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1. Introduction. The purpose of this paper is to extend to the dependent

case the Erdos-Kac invariance principle [6; 7; 11 ], as generalized by Donsker

[4]. Let C be the space of functions x(t) continuous on the closed unit inter-

val, let p be the metric on C defined by p(x, y) = sup* | x(t) —y(t) \, let Q be

the Borel field generated by the open sets and let IF be Wiener measure on C.

Let {Xx, X2, • • ■ } be a sequence of randon variables on some probability

measure space (fl, (B, P). Let Sn = Xx+ ■ ■ ■ +XV, S0 = 0 and let pn be that

element of C which is linear on each of the intervals ((j — l)n~K jn~l),

J = l, •••,«, and satisfies pn(jn~x)=Sj for j = 0, 1, • • • , n. That is, let p„

be the random function with the value

(1.1) Pn(t)= Sj +(nt- j)Xi+l

if jn~1^t^(j+l)n~1, j = 0, • • • , n — 1. Thus p„ is a mapping of fl into C.

It is easy to show that this mapping is measurable. Donsker's theorem, which

subsumed previous results in this direction, states that if / is a function on C

continuous except on a set of IF-measure zero and if the sequence {Xn} is

independent and stationary with £{Xn} =0 and p{X^} =1, then

lim P{f(n-ll2pn) = a} = W{x:f(x) = a}
n—*«

at continuity points a of the function W{x:f(x) ^a}. If/(x)=sup( x(t) for

example, this leads to a limit theorem for maxk^nSk. See [4] for other func-

tions / which lead to interesting limit theorems.

It should be pointed out that in place of the random element of C defined

by (1.1), Donsker actually worked with the "random step function" with

value Sy throughout the interval ((j—l)n~\ jn~1}. There is of course no real

difference between the two methods and one is led to essentially the same

limit theorems.

There is another way of stating Donsker's result. Suppose there exists-a

sequence {o„} of positive constants such that if P„ is a measure defined by

setting Pn(A)=,P{aZ1pnEA} for AEQ, then Pn converges weakly to IF.

When this is true we say that the invariance principle holds for the sequence

{Xn} with norming factors {an}. Then (cf. Theorem 2.1 below) Donsker's

result is that the invariance principle holds, with norming factors «1/2, pro-

vided   {Xn}  is an independent, stationary sequence with E{Xn} =0 and
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E{Xl} =1. The assumption that {-Xn} is stationary is relatively unim-

portant. It is the purpose of the present paper to replace the assumption of

independence by various weaker hypotheses.

In §2 we prove generalizations (Theorems 2.2 and 2.3) of some results

implicit in [4]. The general line of attack is similar to that of [4], but the

proofs are improved. In §3 these theorems are applied to the derivation of a

general set of conditions on the sequence {XH} which insure that the invari-

ance principle holds with a suitable sequence of norming factors. These con-

ditions are ones which can be verified for those dependent sequences of great-

est interest. (The elegant method of Prohorov [13] seems difficult to apply

to dependent sequences.)

In §§4 through 7 the result of §3 is specialized in various ways. In §4 the

invariance principle is proved for sequences {f(xn)}, where / is a function

defined on the state space of a discrete Markov process {xn} satisfying

Doeblin's hypothesis. The conditions under which this result is obtained are

identical with those under which the central limit theorem (CLT) for such

sequences is proved in [5]. In §5 we prove the invariance principle for m-

dependent sequences of random variables. This result is obtained under

assumptions slightly stronger than those of Marsaglia's CLT for w-dependent

sequences [12]. The next section treats of discrete linear processes with

w-dependent residuals, processes which arise in the analysis of time series.

Here we prove the invariance principle under conditions only a little stronger

than those assumed by Diananda [3] in his proof of the CLT for processes

of this kind. Finally, in §7 we prove the invariance principle for the number

of occurrences of a recurrent event. Here we assume that the recurrence time

has a finite second moment.

It is possible to prove the invariance principle in cases other than those

considered here. One can, for example, prove it for martingales, as Levy

[10] has the CLT, or under the assumptions of Bernstein's lemme fondamental

[2]. Although no applications have been essayed, the processes treated are

those of greatest interest for the applications.

This paper is part of a doctoral dissertation presented to the faculty of

Princeton University. The author would like to thank Professor Feller for

his help and encouragement.

2. Weak convergence of measures. In this section we prove several useful

theorems on the weak convergence of measures. Consider first an arbitrary

metric space 9C with metric p. If Pn, P are probability measures on the Borel

sets, we say that P„ converges weakly to P (in symbols Pn=>P) if ffdPn

—>JfdP ior all bounded continuous functions/. (We omit the region of integra-

tion when it is the entire space.)

Theorem 2.1 gives several convenient sets of conditions equivalent to

weak convergence. For its proof we require a lemma related to that of Ury-

sohn.
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Lemma 2.1. If A and B are sets with p(A, B)>0, then there exists a function

which is 1 on A, 0 on B, everywhere between 0 and 1 and uniformly continuous

on 9C.

Proof. We may of course assume that A and P are nonempty. With the

exception of uniform continuity, it is clear that the function

P(*. B)
f(x) = -

p(x,B) -\- p(x,A)

has the required properties. It follows from standard inequalities (cf. [l,

p. 57]) that p(x, A) and p(x, B) are uniformly continuous and that p(x, P)

+p(x, A) ^p(A, B). The function of two non-negative real variables defined

by the formula £/(£+ij) is uniformly continuous on any domain on which the

denominator is bounded away from zero. Since a uniformly continuous func-

tion of uniformly continuous functions is uniformly continuous, f(x) is uni-

formly continuous.

In what follows we denote the boundary of a set A by A. If P is a probabil-

ity measure on the Borel sets of 9C and / is a Borel measurable function then

P{x:f(x) ^a} is a function of a which we call the P-distribution off.

Theorem 2.1. The following statements are equivalent.

(i) Pn=>P.

(ii) ffdPn—>ffdP for all bounded, uniformly continuous functions f.

(iii) P(A) =limn P„C<4) for any Borel set A such that P(A) =0.

(iv) For any measureable function f which is continuous except on a set of

P-measure zero, the P„-distribution of f converges to the P-distribution of f at

each continuity point of the latter.

(v) For any bounded, uniformly continuous function f the P n-distribution of

f converges to the P-distribution of f at each continuity point of the latter.

Proof. The implications (i)—>(ii), (iii)—>(iv), (iv)—>(v), (iv)—>(i) and

(v)—>(ii) being simple to prove, we treat here only the implication (ii) —>(iii).

Clearly (iii) follows if

(2.1) P(A) ^ lim sup P„(.4)
n

holds for all closed sets A. Suppose (ii) holds and A is closed. Then it is pos-

sible, given €>0,tofind a 5>0 such that if U = {x:p(x, A) <S} then P(U—A)

<€. Clearly p(A, 9C— U) ^5. Hence, by Lemma 2.1, there exists a uniformly

continuous function/ which is 1 on A, 0 on 9C— U and everywhere between

0 and 1. Now ffdPn-*ffdP by assumption and ffdPn^Pn(A), while JfdP
= P(.4)+e. From these three relations it follows that lim supn Pn(A) =P(^4)

+ €. Since e was arbitrary, we have (2.1).

Let C, p and Q be defined as in §1. Theorem 2.2 below gives a simple cri-

terion for the weak convergence of measures on Q. For its proof we need a
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lemma which is a variation on a result due to Donsker [4]. If xEC and c is a

positive integer, define, for/ = l, • • • , c,

aj(x) = inf {x(t):(j - l)c-1 ^ I g jc-i},

bj(x) = sup {*(/): (j - Vc-1 S t = jc-1},

and let irc(x) = (ai(x), • • • , ac(x), bi(x), • • • , bc(x)). Thus ire maps C into

2c-space. If <p is bounded and continuous on 2c-space, then <f>(irc(x)) is a

bounded continuous function on C. Let ft be the set of functions on C arising

in this way.

Lemma 2.2. Let f be a bounded, uniformly continuous function on C. There

exist two sequences {// }, {/„" j of uniformly bounded functions in Q, such that

(2.2) f'c(x) g fix) £ /."(»),

/or a// c aMa" x aMO* such that for all x

(2.3) lim(fi'(x)-fi(x)) = 0.
c—*«

Proof. For each c let M*lC be the set of yEC such that aj(x) ^y(t) goy(x)

for (j — l)c~1^t^jc~1,j = l, • ■ ■ , c. Now define

/.'(*) = inf {f(y):yEMx,c},

fi'(x) = sup {f(y):yEMx,c}.

It is clear that // and //' satisfy (2.2) and that they are bounded by the

bound of/. And (2.3) follows from the uniform continuity of/.

There remains only the proof that // and //' belong to OL. Consider the

case oi fi'. Let S be the set of points f = (fi, • • • , f2c) of 2c-space such that

fy = fe+y for j = l, • • • , c and such that the closed intervals [fy, fy+c] and

U"y+i> fc+y+i] have a nonempty intersection for j = l, ■ • • , c — l. Then 5 is

closed. For f ES define <p(f) =supf(y), where the supremum is extended over

the set oi yEC ior which fy ̂  y (t) =" £ c+y if / — 1 ̂  /c ̂ /, for j = 1, • • • , c. Obvi-

ously irc(x)G^' for all xGC, 0(7re(x)) =/" (x) and <p is bounded. If <p is con-

tinuous on 5 then it is possible by Urysohn's extension theorem [l ] to extend

<t> to all of 2c-space in such a way that it remains bounded and continuous.

Hence the proof can be completed by showing that d> is continuous on S.

This part can be established by the methods of the proof of Theorem (3.1)

of [4]. We omit the details.

For any integer c and real numbers an, • • • , ac, (8i, • • • , /3C, consider the

set

(2.4) E = {x: ay = x(t) =S Bf, j - I g ct £ j, j = 1, • • • , c}.

Theorem 2.2. Suppose that for probability measures P„ aM^ P on Q we

have P„(£)->P(£) for all sets E of the form (2.4) for which P(E) =0. Then

Pn=*P.
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Proof. We show first that

(2.5) ffdPn-*ffdP

for any function/ in Ct. For a fixed integer c define p„(S) =Pn(ir^~1(S)) and

p(S) =P(irr1(S)) for 2c-dimensional Borel sets S. If S is the set of

f = (fi, • • • > hi) such that fy = ay and ?o+j£Bj,j=l, ■ ■ ■ , c, then vrl(S) =E,
so that p„(S)—>p(S), provided p(S)=0. But this obviously implies p„=>p.

Hence

(2.6) I  4>dun —* I  4>dn

for any bounded continuous function <p. But if f(x) =<p(irc(x)), (2.5) follows

from (2.6) by a transformation of the integrals involved. Hence (2.5) holds

for any function/ of Ct. It now follows easily, by Lemma 2.2, that (2.5) holds

for any bounded, uniformly continuous function/. Hence by Theorem 2.1

((ii)->(i)) we have Pn=>P.

Let An be the set of functions xEC which are linear on each of the inter-

vals ((i — l)n~\ in'1) for i = l, ■ ■ • , n, and satisfy x(0)=0. Since the pn

defined in §1 lies in An it is of interest to specialize Theorem 2.2 to the case

where P„(^4n) = 1.

Theorem 2.3. Suppose that for probability measures P„ and P on C we

have Pn(An) = 1. Suppose further that Pn(G„)^>P(E) provided E is any set of

the form (2.4) for which P(£) = 0 and Gn is the set of x for which aj^x(in~l) ^Bi

if j—l£icn~1£j,j = l, • ■ • , c. Then Pn=*P.

Proof. Let e be a small positive rational and let Etii be the set where

ay+5^x(0=j8y-8 if (j-^c^ + e^t^jc^-e (j = 2, ■ ■ ■ , c), whereai+8

^x(/)^/3i-5 if 0-^t^c-l-t, where ac + o^x(t) g&-S if l-c^ + e^t^l

and where max (ay, ay+i)+5^x(<) ^min (/3y, /3y+i)—5 if jc~l — t^t^,jc~l-\-t

(j=l, ■ • • , c—1). For fixed e and distinct 5 the sets £tit are disjoint. It is

therefore possible to find for each e a 8(e), with 0<5(e)<e, such that if

P« = P«,S(«) then P(£,)=0. Let G„,t be the set of xEC satisfying the condi-

tions defining Et at points / of the form in~\ i = 0, • ■ ■ ,n. Since e is rational,

Et can be cast in the form (2.4) and G„,< bears the same relation to Ef as Gn

does to E. Then by hypothesis P„(G„,e)—>P(£e). Now EEGn, while GB,«y4„C-E

provided w_1<e. Hence

(2.7) P(Ei) g   lim inf Pn(E) g limsupPn(£) ^ P(E).

Since E contains U, Ef, which in turn contains the interior of E, and since

P(E) =0, we can conclude from (2.7), by letting e tend to 0 through rational

values, that P„(E)—>P(P). Hence the result follows from Theorem 2.2.
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A useful fact in the theory of distributions on the real line is that if the

distributions of a sequence {Xn} of random variables converge weakly to

some distribution, then so do the distributions of {Xn+F„}, provided

p limn F„ = 0. We conclude this section with a theorem which plays an

analogous role in the theory of distributions on 6. The theorem and its proof

obviously remain unchanged if C is replaced by any Banach space.

Let {X„} and { Y„} be two sequences of measurable functions on some

probability measure space (ft, 03, P), with values in C. For AEQ let Pn(A)

= P{XnEA},P/i(A)=P{Y,.EA} andP„"(^)=P{Zn+FnG^}.Let £7be
the measure on C which places unit mass at the function which is identically

zero. Suppose Q is a probability measure on Q.

Theorem 2.4. If Pn=*Q and Pn=>U then P„"=»(?.

Proof. Clearly P„' => U if and only if

(2.8) limP{p(0, Yn) S e} = 0.
n-.°o

for all «>0. Let/ be a bounded, uniformly continuous function on C. Given

e choose 5 so that |/(x) —f(y) | <e if p(x, y) <5. Then

P{ I S(Xn) - f(Xn +Yn)\   S e} = P({P(Xn, Xn + Yn) S 5} -> 0

by (2.8). Hence

(2.9) p lim (f(Xn) - f(Xn + Yn)) = 0.
n—»»

Now by Theorem 2.1 ((i)->(v)), limn P{f(Xn)^a} =Q{x: f(x)^a} at con-

tinuity points of the latter function. Hence by (2.9) and the above-mentioned

fact in the theory of distributions on the real line, lim„ P{f(Xn+Yn)^a}

= Q{x: f(x)^a}. Since this holds for all bounded, uniformly continuous/,

the result follows by Theorem 2.1 ((v)—»(i)).

3. A general invariance principle. Let { X„} be a sequence of random

variables on a space (ft, 03, P) and let pH be the random function defined in

§1. In this section we give conditions under which the invariance principle

holds for {Xn} with norming factors {a„}.

For integers c, v and n define My= [jnc~x], j = 0, 1, • • • , c and My,«

= [n(v(j — l)+u)c~1v~1],j=l, ■ • • , c, m = 0, 1, • • •, v. For any real numbers

ay, fly let En,r he the ft set where the relations

(3.1) a, = a„ S, ^ fly if m,_i < i g »,•

are satisfied for i<r, but not for i = r.

Theorem 3.1. The invariance principle holds for the sequence {Xn} with

norming factors {an} if the following two conditions are satisfied.

Condition  (i).  For each integer c the distribution of the random vector
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an~1(Snl, 5„2 —5„u • • • , Sne — Snc_J approaches, as n—>oo, the normal distribu-

tion having zero means and having as covariance matrix c~x times the identity

matrix.

Condition (ii). For each integer c, each set (ai, ■ ■ ■ , ac, fli, • • • , A,.) aMO*

each e>0,
n

(3.2) lim limsup Y F(F»,r C\ { \ST> - Sr\   S ea„{) = 0,
v-*oo       n—*«        r=l

where the r' corresponding to each r is that integer of the form My,u+i such that

(3.3) »,-,„ < r ^ M/,u+i.

Proof. Throughout the rest of the paper we will be dealing with sums of

the sort appearing in (3.2). In each instance r' = My,u+i is a function of r de-

fined by (3.3).
We prove the theorem by a modification of an argument of [4]. Let E„ he

the ft set where (3.1) is satisfied for all * = 1, • • • , n. Let E he the Cset where

ay^x(/)gfly if (j-l)c~x^t^jc-1, j=l, ■ ■ ■ , c. Let Z>„ be the C set where

o:yiSx(((j — l)v+u)c~rv_1) ^fly for/ = l, • • • , c and u = l, ■ ■ ■ , v. Further,

let Fn be the ft set where ay^ar^n.^fly for j = l, • ■ • , c and u = l, ■ ■ • ,v.

Finally, let Ee, DViC and F„i(E be defined in the same way as E, D, and Fn, but

with aj and fly replaced by a, + e and fly — e respectively. For My,u <r ^My,u+i = r'

write

P(E„,r)   =   P(En,rr\   {\Sr>-ST\    S  e«n})

+ P(En.rr\ {\Sr> -5,|   <«a»}).

Obviously the set in the second term of the right member of (3.4) is contained

in ft —F„,e. Hence, since ft —jE„=UrPn,r and the En,r are disjoint, we have

P(Fn.t) —i~y,n?HP(En) ^P(F„), where f„,„ is the first term of the right member

of (3.4). But P(Fn)^W(D,) and P(F„,t)^>W(D,,t) by Condition (i). Hence

IF(2?,,€)-lim supn f,,„glim inf„ P(£„)^lim supn P(En)^W(D,). Letting

»/—>«> we have, by Condition (ii), IF(£()^lim infn P(En) ^lim supn P(E„)

g W(E). Since U. Et is the interior of E, P(En)-*W(E) if W(E) =0. Hence the

result follows by Theorem 2.3.

4. The invariance principle for Markov processes. In this section we

prove, using Theorem 3.1, the invariance principle for discrete Markov

processes satisfying Doeblin's condition. We use the definitions, notations and

results of [5, Chap. V]. Let Xbea space of points £ and let 'Sx he a Borel field

of subsets of X. Let {x„, mS 1} be a Markov process with state space X and

stationary transition probabilities

(4.1) P(Z,A)   =   P{xn+lEA\\xn=   £}.

That is, {x„} is a sequence of measurable functions from some probability

space (ft, 03, P) to X such that (4.1) holds, where the transition function
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p(£, A) is a measurable function of £ for fixed A E$x and is a probability

measure on Sx for fixed £. The initial distribution tr is defined by tt(A)

= P{xxEA} and the n-step transition probabilities by

p^a,A) = P{xn+iEA\\xi = £}.

The existence problems involved here are resolved in [5].

It is known [5] that if Doeblin's condition is satisfied then the states can

be classified according to their ergodic properties. It is known further that

if the following hypothesis is satisfied then the w-step transition probabilities

converge exponentially.

Hypothesis (D0).

(a) Doeblin's condition is satisfied.

(b) There is only a single ergodic set and this contains no cyclically moving

subsets.

That is, it is known that if (D0) holds then there exist positive constants y

and p, p<l, and a (unique) stationary initial distribution p such that

\pM(£, E)-p(E)\ ^7p" for all ££X, EE$x and «=-l. The results of this

section will be obtained under the assumption of (D0).

In what follows, the initial distribution under the assumption of which a

probability or expectation is computed will be denoted by a subscript, thus:

PT(E). If ir = p, the subscript will be omitted.

It is convenient to have available the following corollary of Lemma 7.2

of [5, Chap. V]. The proof, which goes by induction, is easy.

Lemma 4.1. Suppose we have integers u,, Vi with ux^=vx<u2^v2< • ■ • <um

^vm and Ui — Vi_x^B^.l, i = 2, ■ ■ ■ , m. Under Hypothesis (D0), let fj be a

random variable, with |/,-| ^l,onxUj, • ■ • , x„y sample space, for7 = 1, ■ ■ • , m.

Then \E{fx ■ ■ •/„} -E{fx} ■ ■ • E{fm}\ £2mypB.

We come now to the invariance principle.

Theorem 4.1. Under Hypothesis (D0), let f be a real-valued function of £,

measurable Sx, with p{/(xi)} =0 and E{ |/(xi)|2+5} < °o for some 5>0. FAerc

(4.2) lim E Un-™ £ /(*,)) i  = a\

exists. If o\ > 0 then the invariance principle holds for the sequence {/(x„)} with

norming factors axnll\ no matter what the initial distribution ir.

Proof. That the limit (4.2) exists is simply a restatement of Lemma 7.3 of

[5, Chap. V]. We prove the theorem first under the assumption of stationarity

and remove this restriction later.

We must show that Conditions (i) and (ii) of Theorem 3.1 are satisfied.

In the notation of that theorem, we must first prove that the distribution of

the random vector oT1«_1/2(Sni, S^ — S^, ■ • • , Snc — Sn^i)  approaches the
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appropriate normal distribution, where S*=/(xi)+ • ■ • +/(x*). Our proof of

this part of the theorem follows [5]. Let {an} and {Bn} be two sequences of

positive integers such that if   {pn}  is defined by

Hn = [(min («, - »,_i) - Bn)(an + /3B)_1],

then pnBnan1—>0 and pBpfl"—>0, while aB, j8n and pB all go to infinity. For ex-

ample one can take Bn'^nc~1 and a„ =Bn- Now for j= 1, ■ • • , c let

(m-l)(a+0) + a

Vi." = ]C /(*»y-i+t). *» =  1, • • • , p,
•=(m-l)(o+/5)+l

m(a+0)

yj.m = £ /(xBj_1+1), m = 1, • • • , p,

i=(m-X)(a+g)+a+l

I "'

Vi.t+l   = Z) /(*ny _,+<)•
i-li(.a+0)+X

By Lemma 7.3 of [5, Chap. V] and Minkowski's inequality

// ix+X \2\ ,1+1

£1/2 )ln-l,2 £ y/.J |   ^ M-1'2 £ £1/2{(y,'.n.)2}

= 0(»-I',(p/S1'» + (a + 2J3)1'2)) = o(l).

Hence p lim„ w-"2 £mti y'i,m — 0, 7 = 1, • • • , c. Therefore it suffices to prove

the asymptotic normality of the random vector

(4.3) Ox   n [   £?!.*>,   •   •  •   ,   £  yc.mj.
\m— X m—1 /

Let <pB(Mi, • • • ,uc) =£{exp (*£j_i ui ES.-i arln~myj,m)} be the character-

istic function of (4.3). Now the last term/(x«) occurring in yy,m and the first

occurring in Vy.m+i have B other such terms in between them. And the last

term of yy,M and the first of yy+i,i have at least B others in between. Hence by

Lemma 4.1, <pn(ui, ■ ■ ■ , ue) = LTm-iIT'-i P{exp (/wycrr1w_1/2yy,m)} + «„, where

| «B| ̂ 2ycppfi+1 =o(l). Thus the proof of Condition (i) will be complete if we

show that the distribution of the vector

(4.4) o-x n      I £21.m, • • • , £ 2*.'»)
Vm=l m-l /

approaches the appropriate normal distribution, where zy,m (j=l, ■ ■ ■ , c,

m = l, ■ ■ • , u) are independent random variables each having the distribution

of yi,i. Since p/an-*c~l, it follows that

(4.5) lim E<lai n        £ s,,mJ \  = c~K j = 1, • • • , c.
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Since the components of (4.4) are independent, its covariance matrix ap-

proaches c_1 times the identity. By Lemma 7.4 of [5, Chap. V] there is a con-

stant a such that E {| zUm |2+s} ga1+W2>. Hence, by (4.5), for n sufficiently

large,

YE{\cTn-l%,m\2^}

-^±-^ 2 -in = o(1)-

Thus Ljapunov's condition holds and Condition (i) follows.

We turn now to Condition (ii). Let E„,r, r', c and v be as in Theorem 3.1.

Define a sequence {fl„} of integers by fl„= [log »]. If r+Bn<r' then

it        P(En,rr\ { I Sr- - ST | S «,w*}) =S P(En.r C\ { \ Sr- - Sr+fl |   S «,i/»/2})
(4.6) . , . .

+ P{\Sr+»-Sr\   SeM^/2},

and we can estimate the terms on the right separately. Now

P{ |5r. -5r+„|   SeMi/V2||xi, ■■■ ,xr}

=■ P{ | S^ - Sr+a I   S mWfr) + 2yP»

by Lemma 7.2 of [5, Chap. V] and the Markov property. By Chebyshev's

inequality and Lemma 7.3 of [5, Chap. V], P{ | 5I..-5r+/J| SeM1/2/2}

^j4e~2M-1(My,u+i — (r+B)) ^2A/t2cv, where A is a constant. By these two

inequalities and the defining property of conditional probabilities,

(4.7) P(£„.rn { \Sr> - Sr+s\   S e«i/y2}) ^ (2Ae~2c-h-i + 27P«)P(£n>r).

To estimate the second term in (4.6) observe that

P{ | Sr+B - Sr I S en*"} =g Y P{ I f(xi) |   ^ tf-VV2}
V*'°) i-r+1

= /3P{|/(*,)|   S«/3-%»/2/2}.

Therefore, by (4.6), (4.7) and (4.8),

P(En,rr\  { \ST> - Sr\    S tn"2})  ^   (2^*-2C-1J--1 + 2ypf>)P(En,r)

+ 8P{\f(xi)\   Se/^M1'2^}.

This estimate was obtained under the assumption that r+8<r', but obvi-

ously holds in the other case as well. Since the E„,r are disjoint we have then

n

Y P(Pn.r f~\ { | Sr. - ST |   S eM1'2}) = 2 A ̂ (rh^ + 2yp»

+ n8P{\f(xi)\  S^fl-V2^}.

Since



260 PATRICK BILLINGSLEY [September

n8P{ \f(xx) |   = e/3-1M1/2/2|  ^ (2/e)2+s^+5n-s'2£{ \ f(xi) |2+s},

(3.2) follows immediately.

We have thus proved the theorem under the assumption that the initial

distribution is the stationary one, which assumption we now remove. Let tt

be any initial distribution. We show first of all that there exists a sequence

{Bn} of integers going to infinity so slowly that

(4.9) lim P, |max | S,-1   =■ ««1/21  =0

for all e>0. In fact, for each A select an integer mk so that

£ Pr{ | /(**) |   = A-V3} < A-1 if n = mk.
i—l

Clearly we can choose the mk so that mk<mk+i. If Bn = k for mt<«^»it+i then

{Bn} satisfies (4.9) for all e>0. We may at the same time choose {/3„| so that

(4.10) lim P< max | 5, |   = mll2\  =0

for all e>0.

Let pn be the random function defined by (1.1), where X,=f(xi). And let

pn be the random function defined by

^"      "    l^On^1) if ^w-1 = t = 1.

Finally, let p„" =pn—pn- Now (4.9) and (4.10) respectively imply

(4.11) lim P,imax»-,/2/>n'(0 = 4  = 0

and

(4.12) lim p\ max «-1/2/>„'(0 ̂  el  =0.
n->» (oSl^l J

Since we have shown that the invariance principle holds for the stationary

initial distribution, P{arln~llipnEA}=>W(A). By (4.12) and Theorem 2.4,

P{crr1w-1/2£n"e/l}=>IF(;l). It is clear that the set {err1**-1'2/'" EA} is

measurable on xp+i, x^+2, • • ■ sample space. Hence, by Lemma 7.2 of [5,

Chap. V],

| Pw{tx'l*-il%p£' EA} - P{<rr%-1'*#»" E A } \   ^ 2Tp* = o(l).

Hence P^r'n"1'^," EA }=*W(A\. But from this, (4.11) and Theorem 2.4
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it follows that PT{ar1n~1/2pnEA }=>W(A). This completes the proof of the

theorem.

5. The invariance principle for w-dependent random variables. A se-

quence {Xn} oi random variables is said to be.w-dependent if the random

vectors (Xn, • ■ ■ , Xn+r) and (Xn+„ ■ ■ ■ , Xn+t) are independent whenever

s—r>m. Sequences having this property are of interest in statistics and have

been studied by various authors (cf. [2; 9; 3; 12]). In this section we concern

ourselves with the invariance principle for such sequences.

Then let {Xn} he an w-dependent sequence of random variables with zero

means and finite variances. Marsaglia [12] has proved the central limit theo-

rem for such a sequence under the assumption that EJTY^} is bounded, that

(5.2) below is satisfied and that nsn2 = 0(l), where sl = E{Sl}. The following

theorem asserts the invariance principle under slightly stronger assumptions.

Theorem 5.1. If for an m-dependent sequence {Xn}, E{Xn} =0, E{Xn} is

bounded,

(5.1) \sl-no}\   =0(1)

for some constant a2>0, and

n

(5.2) lim sn2-" Y P{ I Xi \2+s} = 0
n-»°° i-l

for some 5>0, then the invariance principle holds for the sequence {Xn} with

norming factors anl/2.

Proof. We first show that Condition (i) of Theorem 3.1 is satisfied, using

the technique of Marsaglia [12]. Let (mi, • • ■ , mc) be defined as in §3 and

for each pair (n, k) with 2m<k<nc~1 and each j = l, • • • , c define

k—m

yi.i = Y ^ny_i+(t-i)*+»,        1 =" i =" [krl(nj- »y_i)],
D=l

m

yi.i =   Y Xnj-i+ik-m+v, 1   =   J  <   [k~l(nj — »/-l)],

nj—nj —\—i+ m

yi.i= Y Xnj^+ik-m+v,       1=    [£_1(Mj —  »;-l) ]•

Let

<y) [*_V./-n/-0] V) H-^C-t./-!)]      ,
gn.k = 2^ Vi.i, en.h = 2-, yi.i-

i-l i=l

Now by Holder's inequality, if i< [&_1(My — My_i)] then

E[y,'.i} g w £ P{X„J.l+ik-m+v} ^m B,
K-l
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where B is the bound on E{Xl}. Using this inequality, a similar one for the

case i= [A-1(wy—«y_i) ] and the fact that the y'Jti are independent, we see that

(5.3) E{(en,ly} = (Wy - wy_i)A-iw!£ + (A + mYB.

One obtains in a similar manner the inequality

(5 4)    l£{P»y-'V^} -Ei(Sn^}\
= 5(»,— «y_i)A-%25 + (k + mYB + 2m2£.

From (5.3) and (5.4) it follows that

(5.5) lim limsupw   a   £{(«„,*) } =0,

(5.6) lim lim sup »~V* | £{(S„, - Sn}_i)*} - E{g(l%*} |   =0.

Note that these two relations have been obtained without the use of (5.2).

Now by (5.1),

(5.7) £{(Sn+,-SB)2} = ;<r2 + t>,

where t? is bounded. From this fact and (5.6) it follows that

(5.8) lim limc«~V2£{(g„'l)2} = 1,
jfc—♦»   n—»«o

where the limit is to be taken in the strong sense (cf. [12]).

We now show that if A is sufficiently large then the distribution of the

vector

(5.9) ((rn.t)    gBli, • ■ • , (rn,k)    gn,k),

where (r^)2 = £ {(g^k)2}, approaches, as «—> oo, the normal distribution with

zero means having the identity as covariance matrix. But for A sufficiently

large this follows, via Ljapunov's condition, from (5.7), (5.1) and the fact

that
h—m

E{ | yy,-|2+M = A' £ £{ | Xnj_1+li-l)h+vM.
»—i

And now from (5.8) and the obvious multi-dimensional analogue of Theorem

2 of [12] it follows that the distribution of tr-^-1'2^, • • • , gn%) ap-

proaches, if n—■> =° and then A—> oo, the normal distribution having zero

means and having as covariance matrix c_1 times the identity. In order to

show that the distribution of cr~1«-1/2(SB1, Snt — Sn„ ■ ■ • , S„e—SBt_,) ap-

. proaches, as n—> oo, this same normal distribution it is enough, by the multi-

dimensional analogue of Theorem 1 of [12], to show that
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..        .. -1   -»/»,  (1) C«K n
p lun  lun o-   n      (e„,k, • • • , en.k) = 0.

lc—.oo  n—*°°

But this follows immediately from (5.5) and Chebyshev's inequality.

We have thus proved Condition (i) of Theorem 3.1 and pass to Condition

(ii). Using all the notations of that theorem,

r+m

P{ | Sr+m - Sr\   S en^/2} ^ £ P{ | X»|   S m"2/2m}.

Hence,

Y P{ I Sr+m - Sr\  S m^/2} ^mY,P{\Xv\   S tnl'*/2m}

(5.10) "' -1      n

g m(2wA)2+5»-1-<*/2) YE{ I Xv\2+1} = o(l)

as m—><», by (5.2). And (making the inessential assumption that r+m<r')

by Chebyshev's inequality and (5.7), P{ | 5r.-5r+m| SeM1'2/^} £4(«*a0_1

+4i?(e2M)_1. Hence, since Sr' — Sr+m is independent of £„,„

(5.11) lim sup Y P(Pn,r C\ { | Sr- - Sr+m |   S (n1'V2}) S 4/c«2.
n-">       r—1

And now (3.2) follows from (5.10), (5.11) and

12)    P(£n'rn f '5r' ~5r'  - eMl'^) - -Pl l^+m -5r|   S m1'2^}

+ P(£n,rn { | 5r-- 5™+,|   S ewi/2/2}).

It is possible, at the expense of complicating somewhat the proof of

Condition (ii), to relax the condition (5.1). In particular, it can be replaced

by s^M<r2.

Theorem 5.2. If {Xn} is a stationary m-dependent sequence of random vari-

ables with zero means and finite variances, then the invariance principle holds

for {Xn} with norming factors nx'2a, where a1 = E {X\} + 2 Y%-1 F {XiX*+i}.

Proof. Define y,-,,-, y'Ui, g„% and ejjgb as in the proof of Theorem 5.1. It is a

simple matter to show that (5.1) holds here. Since -E{JY|1} is bounded it fol-

lows that (5.5) and (5.6) hold in this case as well. In order to establish that

Condition (i) holds in the present case it suffices to show that the vector (5.9)

is asymptotically normal. But this follows immediately from the stationarity.

To prove that Condition (ii) holds we proceed as before. In fact (5.11)

and (5.12) are still valid. Finally,

m

Y P{ I 5,+m - 5, |   S HtW/2) = mnP{ | X, |   S. tnl'2/2m},
r-l
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and the right side of this inequality goes to zero since £{Xf} < oo.

6. The invariance principle for linear processes with w-dependent resid-

uals. Let { Yj>; j = 0, +1, ■ • ■ } be a stationary, w-dependent process such

that Fy has zero mean and a finite variance. Let {.4,; t = 0, 1, • • • } be a

sequence of constants such that

oo

(6.1) £ |i4,|   < ».
(-0

For a fixed i the series Xt= £,10 -4<F,-.( converges in probability. Consider

in fact the m + 1 series obtained by taking every (w + l)th term starting with

the first, the second and so on. These are series of independent terms so that,

since £^42 converges, they converge in probability (and even with probabil-

ity one). In the terminology of [3] the process {Xt; i = l, 2, ■ ■ ■ } is a

discrete linear process with m-dependent residuals. Clearly it is stationary.

Processes of this sort are of interest in the analysis of time series (cf. [3] for

references to the statistical literature).

Diananda [3 ] has shown that the central limit theorem holds for processes

which arise in this way, i.e., under the assumption that (6.1) holds. It is the

purpose of this section to prove the invariance principle for such processes.

We are forced, however, to make a stronger assumption on the nature of the

sequence {At}, viz., we assume that

(6.2) 14,, |   =0(n~3).

At the end of the proof we indicate some ways in which the requirement (6.2)

can be relaxed.

Theorem 6.1. Let { Yj} be a stationary m-dependent process with zero means

and finite variances and assume that (6.2) holds. Then / .Ln -4|F,_( converges

in probability, as n—>oo, to some random variable Xt= £,"0 AtYi-t, so that

{Xi; i = l, 2, ■ • ■ } is a stationary discrete linear process with m-dependent

residuals. The invariance principle holds for {Xn} with norming factors n1,2a,

provided a>0, where

**=(£, aMe[yI] +2££{f0F„]Y

Proof. That {X,} exists and forms a process of the type asserted follows

from the preceding discussion and the fact that (6.2) implies (6.1). In each

of the theorems of the preceding two sections Condition (i) of Theorem 3.1

was established for a particular process by modifying appropriately the proof

of the central limit theorem for the process. That Condition (i) holds for the

process {X„} of the present theorem can be proved by a similar modification

of the proof [3] of the central limit theorem for such a process. In fact one
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need only assume (6.1), rather than (6.2). To avoid repetition, we omit the

details and turn to the proof of Condition (ii).

We show first of all that there exists a sequence {fl„} of integers going to

infinity in such a way that

(6.3) limM/3„P{ | 7Yi|   S e8n1nll2/2} = 0.
n—>»

It is easy to show that Xi has a finite second moment. Hence there exists an

increasing sequence {mk} such that knP{| Xi| Se&-1M1/2/2} g&_1 if mSot*. If

one puts Bn = k for «i<»^ffli+i, then fl„ goes to infinity and (6.3) holds. If

fl„ goes to infinity then

(6.4) lim Yp\\ YY-v(Ab+v+ ■ ■ ■ +Ar>-r+v)   S enl'2/A  = 0.

In fact it follows from (6.2) that

(6.5) Pn = 0(«-2),

where Rn= \A„\ + |.4„+i| + • • • . Now

P\\ Y Y-v(Ae+v + ■■■ + Ar--r+v)    ^ «m1/s/4 \

= p{i: I F_„ I Sf+, S eM"2/4l

00

g   Y P{ I Y-v I Rf>+* ^ »1/2(fl + v)-sli},

provided n is large enough that Y^-o (8+v)^i*<e/i. But P{| Y-V\RB+V

^«"^+»)-5'4}^«-1(|3+j)5'!4„ so that by (6.5) the sum in (6.4) is

dominated by yi.ln (B+v)~312, which goes to zero since 8 goes to infinity.

Hence (6.4).

We now decompose the summand in (3.2) into

P(En,r n{\Sr- -ST\   S en"2}) ^P{\ Sr+0 - Sr |   S ml'2/2}

+  P(En,r(~\   {\Sr>~ Sr+0 |     S  m"2/2}),

where {fl„} satisfies (6.3) and (6.4). It follows immediately from stationarity

and (6.3) that
n

(6.7) lim  Y P{ I Sr+B - Sr I   > enl'2/2} = 0.
n-.»   r—l

Let r'—r = w. Then ST'—ST = £ + r], where

00

£ =   Y (AB+v +   •  •  •  + Aw+v)Yr-v
«—0
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and

t]  = AoYr+u, +   (^0 + Ai)Yr+w-l +   •  •  •   +   (AB +   ■ ■ •   + Aa-.fi-x)Yr+t)+X

B-l

+  V (Av +   • • •   + Av+w-B)Yr+B-v
v-0

Hence

P(£B,rn{|Sr--Sr+fl|   = «*1/2/2})

=■ P(£n,r)P{ U|   = «»1/2/4} + P{ | 11   £ ew1'2^

where the factorization of the first term on the right is valid if n is large

enough that /S„>m. Now by stationarity and (6.4) we have

n

(6.9) lim £ P{ | 11   = en1'*/*} = 0.
n-*»   r—1

Using the w-dependence property, one verifies

E{v2} g 2A*Bmw + a\ + (A0 + ^i)2 + • ■ ■ + (Ao + • • ■ + ^Uh»-i)'

0-1

+ £(a + • •• +av+w^y
v—0

^ w(2A*Bm + (T, \AV\\\,

where A =sup< |^4»| and P = max,gm |£{ FoF,} |. Since, in the notation of

Theorem 3.1, w^n/cv,

(6.10) £ P(En.r)P{ M   = €»1/2/4} g (const.)/tHv.
r-1

Finally, (3.2) follows from.(6.6), (6.7), (6.8), (6.9) and (6.10), completing
the proof of the theorem.

It is clear that (6.2) can be replaced by the weaker hypothesis (6.5). In

fact Rn = 0(n~1~i), 5>0, suffices. An examination of the proof shows that if

there exists a sequence {/S„} going to infinity in such a way that (6.3) and

(6.4) hold, then the result follows. This fact can be used to weaken (6.2)

under the assumption that Fy possesses some moment of order higher than

two.

7. The invariance principle for recurrent events. Let 8 be a recurrent

event in the sense of Feller [8]. Suppose that 8 is certain, let (X\, X2, • • • )

be the recurrence times of 8 and let St = .Yi+ • • • +Xk. Let Zn be 1 or 0

according as 8 occurs or not at the nth trial and let iVB = Zi + • • • +Z„ be the

number of occurrences of 8 during the first n trials. In this section we prove

the invariance principle for {Zn— p-1}, wherep is the mean recurrence time.
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Theorem 7.1. If the recurrence times of a certain, aperiodic recurrent event

have finite mean p aMd variance a2, then the invariance principle holds for the

sequence {Z„— p-1} with norming factors op-"^1'2.

Proof. Feller [8 ] has proved the central limit theorem for Nn by reducing

it to the central limit theorem for 5* via the identity

(7.1) {Ar„s k} = [Sk£n\.

Our proof that Condition (i) of Theorem 3.1 holds proceeds in the same way.

Let 3>(ai, • • • , a„) be the normal distribution with zero means and covari-

ance matrix (c~l min (i,j)). We must show that

(7.2) lim P{NKi - nirrl = ay^-*'**1", j = 1, • • • , c\ = *(ai, • • • , a.).
n-»«

For j = l, • • • , c let kj = k,(n) be one greater than the integral part of

njH~l+aj(xn~il2n112. Then (7.2) reduces to

(7.3) lim P{Nnj < k,, j = 1, • • • , c\ = $(«i, • • • , «.).

By (7.1) we see that (7.3) will follow if we can prove

hm P <-> -, j = I, ■ ■ ■ ,c>   = <P(ai, • • • , ae).
•—     W-UW*     cyr^n1'2 )

Since My — &y~ — ay<rp~1/2M1/2 and •3? possesses a symmetry, it suffices to show

that the distribution of a~1rill2nll2(Skl — ki, • • • , Skc — kc) approaches $. But

this follows easily from the central limit theorem for independent, identically

distributed random vectors and the fact that &y~wyp_1.

To establish Condition (ii) we define some auxiliary random variables.

Let Vr be the first trial, after the rth, at which 8 occurs. And define random

variables {fl„,r} by

(VT if Vr = r',

^"r =  V   if Vr > r'.

Then

Y P(En.r n   {   |   (Nr.   ~  r'^)   -   (Nr  -  T^) |     S   «M>/2})
r«l

(7.4) ^Y P(Pn,rC\   {   |  (A^„  -  8n.rH-1)   ~   (Nr  ~   V1) |     =   ̂ 2/2})
r=l

+  Y P(En.rr\   {  |  (Nr-  ~ r'M-1)   -   (N„M - 8n.rU-1) |      S  enl>2/2}).
r=l

Now Nffnir-Nr is 0 or 1, so that | (ty«,,-0.>ffr1)-(tfr-»'M~1)| ^1+M-1

•(Bn,r — r). Hence if n is large enough that €M1/2S4, the first sum on the right
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in (7.4) does not exceed P(Ur'.1 {/3„,r-r^era1/2/4}). But this is less than or

equal to the probability that before the «th occurrence of 8 there is a sequence

of at least ew1/2/4 consecutive trials at none of which S occurs, which probabil-

ity is clearly not greater than P{max,gB Xi^en1,2/4} ^nP{Xx^enll2/4:}.

Since Xx has a finite second moment nP{Xx^tnxl2/^} = o(l) and hence the

first sum on the right in (7.4) goes to 0 as n—*<x>.

By the defining properties of recurrent events, the second sum on the

right in (7.4) is equal to

(7.5) £   P(En.r)P{   \Nr-   ~   Na„,r  ~   (/  -  0B,r)p-» I     =  ^>2/2\.
r-l

It is shown in [8, p. Ill] that E{Nk} =Ap-1 + (cr2+p+p2)p-2/2-l+<?(l) and

Var {AT*}~Ao-2p-s, so that £{ (iV^-Ap-1)2} =0(k). If we now apply Cheby-

shev's inequality to the terms of (7.5), (3.2) follows from (7.4) and the result

of the preceding paragraph.
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