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1. Introduction. The homology groups of the join X * Y of two spaces

have long been known to satisfy a "Kiinneth formula." On the other hand,

little is known about the homotopy groups of X * Y. There is a bilinear pair-

ing (a, B)—>a * B of iTp(X) with irq( Y) to irp+q+i(X * Y); a * 8 is called the join

of a and B. If Y=Sn is an w-sphere and i generates ir„( Y), then it follows from

the Freudenthal suspension theorem that the map ct—>a * i is, for small p, an

isomorphism of tp(X) with ttp+„+i(X * Y). Thus, in low dimensions, the homo-

topy groups of X * Sn are generated by the joins of the homotopy groups of

the factors.

In this paper we consider the homotopy groups of the join of X with an

arbitrary 1-connected CW-complex Y. There is a spectral sequence whose

initial term is, in low dimensions, the homology group(l) of F with coefficients

in the homotopy group(1) of X and whose final term is the graded group of

the homotopy group of X * Y with respect to a suitable filtration. As a con-

sequence, the homotopy groups of X * Y, even in low dimensions, are not,

in general, generated by the joins of the homotopy groups of the factors. A

further consequence is a new proof of the symmetry of the stable Eilenberg-

MacLane groups, which was first proved by H. Cartan [4].

These results can be used to study the homotopy groups of the union

X\/ Y of two spaces X and Y with a single point in common. The space

X\/Y can be naturally imbedded in XX Y and we have a natural iso-

morphism

TT„(X V   F)   «   lCn(X)   ©   Tn(Y)   ©   X^ifX   X   F,   X V   F).

Now there is a homomorphism of 7rB+i(XX Y, XV F) into irn+2(X * Y), which

is an isomorphism in low dimensions. Thus we can apply the above results

on the homotopy groups of X * Y. In particular, the group 7rn+i(XX F, XV F)

is not in general generated by "generalized Whitehead products" of elements

of the homotopy groups of X and F, even in low dimensions.

In a recent paper [0] M. G. Barratt and J. H. C. Whitehead have intro-

duced an exact couple for an arbitrary CW-triad. This exact couple, in the

special case of the triad (XV F; X, F), seems to be closely related to the

one we have introduced here. However, our results do not seem to follow
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immediately from their work; furthermore we do not assume that X is a

CW-complex.
2. Joins. Let X and Y be spaces, which we assume to be disjoint from

each other and from XXYXI, where / is the unit interval {<|0^gl}. Let

W = X\J(XX YXI)^JY; we topologize Why defining a subset to be open if

and only if its intersection with each of the spaces X, XX YXI, and Y is

open. The join of X and Y is the identification space X * Y obtained from

W by identifying each xEX with all of the points (x, y, 0) and each yE Y

with all of the points (x, y, 1). The identification map sends X and Y homeo-

morphically into X * Y; hence we may consider X and Y as subspaces of

X * Y. Let (1 — i)x®ty be the image of (x, y, t) in X * Y.

The join operation is easily seen to be commutative (up to a natural

homeomorphism). The join of X with the empty set 0 is X.

Let f:X—*X', g: Y—rY' be maps. The join of f and g is the map

f*g:X* Y->X'* Y'

defined by

(f*g)((l ~ Dx © ty) = (1 - t)f(x) © tg(y),

(f*g)(x)=f(x),       (f*g)(y) = g(y);

continuity of f * g follows from the fact that the join has the identification

topology. Since X * Y is an identification space of W and since I is compact,

it follows [18, Lemma 4] that (X * Y) XI is an identification space of WXI.

Hence, if /, f':X—*X' are homotopic and if g, g': Y—+Y' are homotopic, then

f*g and /' *g' are homotopic maps of X* Y into X' * Y'. It follows that, if

X and X' have the same homotopy type, and if Y and Y' have the same

homotopy type, then X * Y and X' * Y' have the same homotopy type.

lff-.XCX' and g:YCY', then f*g is a 1:1 map of X* Y into X' * Y';
if furthermore X is closed in X' and Y is closed in Y', then/*g is a homeo-

morphism and its image is closed in X' * Y'; in that case we may consider

X * Y as a closed subset of X' * Y'.
Note that the join of the inclusion map of 0 into X' with any map

g\ Y—*Y' is the composition of g with the inclusion map of Y' into X' * Y'.

Let P be a fixed space consisting of a single point p. The cone over X is

the join X = X *P. Let A be a closed subspace of X; then the quotient space

Of X by A is the subspace X-i-A =XVJA of X. The following properties are

easily verified:

(2.1) X is contractible;

(2.2) The triad (X+A ; X, A) is proper.
Let P' be a fixed space consisting of two points p+, p— The suspension

S(X) of X is the join X * P'. Note that S(X) =X+^JX-, where X± = X* p+,
while X+C\X- = X. Thus S(X) is the union of two contractible spaces whose

intersection is X. It is easy to see that the triad (S(X); X+, X-) is proper.
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Let <r, r he ordered Euclidean simplexes with vertices ao< • ■ -<ap,

bo< • ■ ■ <bq respectively. Then o*t has>a natural affine structure, and we

may regard a * r as an ordered Euclidean simplex with vertices a0< • • . <ap

<bo< • • ■ <bq. We consider the empty set as an ordered Euclidean ( — 1)-

simplex. With the usual definition of equivalence of singular simplexes, we

define SP(X) to be the free abelian group generated by the singular (p — 1)-

simplexes in X (p = 0, 1, 2, • • • ) and define S(X) = 23p_0 SP(X), with the

usual boundary operator (the boundary of each singular 0-simplex is the

unique singular (—"1)-simplex), to be the augmental total singular complex of

X. If A EX, then S(A) is a subcomplex of S(X) and we define BP(X, A) to be

the (p + l)st homology group of the complex S(X)/S(A). Of course, 8P(X, A)

= HP(X, A) (p^O), except that Bo(X, 0) is the reduced O-dimensional

homology group of X.

Let <f>:a—rX, \(/:t—>Y be singular simplexes; then 0»^:<r*r—>X* Y is a

singular simplex. The map d>®\p—xp*^ induces a homomorphism a:S(X)

®S(Y) —rS(X * Y), which is easily seen to be a chain mapping. It is known

that a is, in fact, a chain-equivalence(2). Furthermore, a is natural in the sense

that, if f'.X—>X' and g: Y—*Y' are maps, and if/', g', (f*g)' are the chain

maps induced by/, g, and f*g, then the diagram

S(X) ® S(Y) L¥-L> S(X') <2> S(Y')

[a [a

S(X* Y)       f*S     > S(X'* Y')

is commutative. Hence, if A is a closed subset of Y, a induces a chain-equiva-

lence between the complexes S(X)® [S(Y)/S(A)] and S(X* Y)/S(X*A),

Hence

(2.3) The singular homology groups of (X * Y, X * A) are given by

Hg+i(X*Y, X*A) «   Y  Hi(X) ® Hj(Y, A) ©    Y   Tor {8 t(X), Hj(Y, A)}.
i+i=q i+i—q—1

It is also known [13, Lemma 2.2] that

(2.4) If X is O-connected and Yy^0, then X * Y is l-connected.

Consequently we can  conclude  from  the relative  Hurewicz  theorem

[1,(23.3)]:
(2.5) If X is (m — l)-connected (m^l), (Y, A) is (n — 1)-connected (n^2),

and A is l-connected, then (X * Y, X*A) is (m+n)-connected, and

7rm+B+1(X* F, X*A) « irm(X) ® Tn(Y, A).

The group 8p(X)®Hg(Y, A) has a natural imbedding }n Hp+q+2(S(X)

(2) This fact does not seem to be stated explicitly in the literature, but is not difficult to

deduce from Milnor's proof [13] of the "Runneth theorem" for the homology groups of the

join. The author is indebted to Milnor for the opportunity of reading his manuscript.
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® [S(Y)/S(A)]); hence a induces a monomorphism of Hp(X)®Hq(Y, A)

into Hp+t+x(X*Y, X*A). If uEHp(X), vEHq(Y, A), we define u*v to be
the image of u®v under the monomorphism.

Let (S, a, a) be an oriented ^-sphere (i.e., 5 is a ^-sphere, aES, and a is a

generator of HP(S)) and let (£, b, t) be an oriented g-cell (i.e. £ is a g-cell,

6 is a point of the boundary E of £, and e is a generator of Hq(E, E)). It is

well known that S*E is a (£+<7+l)-cell with boundary S* E; it follows from

(2.1) that a*t is a generator of /f"p+3+i(5*£, S*£). Let c = a/2®b/2, then

c£S* £ and (S * E, c, a * e) is an oriented (p+q + l)-cell. Let X, Ybe spaces,

A a closed subspace of Y, x0EX, y0EA, and let z0 = *o/2©yo/2£A'"* Y.

Then if f:(S, a)—>(X, Eo), g:(£, £, o) —*(Y, A, y0), the homotopy class of

/* g: (S* E, S* E, c) —>(X * Y, X *A,z0) depends only on the homotopy classes

of the maps/, g; thus the correspondence (/, g)—>f*g induces a pairing of

iTp(X) with irq( Y, A) to irp+q+x(X * Y, X * A). If a, j8 are the homotopy classes

°f f, g we define a * /3 to be the homotopy class of f * g.

(2.6) FAe operation (a, l3)—>a*/3 ts bilinear.

The proof is similar to that of (3.20) in [17],

(2.7) Letf:(X, xo)->(X',-x{) and g:(Y, A, y0)->(Y', A', y„') be maps.

Then for any aETrP(X), /3Eir,(F, A), we have

(f*g)*(« *0) =/*(«)* f*(|J).

The proof is trivial.

(2.8) Let X be a space, (Y, A, B) a triple, and let x0EX, y0EB. Let

aEirp(X), r3Ewq(Y, A). Let d:irq(Y, A)^irq-x(A, B) and d':-irp+q+x(X* Y,

X * A)—*irp+q(X * A, X * B) be the homotopy boundary operators of the appropri-

ate triples. Then

d'(a*P) = (-l)"+1a*dB.

The proof of this fact is routine, and is left to the reader.

3. The spaces L(II, n). Let II be an abelian group, n an integer =2. Then

there is a CW-complex L such that

(1) L is 1-connected;

(2) Bq(L) =0 for q^n;

(3) *■„(£)« II.
Any two such complexes have the same homotopy type. By 1,(11, n) we shall

mean a CW-complex L satisfying the above conditions, together with a fixed

isomorphism between tth(L) and II. We may therefore identify the (iso-

morphic) groups wn(L) and H„(L) with II. If 0:11—*G is a homomorphism,

then there is a map/:Z,(II, n)—*L(G, n) such that the induced homomorphism

f*:HH(L(Il, n))^>Hn(L(G, nc) is equal to <p. However, the homotopy class

off may not be uniquely determined by <f>; it is unique if II and G are free. If

II is free, we may take £(11, n) to be a cluster of spheres; in particular, we

may take L(Z, n) =Sn.
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The above facts follow from the work of Eilenberg [5; 6]; the spaces

L(U, n) have been studied by Moore [15] and more recently by Peterson

[16].

Theorem 3.1. Let X bean (m — l)-connected space (m^2), H a free abelian

group, «^2. Then the homomorphism

<p:irq(X) ® n->7r9+n+1(X»Z,(n, »)),

induced by the join operation is an isomorphism for q^2m — 2, and an epi-

morphism for q = 2m — l.

Proof. We may assume the Z. = L(II, n) is a cluster of w-spheres; i.e.,

L = Ua Sa, where each Sa is an n-sphere and a^B implies Sar}Sp = r\ySy is a

single point y0. If II has rank 1, then X * Lis the (w + l)-fold suspension of X

and the theorem follows by iteration from a known generalization of the

Freudenthal suspension theorem(3). Suppose that II has finite rank; then

(X* Sa)r}(X * Sp) is the contractible set X*yo; since X*Sa is (w+«)-con-

nected, our result follows immediately by induction from the statement:

(3.2) Let C = A\JB, where A and B are closed in C, A(~\B is contractible,

and Af~\B is a strong neighborhood deformation retract of one of the sets A, B.

Suppose that A is r-connected, B is s-connected. Then, for q^r+s — l, the in-

jections induce an isomorphism: wq(A) ®irq(B) «7r9(C).

Proof of (3.2). By exactness of the homotopy sequence

-> Tcq(A C\B)-+ rcq(A) ffi Tq(B) -> Trq(A/B) -» rq-i(A r\ B) -> • • •

of the covering (A/B) [ll], we have

(1) irq(A) ffi irq(B) « 7rq(A/B)

for all q. Furthermore, the triad (C;A,B) is (r+s)-connected, since (A, AC\B)

is r-connected and (B, AC\B) is s-connected [3]. From exactness of the se-

quence [ll]

-> *Vn(C; A, B) ->■ Tcq(A/B) -+ vq(C) -► rq(C; A, B)-* • • •

we conclude

(2) *.(A/B) « *ra(C)

for q^r+s — l. The truth of (3.2) now follows from the fact that the com-

position of the homomorphisms in (1) and (2) is induced by the injections.

The truth of Theorem 3.1 in the general case now follows by standard

arguments once we have proved

(3.3) Let X be a space, L a CW-complex, K a compact subset of X *L. Then

there is a finite subcomplex Li of L such that K~EX * L\.

(3) This is an immediate consequence of a theorem of Blakers and Massey on the homotopy

groups of a triad [3, Theorem I].
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Proof of (3.3). Define a map/: X * L->XXL by

«t* A      *  sS iiX<   (1   _   2t)P  ®  2/^ <0  *   **   1/2)>
f((l - t)x © ty) =   <

1(2 - 2t)x © (1 - 20#, y (1/2 = / = 1);

/ is well-defined, and therefore continuous, since X * Y has the identification

topology; furthermore, /is 1:1. Let ir:XXL^>L be the projection on the

second factor. Then ir(f(K)) is a compact subset of L, and £ is a CW-complex

[19, (F)]. Hence there is a finite subcomplexZi of L such that ir(f(K))CLi.

Hence f(K)CXXLx, and it follows easily that KCX*Lt.

4. Homotopy resolutions of a pair. Let (X, A) be a pair, x0EA ; x0 will be

the base point for all homotopy groups mentioned in this section. For sim-

plicity, we assume that (X, A) is 1-connected. A homotopy resolution of (X, A)

is a sequence {a7'„|« = 0, +1, +2, • • • } of subspaces of X such that

(1) ACXnCXn+xfovalln;

(2) (Xn+x, Xn) is 1-connected;

(3) for each q, irq(X„, A) =0 for n sufficiently small;

(4) for each q, irq(X, Xn) =0 for n sufficiently large.

Let {Xn} be a homotopy resolution of (X, A). We define an exact couple

[12] {D, E; i,j, d) as follows:

D=  Z^Dp,q,       Dp,q = TTp+q(Xp, A)
„,„ (direct sums);

£ = Z^£j>,a> £j>,9 = 'irp+q(Xp, Xp_i)
p.q

d) [(-1.0)

i   are bihomogeneous of degrees j (1, —1)

il 1(0,0);
dl     EPlq—r Dp—x,q

are the homomorphisms of the homotopy
i; Dp—x,q—* Dp>q—x ■

sequence of the triple (Xp, Xp-x, A).
j: Dp,q-x —* Ep,q-x,

Let (Dk, Eh; iw, j<*\ dw) be the (&-l)st derived couple.

Let irp,q be the image of the injection: wp+q(Xp, A)—nrp+q(X, A), and de-

fine t(X, A) to be the direct sum 23„,, irp,q/irP-x,q+x.

Theorem 4.1. For each p, q, we have EtM = Ep+q for k sufficiently large.

Thus the direct limit £^8 = lim*..0O EPq exists, and

*-JP,q   ~   tCp,ql T^p—X,q+X.

Hence £°°= Zp. A"s«*(^> A).

Proof. An easy computation shows that

£* = d-^Image i*-1)/?(Kernel i*"1),
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where i*_1 is the (>fe — l)st iterate of i (and not the homomorphism t<*_1> of

the (k — 2)nd derived couple). Thus

El.q = V/ V,
where

U is the set of all xEEp,q such that dx belongs to the image of the injec-

tion: irp+q-i(Xp-k, A)—>7rp+g_i(Xp_i, .4);

V is the set of all elements of Ep,q of the form jy, where y belongs to the

kernel of the injection: irp+q(Xp, A)—>irp+q(Xp+ic-i, A).

Now for k sufficiently large, irp+q_i(Xp-k, A) =0 and 7rj,+3+i(X, Xp+k-i) =0.

Then the injection: 7rp+a(Xp+it_i, A)—^Trp+q(X, A) is a monomorphism, and

therefore

U is the set of all xEEP,q such that dx = 0;

V is the set of all elements of Ep,g of the form jy, where y bt'ongs to the

kernel of the injection: ■wp+q(Xp, A)—*irp+q(X, A).

Thus U and V are independent of & if & is sufficiently large. Hence

£j,„=f//Fisalso.

To prove the second statement, consider the diagram

"■p+il-^p-ii •")

J d
Dp,q = 7rp+9(Xj„ A) —> irp+q(Xp, Ap_i) —* irp+q-i(Xp-i, A)

ii'

TTp+^X, A)

Now, for sufficiently large k, U= Kernel d = Image j~DVti/Kernel j, and

F=j(Kernel i')~ (Kernel V + Kernel j)/Kernel j; thus

»        _*        _0P,g/Kernel j_

(Kernel i' + Kernel ^/Kernel j

L>p,q

Kernel V + Kernel j

DPJKernel V

(Kernel i' + Kernel /)/Kernel *'

Image i' Image i'

V (Kernel _;')      V (Image i)

Image i'

Image (V o i)

TTp-l.q+l
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Remark 1. For each n, irp,n-P = 0 for p sufficiently small and 7rp,„_P

= TTn(X, A) for p sufficiently large; thus the chain of subgroups {irp,q\p+q

= »} of irn(X, A) is finite.

Remark 2. We may define homology and cohomology resolutions in a

similar way, and results analogous to the above hold. The above results

constitute a trivial extension of Massey's exact couples [12], which are con-

cerned with the resolution given by the skeleta of a triangulation of (X, A).

5. The spectral sequence of a join. Let X be an (m — 1)-connected space,

Fan (« —1)-connected CW-complex (m, n>l). Let Yp be the ^-skeleton of

Y; without loss of generality, as far as the homotopy type of Y is concerned,

we may assume that F"-1 is a single point y0.

Lemma 5.1. The sequence {X* Y"+p\p = 0, +1, +2, • • • } forms a homo-

topy resolution of (X * Y, X *y0).

Proof. If p<0, X* Yn+p = X *y0 is contractible. On the other hand, if

P^O, (Y, Yn+P) is (n+£)-connected and hence, by (2.6), (X* Y, X* Yn+P) is

(m+w+£-l)-connected, so that Tr^X* Y, X * Y"+p) =0 for p^q-m-n-1.

For convenience, we re-index the terms of the spectral sequence of the

above homotopy resolution of (X * Y, X * y0) by setting

pr     - if
*-*p.q        J-'p.m+q+l,

IZp.q   =    Tp.m-t-g+i;

thus

Ep.q = Trm+n+P+q+x(X* Y"+p, X* Y-+"-1),

Ep,q = Oif p < Oorq < 0;

T'm+n+t+x(X* Y)    =   7C,,o Z)   *«—1,1  Z)   -   '   "   Z)   ?*0,«   Z)   *-l,»+l   =   0,

"p, ql 1tp—1.3+1 =   Ep<q.

We identify tt„+p(Y"+p, Yn+P~l) with C„+P(Y). Then the join operation de-

fines a homomorphism

n-\-p n+p—1. 1

<b: irm+q(X) ® C„+P(Y) —»Trm+n+p+q+x(X* Y     , X*Y        ) = Ep,q.

Lemma 5.2. The homomorphism

d>: irm+q(X) ® Cn+P(Y) —> Ep,q

is an isomorphism for q = m — 2 and an epimorphism for q = m — l.

Proof. Note that Fn+p4- Yn+p~1 = L(Cn+P(Y), n+p), the isomorphism

Cn+P(Y)~Hn+p(Yn+*+Yn+*-1) being fi-^a, where

irn+p(Yn+p, F""*-"-1) -^ ir„+p(F»+" h- y**-1, (F»+p-1)^) -»irn+P(Yn+* 4- F-+"-1);

a and fi are injections.
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Consider the diagram

Tm+q(X) ® xb4,(K»+p, y»+»-») t Tm^n+p+q+1(X * F»+», X * F"+»>-')

11 ® a f ii

tt^X) ® WF-+* + K"+p-», (F»+^»)-~) £• xm+M.p+,+1(X . (F«+* + F"*»-»), X * (F-*r-t)^)

T1®0 „ Ti'

x„M(X) ® WF«* + F-^-i) ^ xm+B+p+„+1(X * (F«*» + F-*"»))

where i, »' are injections, and <p', <j>" are also induced by the join operation.

Because of (2.7), the diagram is commutative.

Now i is an excision, and the triad (X* (F"+p-5- Yn+p-1); X* Yn+P,

X* (Yn+P+1)~) is proper. Furthermore (X* Yn+P, X* Yn+P~l) is (m+n+p)-

connected, by (2.5), since X is (m — l)-connected and (Yn+P, Y"^'1) is

(n+p —I)-connected. Also (X* (F"+p-1)"\ X* F»+J>-i) is (m+» + l)-con-

nected, again by (2.5), sinceXis (m — l)-connected and ((Yn+P~1)'^, Yn+P~l) is

w-connected. Hence the above triad is (2m + 2w+p + l)-connected [3], and

therefore i is an isomorphism provided thatm+«+£ + g + 2^2w + 2w+p + l,

i.e. q^m+n — l.

On the other hand, by Theorem 3.1, <f>" is an isomorphism for q^m — 2

and an epimorphism for q = m — 1. Since 1(8) a, l<8>/3, and *' are always iso-

morphisms, our conclusion follows from the commutativity of the diagram.

Lemma 5.3. Under the isomorphism of Lemma 5.2, the boundary operator di

of the spectral sequence {E*} is transformed into the operator di given by

di(a ® 8) = (-l)m+«+1a ® 68

for aG7rm+8(X), BECn+P(Y), q^m-2.

Proof. By definition, di is the homotopy boundary operator of the triple

(X* Yn+P, X * Yn+*-1, X * Yn+p-2), while d is the homotopy boundary oper-

ator of the triple (Y"+p, Yn+p-\ Yn+P~2). We then have

di<b(a ® 8) = di(a*8)

= (-l)m+"+1(a*d8) by (2.8),

= <*>((-l)m+«+1a ® 38).

Corollary 5.4. For q^m — 2, EPfq^Bn+P(Y; Tm+q(X)).

We summarize the results implied by the above discussion in

Theorem 5.5. Let X be an (m — l)-connected space, Y an (n — 1)-connected

CW-complex (m, w^2).   Then there is a spectral sequence  {E'}  such that

E^qz*Bn+P(Y; irm+g(X)) for q^m — 2 and £°° is the graded group S(X* Y) of

s.r 7Tr(X * F) with respect to a suitable filtration.

6. The groups An(II; G). Eilenberg and MacLane [7] have introduced the

groups Hq(H, n; G); they are the homology groups, with coefficients in G, of
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any space K(H, n) such that

wq(K(U, »)) =0 (q*n),

irn(K(U, »)) « v.

They have also shown [8] that the groups -ff5(II, n; G) satisfy a suspension

theorem; there is a natural homomorphism a:Hq(Tl, n; G)^>Hq+x(H, n + 1; G)

which is an isomorphism for q^2n — 1. Thus, for each k, the groups

Hn+k(U, n; G) are constant for n sufficiently large"; we denote this "stable"

group by Ak(U; G).

In his investigation of the Eilenberg-MacLane groups, H. Cartan  [4]

has shown that the groups Ak(Tl; G) satisfy a "symmetry relation"

Ak(U;G) ~Ak(G;U).

We now show that this symmetry relation is a consequence of the results of

§5.

Theorem 6.1. Let X = K(G, m) and let Y be an (n — 1)-connected CW-

complex (m, «^2). Then, for s = w — 1,

irm+n+l+x(X* Y) « Hn+.(Y;G).

Proof. We have seen that, in the spectral sequence of §5,

Ep,q w trm+q(X) ® Cn+p(Y) (q^m-2),

while £p,m_i is a factor group of wzm-x(X)<g>Cn+P(Y) =0. Thus, for q^m — 1,

2 (0 (q^ 0),

Eqp. - Hn+P(Y; ,m+q(X)) -   |^+p(F_ g) (? = ^

It follows that

(*) Erp,q = 0 (O^q-gm- l;r= 2,3, • ■ • , »).

Now dr:Ep%0—>ETp_TJ_x and Jr:£p+rii_r^£pi0. If r^2, then EP+r|1_r = 0 since

1—r<0; if r>p, then £p_r,r_! = 0 since p-r<0; finally, if 2=>g£gm, then

0<r-l^p-l^m-l and hence £p_r,r_1=0. Thus

(**) Co « £p.o » Hn+P(Y;G) (p = m).

Now irm+n+s+i(X * Y) =a,,oD*,-i,iD • • • D«o,»D«-i,«+i = 0, and

itp.q/ltp—l,q+l ~ Ep%q.

Thus, if sgm — 1, it follows from (*) that

*«-i,i = • • • = «o,» = 0

and therefore



1956] HOMOTOPY GROUPS OF JOINS AND UNIONS 65

Tm+n+s+l(X* Y)   =   7C„,o   ~   £8,0-

Our result now follows from (**).

Corollary 6.2. For any abelian groups II, G and any integer s,

A.(U;G) s*A.(G;Tl).

For we may take m = n>s, Y = K(II, n) above and conclude

4,(11;G) = Hn+.(U, n;G) = Hn+S(Y;G)

~  TTm+n+s+l(X * Y)   ~   TTm+n+s+l(Y * X)    ̂   AS(G; TI)

since X * Y is homeomorphic with Y * X.

7. Homotopy groups of the union of two spaces with a point in common.

Each space X considered in this section will be l-connected and will have a

distinguished base point x0. In order to justify our use below of the Kunneth

theorem for homology groups of pairs, we assume that {xo} is a strong neigh-

borhood deformation retract of X.

Let XV F be the subset XXyo^oX F of XX Y; XV F is the union of

the two spaces X and Y with the points Xo and yo identified. Let ii:7r„(X)

-nrn (X V F), i2: tt„ (F) ->irn (X V F) be in j ections, and let d: tt„+1 (X X F, X V F)

—>7T„(XV F) be the homotopy boundary operator of the pair (XX F, XV F).

It is known [17, Theorem 18] that i\, i2, and d define an injective representa-

tion

TTr(X V  F)   «  7Tr(X)   ffi  7Tr(F)   ffi  1Tr+1(X  X   F,  X V   F) (f  ^   2)-

Moreover, the injection 7rr(X)—>7rr(XV Y, Y) is a monomorphism.

Define a map </>: X * F-+S(X X Y) by

/2(1 - *)(*, y) ffi (2< - l)/>+ (1/2 Slgl),
<A((l - 0* ffi <y) = -s

l2/(x, y) ffi (1 - 2/)p- (fl|(^l/2);

<t> is continuous since it is well-defined. Furthermore, <f>(xo* Y)ES(xaX Y) and

<t>(X*yo)ES(XXyo); hence <b(X *y0yJxa* Y)ES(XVY).

Lemma 7.1. The homotopy groups of X*yayJxa* Y vanish in all dimensions.

Proof. The sets X*y0 and x0 * Y, as well as their intersection x0*yo, are

contractible. Since x0 is a strong neighborhood deformation retract of X, it

follows that xo * yo is a strong neighborhood deformation retract of X * y0.

Our result now follows from (3.2).

The map <p, together with the inclusion map S(X\/Y)ES(XXY), de-

fines a map *:S(XV F)V(X* Y)->S(XXY).

Lemma 7.2. The homomorphism

$*: rr(S(X V Y) V (X* F)) -» Tr(5(X X F))

is a« isomorphism for all r.
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Proof. Since both spaces are 1-connected, it suffices, by an argument of

J. H. C. Whitehead [19, §6], to show that <i> induces isomorphisms of the

homology groups. Now d> maps the homology sequence of the pair (5(yV F)

\/(X*Y), S(XVY)) into the homology sequence of the pair (S(XXY,

S(ZV F)), and induces the identity map on the homology groups of S(X\/ Y).

By the five-lemma, it suffices to show that $ maps the relative homology

groups isomorphically. However, the triad (S(X\/ Y) \J(X * F); S(X\/Y),

X * Y)) is proper; hence the reduced homology groups of X * Y are mapped

isomorphically by the injection onto the homology groups of (S(X\/ Y)

\/(X * F), S(X\/ Y)); the former groups are isomorphic, under the injection,

with the homology groups of (X * Y; X * y0Wx0 * F). Hence it suffices to show

that 4> maps the homology groups of (X * Y, X * yoWx0 * Y) isomorphically

onto those of (S(XX Y), S(XV Y)).

Lemma 7.3. Letf: (X, X0)-^(Y, Y0) be a relative homeomorphism [9, Chap.

X]. Suppose that Yis an identification space of X under f and that X0is a strong

deformation retract of a neighborhood U of Xo- Then f*:Hq(X, X0) ^Hq( Y, F0)

for all q.

Proof. Let V=f(U). Then V is a neighborhood of Y0 and F0 is a strong

deformation retract of V. Consider the commutative diagram

Hq(X, Xo)-► Hq(Y, Yo)

Hi 1 ii

Hq(X, U)--+ Hq(Y, V)

lh I it

Hq(X - Xo, U - Xo) 4 Hq(Y - Yo, V - F0)

in which ix, ■ • • , it are injections and/1,/2,/3 are induced by/. Since X0 and

Fo are strong deformation retracts of U, V, it follows that ix and i2 are iso-

morphisms. Since X0 = X0CU and F0= YoCV, it follows from the excision

theorem for singular homology [9, Theorem VII, 9.1 ] that is and it are iso-

morphisms. Since/maps (X — X0, U—XQ) homeomorphically onto (F—F0,

V— Yo) it follows that/3 is an isomorphism. Hence/1 is an isomorphism.

The maps

$:(X*Y; X* 0 \J 0 *Y) ̂  (S(X X Y), P')

and

$ I X* y0 U xo* Y:(X* y0 U x0* Y, X* 0 U 0* Y) -> (S(X V F), £')

satisfy the hypotheses of Lemma 7.3. Hence d> maps the homology groups of

(X * Y, X * 0U0 * F) and of (X * y0Ux0 * Y, X * 0U0 * Y) isomorphically
onto those of (5(IX Y), P') and (S(X\/Y), P'). The desired conclusion now

follows from the five-lemma.
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Corollary 7.4. Thehomomorphism<p*:TrT(X * Y)->irr(S(XX Y), 5(XV F))

is a monomorphism for all r. If X is (m — l)-connected and Y is (n —^-con-

nected, then <£* is an isomorphism for r^m+M + min (m, n).

Proof. Consider the commutative diagram

h Tr(S(X V F) V (X* F))-> t,(S(X X F))

7Tr(X*F) 1*3 1*4

k2 rr(S(X V F) V (X* F)), S(X V F)-*wr(S(X X F), S(X V F)),

the homomorphisms ki are injections, while the <J>, are induced by 3>. From

the properties of the homotopy groups of the union of two spaces with a

point in common which were noted above, ki, k2, and k3 are monomorphisms;

hence kt is also a monomorphism. This proves the first statement. As to the

second, note that X* F is (m+w)-connected and 5(XV F) is (min (m, «))-

connected; hence [3, Theorem I] the triad (5(XV F) V(X* F); X* F,

S(X\JY)) is (m+w + min (ra, «))-connected. From the exactness of the

homotopy sequence of this triad, we conclude that k2 is onto, and therefore

an isomorphism for r^m+n + min (m, n).

We now define a homomorphism a\irr(XXY, XV F)—>7rr+i(X* F). Let

£ be an oriented r-cell. Then £X/ is an oriented (r+l)-cell (the orientation

being the cross-product of the given orientation of £ with the natural orienta-

tion of I). Let g:(E, £)->(XXF, XV F) be a map; we have g(u) = (gi(u),

g2(u)) for uEE, where gi:£—>X and g2:E—*Y are maps. Define a map 0-g of

£X/intoX* Fby

o-g(u, t) = (1 - <)si(«) ffi fc,(«) (« G £, < G /);

then <rg:(EXl, (EXT)')->(X* Y, X*y0VJx0* F), and it is easy to see that

the map g—>crg induces a homomorphism ero:7rr(XX F, XV Y)^nrr+i(X * Y,

X *y0KJx0* Y). We define <r to be the composition with o-0 of the inverse of

the injection of ir,(X * Y) into 7rr(X* F, X*y0Wx0* F); this injection is an

isomorphism because of Lemma 7.1.

Lemma 7.5. The composition <£* o a:irr(XX Y, X\/Y)-*irr+i(S(XXY),

S(X\JY)) is the (relative) Freudenthal suspension E.

Proof. We have

*f>«(«. 0) = *((1 - t)gi(u) ffi tg2(u))

(2tg(u) ffi (1 - 2/)p_ (0£tg 1/2),

\2(1 - t)g(u) ffi (21 - l)p+ (1/2 g t £ 1).

This is clearly the suspension of the map g.
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Lemma 7.6. Let (Z, C) be a pair, and suppose that (Z, C) is s-connected

(s^2), C is t-connected (l^t<s); the suspension E\wT(Z, C)-^wr+x(SZ, SC)

is an isomorphism for r^s + t and an epimorphism for r= 's + t + 1.

Proof. Consider the commutative diagram

Tr(Z,   C)   —^-> Wr(Z +  C, C) <-—-TTr(Z  ^ C)

1 £ I £l i £2

TTT+x(SZ,'SC) —> Tr+x(S(Z -5- C), SC) —> TTr+x(SZ  -T 5C)

where ix, ii, is, ii are injections (note that i2 and it are isomorphisms), and

£, £1, £2 are Freudenthal suspensions. By [14, Corollary 3.3], ix is an iso-

morphism for r^s + t and is onto for r = s+/ + l. Since (SZ, SC) is (s + 1)-

connected and SC is (/+l)-connected, we see in the same way that iz is an

isomorphism for r^s + t + 2. On the other hand, Z-i-C is s-connected and

hence £2 is an isomorphism for r^2s.

Corollary 7.7. If X is (m-l)-connected and Y is (n — 1)-connected, then

a\irr(XX Y, XV Y)—*Vr+i(X * Y) is an isomorphism for r^m+w + min (m, n)

— 2 and an epimorphism for r = m+n + m'm (m, n) — 1.

Proof. In view of Corollary 7.4 and Lemma 7.5, it suffices to observe that

E:wr(XXY, XVY)^ttt+x(S(XXY), S(X\/Y)) has the desired properties.

Now (XXY, XVY) is (w+«-l)-connected [lO, Theorem 2.1] and X\J Y

is i-connected (t = min (m, n) — 1); by Lemma 7.6, £ is an isomorphism for

r^m+n+t — 2 and an epimorphism for r = m+n+t — l.

We can now translate the results of §5 to give some information about the

homotopy groups of (XXY, XV Y).

Theorem 7.8. Let X be an (m — 1)-connected space, Y an (n — 1)-connected

CW-complex (m, n>l). Then there is a spectral sequence {£rJ with the follow-

ing properties:

(1) El,s=Hn+p(Y:wm+q(X)) (qgm-2);
(2) Let irp,q be the image of the injection

wm+n+p+q(X X F»+", X V ¥•+>) -r> rm+n+p+q(X XY,XV Y);

then, for ^>+g5=min (m, n)—2, we have

J-'p-q ~ ftp.q/ftp—l.q+1*

Corollary 7.9. If furthermore X = K(G, m), then

Tm+n+e(X XY,XVY)~ Hn+S(Y;G)

for s Js min (m, n) — 2.
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Suppose that X = K(G, m) Y = K(TI, n),m^n. Then wm+n+s(XX Y, XV Y)

~Hn+a(H, n; G) for s^m — 2. Thus this group is in general not zero. On the

other hand, the "generalized Whitehead products" a-k8ETm+n+P+q(XXY,

XV F), (aEirm+q(X), BEwn+p(Y)) [2, §5], are all zero for p + q>0. This

shows that the groups 7rm+n+s(XX F, XV F), even in low dimensions, are not

generated by generalized Whitehead products. A different example to illus-

trate this phenomenon has been given by Hilton [10].
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