ on a null set)(4). The same procedure is valid

for Q2.

6. Examples. Finally we shall exhibit a couple of examples which serve to

illustrate Theorem 1.

I. The first example is a generalization of one which was pointed out to me

by Professor W. Rudin before Theorem 1 was found. Suppose that <pEQ(a),

and furthermore 0(<) = 0 for/<m where Mis a positive integer. Letai,a2, • • • ,an

be arbitrary real numbers, and let X be any nonreal complex number. Then

the function

n

*x(0 = \<j>(t) + Y «*(*(' + *) + *(* ~ *))
_ k-l

(4) This result can also be derived by use of (D), (iv), in conjunction with a theorem of

Paley and Wiener [2, Theorem XII].
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belongs to 6(a), and its Fourier transform is

F\(x) = I X + 2 E °* cos A* 14>(x).

Hence

P(eix) - X
(9) F,(x) =        . F-x(x),

P(e") — X

where we have put

n

P(eix) = - 2 E a* cos Ax.
*-i

Replacing x by z = x+iy, y>0, in (9) we obtain the corresponding relation

for the holomorphic extensions of F\ and Fx. Since Im X^O, P(w) —X vanishes

for 2« nonreal values of w, none of which can be of modulus 1, and which

must therefore be of the form wi, w2, • • ■ , wn, 1/wi, l/w2, • • • , l/wn, where

|wi| <1, • • • , \wn\ <1. Therefore the only values of z in the upper half-

plane for which P(e") —X vanishes are

(*) i       I

z = an    = — ilog | wk | + arg wk + 2irw,   « = 0, +1, • • • , A = 1, 2, • • • , n.

Hence the Blaschke product Bi(z) formed with these zeros is convergent.

Likewise P(e")— X = 0, y>0, if and only if

z = bn    — — i log I wk I — arg wk + 27ra,    n = 0, ±1, ■ • • , k = 1,2, • ■ • ,n,

so that the corresponding Blaschke product B2(z) is defined. Put, for y>0,

Bi(z) P(e") - X
Q(z) = -^-.——-

Bx(z)  P(e") - X

Then Q(z) is holomorphic and fails to vanish for y>0. We shall show that

Q(z) is bounded in the strip |x| ^2ir, y>0. By periodicity it will then follow

that Q(z) is bounded in the entire upper half-plane. (Note that Bx(z), B2(z)

as well as P(e") are periodic with period 27r.) Put

K = 1 +    max    { — log \ wk\ }.
1=1.n

Then for y=K, \x\ ^2ir, (P(eu)-\)/P(eu)-l) is bounded, and in the

rectangle

| x |   g 2tt,       0 <yg K

Q(z) is bounded. It remains to prove that B2(z)/Bx(z) is bounded for z£5jr:

y>,K, \x\ ^2tt, and it is no real loss in generality to take A = l, so that the
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zeros c® = an, b^ — bn lie on a single horizontal line in the upper half-plane.

Thus

I B2(z) __  z — bn z — an

I Bi(z) n   z — hn  z — an

Let us pair the adjacent zeros lying to the left of SK into pairs (bn, an) where

bn lies nearer to Sr than the adjacent an, and let [Ji denote the partial

product containing the zeros so paired. For zESk,

z — bn z — hn

z — an z — dn

or

z — bn  z — dn

z — bn z — an

Hence 1^1=1. We pair the zeros lying to the right of Sk in a similar way

and form JJ2, H^l. This leaves out of account approximately seven zeros

which lie nearest the y-axis, but the partial product YI? involving these is

clearly bounded for zESk- Hence

B2(z)

■&> -n.n-n.
is bounded for zESr.

Therefore | Q(z) \ <M0 ior y>0. Putting M(r) = MaxM=r | Q(z) \,

log M(r)
lim inf —-— g 0.

r—*« T

But

' lim sup | Q(z) |^1, — oo  < x < oo.
ti-*o

Hence it follows by the Phragmen-Lindelof theorem (E) that

(10) | Q(z) |   = 1 for y > 0.

Next we show that

/" log I Q(z) Iii   .    «fa-*0,y-»0.
-«,     1+ x2

According to (A),

/"   log I Bj(x) I°  '     ';       dx^O, y->0, J -1,2.
-«      1+ x2
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By the periodicity of (P(e")-\)/(P(eu)-%) we have

/■ |      P(e") - X       dx "    r *'(*+» P(e") - X        dx

, f0g P(e") - A    1+x2  =i»J2^ l0g P(«») - X    1 + x2

F2TA               1                ,      P(ei')-X
=  I      2-,-log -z   dx,

Jo  *±t, 1 + (x + 2At)2 P(e») - X

which clearly tends to 0 asy—>0. By (10) and (11), since Q has no zeros, (A)

implies that Q(z) must be of the form

Q(z) = eic+*', c real, /3 £ 0,

so that

P(e") - X" B2(z)

Passing to the limit y—»0 this shows that (9) can be written

B2(x)Fx(x) = eic+^51(x)Fx(x),

as required by Theorem 1.

II. In a rather well-known problem arising in crystallography the function

<p would stand for electron density, and would be therefore non-negative. We

shall show by a simple example that even if we assume <b^0, in addition to

t££C(a), <f> is not uniquely determined.

Let b = a-\-ifi be a complex number such that /3>0, as^O, 14/3/a| <1. Put

<pi(t) =e-<" for t^O, <j>x(t) =0 for *<0, and put a(x) = | l/(«e-0)|. Define </>2(0

by the condition

^ x + 5 x — b ^
fc(x) = ■---4>i(x), -=o < X < oo.

x + b x — b

Then <px, t£2£e(a), and a calculation shows that

<l>2(t) = <f>i(i) — 4/3 I     cos a(l — uje-W-^faWdu
J o

4/32 Cl
+ - I     sin a(t — u)e-w-u)<l>i(u)du

a  J o

if t^0. If we substitute the particular <px defined above, it turns out that

//       4/3         \      4/32 \
<b2(t) = e-<"(f 1-sin a/H- (1 - cos at) 1 if * = 0.

Thus t62 (0^0.
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