MEANS ON SEMIGROUPS AND THE HAHN-BANACH
EXTENSION PROPERTY

BY
ROBERT ]J. SILVERMAN

I. Introduction. In this paper generalizations of the Hahn-Banach
theorem on the extension of linear functions are proved. The restriction that
the range space be the real field is removed, and the condition that the
extension be fixed with respect to certain semi-groups of operators is imposed.
Another problem considered which is very closely related to Hahn-Banach
extensions is the existence of monotone, distributive extensions of functions
which preserve invariance with respect to certain semigroups of operators.

It was shown in [10](?) that when certain necessary restrictions are placed
on the range space, the class of semigroups which permit the two types of
invariant extensions is contained in the class of functions which have invari-
ant means definable on the associated Banach space of bounded, real-valued
functions defined on these semigroups. Further it was shown that every semi-
group known to have an invariant mean also permitted the two types of ex-
tensions.

When structure in addition to the minimal required structure is placed
on the range space, e.g., when the space is an ordered subspace of the con-
jugate space of an ordered linear space with reproducing cone, a semi-group
which has an invariant mean also has the two extension properties relative
to these particular range spaces. Many of the standard function spaces satisfy
these conditions. In addition this paper will exhibit conditions which guaran-
tee the continuity of these’extensions in the case when linear topological
spaces are considered and make some application to real-valued functions.

$I1 outlines definitions and results preceding this paper. §III contains
theorems on the existence of invariant extensions for a given semigroup G
with an invariant mean and a given range space V. Various extra conditions
added to the known necessary condition that V be a boundedly complete
vector lattice are sufficient for these extensions. Some converse results are
also given under which the existence of some sort of invariant extension im-
plies that G has an invariant mean. §1V contains examples of spaces satisfying
the conditions imposed on the space V. §V discusses continuity of the exten-
sions when order and topology are both present. §VI presents applications
of the theorems of §§III and V to some of the examples of §IV.
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II. Background material. For reference to background material not
specifically introduced in this section see [10]. All linear spaces are assumed
to have the real field R as the scalar field.

A linear space V, and a binary relation (ordering) on V denoted by 2=
(read greater than or equal to) is an ordered linear space (ols) if and only if
(1) = is transitive and reflexive, (2) if x =y, then x+2=y+2 and tx =1y, for
every z& V and non-negative real number ¢. A set C in a linear space is a cone
if and only if x, yEC, tER, t =0, imply x+y&EC and txEC.

A cone C determines an ordering which makes Canols:x2y-=-x—y&C.
Conversely the set of elements =0 determines a cone in an ols and this cone
in turn determines the original ordering.

A cone C is sharp if and only if x, —x€ C imply x =0. This is equivalent
to the statement: x =y =x imply x=7y. A sharp cone will be called an s-cone.

Given a cone KCV, an ols, consider any subspace V° of the space of dis-
tributive functions V¥ of V. Define the induced cone of K° of V: K= {fE V*:
f(¥) 20, vEK}. It follows that K is a cone.

Definitions and basic properties of upper bound, least upper bound (sup),
etc. are assumed [10]. An ols V has the (finite) least upper bound property
[(finite) LUBP], or equivalently, has a (minihedral) fully minihedral cone,
if and only if every (finite) set of elements with an upper bound has a least
upper bound.

A function F from an ols Y to an ols V is monotone if and only if y =y’
implies F(y) = F(y’). F is non-negative if and only if y 20 implies F(y) 20. If
F is distributive, F is non-negative if and only if it is monotone. The following
theorem is of basic importance. It is due to M. M. Day [2].

THEOREM A. Constder an ols V, then statments 1, 2, 3, 4 are equivalent and
they imply 5.

1. V has the LUBP.

2. Given sets A and B in V such that A=ZB (i.e. a=b, aEA, bEB), there
exists vV such that A Zv= B.

3. V has the monotone extension property (MEP). That is if X is an ordered
linear subspace of an ols Y with positive cone C, such that (a) X has order
induced by C (i.e. the positive cone of X is XNMC), (b) (y+X)NC
#ZX = (—y+X)NC=J, then every monotone, distributive function f from
X to V has a monotone, distributive extension F from Y to V.

4. V has the monotone projection property (MPP). That is, if (a) V is
contained in an ols Y with positive cone C, (b) the order in V is induced by C,
() +VINC=Z-=-(—y+VINC#J, then there exists a monotone, dis-
tributive projection P from Y onto V.

5. V has the Hahn-Banach extension property (HBEP). That is, if (a) X is
a subspace of a linear space YV, (b) p is a positive-homogeneous, subadditive
function from Y to V, (c) f is a distributive function from X to V such that
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f(x)Sp(x), xEX, then there exists a distributive extension F of f defined from
Y to V such that F(y) Sp(y), for all yE Y.

A useful criterion for determining whether the hypothesis y +X meets C
in the above theorem is satisfied, is the existence of a vector interior point in
C which meets X. In this situation every translate of X meets C. A vector
interior point in C also guarantees that the interior (in the vector topology
sense) is sharp. For convenience, however, when sharpness is required the
cones will be assumed sharp. It should be noted that the vector topology
about to be introduced does not determine a linear topological space unless
some additional conditions, such as convexity, are placed on the neighbor-
hoods.

A set U in a linear space V is a vector neighborhood of xS V if and only if
for every line L(y) = {x+ty:t€R} through x, there exists a segment L'(y)
= {x+ty:|t| <¢, €>0} which is contained in U. The real number ¢ in gen-
eral depends upon y. Hence a point x in a cone C is a vector interior point of
C if there exists a vector neighborhood of x which is contained in C. The
following theorems are stated without proof [2; 5].

THEOREM B. If u is a vector interior point of an s-cone C, then the vector
neighborhood of x which is contained in C can be represented as {u+ty: —su<y
Ssu, s=1/t, |t| <e, e>0}.

TuEeOREM C. If u is in a subspace X of an ordered linear space Y, and if u is
also a vector interior point of the cone C of Y, then every translation of X by an
element of Y meets C.

THEOREM D. If Y is any linear topological space and U is a neighborhood
of a point in Y in the given topology, then there exists a vector neighborhood of the
point which is contained in U.

THEOREM E. If Y is an ordered linear topological space such that the cone C
has an interior point, then C*, the induced cone in the conjugate space Y* of
Y, is nontrivial (i.e., there exists a nonzero element in the set).

Another useful bit of information is the relationship between ordered
linear spaces which possess minihedral cones with vector interior points and
normed spaces.

THEOREM F. If V is an ordered linear space with sharp minihedral cone K,
such that K contains a vector interior point u, then V can be made into a normed
space, where ||v]| =inf {s: =su<v<su, SERY} for every vin V. The unit sphere
is the interval I={vEV:—u=<v=<u}. The cone is not necessarily closed with
respect to this norm.

The following theorems are concerned with ordered linear spaces which
are also normed spaces [7].
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TuEOREM G. If V is an ordered normed space with s-cone K, such that K
contains a normed interior point u, then for every f#0 in K*, the positive cone
in V*, f(u) 27||f||, where r is the radius of the sphere about u which is contained
in K.

THEOREM H. If K is a cone in an ordered normed space V, then x is in the
closure of K if and only if f(x) =0 for every f in K*.

Given an ordered normed space with positive s-cone K, the concept of
what might be termed uniform sharpness is defined. A closed s-cone K con-
tained in an ordered normed space V is normal if and only if there exists a
positive real number 8, such that for every o/, ¥EK such that [|o|| =|’]| =1,
then ||v+v'“ =0.

THEOREM 1. A norm-closed s-cone K with norm-interior point u in an ordered
normed space V is normal, if and only if I= {vE Viuzo= —-u} 4s bounded
in norm.

An ols V has reproducing cone K if and only if for every v& V there exists
11, 12E K such that v=v,—v,.

THEOREM J. A norm-closed, s-cone K in an ordered normed space V is
normal if and only if the induced cone K* in the conjugate space V* is reproduc-
ing.

Consider a semigroup G, and the Banach space M(G) of bounded real-
valued functions on G, then G has a [left] (right) invariant mean if there exists
an element u of norm 1 in the conjugate space M(G)* of M(G), such that
u(e) =1, where e is the constant 1 function in M(G), and u is invariant with
respect to [left] (right) both left and right regular representations of G on
M(G). (L.e. u(Lyf) =p(Ryf) =u(f), where L, is the left and R, is the right
regular representation. That is (L,f)(g’) =f(gg’), FEM(G), g, g EG, etc.)

For properties of invariant means see [3]. In particular, a semigroup with
a left invariant mean and a right invariant mean has an invariant mean. Also,
considering the positive cone of M(G) to be the collection of those functions
which are pointwise non-negative, a mean is monotone. It is also mentioned
the only class of groups known not to have an invariant mean are groups
which contain free non-abelian subgroups. Further, a homomorphic (anti-
homomorphic) image of a semigroup with an invariant mean has an invariant
mean.

II1. Extension theorems.

DEeFiNITION 1. The pair [@, V], where

i. @ is an abstract semigroup,

il. Vis an ols with the LUBP and whose positive cone is sharp, has the
Hahn-Banach extension property (HBEP) if and only if for every collection
Y, X, G, p, f], where
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(a) Y is a linear space,

(b) X is a subspace of Y,

(c) G is a representation of @ on Y (i.e., a homomorphic or anti-homo-
morphic image of ® in the distributive operators on Y) such that gxE€X for
all x&€X and g&aG,

(d) p is a positive-homogeneous, subadditive function from ¥ to V such
that p(gy) <p(y) for each yE Y and gE€G,

(e) f is a distributive function from X to V such that f(x) <p(x) and
flgx) =f(x) for every xEX and gEQG,

there exists a distributive extension F of f with domain ¥ and range V such
that F(y) <p(y) and F(gy) = F(y) for every y& Y and gEG.

DEFINITION 2. The pair [®, V], where

i.  is an abstract semigroup,

ii. Vis an ols with the LUBP and s-cone K, has the monotone extension
property (MEP) if and only if every collection [Y, C, X, G, f], where

(a) Y is an ols with cone C,

(b) X is an ordered subspace of ¥ with the induced ordering and such that
y+X meets C for every yE Y,

(c) G is a representation of & on Y such that gz&C and gx €X for every
gEG, xEX and z2E€C,

(d) f is a monotone distributive function from X to V such that f(gx)
=f(x) for each x€X and gEQG,

there exists a monotone, distributive extension F of f with domain ¥ and
range V such that F(gy) = F(y) for all y& Y and g&G.

The condition that K be an s-cone in the two definitions and that y+X
meets C for every y in Definition 2 are stronger than the corresponding condi-
tions in Theorem A, but they appear necessary for some of the theorems which
will be proved.

THEOREM 1. [®, V] has the HBEP if and only if it has the MEP.

The proof of this theorem is identical with the proof of Theorem 1 in
[10] and hence will not be reproduced. By virtue of this theorem considera-
tion can be restricted to considering pairs [, V] with the MEP. The proofs
of the following theorems could also use the HBEP but there is neither ad-
vantage nor disadvantage in this procedure.

It is remarked that if the condition in Definition 1 that p(gy) <p(y) for
each y in YV and all g in G is changed to p(gy) = Np(y) for each y and all g,
where N is some fixed positive real number independent of ¥ and g, and the
condition that the extension of F of f is dominated by p is also changed so
that F(y) S Np(y) for all y in Y, then all the theorems concerned with the
HBEP under this change of definition are valid. For replace p by p’, where
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p'(y) =sup {p(hy) :h&€G or k is the identity operator}, then p’ is positive-
homogeneous and subadditive, p(y) S$’(y), and p’(gy) Sp'(y) forally in ¥
and g in G.

THEOREM 2. (1) Let W be an ols with reproducing cone K', (2) let V be an
ordered subspace of W¥, the space of distributive functionals on W, (3) let K be
the cone in V such that K is induced by K’', K is sharp, and with respect to this
induced ordering V has the LUBP, (4) let ® be an abstract semigroup with an
invariant mean, then [®, V) has the MEP.

Proof. 1. Let [V, X, C, G, f] be as in Definition 2 where G is a representa-
tion of @. Since a homomorphism (anti-homomorphism) of a semigroup with
invariant mean also has an invariant mean, G considered as an abstract semi-
group has an invariant mean.

2. Since V has an LUBP, there exists a monotone, distributive extension
F’ of f to all Y with values in V.

3. [F'(gy)](w) is a real number for fixed yE ¥, wE W and g EG. Hence for
fixed y and w, [F’'(gy)](w) can be considered a function from G to the real
numbers. [F’(gy)](w) is a bounded function on G. For given yE Y, there
exists x, x’ €X such that y+x, —y+x’&C. Therefore, F'(y+x) and F'(x' —y)
are in K since F’ is monotone. Hence, —f(x) < F'(y) <f(x'). Since g is mono-
tone and f(gu) =f(u) for each g&G and u € X, —f(x) £ F'(gy) =f(x') for every
g&EG. Consider w& W, then w=w'—w'", where w’, w'’€K’. Then, since K
is the cone induced by K’, — [f(x) [(w"") < [F'(gy) ](w"") < [f(x") ](’""), where
w"’ is ' or w”. Thus, — [f(x) (@) — [f(=) ](w") < [F'(gy) | (w) < [f(x") ] (')
+ [f(x) ](w’") for all gEG, and boundedness is proved.

4. Since G has an invariant mean, u, define F” as follows: [F(y)](w)
=p{ [F'(gy))(w)} for each yE Y and wEW. It is easily verified that F’(y)
is in W* for each y € V. It is also easily verified that F’ is a distributive func-
tion from Y to W¥. Further, since u is an invariant mean, it follows that
F"(gy) =F"(y) for all g€G and y& Y.

5. Define V" to be the subspace of W# generated by V and the set
{F""(y):yEY}. Then by definition of V”/, F is a distributive map from ¥
to V. Let K’ be the cone induced by K’ in V"’. The function F’’ is monotone
with respect to the cone K. For if y&C, then gy&C for all g&G. Thus
F'(gy) is in K for all g, since F’ is monotone. Since K is induced by the cone
K’ of W, [F'(gy)](w) 20 for all gEG, yEC, and wEK’. Therefore, since u
is monotone from M(G) to the real numbers and [F'(gy)](w) is a positive
element in M(G), it follows that [F"(y)](w)=0 for all wE€K’. Therefore
F"(y)EK' and F” is monotone.

6. It is immediate that F"’ is an extension of f with values in V"',

7. Note that K=VNK". Also (v''+ V)K" #¢ for every v & V". This
statement is trivial if ¥ & V. Therefore consider v’ = F’(y). For each yE€,
there exists an x €X such that x4y & C. Therefore, using the monotonicity of
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F" F'"(y4+x)=F"(y)+f(x)=F"'(y)+vEK". Thus V, K, V'* and K" satisfy
the hypotheses of Theorem A-4. Hence, there exists a monotone, distributive
projection P fron V' onto V.

8. Define F: F(y) =P(F"(y)) for all y€ Y. This is the desired extension
and the theorem is proved.

THEOREM 3. If (1) V is an ordered normed space with the LUBP and with
norm-closed, normal s-cone K, (2) ®& is an abstract semigroup with invariant
mean, then the pair [®, V] has the MEP.

Proof. (1) The natural linear map Q from V to V** (the second conjugate
space of V): (Qv)(f) =f(v) for every f in V*, is an isometry into and in this
case, the closure of K implies that Q and Q! (on QV) are order preserving
mappings between V and QV, where the cone in QV is the natural cone in-
duced by K* in V* which is in turn induced by K in V. This will be proved
in the following lemma.

LEMMA 1. Let V be an ordered normed space with norm closed cone K, then

(1) The natural map Q from V to V** is monotone (with respect to the in-
duced ordering in V**).

(2) OK is the induced cone in QV.

(3) Q7! is monotone from QV to V.

(4) If V has the LUBP then QV has the LUBP.

Proof of lemma. From Theorem H, v’is in cone K if and only if f()=0
for every f&K*. Therefore Qu(f) 20 for every fEK* if and only if v is in K.
That is Qv is in the induced cone in QV if and only if vyEK. Thus QK is the
induced cone, and Q and Q! are monotone.

Now v;<v,=<v; if and only if Quvi=<Qv:=<Qvs. Thus from Theorem A-2,
QV has the LUBP if and only if V has.

(2) Since K is normal, by Theorem J, K* is reproducing. Hence QV
satisfies the hypothesis of Theorem 2 and [®, QV] has the MEP.

(3) Consider Y, X, C, G, and f as in Definition 2. Define f’ from X to
QV: f'(x) =Q(f(x)) for all x&€X. Hence by (2) there exists a monotone,
distributive extension of F’ of f’ to all of ¥ such that F'(gy) = F'(y) for all
gEG and y& Y. Define F from Y to V: F(y) =Q~'(F'(y)). This is clearly the
desired extension and [®, V] has the MEP.

The continuity of the extensions will be considered in § IV.

THEOREM 4. Consider V an ordered normed space with the L UBP with s-cone
K such that K is closed and has a norm-interior point u, and such that the in-
terval I={v: —u<v=u}, is bounded in norm. Then if ® is a semigroup with
an invariant mean, |®, V] has the MEP.

Proof. By Theorem I, the above hypotheses imply K is normal and by
Theorem 3 [®, V] has the MEP.
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Given an ols V with the finite LUBP and a sharp cone, then if the cone
of V contains a vector interior point %, V can be made into a normed space,
where

llo|| = inf, {|¢] :—tw < v < tu} and the unit sphere is

I={v:—u =<9 =u} (Theorem F).

LEMMA 2. Let V be an ols with the finite LUBP such that u is a vector interior
point of the s-cone K. Further suppose that K is closed with respect to the norm
determined by this interior point. Then with respect to this norm, K is normal.

Proof. By Theorem I, a closed s-cone with normed interior point %’ is
normal if and only if the interval I’= {v: —u’<v=<uw'} is bounded in norm.
Note that #’ and —u’ are contained in the sphere ¢/, for some positive real
number ¢. Hence, —tu < —u’' <v<u’ <tu. Therefore I’ CtI, and K is normal.

The property of a vector interior point in a cone, and the above lemma
imply the following theorem.

THEOREM 5. If V is an ols with the LUBP and has s-cone K with vector in-
terior point u, and K is closed with respect to the norm determined by this
interior point, then if & is any semi-group with invariant mean, the pair
[®, V] has the MEP.

Proof. V can be considered an ordered normed space with the LUBP with
closed, normal s-cone K, and Theorem 4 applies.

The next theorem is concerned with extensions where V is not the range
space but part of the domain space. It serves as an example of other such
theorems which could be stated.

THEOREM 6. (1) Let Y be an ols with cone C such that V is an ordered sub-
space of Y, V has the LUBP, and every translate of V meets C. (2) Let L be an
ols with reproducing cone. (3) Let G be a semigroup of operators on Y such that
(a) each g in G maps V into itself and C into itself, and (b) G, considered as an
abstract semigroup has an invariant mean. Then if f is a monotone, distributive
Sfunction from V to Lt such that f(gv) =f(v) for all g in G and v in V, there
exists a monotone, distributive extension F of f from Y to L, such that F(gy)
=F(y) forally in ¥V and g in G.

Proof. By the Theorem A-4 there exists a monotone, distributive projec-
tion P from Y onto V. Define F’ so that F'(y) =f(Py). This is a monotone,
distributive extension of f. Consider [F’(gy)](z), where z is in L. This is a
real-valued, bounded function on G for fixed z and y. Since there exists an
invariant mean u on G, define F, the desired extension: [F(y)](2)
=u([F'(gy)](2)) for each zin L and y in V.

Thus far it has been proved that if @ is a semigroup with invariant mean
and V satisfies certain properties in addition to the LUBP, then [®, V] has



230 R. J. SILVERMAN [September

the two extension properties. The next theorems state that if [$, V] has the
extension property with respect to a suitable V then ® necessarily has an
invariant mean. Each of the following theorems is stronger than the cor-
responding theorem in [10] which states that the class of semigroups with
an invariant mean contains the class of semigroups with the MEP (HBEP)..

THEOREM 7. If there exists an ols V with the LUBP, with s-cone K #0, such
that V is a subspace of W, the space of distributive functionals on an ols W with
reproducing cone K', such that K is induced by K', then, if [®, V] has the
MEP, ® has an invariant mean.

Proof. 1. Consider vo=#0& K. Consider M(®) the space of real-valued,
bounded functions on @. Consider X a subspace of M(¥): {te: LER, e the
constant 1 function in M(®) } Define the function f from X to V: f(te) =tv,.
The function f is clearly distributive. The function f is also monotone and
invariant with respect to the left and right regular representations G on
M(®). The cone C in M(®) is the set of all pointwise non-negative functions.
The constant 1 function e is a norm-interior point of C. Hence every translate
of X meets C. Further, the left and right representations map C into itself.
Thus, since [®, V] has the MEP, there exist monotone, distributive exten-
sions Fy, and Fg of f to all of M(®) with values in V which are respectively
invariant with respect to the left and right representations on M(®).

2. There exists a wo& K’ such that v4(w) >0, since K’ is reproducing and
v97#0. Define F; and Fg from M(®) to the real numbers:

Fi(m) = [F1(m)](wd),
Fr(m) = [Fr(m)](wo), for every m in M(®).

F and Fg are clearly distributive, monotone and invariant respectively with
respect to the left and right representations.

3. Define: M= [FL.(e)]"'F1, and Mg=[Fg(e)|"'Fg. Then M, and Mg
are respectively right and left invariant means. By virtue of the theorem that
a semi-group with left and right invariant means has an invariant mean, the
proof is complete.

Theorems similar to Theorem 7 are stated, using the appropriate hypoth-
eses of Theorems 3, 4, and 5.

THEOREM 8. Let V satisfy the hypotheses of Theorem 3, and K %0, then if
[®, V] has the MEP, ® has an invariant mean.

Proof. Consider v,, M(G), X, and f as in Theorem 7. Then, Fi and Fgas
in Theorem 7, exist. Define F;'=(QF; and Fg =QFk. The remainder of the
proof proceeds as in Theorem 7, with F;’ and Fg substituted for Fj and Fg
in that theorem.

THEOREM 9. Given an ols V satisfying the hypotheses of either Theorems 4 or
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5, then, if |®, V] has the MEP, ® has an invariant mean.

The proof of this theorem is direct and does not reverse the steps in the
proof of Theorems 4 and 5.

Proof. (1) Consider M(®) and X as in Theorem 7. Let % be an interior
point of K. Define the distributive function f from X to V: f(te) =tu. Thus
since [@, V] has the MEP, there exist functions F; and Fi, from M(®) to ¥
which are monotone, distributive, and invariant respectively with respect to
the right and left regular representations.

(2) Since u is an interior of K, by Theorem A-4 there exists a monotone,
distributive projection P from V onto V’= {tu: tER}.

(3) Define, F,=PF; and Fr=PFj. Note that Fp(e) = Fr(e) =u. Define
T from V’ to R: T'(tu) =t. T is clearly monotone, distributive and T'(x) =1.

(4) Define, M, =TF; and Mg=TFg. The functions M1 and Mg are re-
spectively right and left invariant means of @, and thus & has an invariant
mean.

IV. Examples. In this section a listing of some of the standard function
spaces will be presented along with some of their properties. These will furn-
ish examples of spaces which permit invariant extensions relative to semi-
groups with invariant means.

Given a space of bounded continuous functions C(S) from a topological
space S to the real numbers, it is possible to define a cone K = {fEC(S):
f(s) =0, s&S } The space C(S) is a Banach space with respect to the sup
norm, and K contains a norm-interior point e, the constant 1 function. The
sphere of radius 1 about e is contained in K. Kakutani [5] has proved the
following theorem.

THEOREM K. An ordered Banach space V whose cone K is sharp and con-
tains a norm-interior point is isomorphic to a space of real-valued continuous
Sfunctions V' on a compact Hausdor(f space S, (i.e., there exists a 1-1, order pre-
serving, homomorphic, homeomorphic map of V onto V'), if and only if V has the
finite LUBP.

That there exist spaces of continuous functions which do not have the
LUBP is given by the example of the space of continuous function on the
unit interval of the real line.

Thus, stronger conditions are required in order to guarantee the LUBP,
Kelley [6], Nachbin [9], and Goodner [4] have proved the following theo-
rems.

THEOREM L. An ordered Banack space in whose cone K is sharp and has a
norm-interior point has the LUBP if and only if it is isomorphic to a space of
real-valued continuous functions on an extremally disconnected compact Haus-
dorff space. (A topological space is extremally disconmected if and only if the
closure of every open set is open.)
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THEOREM M. Given a Banach space V, then every linear function f defined
on X, a subspace of a Banach space Y, to V has a linear exiension F to all of
Y such that || F|| =||fl| if and only if V is isomorphic to a space of real-valued
continuous functions on an extremally disconnected compact Hausdorff space.

This implies that in an ordered Banach space the HBEP is not sufficient
to guarantee norm-preserving extensions of linear functions. The difficulty
here is that the suitable positive-homogeneous, subadditive function may not
be definable which corresponds to ||f||||y| in the case where the range space
is the real numbers.

A specific example of an ordered Banach space which satisfies Theorems
L and M is m(S), the space of bounded real-valued functions on a discrete
index set S of any cardinality, where ||f||=inf.cs [f(s)|, K={fEm(S):
f(s)=0,sE€S}. An interior point of K is the constant 1 function. In particular,
R, the real line, which can be considered the space of functions on a single
point, R*, the real » dimensional vector space, considered as the space of
functions on a discrete set of # points, have fully minihedral, closed, s-cones
with interior. These spaces in addition have the property that they are con-
jugate spaces whose order is induced from below and such that the underlying
spaces are reproducing. These spaces also have normal s-cones.

There exist examples of ordered linear spaces with fully minihedral cones
which do not contain any interior points, even vector interior points, e.g.,
co(S), the space of real-valued functions on a discrete directed system S,
with the property that each function converges to 0 with respect to this
directed system. The cone K in the space is defined as in m(S), the norm is
also defined as in m(S). It is noted that ¢y is not a conjugate space, but ¢, has
a normal, closed s-cone.

The space 1,(S), p>0 of generalized sequences {x} defined on S, an
arbitrary index set, such that Z:es |x(s) |?»< «, has the LUBP with respect
to the cone K= {xel,,: x(s) =0, sES}. K has no vector interior point. If
p=1, then I, is a Banach space and also the conjugate space of a Banach
space.

Consider Lr(a, b), p>0, the space of real-valued measurable functions
defined on the bounded or unbounded interval [a, b] of the real line, such that
the pth powers of the absolute values of the functions are Lebesgue integrable.
If p=1, L? is a Banach space. If p>1, L? is a conjugate space. L! is not a
conjugate space. The cone in these spaces, K = {fELP:f(s) =0 for a.e. SES} .
As above K is fully minihedral and, if [, ] is unbounded, has no vector
interior point. However, the cones in‘all these cases are normal.

L~>, the space of essentially bounded Lebesgue measurable functions over
the real numbers, is another example of a function space whose cone is fully
minihedral and does contain a vector interior point. L is a Banach space.
Further it is the conjugate space of L1. The cone is defined as in L.

All finite dimensional linear topological spaces with respect to the usual



1956] THE HAHN-BANACH EXTENSION PROPERTY 233

co-ordinatewise ordering satisfy the conditions of Theorems 2, 3, 4 and 5.

Each Banach space with the LUBP mentioned in this section has a nor-
mal, closed s-cone. Hence Theorem 3 applies. Similarly, those Banach spaces
mentioned which are conjugate spaces satisfy Theorem 2. However, no exam-
ple has been presented of an ordered Banach space which is a conjugate space
whose underlying space has reproducing cone, but which does not have a
normal, closed s-cone.

V. Continuity conditions. If the ordered linear spaces in §III are assumed
to be linear topological spaces, the question arises under what conditions are
the extensions mentioned in that chapter continuous. Some conditions which
guarantee continuity will be presented.

DEeFINITION 3. Given an ordered linear topological space V, then V is
locally restricted if and only if for every neighborhood U of 0 in V, there exists
a neighborhood W of 0 contained in U such that for every a and b in W, the
set {x:xEV, a<x=b} is contained in U.

All of the ordered normed spaces mentioned in § IV are locally re-
stricted.

THEOREM 10. If (1) Y is a linear topological space, (2) V is a locally re-
stricted ordered linear topological space, (3) p is a positive-homogeneous, sub-
additive, continuous function from Y to V, and (4) F is a distributive function
from Y to V such that F(y) < p(y) for every y in Y, then F is a continous function.

Proof. Take all neighborhoods of 0 to be symmetric. Given a neighborhood
U(0) in V, consider W(0) a neighborhood of 0 contained in V such that if
a and b are in W, the interval a Sx b is contained in U. Since p is continu-
ous, there exists a neighborhood N of 0 in U such that p(y) is contained in
W for every y in N. Define p'(y) = —p (Y —y) for all y in Y. This is a continu-
ous function clearly. Hence, there exists a neighborhood M(0) in ¥ such that
p’(y) is contained in W for every y in Y. Consider a neighborhood Q con-
tained in MMN. Then if y is in Q we have p’(y) < F(y) £p(v). Therefore F(y)
isin U for every y in Q. Thus F is a continuous function.

THEOREM 11. If (1) Y is an ordered linear topological space with cone C,
(2) Vis a locally restricted ordered linear topological space with cone K, (3) F is
a monotone, distributive function from Y to V such that there exists a neighbor-
hood of an element zin Y, M(2), with the property that F(y’) is in K for all y' in
M(2), then F is a continuous function.

Proof. 1. Assume all neighborhoods in ¥ are symmetric. M(z) =2+ N(0),
where N is a symmetric neighborhood of 0. Thus for every y in N(0), F(y+2)
is in K and F(—y+2) is in K. Hence — F(z) £ F(y) £ F(z) for all y in N(0).

2. Consider U(0) in V, then there exists a neighborhood W(0) contained
in U(0) such that if @ and b are in W, the interval a Sv<b is contained in U.
There exists a real number ¢ >0 such that F(iz) and F(—{z) are contained in
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W(0) since V is a linear topological space. Therefore, since — F(tz) < F(ty)
< F(tz) for all y in N(0), F(ty) isin U(0) for all y in N(0). Consider a neighbor-
hood Q(0) in Y such that Q(0) is contained in tN(0). Such a neighborhood
exists since multiplication by a nonzero scalar is a homeomorphism of a linear
topological space onto itself. Then if x is in Q(0), (1/t)x is in N(0) and hence
F(t(1/t)x) = F(x) is in U(0) for all x in Q(0), and F is continuous.

THEOREM 12. In the last theorem, if the condition that F maps a neighborhood
of Y into K is replaced by the condition that C contains an interior point, then
every monotone, distributive function from Y to V is continuous.

Proof. This theorem follows from Theorem 12 since every monotone dis-
tributive function maps the neighborhood of the interior point which is con-
tained in C into K.

THEOREM 13. Let Y be an ordered, normed space with positive cone C such
that C contains an interior point u. Let S(r, u) be a sphere of radius r about u
contained in C. Let V be an ordered normed space such that if v=v' 20, then
lloll = |v'|| Z0. Then, if Fis a monotone distributive function from Y to V, F is
continuous and ||F|| 1/7|| F(w)]|.

Proof. If y is in ¥ and ||y|| <1, then w+7y is in C. Hence F(u—ry) 20.
Therefore || F(w)|| 27| F()||. Thus || F(w)|| Z7(sup {||F)|: ls]l 1}) =7 A
This theorem is a generalization of a theorem of Krein and Rutman.

Another condition for the continuity of a monotone, distributive function
from one ordered Banach space to another is based on a communication from
I. Kaplansky to M. M. Day. The ordered Banach spaces L? and ¢, satisfy the
properties of the spaces in the next theorem. The condition is a substitute
for the existence interior point in the cone.

THEOREM 14. (1) Let Y be an ordered Banach space with sharp cone C, such
that (a) there exists a positive real number M such that for every x in Y with
||| 1, then x =y — 2, where y and z are in C, and llvll < M, (b) Cis closed under
norm-convergence of monotone increasing sequences. (2) Let V be an ordered
normed space with positive cone K such that if v=v' 20, then ||v]| Z||o']|. (3) Let
F be a monotone, distributive function from Y to V. Then F is continuous.

Proof. 1. Assume F is not continuous, then there exists a sequence {x,.}:;l
in ¥ such that ||x,||<1 for all #» and || F(x.)|| approaches infinity as # in-
creases. Thus ||F (ya) —F (z,.)“ approaches infinity as # increases and y, and
z, are in C for each 7. Further, each , can be chosen so that ||y./| < M. Since
“zn”—“yn”é“yn—z,.Hél, zn|[§M+1. Therefore either IF(y,./]l/[)“ ap-
proaches infinity with % or || F(z./ (M +1))|| does, for if not || F(x4)|| would be
bounded.

2. Thus, there exists a sequence {w,} in C such that |lwal| =1 and
|| F(wa)|| Zn2n for all m.




1956] THE HAHN-BANACH EXTENSION PROPERTY 235

3. The series Y (w,/2") converges in norm to an element w in ¥, for
| 2255 (wn/2")“ =>4, (“w,.“/Z")_S_ >, 1/2* and thus approaches zero
as p and g approach infinity. Hence, since Y is complete, w exists.

4. Define u,= D 1, (w;/2%). Then, up—u,20, if p=q. Hence, since C
is closed under norm convergence of monotone increasing sequences, w is in
C. Also, w—w,/2¥= Y (w./2") is the C for each k. Therefore ||F(w)||
2 || F(ws/2%)|| for each k. Hence ||F(w)|| Z|| F(ws/2%)|| 2 k2%/2¢=F for every
integer k. This is impossible since F(w) is in V and thus has finite norm.
Therefore F is continuous.

VI. Applications. The next theorems are restatements of previous theorems
where the space V is taken to be the real numbers, or a space of bounded
functions. Theorem 15 is a generalization of a theorem of Banach [1] and of
some theorems by A. P. Morse and R. P. Agnew [8]. It is concerned with
Hahn-Banach extensions. Theorem 16 is a generalization of a theorem on
monotone functionals of Krefn and Rutman [7]. Theorem 17 is concerned
with a generalization of the concept of an invariant mean.

THEOREM 15. A. If (1) Y is a vector space with subspace X, (2) p is a posi-
tive-homogeneous, subadditive functional defined on Y, (3) f is a distributive
Sfunctional defined on X such that f(x) S p(x) for all x in X, (4) G is a semi-group
of operators from Y to Y such that gx is in X for every x in X and g in G, (5)
p(gy) =p(y) for all yin YV and g in G, (6) f(gx) =f(x) for all x in X and g in G,
(7) G, considered as an abstract semigroup, has an invariant mean, then there
exists a distributive extension F of f to all of Y such that F(y) <p(y) and F(gy)
=F(y) for allyin YV and g in G. '

B. If, in addition, Y is a linear topological space, and p is continuous, then
F is continuous.

C. If, in addition, Y is a normed space and p(y) =|| f||
then there exists a linear extension F of f such that || F|| =||f
forallyin YV and g in G.

y|| for all y in ¥,
and F(gy) = F(y)

Proof. A. The real numbers satisfy the conditions on the space V in Theo-
rems 2 and 3. Hence either of these theorems apply.

B. Theorem 12 applies.

C. B applies directly.

THEOREM 16. A. If (1) Y is an ordered linear space with cone C and sub-
space X such that y+X meets C for every y in Y, (2) f is a monotone distributive
functional defined on X, (3) G is a semigroup of operators on Y such that g maps
X into X, C into C and f(gx) =f(x) for all x in X and g in G, (4) G considered
as an abstract semigroup has an invariant mean, then there exists a monotone,
distributive functional F, an extension of f to all of Y, such that F(gy) = F(y) for
allginGandyin Y.

B. If, in addition, Y is a linear topological space and C contains an interior
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point, or F has constant sign in some neighborhood of a point in Y, then F is
continuous.

C. If, in addition, Y is an ordered, normed space with sharp cone C such
that C has a norm-interior point u, such that u is in X and ||u|| =1, then || F|
<1/ r” f “ , where r is the radius of the largest sphere about u contained in C. Thus,
if r=1, then || F|| =||fl].

Proof. A. Since the real numbers satisfy the hypotheses for V in Theorem
2, Theorem 2 applies.

B. Theorems 10 or 11 apply.

C. By Theorem G, §II, the result follows.

THEOREM 17. Consider Y = Y(®), a normed space of real-valued functions
(sup norm) containing the constant 1 function e defined on a semigroup & which
possesses an invariant mean. Assume Y is ordered by cone C= {y: y(g) 20,
gE®}. Consider V="V(S), a space of continuous functions on an extremally
disconnected compact Hausdorff space S. Then there exists a monotone, distribu-
tive linear function M from Y to V such that || M|| =1, M(e) =u, where u is the
constant 1 function in V, and M(R,y) = M (Lyy) = M(y), where Ry and L, are
respectively elements of the right and left regular representations of G on Y.

Proof. 1. Define the distributive, monotone function f from X = {te: {ER
(real numbers) } to V: f(te) =tu. Note that y+ X meets C since e is an interior
point of C. Representations R, and L, leave X fixed and map C into itself.
Hence, since @ has an invariant mean and V satisfies the conditions of
Theorem 3, there exist monotone, distributive extensions Mg and My, of f
which are invariant with respect to the right and left representations respec-
tively.

2. Define M, a function from Y to V: M(y)=M.(y’), where ¥'(g)
= Mz(L,y) for each g in G. The function M is clearly monotone, distributive
and an extension of f. Since (Lyy)'(g")=Mgr(L,Lyy)=Mgr(Ley)=y"(gg")
=(Lyy")(g"), it follows that L,y'=(L,y)’. Hence, M(L,y) = M(y) for every
g and y. In addition, M(R,y) = M(y) for every g and y. This follows because
(Ry)'(g') = Mr(LyRyy) = Mr(R,Lyy) =9'(g') for each g'.

3. That || M|| =1 follows because V is locally restricted, lle]l =1, and the
sphere of radius 1 about e is contained in C.
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