THE INVARIANCE PRINCIPLE FOR DEPENDENT
RANDOM VARIABLES

BY
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1. Introduction. The purpose of this paper is to extend to the dependent
case the Erdés-Kac invariance principle [6; 7; 11], as generalized by Donsker
[4]. Let C be the space of functions x(f) continuous on the closed unit inter-
val, let p be the metric on C defined by p(x, y) =sup. |x(t) —y(t)l , let € be
the Borel field generated by the open sets and let W be Wiener measure on €.
Let {X 1, Xay + v - } be a sequence of randon variables on some probability
measure space (2, ®, P). Let S,=X;+ - - - +X,, So=0 and let p, be that
element of C which is linear on each of the intervals ((j—1)n~!, jn~!),

j=1, - - -, n, and satisfies p,(jn—!) =S, for j=0, 1, - - -, n. That is, let p,
be the random function with the value

(1.1) pa(t) = Si+ (nt — HX i

if jn—'=t=(j+1)n"Y, j=0, - - ., n—1. Thus p, is a mapping of Q into C.

It is easy to show that this mapping is measurable. Donsker’s theorem, which
subsumed previous results in this direction, states that if f is a function on C
continuous except on a set of W-measure zero and if the sequence {X,} is
independent and stationary with E{X,} =0 and E{X%} =1, then

ling{f(n“”P») Sa} = Wiz f(x) £ af

at continuity points a of the function W{x:f(x) éa} . If f(x) =sup, x(t) for
example, this leads to a limit theorem for max;<,S;. See [4] for other func-
tions f which lead to interesting limit theorems.

It should be pointed out that in place of the random element of C defined
by (1.1), Donsker actually worked with the “random step function” with
value S; throughout the interval ((j —1)n=!, jn—!]. There is of course no real
difference between the two methods and one is led to essentially the same
limit theorems.

There is another way of stating Donsker’s result. Suppose there exists'a
sequence {a,} of positive constants such that if P, is a measure defined by
setting P,(4) #P{a; lp,.EA} for A€e, then P, converges weakly to W.
When this is true we say that the invariance principle holds for the sequence
{X,.} with norming factors {a,,}. Then (cf. Theorem 2.1 below) Donsker’s
result is that the invariance principle holds, with norming factors n'/2, pro-
vided {X,.} is an independent, stationary sequence with E{X,.} =0 and
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E{X,’,} =1. The assumption that {X,.} is stationary is relatively unim-
portant. It is the purpose of the present paper to replace the assumption of
independence by various weaker hypotheses.

In §2 we prove generalizations (Theorems 2.2 and 2.3) of some results
implicit in [4]. The general line of attack is similar to that of [4], but the
proofs are improved. In §3 these theorems are applied to the derivation of a
general set of conditions on the sequence {X,} which insure that the invari-
ance principle holds with a suitable sequence of norming factors. These con-
ditions are ones which can be verified for those dependent sequences of great-
est interest. (The elegant method of Prohorov [13] seems difficult to apply
to dependent sequences.)

In §§4 through 7 the result of §3 is specialized in various ways. In §4 the
invariance principle is proved for sequences {f(x.)}, where f is a function
defined on the state space of a discrete Markov process {x.} satisfying
Doeblin’s hypothesis. The conditions under which this result is obtained are
identical with those under which the central limit theorem (CLT) for such
sequences is proved in [5]. In §5 we prove the invariance principle for m-
dependent sequences of random variables. This result is obtained under
assumptions slightly stronger than those of Marsaglia’s CLT for m-dependent
sequences [12]. The next section treats of discrete linear processes with
m-dependent residuals, processes which arise in the analysis of time series.
Here we prove the invariance principle under conditions only a little stronger
than those assumed by Diananda [3] in his proof of the CLT for processes
of this kind. Finally, in §7 we prove the invariance principle for the number
of occurrences of a recurrent event. Here we assume that the recurrence time
has a finite second moment.

It is possible to prove the invariance principle in cases other than those
considered here. One can, for example, prove it for martingales, as Lévy
[10] has the CLT, or under the assumptions of Bernstein’s lemme fondamental
[2]. Although no applications have been essayed, the processes treated are
those of greatest interest for the applications.

This paper is part of a doctoral dissertation presented to the faculty of
Princeton University. The author would like to thank Professor Feller for
his help and encouragement.

2. Weak convergence of measures. In this section we prove several useful
theorems on the weak convergence of measures. Consider first an arbitrary
metric space X with metric p. If P,, P are probability measures on the Borel
sets, we say that P, converges weakly to P (in symbols P,=P) if [fdP,
—[fdP for all bounded continuous functions f. (We omit the region of integra-
tion when it is the entire space.)

Theorem 2.1 gives several convenient sets of conditions equivalent to
weak convergence. For its proof we require a lemma related to that of Ury-
sohn.
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LemMA 2.1. If A and B are sets with p(A, B) >0, then there exists a function
which is 1 on A, 0 on B, everywhere between 0 and 1 and uniformly continuous
on X.

Proof. We may of course assume that 4 and B are nonempty. With the
exception of uniform continuity, it is clear that the function

_ p(x, B)
P(xr B) + P(x: A)

has the required properties. It follows from standard inequalities (cf. [1,
p. 57]) that p(x, 4) and p(x, B) are uniformly continuous and that p(x, B)
+p(x, A)Zp(A4, B). The function of two non-negative real variables defined
by the formula £/(£47) is uniformly continuous on any domain on which the
denominator is bounded away from zero. Since a uniformly continuous func-
tion of uniformly continuous functions is uniformly continuous, f(x) is uni-
formly continuous.

In what follows we denote the boundary of a set A by 4. If P is a probabil-
ity measure on the Borel sets of X and f is a Borel measurable function then
P{x:f(x) §a} is a function of & which we call the P-distribution of f.

f(=)

THEOREM 2.1. The following statements are equivalent.

(i) P.=P.

(ii) [fdP.— [fdP for all bounded, uniformly continuous functions f.

(iii) P(A)=lim, P,(A) for any Borel set A such that P(4) =0.

(iv) For any measureable function f which is continuous except on a set of
P-measure zero, the P,-distribution of f converges to the P-distribution of f at
each continuity point of the latter.

(v) For any bounded, uniformly continuous function f the P,-distribution of
f converges to the P-distribution of f at each cowtinuity point of the latter.

Proof. The implications (i)—(ii), (iii)—(iv), (iv)—(v), (iv)—(i) and
(v)—(ii) being simple to prove, we treat here only the implication (ii)—(iii).
Clearly (iii) follows if

(2.1) P(A) = lim sup P,(4)

holds for all closed sets 4. Suppose (ii) holds and 4 is closed. Then it is pos-
sible, given € >0, to find a §>0 such thatif U= {x:p(x, 4) <8} then P(U—4)
<e. Clearly p(4, X— U) 2 6. Hence, by Lemma 2.1, there exists a uniformly
continuous function f which is 1 on 4, 0 on X — U and everywhere between
0 and 1. Now [fdP,—[fdP by assumption and [fdP,2=P,(4), while [fdP
=<P(A4)+e From these three relations it follows that lim sup, P.(4) S P(4)
+e¢. Since € was arbitrary, we have (2.1).

Let C, p and @ be defined as in §1. Theorem 2.2 below gives a simple cri-
terion for the weak convergence of measures on €. For its proof we need a
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lemma which is a variation on a result due to Donsker [4]. If x€Cand cis a
positive integer, define, for j=1, - - -, ¢,

ai(x) = inf {x(): (j — Vet £t < jo},

bi(x) = sup {x(): (j — Ve St < joY,
and let m.(x) = (a1(x), - - -, ac(x), bi(x), + - -, bo(x)). Thus w. maps C into
2c-space. If ¢ is bounded and continuous on 2¢-space, then ¢(w.(x)) is a
bounded continuous function on C. Let @ be the set of functions on C arising
in this way.

LEMMA 2.2. Let f be a bounded, uniformly continuous function on C. There

exist two sequences {f!}, {f!'} of uniformly bounded functions in @ such that

(2.2) Jo®) < f(2) < £ (),
for all ¢ and x and such that for all x

(2.3) lilg (fe' (%) = fi(x)) = 0.

Proof. For each ¢ let M, be the set of y & C such that a;(x) £ y(f) £b,(x)
for j—1)c1=t=<jct, j=1, - - -, ¢. Now define

fi(x) = inf {f(5):y € M.},

f (%) = sup {f(9): y € M...}.

It is clear that f¢ and f!’ satisfy (2.2) and that they are bounded by the
bound of f. And (2.3) follows from the uniform continuity of f.

There remains only the proof that f¢ and f.’ belong to @. Consider the
case of f!’. Let S be the set of points {= ({1, - - -, {2) of 2¢-space such that
§i=teyj for j=1, - - -, ¢ and such that the closed intervals [{j jsc] and
[¢541, Cesis1] have a nonempty intersection for j=1, - - -, c—1. Then S is
closed. For { €S define ¢({) =sup f(v), where the supremum is extended over
the set of y& C for which {;Sy(t) ¢eqjif j—1=Ztc <j, forj=1, - . -, ¢. Obvi-
ously m.(x) €S for all xEC, ¢(w.(x)) =f." (x) and ¢ is bounded. If ¢ is con-
tinuous on S then it is possible by Urysohn’s extension theorem [1] to extend
¢ to all of 2¢-space in such a way that it remains bounded and continuous.
Hence the proof can be completed by showing that ¢ is continuous on S.
This part can be established by the methods of the proof of Theorem (3.1)
of [4]. We omit the details.

For any integer ¢ and real numbers a4, * « -, @, B1, - * -, B., consider the
set

(2.4) E={x:a;<z(t) SBjj—1Sc<jj=1,---,c}.
THEOREM 2.2. Suppose that for probability measures P, and P on C we

have P.(E)—P(E) for all sets E of the form (2.4) for which P(E)=0. Then
P,=P.
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Proof. We show first that

2.5) f fdP, — f fdP

for any function f in @. For a fixed integer ¢ define u,(S) =P,(w:1(S)) and
w(S)=P(w:71(S)) for 2¢-dimensional Borel sets S. If S is the set of
¢=({1, - - -, $2) such that {;2ajand oy j=B5,7=1, - - -, ¢, then 77Y(S) =E,
so that u.(S)—u(S), provided u(S)=0. But this obviously implies p,=u.
Hence

(2.6) f ddu, — f em

for any bounded continuous function ¢. But if f(x) =¢(w.(x)), (2.5) follows
from (2.6) by a transformation of the integrals involved. Hence (2.5) holds
for any function f of @. It now follows easily, by Lemma 2.2, that (2.5) holds
for any bounded, uniformly continuous function f. Hence by Theorem 2.1
((ii)—(i)) we have P,=P.

Let A, be the set of functions x ©€C which are linear on each of the inter-
vals ((t—1)n~1, in~1) for ¢=1, - - -, n, and satisfy x(0) =0. Since the p,
defined in §1 lies in 4, it is of interest to specialize Theorem 2.2 to the case
where P,(4,) =1.

THEOREM 2.3. Suppose that for probability measures P, and P on C we
have P,(A,) =1. Suppose further that P,(G,)—P(E) provided E is any set of
the form (2.4) for which P(E) =0 and G, is the set of x for which o; S x(in~*) <;
if j—1=Z4en~'<j,j=1, - - -, c. Then P,=P.

Proof. Let € be a small positive rational and let E,,; be the set where
o;+80=x(t) =B;—6 if j—1)c'+est=Zjc'—e (j=2,---, c), whereay+9o
Sx(t)<B1—38 if 0=t=c'—e¢, where o, +0=x(t)SB.—0 if 1—c'test=1
and where max (aj, aj1) +0=x(t) Emin (8;, Bj31) —0 if je'l—e=t=<jc'+e
(j=1, -+, c—1). For fixed € and distinct & the sets E. ; are disjoint. It is
therefore possible to find for each € a §(e), with 0<8&(e) <e, such that if
E.=E. ;. then P(E)=0. Let G, be the set of x&C satisfying the condi-
tions defining E, at points ¢ of the form in~!,2=0, - - -, n. Since € is rational,
E, can be cast in the form (2.4) and G,, bears the same relation to E, as G,
does to E. Then by hypothesis P,(G,,.) >P(Ec). Now ECG,, while G, ,.4A,CE
provided n~!<e. Hence
(2.7 P(E,) £ lim inf P,(E) = limsup P,(E) = P(E).

n—o n—ow
Since E contains U, E,, which in turn contains the interior of E, and since
P(F)=0, we can conclude from (2.7), by letting € tend to 0 through rational
values, that P,(E)—P(E). Hence the result follows from Theorem 2.2.
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A useful fact in the theory of distributions on the real line is that if the
distributions of a sequence {X,} of random variables converge weakly to
some distribution, then so do the distributions of {X nt Y,.} , provided
p lim, Y,=0. We conclude this section with a theorem which plays an
analogous role in the theory of distributions on €. The theorem and its proof
obviously remain unchanged if C is replaced by any Banach space.

Let {X.} and {¥.} be two sequences of measurable functions on some
probability measure space (Q, ®, P), with values in C. For AE€¢e let P,(4)
=P{X.EA}, Pl (A)=P{V,EA} and P} (A)=P{X.+YV.€EA}. Let Ube
the measure on € which places unit mass at the function which is identically
zero. Suppose Q is a probability measure on C.

THEOREM 2.4. If P,=Q and P, =U then P, =Q.
Proof. Clearly P,/=U if and only if
(2.8) lim P{p(0, ¥.) = ¢} = 0.

n—o

for all €>0. Let f be a bounded, uniformly continuous function on C. Given
€ choose 0 so that lf(x) —f(y)[ <eif p(x, y) <8. Then

PUf(X) = f(Xa+ Ya) | Z ¢} < P({p(Xn, Xo+ V) 28} =0
by (2.8). Hence
(2.9 plim (f(X.) — f(X»+ ¥,)) = 0.

Now by Theorem 2.1 ((i)—(v)), lim, P{f(Xn) ga} =Q{x: f(x) éa} at con-
tinuity points of the latter function. Hence by (2.9) and the above-mentioned
fact in the theory of distributions on the real line, lim, P{ f(Xat+ Vo) =al
=Q{x: f(x) éa}. Since this holds for all bounded, uniformly continuous f,
the result follows by Theorem 2.1 ((v)—(i)).

3. A general invariance principle. Let {X ,.} be a sequence of random
variables on a space (2, ®, P) and let p, be the random function defined in
§1. In this section we give conditions under which the invariance principle
holds for {X,} with norming factors {a.}.

For integers ¢, » and 7 define n;= [jnc—l], j=0,1,---, ¢ and n;,
=[n@G—-1)4+u)cw1],j=1, - -,¢c,u=0,1, - - -, ». For any real numbers
aj, B let E, , be the Q set where the relations
(3.1) a; S 6y Si S B; im0 < i<

are satisfied for 7 <r, but not for i=r.

THEOREM 3.1. The invariance principle holds for the sequence {X ,.} with
norming factors {an} if the following two conditions are satisfied.
Condition (1). For each integer ¢ the distribution of the random vector
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@ (Snyy Sny—Sny, + ¢ 0y Sa.—Ss._,) approaches, as n— =, the normal distribu-
tion having zero means and having as covariance matrix ¢=' times the identity
matrix.

Condition (ii). For each integer c, each set (ca, -« +, ac, By, + * -, Be) and
each ¢>0,
(3.2) lim limsup 3, P(En, N {|Sw — S.| = eaa}) =0,

y—0 n— oo r=1
where the v’ corresponding to each r is that integer of the form nj .41 such that
3.3) Biuw < T S Bjupr

Proof. Throughout the rest of the paper we will be dealing with sums of
the sort appearing in (3.2). In each instance 7' =#; ,41 is a function of » de-
fined by (3.3).

We prove the theorem by a modification of an argument of [4]. Let E, be

the Q set where (3.1) is satisfied forallz=1, - - - , n. Let E be the C set where
o; Sx(t)<B; if j—1)c1=t=<jc!, j=1,---,c. Let D, be the C set where
o; Sx((G—Dv4u)c~w 1) =B; for j=1, .-, ¢ and u=1, - - -, v. Further,

let F, be the Q set where o;<a;'S, ,<@;for j=1,---,cand u=1, - -,
Finally, let E, D,,. and F,, . be defined in the same way as E, D, and F,, but
with ajand B; replaced by a;+eand 38; — e respectively. For #;,, <t Snj1=7'
write

P(En,) = P(Eay N || Se — S| = ean})

+ P(Ea, N {| S — S| <ean}).

(3.4)

Obviously the set in the second term of the right member of (3.4) is contained
in Q—F,... Hence, since Q—E,=U,E,, and the E, , are disjoint, we have
P(F,.)—¢...<P(E,) SP(F,), where {,,, is the first term of the right member
of (3.4). But P(F,)>»W(D,) and P(F,,)—W(D,,) by Condition (i). Hence
wW(D,,)—lim sup, ¢,»<lim inf, P(E,)<lim sup, P(E,) = W(D,). Letting
y— o we have, by Condition (ii), W(E,) <lim inf, P(E,) £lim sup, P(E,)
< W(E). Since U, E. is the interior of E, P(E,;)—»W(E) if W(E) =0. Hence the
result follows by Theorem 2.3.

4. The invariance principle for Markov processes. In this section we
prove, using Theorem 3.1, the invariance principle for discrete Markov
processes satisfying Doeblin’s condition. We use the definitions, notations and
results of [5, Chap. V]. Let X be a space of points £ and let Fx be a Borel field
of subsets of X. Let {x,,, n=x1 } be a Markov process with state space X and
stationary transition probabilities

(4.1) p(E, 4) = Pl € Al|x, = £},

That is, {x.} is a sequence of measurable functions from some probability
space (2, ®, P) to X such that (4.1) holds, where the transition function
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p(¢, A) is a measurable function of £ for fixed 4 ©Fx and is a probability
measure on Fx for fixed £ The initial distribution 7 is defined by w(4)
=P{x,EA} and the n-step transition probabilities by

P A) = P{xn+l S A”xl = E}.

The existence problems involved here are resolved in [5].

It is known [5] that if Doeblin’s condition is satisfied then the states can
be classified according to their ergodic properties. It is known further that
if the following hypothesis is satisfied then the n-step transition probabilities
converge exponentially.

Hypothesis (D).

(a) Doeblin’s condition is satisfied.

(b) There is only a single ergodic set and this contains no cyclically moving

subsets.
That is, it is known that if (D) holds then there exist positive constants y
and p, p<1, and a (unique) stationary initial distribution p such that
Ip(")(E, E) -p(E)I Zvp" for all {&X, EECFx and n=1. The results of this
section will be obtained under the assumption of (D).

In what follows, the initial distribution under the assumption of which a
probability or expectation is computed will be denoted by a subscript, thus:
P,(E). If m=p, the subscript will be omitted.

It is convenient to have available the following corollary of Lemma 7.2
of [5, Chap. V]. The proof, which goes by induction, is easy.

LEMMA 4.1. Suppose we have integers ui, vi with u1 S, < S0 < + + + <Un
SV and u;—v,a2B21, 1=2, - - -, m. Under Hypothesis (Do), let f; be a
random variable, with |f,~] =1,0n %, - - -, %o; Sample space, for j=1, - - -, m.
Then |E{fy - - - fu} =E{fi} - - - E{fu}| S2mvp®.

We come now to the invariance principle.

THEOREM 4.1. Under Hypothesis (Dy), let f be a real-valued function of &,
measurable Fx, with E{f(x:) } =0 and E{|f(x1)|***} < for some §>0. Then

. n 2
(4.2) lim E{(n“ll? > f(x,.)) } =0

n—w j=1
exists. If 03> 0 then the invariance principle holds for the sequence { flxn) } with
norming factors on''%, no maiter what the initial distribution .

Proof. That the limit (4.2) exists is simply a restatement of Lemma 7.3 of
[5, Chap. V]. We prove the theorem first under the assumption of stationarity
and remove this restriction later.

We must show that Conditions (i) and (ii) of Theorem 3.1 are satisfied.
In the notation of that.theorem, we must first prove that the distribution of
the random vector oi'n="2(S,,, Sry—Sny, -+ Sa,—Sa._,) approaches the
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appropriate normal distribution, where S¢ =f(x1) 4+ - - - 4f(x:). Our proof of
this part of the theorem follows [5]. Let {a,.} and {B,.} be two sequences of
positive integers such that if {u,.} is defined by

Hn = [(l:’nslil (”i - ni—l) - Bn)(an + Bn)—l]y

then paB8.a.'—0 and unpf*—0, while a,, B and u, all go to infinity. For ex-

ample one can take Bi~nc='and a, =B3. Now for j=1, - - -, ¢ let
(m—1) (a+8)+a
Yim = Z f(xn,'—1+€)v m = 11 Tty My
i=(m—1) (a+)+1
, m(atB)
Yim = E f(xnj_ﬁ-i)v m = 17 Tt My

i=(m—1) (a+B)+a+1

!’ )
Yipr1 = 2, [(%nj_4)-

t=pt (a+8)+1

By Lemma 7.3 of [5, Chap. V] and Minkowski’s inequality

12 yr2 - —1/2 - ’
E 2 yim) ¢ S0V 30 BV (yim)?)

m=1 m=1
= O(n~ ' (up'"? + (a + 2B)'/%)) = o(1).

Hence p lim, n—42 Y 4} ¥im=0, j=1, - - -, c. Therefore it suffices to prove
the asymptotic normality of the random vector

®
(4.3) 1 1/2( Zyl my Z yc,m).
M=l M=l

Let ¢n(uy, - - -, #c) =E{exp (B> 5ay uj 2 4oy o n~Y2y; )} be the character-
istic function of (4.3). Now the last term f(x;) occurring in ;. and the first
occurring in ¥;j,m4+1 have 8 other such terms in between them. And the last
term of y;,, and the first of y;,1,1 have at least 8 others in between. Hence by
Lemma 4.1, ¢n(u1, - - -, #e) = [ [4=1 L [5=1 E {exp (Gujorin=12y; ) } +€a, where
|e,.| < 2ycupftt=0(1). Thus the proof of Condition (i) will be complete if we
show that the distribution of the vector

(4.4) o _m( 2 tm i zc.m>

m=l Musl
approaches the appropriate normal distribution, where 2;» (j=1, - - -, ¢,
m=1, - - -, u) are independent random variables each having the distribution

of y1,1. Since p/an—c!, it follows that

1 K» 2
(4.5) lim E{(alln > z,-,,,.>} = i=1-,

n—o m=]
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Since the components of (4.4) are independent, its covariance matrix ap-
proaches ¢! times the identity. By Lemma 7.4 of [5, Chap. V] there is a con-
stant a such that E{ Iz;,,,.l""‘} <a't®? Hence, by (4.5), for n sufficiently
large,

“ — —

2 E{ o‘11‘” 1/2Zi'm|2+6}

i < 2u82 = o(1).

4 u 2 1+(58/2) -
(=" o))
M=l

Thus Ljapunov’s condition holds and Condition (i) follows.
We turn now to Condition (ii). Let E,,,, r’, ¢ and » be as in Theorem 3.1.
Define a sequence {8.} of integers by 8, = [log #]. If 78, <7’ then

P(Eay N\ {|Se = S,| 2 ent’?}) £ P(Eur N\ {|Se — Swis| 2 enti?/2})
+ P{|S.4s — S| = ent?/2},
and we can estimate the terms on the right separately. Now
P{| Sy — Sws| = ent?/2|2y, - -+, .}
S P{| S — Seg| = ent’2/2} + 24pf
by Lemma 7.2 of [5, Chap. V] and the Markov property. By Chebyshev’s
inequality and Lemma 7.3 of [5, Chap. V], P{|S.—S.s| Zent/?/2}

SAen (njup—(r+B)) 24 /e%cv, where A is a constant. By these two
inequalities and the defining property of conditional probabilities,

(4.7) P(Ear N {|Se = Sis| = ent2/2}) < 242w + 2408 P(E,.,).

To estimate the second term in (4.6) observe that

4.6)

P{| S5 — S,| z ent2} < ;Vt‘j P{| /()] = g tn112/2}
4.8) P

= BP{| f(=) | z 8-'n'?/2}.
Therefore, by (4.6), (4.7) and (4.8),
P(En,N{| Sy — S| 2 en'?}) < (242! + 2y0P) P(E..)
+ BP{ | f(x1) | = B nt12/2}.

This estimate was obtained under the assumption that r+8<r’, but obvi-
ously holds in the other case as well. Since the E,, are disjoint we have then

2 P(E., NS =S, | = enti?}) < 24¢ 211 4 2yp8
el
+ nBP{ | f(x1) | = 8 n12/2}.

Since
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wBP{| f(x)| Z e ni1?/2) S (2/*385ontE] | f(x) |+,

(3.2) follows immediately.

We have thus proved the theorem under the assumption that the initial
distribution is the stationary one, which assumption we now remove. Let 7
be any initial distribution. We show first of all that there exists a sequence
{/3,.} of integers going to infinity so slowly that

(4.9 lim P, {max [S:| = ml/z} =0

e iShn

for all €>0. In fact, for each k select an integer m; so that

k v
ZP'{ If(xz)l = k_ln”a} < kFVif n = my.

1=l

Clearly we can choose the m; so that m; <mpy. If B, =k for mi, <n < my1 then
{B.} satisfies (4.9) for all ¢>0. We may at the same time choose {8.} so that

(4.10) lim P{max |s:| = mm} =0
n—e i<Bn

for all e>0.
Let p, be the random function defined by (1.1), where X,=f(x;). And let

P be the random function defined by
/ pa(t) if 0 =t = Bun,
= {0 0=
Pn(ﬁn” 1) if 6,;” 1 é t é 1.

Finally, let p,/' =p,—p+ . Now (4.9) and (4.10) respectively imply

(4.11) lim P,{max nlzp) (1) = e} =0
n—w . 0S1ts1

and

(4.12) lim P{ max n~1/2p} () = e} = 0.
n—w 0= t=<1

Since we have shown that the invariance principle holds for the stationary
initial distribution, P{oTn1%,EA4 }=W(A4). By (4.12) and Theorem 2.4,
Plor'n12p) CA}=W(A). It is clear that the set {oi'n"1%p)" €A} is
measurable on xg;1, Xg42, - - - sample space. Hence, by Lemma 7.2 of (s,
Chap. V],

| Poiorin—tpl € A} — Plorn12p)" € A} | < 2v0% = o(1).
Hence P,{ar‘n‘”zp,," cA }=>W(A),. But from this, (4.11) and Theorem 2.4
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it follows that P, {oir'n12p,EA }=W(4). This completes the proof of the
theorem.

5. The invariance principle for m-dependent random variables. A se-
quence {X,} of random variables is said to be.m-dependent if the random
vectors (X, - - -, Xntr) and (Xn4s, + + +, Xnye) are independent whenever
s —r>m. Sequences having this property are of interest in statistics and have
been studied by various authors (cf. [2; 9; 3; 12]). In this section we concern
ourselves with the invariance principle for such sequences.

Then let {X ,.} be an m-dependent sequence of random variables with zero
means and finite variances. Marsaglia [12] has proved the central limit theo-
rem for such a sequence under the assumption that E{ X2} is bounded, that
(5.2) below is satisfied and that ns;2=0(1), where s:=E{S2}. The following
theorem asserts the invariance principle under slightly stronger assumptions.

THEOREM 5.1. If for an m-dependent sequence {X,}, E{X.} =0, E{X3} is
bounded,

(5.1) |s2—na' | =0(1)

for some constant 02>0, and

(5.2) lim 5728 > E{ | X[} =0

n—o fmal
for some 6>0, then the invariance principle holds for the sequence {X ,.} with
norming factors an'/.

Proof. We first show that Condition (i) of Theorem 3.1 is satisfied, using
the technique of Marsaglia [12]. Let (#,, - - -, n;) be defined as in §3 and
for each pair (n, k) with 2m <k <nc!and each j=1, - - -, c define

k—m

Yii = 20 Xnjrb(=Dkto 1

v==1

IIA
IIA

< [k (i — nim0)],

y;,i = Z Xn,'_1+ik—m+v, 1 é 1 < [k“(n,- - n,-__l)],

v=1
nj—nj—-1—i+m

y;-t’ = an..1+s'k—m+v, 1= [k—l(ﬂj - ni_l) ].

v=1

Let
6 (njmni-p1 e (nj=nj-)]
o) =i @ =
n,k = }’f.i» €n,k = Z Vi

=1 =1

Now by Holder’s inequality, if ¢ < [k=1(n;—n;_,)

] then
E{)’:’f} =mQp, E{X:,-x+ik—1n+v} = m2B, ,

v=1
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where B is the bound on E{X2}. Using this inequality, a similar one for the
case = [k~'(n;—n;_)] and the fact that the yj, are independent, we see that
(5.3) E{(ex)?} £ (nj — i) k-'m?B + (k + m)?B.
One obtains in a similar manner the inequality
2 SON:

l E{(Sn’ - Sﬂ,‘—]) } - E{(gﬂfk) } I

= 5(n; — ni)k~'m?B + (k + m):B + 2m®B.
From (5.3) and (5.4) it follows that

(5.4)

(5.5) lim limsupn o E{(ex)’} =0,

k—e n—w

im limsupn o | E{(Sn, — Su,_)’} — E{g(an)’}| = 0.

1
k—w n—o

(5.6)

Note that these two relations have been obtained without the use of (5.2).
Now by (5.1),

(5.7) E{(Sats — Sa)?} = io? + &,
where ¢ is bounded. From this fact and (5.6) it follows that

(5.8) lim lim on o E{(ger)’} =1,
k-0 p—e

where the limit is to be taken in the strong sense (cf. [12]).

We now show that if % is sufficiently large then the distribution of the
vector

-1 (e, -1 (o)

(5.9) ((7n) " gmits =+ + s (Tak) £ot),
where (%) =E{(g¥)?}, approaches, as n— », the normal distribution with
zero means having the identity as covariance matrix. But for % sufficiently
large this follows, via Ljapunov’s condition, from (5.7), (5.1) and the fact

that
k—m

E{] yis|®*} S B 2 E{| Xayira-nmes |},
vl

And now from (5.8) and the obvious multi-dimensional analogue of Theorem

2 of [12] it follows that the distribution of o=ln=12(gl}, - - -, g¥) ap-

proaches, if n—~ and then k— e, the normal distribution having zero

means and having as covariance matrix ¢! times the identity. In order to

show that the distribution of ¢='n=%(S,,, Say—Sn;, * * *, Sa,—Sa._) ap-
. proaches, as n— «, this same normal distribution it is enough, by the multi-

dimensional analogue of Theorem 1 of [12], to show that
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1 1) (e)

plim limo 7 (emr oy ent) = 0.

ko n—w

But this follows immediately from (5.5) and Chebyshev’s inequality.
We have thus proved Condition (i) of Theorem 3.1 and pass to Condition
(ii). Using all the notations of that theorem,

r+m
P{|Sum — S¢| 2 ent?/2} = 3 P{| X.| 2 en''?/2m}.

Hence,
ij P{|Sum—S.| 2 en'’?/2} =m Y P{| X.| 2 ent'?/2m}
5.100 o
< m(2m/e)*in-1-0iv 3" E{ | X, |8} = o(1)

v=1

as n—, by (5.2). And (making the inessential assumption that r+m <r’)
by Chebyshev's inequality and (5.7), P{| Sy —S.in| 2 en'/?/2} <4(etcr)-1
+44d(e*n) . Hence, since S, —S,;n is independent of E,, .,

(5.11)  limsup D P(En, N\ {|Se — Seim| = ent’?/2}) < 4/cver.
rem]

n—®
And now (3.2) follows from (5.10), (5.11) and
P(En,N{| Sy — S| 2 ent?}) < P{|Sim — S.| Z ent?/2}
+ P(Ene N\ { | Sr — Smsr| = enti2/2}).

It is possible, at the expense of complicating somewhat the proof of
Condition (ii), to relax the condition (5.1). In particular, it can be replaced
by s2~no?.

(5.12)

THEOREM 5.2. If { X ,.} is a stationary m-dependent sequence of random vari-
ables with zero means and finite variances, then the invariance principle holds
for {X,.} with norming factors n'%c, where c*=E{X3} +2> m, E{X;X,,.,.l} .

Proof. Define y;,i, ¥4, g5 and e} as in the proof of Theorem 5.1. It is a
simple matter to show that (5.1) holds here. Since E{X?2} is bounded it fol-
lows that (5.5) and (5.6) hold in this case as well. In order to establish that
Condition (i) holds in the present case it suffices to show that the vector (5.9)
is asymptotically normal. But this follows immediately from the stationarity.

To prove that Condition (ii) holds we proceed as before. In fact (5.11)
and (5.12) are still valid. Finally,

2 P{|Swm—S.| 2 ent’?/2} < maP{| X,| 2 en'?/2m},
rml
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and the right side of this inequality goes to zero since E{Xf} < oo,

6. The invariance principle for linear processes with m-dependent resid-
uals. Let { V;; 7=0, £1,- - - } be a stationary, m-dependent process such
that Y; has zero mean and a finite variance. Let {A,; t=0,1, - - - } be a
sequence of constants such that

(6.1) i |4, < =».

t=0

For a fixed i the series X;= D ;2o A.¥,_, converges in probability. Consider
in fact the m+1 series obtained by taking every (m+1)th term starting with
the first, the second and so on. These are series of independent terms so that,
since Y_AZ? converges, they converge in probability (and even with probabil-
ity one). In the terminology of [3] the process {X;; i=1, 2, - - - }is a
discrete linear process with m-dependent residuals. Clearly it is stationary.
Processes of this sort are of interest in the analysis of time series (cf. [3] for
references to the statistical literature).

Diananda [3] has shown that the central limit theorem holds for processes
which arise in this way, i.e., under the assumption that (6.1) holds. It is the
purpose of this section to prove the invariance principle for such processes.
We are forced, however, to make a stronger assumption on the nature of the
sequence {At}, viz., we assume that

(6.2) | 4.| = O@3).

At the end of the proof we indicate some ways in which the requirement (6.2)
can be relaxed.

THEOREM 6.1. Let { Yj} be a stationary m-dependent process with zero means
and finite variances and assume that (6.2) holds. Then >0 AYi_, converges
in probability, as n— », to some random variable X ;= Yoo A Yy, so that
{X:; i=1, 2, - - - } is a $tationary discrete linear process with m-dependent
residuals. The invariance principle holds for {X ,.} with norming factors n''’a,
provided o >0, where

o2 = (i A;)z(E{Yz} +23 E{YoY,,}>.

=0 r=1

Proof. That { X} exists and forms a process of the type asserted follows
from the preceding discussion and the fact that (6.2) implies (6.1). In each
of the theorems of the preceding two sections Condition (i) of Theorem 3.1
was established for a particular process by modifying appropriately the proof
of the central limit theorem for the process. That Condition (i) holds for the
process { X.} of the present theorem can be proved by a similar modification
of the proof [3] of the central limit theorem for such a process. In fact one
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need only assume (6.1), rather than (6.2). To avoid repetition, we omit the
details and turn to the proof of Condition (ii).

We show first of all that there exists a sequence {ﬁn} of integers going to
infinity in such a way that
(6.3) lim n8.P{ | X:| = eBnt2/2} = 0.

n—ro .

It is easy to show that X; has a finite second moment. Hence there exists an
increasing sequence {m; } such that knP{| Xi| 2 ek~'n12/2} Sk' if n2ms. If
one puts 8, =k for m, <n Zmu,1, then B, goes to infinity and (6.3) holds. If
B. goes to infinity then

(6.4)  lim ﬁjp{

Lol L §

Z Y—V(AHv + ct + Ar’—r+v)

v==0

> en1/2/4} =0.

In fact it follows from (6.2) that
(6.5) R, = O(n~2),
where Rp=|A4.| +|4na| + - - . Now

8

2V (dprot o+ Arrys)

o=0

2 en‘/’/4}
< P{ > | Vo] Reyo = mm/4}
vm=(

< X P{| V.| Royo = n¥2(8 + )14},

=0
provided # is large enough that Y .=, (8+v)~5“4<e/4. But P{l Y_,IR,H,
gn‘/’(ﬁ+v)—5/‘}§n‘1(ﬁ+v)“”R§+,, so that by (6.5) the sum in (6.4) is
dominated by Y., (8+v)~%¥2, which goes to zero since 8 goes to infinity.
Hence (6.4).

We now decompose the summand in (3.2) into

P(E..N{|Sy = S.| 2 en'?}) £ P{| S5 — S.| = en'?/2}

+ P(Eny N {| S = Sias| 2 enti?/2}),

where { Bn} satisfies (6.3) and (6.4). It follows immediately from stationarity
and (6.3) that

(6.6)

(6.7) lim X5 P{|Smus — S.| = ent'?/2} = 0.

N—0  pn]

Let ' —r=w. Then S, —S,=§£-+79, where

E=2 (Apse+ - + Aup) Vo

Ye=0
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and
n = Aoyr-l-w + (Ao + Al)yﬂ-w—l + -4+ (AO + -+ Aw—ﬁ——l)yr+ﬁ+l

p—1
+ 3 Ao+ -+ Arrus)Yrppor

om0
Hence
P(En, N\ {| Sy — Spis| 2 en'?/2})

< P(E..)P{|n| 2 en’2/4} + P{| | 2= en'?/4;

where the factorization of the first term on the right is valid if # is large
enough that 8,>m. Now by stationarity and (6.4) we have

(6.8)

(6.9) lim f}P{[ﬂ = en'’?2/4} = 0.

N0 ]

Using the m-dependence property, one verifies
Efn’} S24°Bmw+ Ao+ Ao+ A) + -+ Ao+ -+ + Aug)’

A—1
+ 2 (Av + ct + Av+w—ﬂ)2

v=0

< w(2A2Bm+ (}2 IA.,I)'>.

where 4 =sup; |4,| and B=max,s. | E{Y,Y,}|. Since, in the notation of
Theorem 3.1, w=<n/cv,

(6.10) > P(E..)P{|n| z en'/2/4} < (const.)/e%w.

rel
Finally, (3.2) follows from.(6.6), (6.7), (6.8), (6.9) and (6.10), completing
the proof of the theorem.

It is clear that (6.2) can be replaced by the weaker hypothesis (6.5). In
fact R,=0(n"1"%), §>0, suffices. An examination of the proof shows that if
there exists a sequence { ﬁ,.} going to infinity in such a way that (6.3) and
(6.4) hold, then the result follows. This fact can be used to weaken (6.2)
under the assumption that ¥; possesses some moment of order higher than
two.

7. The invariance principle for recurrent events. Let & be a recurrent
event in the sense of Feller [8]. Suppose that & is certain, let (X1, X2, - - - )
be the recurrence times of & and let Sp=X1+ -+ +X;. Let Z, be 1 or 0
according as & occurs or not at the nth trial and let N,=Z14 - - - +Z, be the
number of occurrences of & during the first » trials. In this section we prove
the invariance principle for {Z,.—/.r“} , where u is the mean recurrence time.
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THEOREM 7.1. If the recurrence times of a certain, aperiodic recurrent event
have finite mean u and variance o?, then the invariance principle holds for the
sequence {Z,—u~'} with norming factors au=3/*nV'2,

Proof. Feller [8] has proved the central limit theorem for N, by reducing
it to the central limit theorem for S; via the identity

(7.1) {N.2z k} = {Sk < n}.

Our proof that Condition (i) of Theorem 3.1 holds proceeds in the same way.

Let ®(ey, - « -, a) be the normal distribution with zero means and covari-

ance matrix (¢~! min (¢, j)). We must show that

(7.2) lim P{N,, — np' S ajop1/%, j =1, ,c} = &(ay, -+ + , a).
n—s00

For j=1,.--, ¢ let kj=Fk;j(n) be one greater than the integral part of

nu~+a;ou~??n1'2, Then (7.2) reduces to

(7.3) lim P{N,, < kjyj=1,---,¢c} = ®(as, - -+ , o).

By (7.1) we see that (7.3) will follow if we can prove
{Sk, —kip  ni— ki

lim P )
a.“—-llznllz o.”—llznlﬂ

n—o0

j=1’...’c} =¢(ah"'yac)~

Since n;—kj~—ajou—1?n1? and ® possesses a symmetry, it suffices to show
that the distribution of o='u!/>nY2(Sy, — ks, - - -, Si,—kc) approaches ®. But
this follows easily from the central limit theorem for independent, identically
distributed random vectors and the fact that kj~mnu—1
To establish Condition (ii) we define some auxiliary random variables.
Let V, be the first trial, after the rth, at which & occurs. And define random
variables {8,.} by
V.if V.57,
Bnr {r’ if V,>7r'.
Then

3 P(Ea, OV | (N = #t) = (N, — )| 2 eni?))

re=]

(1.4 =3 P(Ea,N {] (Ne,., = Baot™) — (N, — )| Z ent’?/2})

ra=al
+ X P(Ear N | (Ny = #'u) — (Ng,, = Bast™)) | 2 enti?/2}).
r=]

Now Ng,,—N, is 0 or 1, so that |(Nga,r—Bam=")—(N,—rut)| S14pu-
*(Bn.»—7). Hence if 7 is large enough that en'/224, the first sum on the right
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in (7.4) does not exceed P(U., {B...—7Zen'/?/4}). But this is less than or
equal to the probability that before the nth occurrence of § there is a sequence
of at least en!/2/4 consecutive trials at none of which & occurs, which probabil-
ity is clearly not greater than P{max.—s,. X;gen”"’/4} §nP{Xlgen‘/’/4}.
Since X, has a finite second moment nP{Xlgen”’/4} =0(1) and hence the
first sum on the right in (7.4) goes to 0 as n— .

By the defining properties of recurrent events, the second sum on the
right in (7.4) is equal to

n

(7.5) > P(Ea)P{|Np — Ns,, — (' = Bar)ut| = ent'?/25.

r=1

It is shown in [8, p. 111] that E{ N} = ku~'4(e*+p+u?)u=2/2 —1+0(1) and
Var {Nk}kaa’u‘“, so that E{(Nk—kp,"l)z} =0(k). If we now apply Cheby-
shev's inequality to the terms of (7.5), (3.2) follows from (7.4) and the result
of the preceding paragraph.
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