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1. Introduction. The object of this paper is to explore certain properties

of positivity preserving operators on either functions or measures in a space

E. Although our method applies to more general cases (cf. the end of this

introduction) we take up explicitly only the case of a denumerable E so that

the operators reduce to matrices. In this way the basic features of the theory

will not be obscured by an unfamiliar formalism or by an a priori imposed

topology.

Let E stand for the set of positive integers, and II for a matrix with ele-

ments H(i,j) 2:0, where i,jEE. Then II acts as an operator by premultiplica-

tion on column-vectors, and by postmultiplication on row-vectors. It will be

shown that the relevant properties of II are intimately connected with the

solutions of the infinite system of equations

(1.1) x(i) =   £    U(i,f)x(f)    or   Ux = x

and the dual (or adjoint) system

(1.2) K0- Zl(*)n(*,i)  or e-en.
iGE

Here x and £ stand for a column- or row-vector, respectively.

The matrix n is called stochastic if all' row sums are unity. Now if x is a

strictly positive(2)  solution of  (1.1), the transformation

u'(i,j) = n(i,j)x(j)/x(i)

defines a stochastic matrix II' and it will be shown (§14) that there exists

an isomorphism between the solutions of (1.1) and the solutions of the

transformed equation II'x' = x'. For our purposes the matrices II and II' are

in every respect equivalent, and there is no loss of generality in supposing

that II is stochastic. However, since we shall be dealing also with submatrices

of II, it is most convenient to suppose only that
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(1.3) n(«, j) ^ o Y n(*,i) ̂  i »,i g £.

Such matrices will be called sub-stochastic. From now on we assume (1.3).

Probabilistically, a sub-stochastic matrix defines a random walk, and we

shall explain the random walk interpretations of our boundaries, solutions,

etc. However, our development is purely analytic and no probabilistic argu-

ments or results are used.

It will be shown that to the typical solution x or i[ there corresponds a

family of subsets of E contracting to the empty set. It is natural and useful

to introduce these sets as neighborhoods of new points or sets. In this way E

will be enlarged by a boundary corresponding to (1.1), and by an adjoint bound-

ary corresponding to (1.2). Frequently these two topologies will be equivalent,

but there exist matrices II such that the two topologies have no connection whatever

(cf. Example III, §17). The two boundaries can have arbitrary topological

structures('). The boundaries will be compact Hausdorff spaces, but the

enlarged space need not be compact.

In a subsequent paper these boundaries will be applied to the theory

of the Kolmogorov differential equations in E. It will be shown that our

boundaries play exactly the role of ordinary boundaries in potential theory

(except that in the latter the two boundaries coincide because of the sym-

metry of the underlying operators). We shall also find analogues to the

classical Green functions and boundary conditions(4) of the theory of har-

monic functions and diffusion.

Our development proceeds in three stages. We begin by a study of bounded

solutions of (1.1). Each such solution is the difference of two positive solu-

tions, and we are concerned with the solutions x such that 0 ^x(i) ^ 1. They

form a convex set ^ and, at the same time, a linear lattice (§4). In §5 we

introduce the basic notion of a sojourn set. To each such set there corresponds

an element Sa oi ^5, and these form the lattice © of sojourn solutions. Ana-

lytically they are the extremals of ty in the sense of Krein and Milman (cf.,

for example, [2, Livre 5, Ch. 2]). This fact is proved in §10, but not used

explicitly.

To each sojourn set A there corresponds a sojourn solution sa, but to

different sets there may correspond the same sojourn solution. Two sets are

called equivalent if sA=sB. It is shown in §8 that (with a trivial exception)

each sojourn set A contains a sequence of equivalent sojourn sets A« which con-

tract monotonically to the empty set as e—>0. We shall introduce them as

(') Cf. the absurdly simple example IV, §17, where the meaning of a boundary homeo-

morphic to the interval (0, 1) is intuitively clear. The construction can be modified so as to ob-

tain almost any type of boundary.

(*) The normal derivatives occurring in the boundary conditions for harmonic functions

are, of course, meaningless in a discrete space E. They will be replaced by expressions depending

on the given basic operator and which in turn reduce to normal derivatives, etc. in classical

cases.
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neighborhoods of a set A of the boundary (which will be both open and closed).

For the random walk governed by 11 and starting at i the value sa(i) =SAt(i)

is (for each e) the probability that the path ultimately (after finitely many

steps) enters and remains contained in Af. In other words, SA(i) is the proba-

bility of an asymptotic approach to the boundary set A. (See §5 and Theorem

9.4.) The simplest situation is described in §12: here the boundary consists

of denumerably many isolated points, each being represented by one sojourn

solution. In general, however, no sojourn solutions correspond to the in-

dividual points of the boundary. We have, in effect, a measure (or capacity)

induced on the boundary, and only sets of positive measure are represented by

sojourn solutions. To introduce points of the boundary we use a variation of

the well-known method of maximal ideals (§13). The enlarged space F+33 is

a Hausdorff space in which all elements of ty are continuous and possess con-

tinuous boundary values.

The boundary defined in terms of the bounded solutions of (1.1) sets the

stage for a study of the unbounded positive solutions of (1.1). They form a

vector lattice (6) TI. The transformation mentioned above and studied in §14

defines a family % of stochastic matrices such that there exists, an isomorphism

between the corresponding vector lattices 9JJ. To each element xETl there corre-

sponds a matrix of the family such that the image of x is the unit vector 1. In

other words, the vectors dominated by x are mapped into a set corresponding

to the cone ty of bounded solutions. In this way each vector xEWl can be made

to play the role of the unit vector. These transformations have a simple proba-

bilistic interpretation and also (a less obvious) counterpart in the trans-

formation theory of differential equations of the Sturm-Liouville type.

Each matrix of the family g defines a boundary for E, and these bound-

aries do partly overlap and the topologies agree. It turns out that it is pos-

sible to endow the space E with a boundary S3* common to all matrices of the

family ft. The boundary 33 defined by the bounded solutions of (1.1) is a subset

of S3* and 33* is the union of the boundaries defined in terms of bounded

solutions of (1.1), as II runs through the members of the family g. Both S3

and S3* have analytic and probabilistic significance. The construction of S3*

is analogous to the procedure outlined for S3, but in 2ft we have no maximal

ideals at our disposal. Instead we introduce lattice ideals maximal relative to a

fixed element. They are characterized in §15.

At last (§16) we consider the adjoint system (1.2). Fortunately it requires

no special theory since it can be reduced to (1.1) by a simple device which

has been used for other purposes by Kolmogorov and Derman. Just as the

solutions of (1.1) induce the boundary S3* so do the solutions of (1.2) induce

an adjoint boundary. Example III (§17) shows that the two topologies are in-

(5) Unfortunately, 2ft is in general not compact, and we have therefore neither extremals

nor maximal ideals at our disposal. If each row of n has only finitely many nonzero elements

then 2ft is compact and a boundary may be defined in terms of the extremals of 2ft.
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dependent of each other. This phenomenon is new because one usually deals

with operators which are symmetric or nearly so. It leads to interesting rela-

tions and boundary conditions for stochastic processes in E.

§11 stands somewhat apart from the main part of the paper. In the

ergodic theory of stochastic matrices the points and subsets of E are classified

as recurrent or transient. A recurrent subset R in no way contributes to the

boundary (and corresponds analytically to a closed manifold). For the matrix

II it has only nuisance value, since II is partitioned in the form (11.3) and the

theory effectively reduces to a study of a submatrix corresponding to the

set E — R. For our purposes it was necessary to correlate these facts with

properties of the solutions of (1.1). §11 contains a direct derivation of the

basic properties of transient and recurrent sets(6). A reader who is disturbed

by this interruption of the theory may omit this section and simply assume

that II is not partitioned (of the form (11.3)).—Examples for the several

phenomena are collected in §17.

Harmonic Functions—Aspect

We conclude this introduction by indicating the relationship of the present

theory with classical harmonic functions. To illustrate the meaning of the new

boundaries, let G be a simply connected domain of the Euclidean plane with

a complicated boundary T (containing prime ends, etc.). A conformal

mapping reduces the theory of bounded harmonic functions in G to the theory

of bounded harmonic functions in the circular disc. The inverse map from

the disc into G induces for G an ideal boundary Y* which is not topologically

equivalent to V, and which is more natural for the study of harmonic func-

tions. In several dimensions the "natural" boundary is still less adequate,

and a boundary appropriate for the study of (or induced by) the Laplacian

operator has been defined in the classical paper [8] by R. S. Martin.The

formal analogue for harmonic functions to our boundary is not the Martin

boundary but a larger one: our topology would make the bounded harmonic

functions continuous up to and including the ideal boundary. On the other

hand, our boundary is smaller than the Cech boundary constructed by means

of maximal ideals in the algebra of bounded real functions continuous in C.

It constitutes a worth-while program to reduce our boundary by an ap-

propriate identification of points to an analogue of the Martin boundary

where points would stand in a one-to-one correspondence to the linearly in-

dependent positive solutions of (1.1).

A direct treatment of harmonic functions by our methods can proceed in two

ways.

(a) As is well known, the theory of harmonic functions can be approached

(•) It is now easy to go a step further and to derive the ergodic theory from our results.

Incidentally, the uniqueness Theorem 14.4 properly belongs to §11, but is proved more naturally

using the isomorphisms introduced in §14.
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using the diffusion equation ut=Au. The latter corresponds to the Kolmo-

gorov differential equations mentioned above, and (using Laplace trans-

forms) can be treated in the same way.

(b) Completely within the framework of the present paper we can pro-

ceed as follows. Let T be an open circular disc and for each point P£T denote

by Cp the greatest open circular disc with center at P and contained in T.

Let | Cp\ be the area of Cp and define a kernel K(P, Q) by

f    0       for   Q E CP
(1.4) K(P,Q)=\     i

JcT\ for Qec"

where P, QEY. Such a kernel plays the r61e of the matrix II and the equation

(1.5) x(P)= JK(P,Q)x(Q)dQ

is analogous to (1.1). Each harmonic x(P) is a solution of (1.5).

Probabilistically (1.4) describes a random walk where a step leads from

P to a random point Q which has a uniform probability distribution in Cp. If

A is a compact set in T, the probability that after n steps the moving point

will be contained in A tends to zero as n—»°o (independently of the initial

position). In other words, the moving point approaches in probability the

(ordinary) boundary.

A bounded harmonic function is representable by means of the Poisson

integral in terms of the boundary values f(d) on the boundary of V. To our

sojourn solutions (extremals) there correspond the solutions x where / as-

sumes the value one on an arc a and 0 on the complement. Then x(P) repre-

sents the probability that, starting from P, the random walk will asymp-

totically tend to the arc a. As explained above, a natural topological connec-

tion between the boundary and the interior is induced by K. For example,

if the radii of Cp are chosen so as to decrease rapidly as P approaches the

center of V and so that Cp excludes this center, then the center may become

a boundary set in the topology induced by the kernel K.

2. Notations and conventions. We shall use bold face to denote column

vectors. Thus x stands for a vector with components x(l), x(2), • • • . Oc-

casionally these components x(i) will be defined only for iEC, where C is a

subset of the space E. For column vectors we use the conventional norm

(2.1) ||x|| = sup *(«).
iGE

Row vectors will not occur before §16. By 0 and 1 we denote the vectors all

of whose components equal 0 or 1, respectively. An inequality such as x^y

has the obvious meaning: x(i) ^y(i) for all i. Thus the second inequality in

(1.3) may be rewritten as III gl.
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Definition. We denote by ty, '$*, and $* the aggregates of vectors satisfying

(2.2) 0 g z g 1

and, respectively, the conditions

(2.3) Hz = z,

(2.4) IIz ^ z,

(2.5) nz g z.

For any set A EE we write

(2.6) n(i,A) =  Y n(i,f).
i<=A

With this notation the second inequality in (1.1) reads II(i, £)^1. In the

random walk interpretation Tl(i, A) is the transition probability from the

point i to the set A.

The restriction Ha of U to a set A is the matrix defined by

(2.7) UA(i, j) = Tl(i, j) foriJEA

and undefined for i, jEE — A. Clearly, 11^ is again a sub-stochastic matrix

and every theorem concerning II applies equally to ILt. For the probability

interpretation cf. §5.

A matrix product II^x makes sense only when x is a vector defined on A.

For convenience we shall use the same notation even if x is defined on the

full space E. Thus we write

(2.8) y = UAx

to indicate that

(2.9) y(i) =    Yn(i,j)x(j), foriEA.

The components x(i) and y(i) ior iEE — A may, but need not, be defined;

equation (2.8) contains no statement concerning them.

3. The basic lemmas. We begin with the observation that to each zG^fi*

there exists a smallest element aEfy such that a^z. More precisely we have

Lemma 3.1. For each zG^P* the limit

(3.1) a = limnnz
n—.«

exists. One has aEty and a^z; moreover,

(3.2) z^a^x,

for each xEty such that x^z.
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Proof. Put

(3.3) a0 = z,       an+i = IIan = IInz.

Then z^a^l in consequence of (2.4) and (2.2). It follows by induction that

a»^an+i = l and therefore by bounded convergence an-^a; here a=IIa^z.

To conclude the proof suppose that xEty and x^z = a0. Then by induction

x^a„ so that (3.2) holds.

The same argument leads to

Lemma 3.2. For each zEty* the limit (3.1) exists, and aEty- One has a^z.

Each xG^ such that'x^z satisfies

(3.4) x^a^z.

The possibility a = 0 is not excluded.

Theorem(7) 3.1. Each bounded solution ofHx = x is a linear combination

of two elements of $.

Proof. Without loss of generality we assume ||x||^l. For each i put

z(i) = | x(i) |. Then zEty*. With a defined by Lemma (3.1) we have

1 1
(3.5) x = —(a + x)-(a - x)

2 2

where (a + x)/2G^.

4. Lattice properties of ty. It is hardly necessary to point out that ty is

a convex set; that is, if u, vEty and p=zO, q^O, p+q^l, then pu+qvEty-

We now prove that fy is a vector lattice.

Theorem. Let x,y6$, Then ty contains a uniquely determined least upper

bound(s) xKJy and a greatest lower bound xC\y. (The latter may be zero.)

Proof. For each i put z(i) =max {x(i), y(i)}. Then zEty*, and the vector

a defined by (3.1) has the properties required of xVJy. Similarly, putting

z(i) =min {x(i), y(i)} the construction of Lemma 3.2 leads to x(~\y.

The following two lemmas are known in more general contexts (cf. e.g.

[1]).

Lemma 4.1. If

(4.1) x + u = y + v = w,

then

(4.2) x\Jy + uC\v = w.

(') An unbounded solution of nx = x is not necessarily the difference of two non-negative

solutions.

(8) This means, a = xU y is defined as an element of fy such that a Sx and a S y and with

the property that if uG^P, u = *, " ^y then u ^a. A similar definition applies to xfly.
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In particular, one has identically

(4.3) x+y = x\Jy + x(~\y.

Proof. Clearly w — u(~\v^w—u=x and equally w—uCw^y. Therefore

w — u(~\v^x\Jy. On the other hand w — x^Jy^w — x = u and so w — x*Uy

Lemma 4.2. One has

(4.4) (x+y)C\z = (xH*) + (yHz).

If xf~\y = 0 then the distributive law

(4.5) (x+y)C\z= (xr\z) + (yC\z)

holds.

Proof. For each i we have

min {x(i) + y(i), z(i)} ^ min {x(i), z(i)} + min {y(i), z(i)}.

The assertion (4.4) is an immediate consequence of this and the definition of

xC\y (cf. the construction of Lemma 3.2). Next suppose xf~\y = 0. From (4.3)

(4.6) (x + y)r\z = (x\Jy)C\z^ (x (~\ z) \J (y C\ z) = (x C\ z) + (y C\ z)

where the last step consists in a repeated application of (4.3). The two in-

equalities (4.4) and (4.6) together imply (4.5).

Note on unbounded solutions. The operations rUy and xC\y are well defined

for any two non-negative solutions of (1.2). In fact, the construction of xKJy

depends only on the existence of some solution u of (1.2) such that u = x and

u ^y. Now u = x+y is such a solution and may replace 1 in our construction.

Note however the footnote to §3 which shows that xUy need not exist for

arbitrary unbounded solutions. The theory of unbounded non-negative solu-

tions is developed in §14.

5. Sojourn sets. Since 1£^J* we may apply Lemma 3.2 to z = l. We con-

clude that

(5.1) sg(i) = lim W(i, E)
n—.«

exists for each *, and s^E^P. For each xEty we have x^l, and hence by in-

duction x=IInl =H"(i, E). This proves

Theorem 5.1. The vector se defined by (5.1) is the maximal element of ty,

that is, sEEty and x^sE for each xEty-

Of course, it may happen that sE = 0, in which case ty contains 0 as the

only element. If II is strictly stochastic, then s# = l (and conversely).

Now let AEE be an arbitrary set and apply the above argument to the
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restriction II a of II to A. To se there corresponds the vector 6a which is

defined on A only by

(5.2) <rA(i) = lim HA(i, A), i E A,

and which satisfies

(5.3) 6A = Ua6a.

By Theorem 5.1 this 6a may be characterized as the maximal solution of (5.3)

subject to the condition O^d^^l.

For convenience we extend the definition of 6a throughout E by putting

(5.4) aA(i) = 0 foriEE- A.

Clearly 6AEty*, and applying Lemma 3.1 to z = 6A we see that

(5.5) sA(i) = lim Y nn(i, j)aA(j)
n—*oo      j

exists for all i. The vector

(5.6) sA = limlT'dA
B—»oo

•5 uniquely defined as the smallest vector satisfying

(5.7) sAE% O^d^s^l.

When A =E the definitions (5.1) and (5.6) agree, and 6s = se-

Definition 5.1. The set A is called sojourn set if sa^O (or, what amounts

to the same, if 6a7^0).

In view of the fact that the limit in (5.2) is attained monotonically, we

have the following obvious

Criterion. For A to be a sojourn set it is necessary and sufficient that there

exist an iEA and an rj <0 such that

(5.8) nA(i,A)>v

for all n.

Probability interpretation. Consider the random walk with stationary

transition probabilities H(i, j) and interpret 1 — H(i, E) as the probability

that the random walk does not continue (terminates). Then 1 —IIn(i, E) is

the probability that the random walk with initial position i terminates at or

before the «th step. From (5.1) we then conclude:

ss(i) is the probability that the random walk with initial position i continues

indefinitely (=does not terminate after finitely many steps).

From the definition, HA(i, A) is the probability that, starting from iEA,
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the random walk will continue for at least n steps without leaving the set A. Ac-

cordingly, for iEA we see that:

o~A(i) is the probability that starting from i the random walk will continue

indefinitely without ever leaving the set A.

Finally, in (5.5) the sum on the right equals the probability that from an

arbitrary starting point i the nth step in our random walk leads to a position

jEA, and that from then on the random walk continues indefinitely without

ever leaving A. (During the first n steps the random walk may lead in and

out of .4.) Therefore:

sA(i) is the probability that from the starting point i the random walk will

after finitely many steps lead into A and from then on continue indefinitely

without ever leading out of A.

Definition 5.2. Two sets A and B are equivalent if sa=sb-

Definition 5.3. The aggregate of all vectors sa and 0 will be denoted by

©. The elements of <S will be referred to as sojourn solutions.

Lemma 5.1. If A and B are nonoverlapping, then

(5.9) sAr^sB = 0,

(5.10) sa W sB = sA + sB = Saub-

Note. It will be shown in §9 that A and B can be replaced by equivalent

sets such that the inequality sign in (5.10) becomes a strict equality sign.

Proof. Since, by definition, 6a + ^b equals 6A in A and 6b in B we have

(5.11) saWsb = dx + d«.

Premultiplying by IIn and letting n—> oo we get

(5.12) sA W sb = sa + sB.

But the reversed inequality is trivially true, and therefore the equality sign

holds. This proves the first half of (5.10). A comparison with (4.1) shows the

truth of (5.9). Finally, the inequality sA\jb^sa^Jsbfollows directly from the

definitions.

6. Relativization. Let A be a sojourn set, and ACBCE. In §5 we have

considered A as a subset of E and IIA as a submatrix of II. Obviously the same

considerations apply if we replace E and II by B and IIb, respectively. To

the sojourn solution sa there corresponds the vector s^ defined by

t/C   .. sA(i) = Um  Y,IlB(i,j)o-A(j), iEB,
(6.1) n->«      j

*?(*) = 0, iEE- B.

With this notation we have sA =sf and 6A=si. Clearly

(6.2) 6A ^ sBA = sA.
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Premultiply (6.2) by IT". The right side remains unchanged, and (5.6)

leads to

Lemma 6.1. We have

(6.3) sa = lim II sA.
n—.oo

We shall repeatedly use the following corollary.

Lemma 6.2. Let AEB and AEB. If sA=s^, then also sA=sA.

That is, if A and A are equivalent relative to B, then they are equivalent.

7. Auxiliary lemmas.

Lemma 7.1. Let zEty* and let A be an arbitrary set. For each n and each

iEA we have

(7.i)    z(i)* Y nnA(i j)z(j)+ Y Y    Y  nA(i,j)u(j,k)z(k).
jEa v-o  jEa    kEB-A

If zEty, then the equality sign holds in (7.1).

Proof. For n = l the relation (7.1) reduces to z^IIz. Assume (7.1) to hold

for some n. Using z^LIz we get

(7.2) Y TU(i,j)z(j) §:    YnT(i,j)z(j)+   Y       Y   lC(i,jU)(j, k)z(k).
iEA jEA jEA     kEB-A

Substituting this for the first term on the right in (7.1) we get the assertion

(7.1) with n replaced by n + l. When z=Hz then each of the above   in-

equalities is replaced by an equality, and the lemma is proved.

Choosing in particular z = l we get the

Corollary 1.  For iEA

(7.3) UA(i, A) + Y   Y HA(i,j)Tl(j, E-A)£l.
x=0   jEA

If II is strictly stochastic, then the equality sign holds.

Letting n—> °° we get

Corollary 2. For iEA

(7.4) aA(i) + f:   Z TIA(i,j)U(j, E - A) ^ 1.
»=o   jEA

Probability interpretation. The nth term in the outer sum equals the

probability that, starting from i, the random walk remains for n steps inside

A whereas the step number n + l leads into E—A (i.e. the first passage into
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E—A occurs at the (« + l)st step). The difference between the two sides in

(7.4) is the probability that the random walk terminates after finitely many

steps.

With each vector x there are associated its contour sets, that is, the sets

of those i for which x(i) exceeds a preassigned constant. Concerning these

we prove

Lemma 7.2. Let x be a bounded solution ofHx = x, and x^O, llxll >0. For
II      II

fixed 0<r) <\\x\\ put

(7.5) X,= {i:x(i)>\\x\\-v}.

Then Xv is a sojourn set. If

5
(7.6) — < e, S > 0,

V

then

(7.7) <rx,(t)>l-€ foriEXs.

Proof. Applying Lemma 7.1 with z = x and A =XV we get for iEXt

(7.8)||x||-s<*(t)g||x||'nnx,(t, a%)+{||x||-„}- £ £ n'x,(i,j)n(j,E-x,).
>•-o yGx,

Using (7.3) with A =X„ this leads to

(7.9) ||x|| - 5 = ||x||.IIx,(t, Xv) + {||x|| - ij}- {1 - IIXv(i, X,),

or

(7.10) nx,(i,A%) = l-

The assertion (7.7) now follows letting «—>oo.

Lemma 7.3. For each sojourn set \\^a\\ =1 and \\sa\\ =1.

Proof. Since s^ is the maximal sojourn solution we conclude from (7.7)

directly that | s#| =1. Applying this conclusion to the matrix 11a instead of

II we see that |6a \ = 1. Finally, 6A ̂ sA ^ 1 and the lemma is proved.

Lemma 7.4.  With the notations of Lemma 7.2 one has

(7.H) x= {||x||-„}.axf.

Proof. By definition x= {||x|| — n} ■ dx,. The assertion follows on pre-

multiplying this inequality by IIn and letting n—> oo.

8. Nests of equivalent sojourn sets. The next theorem supplements
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Lemma 7.2 for the special case of sojourn solutions and is of prime importance

for the sequel.

Theorem(') 8. For any sojourn set A and 0<?;<1 put

(8.1) A, = {iEA:sA(i) > 1 - i,}

and

(8.2) A, = {i: <ta(i) > 1 - v}.

Then

(8.3) sA = sa, = sA,,

that is, A, A„, A, are equivalent.

Proof. When A =E the sets defined by (8.1) and (8.2) are identical and

the lemma reduces to the proposition

(8.4) se = sxr

We begin now by showing that (8.3) is more general than (8.4) in appearance

only. First note that A,C-<4,C^4, so that (8.3) really reduces to sA=sAif.

Now recall Lemma 6.2 according to which A and A, are equivalent whenever

they are equivalent relative to A (that is, if si = 6a). Now this statement

differs from (8.4) only notationally, and so it suffices to prove (8.4).

For that purpose put

(8.5) sB — sb, = u

and suppose that ||u|| >a>0. The set

(8.6) B = [i:u(i) > a}

is a sojourn set, by Lemma 7.2. We now apply that Lemma to x = sE. Then

A%=E, and by (7.7) we have

(8.7) SB,(i) > 1 - a foriEEs

provided 8 <ar). For iEE>r\B we have both (8.7) and u(i) >a, and therefore

ss(i) > I which is impossible. Thus BEE~Es, and hence by the definition of

Es

(8.8) sB(i) ^1-3 foriEB.

But Se^sb^6b and from (7.7) we see that aB(i)>l — o for some iEB. This

contradicts (8.8), and so u = 0 as asserted.

An important implication of the last theorem is that each sojourn set

A contains an equivalent sojourn set A such that

(») Compare with Lemma 9.2 at the end of §9.
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(8.9) sA(i) > 1 - v foriEA.

When dealing with a particular sojourn solution x = sA we may therefore

always choose the representative set so that (8.9) holds. In fact, it is necessary

to do this if set theoretical operations on sojourn sets are to correspond to

lattice operations on sojourn solutions. For example, (8.10) is false without

the assumption that A satisfies (8.9). We therefore introduce the

Definition. A sojourn set A is called representative if (8.9) holds for some

7?>0.

As was already observed, we have

Lemma 8.1. Each sojourn set A contains an equivalent subset A which is

representative.

Lemma 8.2. Let A be representative, and A EB. Then

(8.10) sB = sa + sb-a.

Proof. We begin with the special case B=E. Put

(8.11) sE — sA — sE-A = tt.

We propose to show that u = 0. From (5.10) we have u = 0. Suppose ||u|| >0

and define three families of sets as follows:

Ae = {iEA:sA(i) > 1 - «},

(8.12) C, = {i E E - A:sE-A(i) > 1 - «},

Ut = {i: u(i) = ||u|| - 8}

(where Cs may be empty). Choose 25<||u||. At any point i common to As

and Cs we would have ss(i) > 2 — 25 > 1 which is impossible. Therefore As and

Ct are nonoverlapping. The same argument shows that

(8.13) x,nc, = o,     Asr\Ut = o,     csnc/s = o.

It follows then from (5.10) that

(8.14) sB ^ sas + se8 + suv

In view of Theorem 8 this is the same as

(8.15) sE ^ sA + se-a + svy

Thus u = sc/j and therefore |[u|| =1. This means that for iEAC\U& we have

ss(i)"^2—n — b and therefore ^n<7» = 0 provided 5<1— 77. With this choice

of 5 we see that UsCE — A and hence

(8.16) sE = se-a + u ^ s£_a + sUs ^ 2sUy

But this is absurd since ||se/J|=1 by Lemma 7.3. We conclude therefore

finally that u = 0 or Se = Sa+Se-a-
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Now consider the case of an arbitrary set BZ)A. Applying the last result

to the matrix UB (instead of II) we see that there exists a subset AEA such

that

fa    4T\ B B B B
(8.17) 6B = SA + SB-A, Sa = SA

(see (6.1) for the notation). Lemma 6.1 shows at once that (8.17) is equivalent

to

(8.18) sB = sa + sB-a, Sa = sa.

Now B— AZ)B— A, and the difference is contained in A. But for iEA we

have sB-A(i) = 1 ~sA(i) = 1 — V and hence B —A is equivalent to B —A.

9. Properties of sojourn solutions.

Theorem 9.1 (Criterion). For an element xG^P to be a sojourn solution

it is necessary and sufficient that

(9.1) xfMs*-x)=0.

Equivalently it is necessary and sufficient for any sojourn set C

(9.2) x > tsc, I > 0   implies   x ^ sc.

Proof. (1) Let x = sa. Then A may be supposed to be representative. By

Lemma 8.2 we have in this case se — x = se-a, and (9.1) is contained in (5.9).

Thus (9.1) is necessary.

(2) Proof that (9.1) implies (9.2). In consequence of (9.1) we may apply

(4.3) to obtain

(9.3) sc = sc C\ {x + (ss - x)} = sc C\ x + sc C\ (sE - x).

Suppose now that tscfkx where />0. By (9.1) the last term in (9.3) vanishes,

and thus (9.3) reduces to sc = scr\x or scgx.

(3) Suppose now that (9.2) holds. We have to show that x = s% ior some

sojourn set X.

Let xG'iP and consider the set TAT, defined in (7.5). Then (7.11) holds, and
therefore x^sx. by (9.2). Thus

(9.4) x- sxv = u, uE%

Applying the preceding remark to u instead of x we conclude that if uj^O

then there exists a sojourn set A such that u^tsA with />0. It follows then

from (9.4) and (9.2) that x^sA.

Let A, be defined as in (8.1). For iEAn we have x(i) ^sA(i) ^1 —1\ and

thus A„EX„. But then from (9.4)

(9.5) x ^ sa, + u ^ (1 +/)sa,

or [|x|| ^1-H against assumption. Therefore u=0 and x = sx .
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Theorem 9.2. If A and B are sojourn sets, then

(9.6) sAr\B = sA n sB.

Warning. The formal analogue for AKJB is false.

Proof. Since obviously sa^b^saC^sb it suffices to prove that there exists

a set CEA(~\B such that sc = saC\sb. We are therefore permitted to replace

A and B by equivalent subsets and to prove the relation (9.6) for them. This

means that there is no loss of generality in supposing that both A and B

are representative. Accordingly, we shall assume that

(9.7) sA(i) > 3/4 for iEA, sB(i) > 3/4 for i E B.

From the probability interpretation(10) of sojourn probabilities one sees that

(9.8) SaUb ^ SaCib + {sB — sA} + {sB — sB}.

We see from this and (9.7) that sAnB(i)>l/4: when iEAHB. Thus AC\B

satisfies an inequality of the form (8.9) and we may apply Lemma 8.2 to

obtain

(9.9) sa = SaDb + Sa-aHb,        Sb = saCib + Sb-aDb.

From this we get

(9. 10)     SAr\SB = SAnB + SA-Ar\BC\SAr\B + SAriBC\SB-AnB + SA-Ar\BC\SB-AnB

(the distributive law (4.5) is applicable in consequence of (5.9)). The last

three terms in (9.10) vanish since the two sets involved are in each case non-

overlapping (cf. (5.9)). Thus (9.10) reduces to (9.6).

Theorem 9.3. Let x, y, and x„ be sojourn solutions (elements of <5). Then

(a) xny(E<S,
(b) y — x(E@ provided x^y.

(c) xUyG®,
(d) x+yE'B provided x(~\y = 0.

(e) If either x„ | u or x„ f u then uES.

Proof. Theorem 9.2 contains a statement which is stronger (and deeper)

than (a). Also, (a) is an immediate consequence of the criterion (9.2). Simi-

larly, (b) is contained in Lemma 8.2. To prove (c) note that by (4.2) we have

(9.11) xVJy = se- (sE-x)C\(sE-y),

and the right side is a sojourn solution in consequence of (b) and (a). Next,

(10) For the reader unacquainted with (or distrusting) probability arguments we give a

direct proof of (9.8). For the purpose of this proof we set IIa(*,7) =0 when iEA. A simple in-

duction shows that nAufl(«, AUB)^nAriB(.i, A C\B) + {i-nl(i, A)} + {l-WB(i, B)} (note
that the right side is & 1 wheni(J.4 Pl-B). Letting »—>°o we get o-AUsfio'Anfl + O —"x) + (l —<tb).

Premultiplying by n~ and letting n—>°° we obtain (9.8).
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(d) is but a special case of (a). Finally, if x„ j u then the criterion (9.2)

shows trivially that uE'S- For the case xn j u the proof goes by comple-

mentation as under (c).

The following theorem is listed for its intrinsic interest and will not be

used in the sequel.

Theorem 9.4. Let A be representative. Then

(9.12) sA(i) = limll"(t, A).
n—»oo

Warning. For an arbitrary sojourn set (9.12) need not be true.

For the random walk with initial position i the relation (9.12) states that

the probability of finding the moving point at time n in the set A approaches

SA(i) as n—»°°.

Proof. From the definition (5.5) we have

(9.13) sA(i) ^ lim inf W(i, A),
n—»«

and equally

(9.14) sE-a(i) ^ lim inf Un(i, E - A).
n—*oo

Now (8.10) applies, and so the left sides add to ss(i). Thus

(9.15) sA(i) + sE-A(i) = lim {w(i, A) + H"(i, E - A)},
ft—.00

and the theorem follows trivially.

We conclude with a lemma which supplements Theorem 8 inasmuch as

it associates with each sojourn solution sA a sequence of sets which is inde-

pendent of the representative set A and thus intrinsically connected with sa.

However, this lemma will not be used in the sequel.

Lemma 9.1. Let A be a sojourn set and

(9.16) 5, = {i:sA(i) > 1 - n}, 0 < ij < 1.

Then S, is equivalent to A.

Proof. Once more we are permitted to replace A by any equivalent set,

in particular by the set Av defined in (8.1). Now A„ESn and Lemma 8.2

applies. Thus

(9.17) ss, = Sa, + ss,_a,.

However, for iESn we have

(9.18) ss^d) ^ SE-A,(l) = sB(i) - sAn(i) g 1 - (1 - „)
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and therefore ||ds a,|| =*?• Accordingly ss,_a, = 0 in consequence of Lemma

7.3.
10. Sojourn solutions as extremals of $.

Theorem 10. In order that an element xEty be a sojourn solution it is

necessary and sufficient that the relations

(10.1) x = tu + (1 - l)v, 0 < I < 1,    u.vEV,

imply u = v = x.

This amounts to saying that the sojourn solutions coincide with the ex-

tremals of <P (cf. [2, Livre V, Ch. 2]).

Proof. (1) Suppose that xG© and that (10.1) holds. We have

(10.2) sE - x = t-(sE - u) + (I - t)-(sE - v).

Since tu^x and ((sb-u)^s^-x we conclude from (9.1) that ur\(sE — u) =0

and so uE® by Theorem 9.1. For the same reason vG@- Accordingly,

(9.2) assures us that x^u and also x^v. Therefore

(1 - l)v = x - tu ^ (1 - t)u.

In this way v^u and, by the same argument, u^v and so u = v.

(2) If x is not a sojourn probability then by Theorem 9.1

(10.3) x C\ (sE - x) = z z y^0.

We show that

1 1
(10.4) x = —(x+z)-\-(x - z)

is a decomposition of the form (10.1) with t=l/2. Clearly 0^x —z^l, and

so x —zG^P- Also, for each i we have z(i) ^sB(i) — x(i) ^1 — x(i), so that

0^x+z^l and x+zE$.

Note. The Krein-Milman theorem leads to an alternative proof of the

uniform approximation Theorem 13.4.

11. Recurrent and transient sets. For the further development we require

a few elementary facts about partitioned matrices. As was stated in the in-

troduction, part of the results could be obtained from the ergodic theory of

stochastic matrices. It is simpler and more natural to derive all required facts

in one sweep purely analytically. The present method opens a new access to

the ergodic theory. The following terminology will, perhaps, appear artificial,

but it comes closest to established usage in probability theory.

Definition 11. A set REE is called indecomposable-recurrent if it is a

sojourn set, but no proper subset of R is a sojourn set. A set is called recurrent

if it is the union of indecomposable-recurrent sets. A point i is called recurrent

if there exists a recurrent set R such that iER- A point which is not recurrent is

transient.
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Warning. The set C, which consists of the single point i obviously is re-

current if, and only if, II(i, i) = l. Thus i can be recurrent without C, being

recurrent. It is hoped that this will cause less confusion than would the in-

troduction of two new terms.

Theorem 11.1. In order that r be recurrent, it is necessary and sufficient

that(u)

(11.1) sE(r) = 1, sE-r(r) = 0.

Probability interpretation. For a random walk starting at r the rela-

tion ss(r) =1 attributes probability zero to the event that the random walk

terminates after finitely many steps. On the other hand, 5£_r(r)=0 means

that the probability of only finitely many returns to r is zero. Thus, accord-

ing to Theorem 11.1, the point r is recurrent if and only if there is probability

one that, starting from r, the random walk leads infinitely often back to r. Our

definition therefore agrees with the definition used in probability theory.

Proof. (1) Necessity. Consider first the special case where E is indecom-

posable-recurrent. By Theorem 8 the set where ss(i) > 1 —n is a sojourn set,

and since no proper subset of £ is a sojourn set we have sB(i) =1 for all *.

Furthermore, E—i is not a sojourn set, and therefore s#_, = 0 for each i.

Thus (11.1) holds for all points. Moreover, since se = 1 we see that II is

strictly stochastic.

Turning to the general case, let r be a fixed recurrent point. By definition

there exists an indecomposable-recurrent set R such that rER- Applying our

last conclusion to Ur instead of IT we see first of all that Ur is strictly stochastic.

Therefore

(11.2) UB(i, R) = 1, nR(i,E-R) = 0   for   i E R.

This means that II is of the form of a partitioned matrix

(11.3) n = ( ) •
\M     Ue-r/

When the whole space is indecomposable-recurrent we have shown that

Se(J) = 1, SE-i(j)=0 for all i, j. Using the notation of §6 we can write the

corresponding equations for our subspace R in the form

(11.4) °r(i) = 1,       sL<(j) = 0, iERJEE.

Applying (6.3) we get at once

(11.5) sB(t) = 1,       sB-i(J) = 0, i E R,   j E E.

Thus SE(i) = l. For rER we have from (11.3) clearly ss-R(r)=0, and thus

(u) We denote the complement of r by E — r rather than by the more correct E—{r}.
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sB-i(r) ^SR-i(r)+ss-R(r) =0 ior each iER. This statement includes (11.1).

(2) Sufficiency. To each r££ define a set REE as follows: kER if and

only if

(11.6) nn(r, k) > 0 for some n ^ 0.

For kER and jEE — R we have obviously H(k, j) =0 and so H(k, E — R)=0

ior each kER. This means that II is again a partitioned matrix of the form

(11.3), but in general IIr will not be strictly stochastic.

We begin with the following simple remark (which will be used also in

the proof of Theorem 11.3). If sB(r) = l for one rER, then Hr is strictly

stochastic (so that (11.2) holds). In fact, for each n we have

(H-7) 1 = ss(r) =   Y n»(r,j)sE(j);
iER

the right side can equal unity only if each positive Hn(r, j) is multiplied by

unity.  From the definition  (11.6) then ss(k) = l ior each kER and thus

n*i = i.
Now to the proof that (11.1) is sufficient. If (11.1) holds for some r, then

Hr is strictly stochastic and so R is a sojourn set. We have to prove: if A ER

is a sojourn set, then A=R. Assume the contrary and choose kER— A. Then

R — kZ)A is a sojourn set. Choose n so that (11.6) holds. Then

(11.8) oR-k(r) = Y nL*(r, j)*g-*(j) ^ nL4(r, R - k) g 1 - Il'(r, k) < 1.
i

By Theorem 8 the set B of all j such that OR-k(j) ><rR-k(r) is a sojourn set,

and r is not in B. Therefore R — rZ)B is a sojourn set, and hence there exists

an iER — r such that SR-r(i)>0. Now

(11.9) s«_r(r) = £ll-(r, f)sB-r(j) ^ n»(f, i)sR-r(i).
i

By an appropriate choice of m the last term can be made positive. Thus

SR-r(r) >0 against assumption, and the proof is completed.

Theorem 11.2. The space E is partitioned into mutually nonoverlapping

sets T, Ri, R2, ■ ■ ■ as follows: T is the set of all transient points; each Rn is in-

decomposable-recurrent. Each submatrix Rn satisfies (11.2). One has

(11.10) sRn(i) = hn.m foriERm

where 8„,m is the Kronecker symbol. For each sojourn set A

(11.11) SA = SAnr + SAn*

where R = [)Rn is the set of recurrent points. Furthermore

(11.12) sAnT(i) =0 for iER;

(11.13) SAnr = IlrSAnr,        sahr =    Y s«»-
RnCA
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Proof. In the sufficiency proof to Theorem 11.1 we have constructed the

set R which is obviously the unique indecomposable-recurrent set containing

the recurrent point r. It follows that no two indecomposable-recurrent sets

can overlap. It is then clear thatll is again of the form (11.3), where E — R= T

and Ur is completely partitioned

/* °-\
(11.14) n« =10     R2- • • J •

The remaining assertions are immediate consequences of this and the defini-

tions.

The main implication of Theorem 11.2 is that in the study of a sojourn

set A we need only worry about the transient part^nF. Since SAnr vanishes

on R we are in substance dealing with the submatrix Ilr only. In other words,

we have reduced our problem to the case where all points are transient. (Each

indecomposable-recurrent class contributes one single element to ty.)

We proceed to the most important

Theorem 11.3. Let the sojourn set A be transient. Then there exists a se-

quence of sets An equivalent to A such that

(11.15) sAn = sA,        AD AxD As- ■ ■ , An^0.

Corollary. The complement of any finite set in A is equivalent to A.

Proof. It suffices to prove that A and A — r are equivalent for each r.

If 0A(r)<l then this statement is amply contained in Theorem 8. Accord-

ingly, assume aA(r) = 1. Define the set R as above by the property (11.6). As

has been remarked in the sufficiency proof of Theorem 11.1, the relation

<rA(r) = 1 implies that 11^ is strictly stochastic, so that II is of the form (11.3).

Also AZ)R and we have only to prove that R — r is equivalent to R.

Since HR is strictly stochastic, R is a sojourn set. It contains a sojourn

set B as a proper subset, for otherwise r would be recurrent. By Lemma 8.1

we can choose B so that Sr = Sb + sr_b. If rER — B then R — rZ)B is a sojourn

set and the statement is proved. If rEB then <rB(r)<l. In fact, choose

kER-B and choose n so that (11.6) holds. Then aB(r) g 1 -II"(r, *)<1. By

Theorem 8 the set B' of all iEB such that o-B(i)>o-B(r) is a sojourn set

equivalent to B. Therefore B—r is squivalent to B. But then

(11.16) sB = sB-, + sR_B ^ sK_r = Sr

and so R and R—r are equivalent.

12. The discrete part of the boundary.

Definition 12.1. A sojourn solution sa?^0 corresponding to a transient^*)

(") The restriction to transient sets is introduced only to avoid clumsy formulations and

trivialities.
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set A is called minimal if sB ^ sA implies that sA=sB or sB = 0. A sojourn solu-

tion Sa is continuous if there exists no minimal sojourn solution sB^sA.

Clearly if Sa is minimal and x^sA (where xG*?), then x = tsA.

Lemma 12.1. There exist at most denumerably many minimal sojourn solu-

tions s(1), sf2), • • • .

Proof. For two distinct minimal solutions one has aii)r\sik)=0, by the

very definition. Theorem 8 shows that we may choose sojourn sets Sn so that

(12.1) ss„ = gW

and that the S„ are mutually nonoverlapping, in fact so that Ss„(i)>l— e»

for iESn.

Definition 12.2. We enlarge the space E by adding for each sM a new

point yn. In the set E+T thus obtained we introduce a topology as follows. The

set 12 is open if for each ynEQ there exists a sojourn set SnE® such that (12.1)

holds.
According to this definition each subset of E is open.

Theorem 12.1. With this topology E+T is a Hausdorff space. Each of the

subsets E and T in itself has the discrete topology(13).

Proof. If sa=ss = s<") then also sAr\B = s(n) by Theorem 9.2. Thus the

union of open sets and the intersection of finitely many open sets are again

open. Thaty„ and ym (n^m) have nonoverlapping neighborhoods was shown

above in the proof to Lemma 12.1. Clearly each point iEE represents an

open set, and each y is relatively open in T.

Theorem 12.2. In order that

(12.2) x = 2>ns(n)

be an element of ty it is necessary and sufficient that 0 ^an ^ 1. Then

(12.3) x(i) —* an    as   i—>yn, iEE.

If ^P contains no continuous sojourn solutions(u) and all points of E are transient

then each xG?5 is of the form (12.2).

Proof. If 0gan^l then xEty- When all the an are bounded, (12.2) repre-

sents a bounded solution of IIx = x. Relation (12.3) follows then from the

fact that there exists a neighborhood of yn in which s(n)(i) 2:1 — e, and hence

(I3) It will be noticed that the recurrent part of E in no way influences the boundary. For a

better understanding consider the case where E is indecomposable-recurrent, that is, where E

is the only sojourn set. Then © contains the unique element 1. If one added a boundary point y,

it would have no neighborhood except the whole space, and thus we would not have a Hausdorff

space.
(") By Theorem 11.2 each indecomposable-recurrent set in E contributes exactly one

trivial sojourn solution, and these should be added to (12.2) in the general case.
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ss(i) — sM(i) ^e. The necessity of the condition 0^a„gl is a trivial conse-

quence of this. Finally, given an arbitrary xG'ip, we have

(12.4) ans^ = sMC\x.

With this definition of an the right side of (12.2) is = x, and clearly the differ-

ence is a continuous solution.

Once the boundary is defined we may say that sin)(i) is the probability

that, starting from i, the random walk will asymptotically approach the boundary

point yn.

13. The maximal ideal space. We wish to define the boundary so that the

sojourn solutions s£© will stand in one-to-one correspondence with certain

sets of boundary points. In anticipation of the final outcome these sets may

be described as sets of positive measure or capacity(15). For each continuous

sojourn solution (Definition 12.1) s£@ there exist null-sequences such that

s=si= • • • , sn—>0, and such a sequence corresponds to a monotone sequence

of sets of the boundary. The intersection may be an arbitrary set of measure

zero, and not necessarily a point. It seems therefore hopeless to define points

of the boundary directly in terms of sequences of sojourn solutions. Instead,

we adapt to our purposes ideas widely used in representation theory.

We recall (cf. [l]) that a set J of sojourn solutions is a lattice ideal(1%) in

© if the following is true: whenever xE J and yEJ then also xVJyEJ and

zEJ where z£© and z^x. An ideal is maximal if © is the only ideal con-

taining / as a proper subset, and 7?^©. There exist maximal ideals when-

ever © contains more than one element.

Definition 13. Suppose that all points of E are transient^1). Let 33 be the

set of maximal ideals. In the space £+33 we introduce a topology as follows. A

set ftC-E + 33 is open if to each maximal ideal uGfl there corresponds an ele-

ment saE® such that saE03 and A C&, and moreover 0 contains each maximal

ideal /3 such that se-a-

Before proceeding it is necessary to show that the discrete boundary in-

troduced in §12 is really part of the boundary S3 as defined in the last defini-

tion and that there is no contradiction between the two definitions of open

sets.

(") Formula (12.2) expresses the value x(i) as an integral over the boundary values a„

with respect to the measure which attaches weight sM(i) to the point y„. This is a representa-

tion of the Green-function type. An abstract representation of this type is possible also in the

most general case, using the Krein-Milman theorem. For this purpose it is not necessary to in-

troduce a boundary, but only a measure defined on ©. See, for example, the excellent representa-

tion in Choquet [3, Chapter 7].

(16) For our purposes it would be more natural to use dual ideals instead of ideals.

(") Alternatively, replace in the sequel © by the sublattice of sojourn solutions correspond-

ing to transient sets, that is, of sojourn solutions such that sa = sa„ where An J. 0. Cf. the foot-

note to Theorem 12.1.
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Lemma 13.1. The two definitions 13 and 12.2 are mutually consistent.

Proof. Let sA he a minimal sojourn solution and define / as the set of all

elements xG© such that xC\sA=0. It is obvious that saEJ, that / is a

maximal ideal, and that / but no other maximal ideal contains se-a = Se—sa.

It follows then that the set A + J is open according to either of the definitions.

For the proof that £ + 53 is a Hausdorff space we require two lemmas.

Lemma 13.2. For any maximal ideal either sAEJ or se-aEJ.

Proof. Suppose that saG-^ and define / as the set of all elements of the

form xUy, where xEJ and y^SA. It is clear that / is an ideal and that

JET. As / is maximal we have /=©, and therefore se-aEI- This means

that SE-A = xVJy with xG-7 and y^sA. Now yHs«-A = (xUy)riy =y or

y^SE-A. Therefore y^sAf^SE-A =0 or se-A = xEJ as asserted.

Lemma 13.3. Let J be a maximal ideal and suppose that sAEJ and sBEJ-

Then sAf\BEJ.

Proof. In accordance with Lemma 8.2 we may assume without loss of

generality that the sets A and B have been chosen so that

Se = Sa + Se^a = sB + Se-B.

Then, by Lemma 4.1

(13.1) sAC\sB = sE — se-a {J sE-B.

Now in consequence of the preceding lemma both sB-A and sE~B are in /, and

therefore u = se-A^Jse-bEJ. Again, s« = uU(ss-u), and therefore uEJ

implies that se — uEJ- A recall of Theorem 9.2 now completes the proof.

Theorem 13.1. The space £ + 93 of Definition 13 is a Hausdorff space.

Proof. The union of open sets is obviously open. We prove that the inter-

section of two open sets Ui and ft is open. Every subset of E is open and

therefore there is nothing to be proved in case ftOftCF. Suppose then that

there exists a maximal ideal (oGfii^t!!, and let -4,-Cft be a set as described

in the Definition 13. Then Sa^^ and Sa,Gw, and so sAinAlE<^ by Lemma

13.3. Therefore sa^a^O, and Ai(~\A2 is a sojourn set contained in ftPift.

Finally, if/S is a maximal ideal such that sE_Air,AiEI5, then a fortiori sE-AlE@

and s.e_AjGp\ so that /3Gft^ft- This proves that ftP\ft is open.

To verify the separation postulate, let a and /3 be two distinct maximal

ideals. Then there exists a sojourn solution sAE& such that sA G/8- By Lemma

13.2 we have in this case se-aE&- Again, the set A is determined only up

to an equivalence class and may be chosen so that se = sa+se-a =sa^-Jsb-a

(Lemma 8.2). Then no maximal ideal can contain both sA and sb-a- Thus if

we put Qi = (£ —i4)+all maximal ideals containing Sa, and similarly ^2=^4

+all maximal ideals containing Se-a, then Qi and ft are nonoverlapping open

sets such that agQi and /3Gft. If a is maximal ideal and iEE, then i is its
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own open neighborhood and a has a neighborhood excluding i by virtue of

Theorem 11.3(18).

Theorem 13.2. Let saE®, and let co be a boundary point (maximal ideal).

Then, as i—>co (where iEE)

1 if   sA E «
(13.2) '*«-* -,        Z

0 if   Sa E w-

Proof. Among the equivalent sets defining sA choose A so that (8.9) holds.

If Sa 6Eco choose as a neighborhood of co the set Qv defined in the preceding

proof. Then SA(i)>l— V for iE$kC\E, and this proves the first relation in

(13.2). The second follows on replacing A by E—A.

We see thus that each sojourn solution sA can be extended to a continuous

function on the whole space F + 33. On the boundary such a function assumes

only the values 0 and 1. Finite linear combinations of sojourn solutions in-

duce on the boundary 33 continuous functions assuming only finitely many

values. We call such functions step-functions. The last theorem is now sup-

plemented by

Theorem 13.3. Each xEty has continuous boundary values.

This is an immediate consequence of:

Theorem 13.4. Each xEty can be approximated uniformly in E by finite

linear combinations of sojourn solutions.

In other words: in order that a function /(/3) defined on 33 represent boundary

values of some xEty it is necessary and sufficient that 0^/5=1 and that f be the

uniform limit of step functions.

The proof of Theorem 13.4 will be based on the following lemma which

will be used again for the proof of Theorem 15.1. With a view to this latter

application the lemma is formulated so as to cover also the case of unbounded

solutions.

Lemma 13.4. Let x^O be a solution of IIx=x and put X= {i: x(i)>rj}

where rj is a positive constant. Then

(13.3) x = Vsx.

Moreover, letting sa=se — sx, one has

(ISA) xKsa^vsa.

Note. If x is bounded and t?<||x||, then X is a sojourn set and sx?^0. For

an unbounded x it may happen that sx = 0 for all rj,

(18) Note that sojourn solutions corresponding to recurrent sets have been excluded only

to establish this point.
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Proof. Clearly x^dx. Premultiplying by II" and letting n—*<x> we obtain

(13.3).
Next put xC\sa =y and suppose for the moment that ||y|| >rj. By Lemma

7.2 the set Y= {i: y(i) >rj} is a sojourn set and applying (13.3) we see that

y^rjSY. Now y^sA and therefore sy^sa. This, however, is impossible, for

y = x implies that YCX, whence sy = sx and therefore sy^saC\sx = 0. It

follows that ||y|| ^7; and hence y^n-1. Premultiplying by IIn and letting

n—>oo we get ytiysE, that is, xC^sa^-se. This is the same as (13.4), and

the lemma is proved.

Proof of Theorem 13.4. Without loss of generality assume that ||x|| =1.

Choose r) = 1/2 and define the sets X and A as in the proof of Lemma 13.4.

By this lemma

1 1
(13.5) —sx ^ x ^ sx -\-sa

or

1 1
(13.6) 0 =: x-sx^—se.

2 2

Thus x —2_1sxG'iP and ||x — 2-1sx|| ^1/2. Applying the same procedure to

x — 2~'sx we get a linear combination L = 2_1sx+o;sy such that x — LEty,

and || x — L\\ = 1/4, etc.
14. Unbounded solutions. Isomorphisms. It has been remarked at the end

of §4 that non-negative unbounded solutions of IIx = x enjoy lattice properties

similar to those of bounded solutions. We shall now outline a new approach

to the theory of unbounded solutions which has analytical advantages and

important probabilistic implications. It has a close analogue in a familiar

transformation of the Sturm-Liouville differential equations, although this

analogy is hidden by the altogether different formalism. For simplicity of

formulations we shall consider only strictly stochastic matrices, that is, we

assume III —1.
Let z be a strictly positive(19) solution of Hz = z and define a matrix IT'

by

(14.1) W(i,j)=U(i,j)Z^--
z(t)

Clearly IT' is again strictly stochastic and for its powers one has

(14.2) n'»(t,i) = n»(f,y)^-
_ zw

09) The restriction to strictly positive solutions is introduced only to simplify formulations

and represents no serious loss of generality. For, if z^O is a solution which is not strictly posi-

tive, let R be the set of all * such that z(i) =0. It is obvious that n is partitioned in the form

(11.3). All the matrices similar to n in the sense of Definition 14 will be of the same partitioned

form and there will be a one-to-one correspondence between the solutions of nx = x and n'x' = x'

which vanish on R.
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If x is any non-negative solution of IIx = x, then the vector x defined by

x(i)
(14.3) *'(*) = ~

is a non-negative solution of II'x' = x'.

Notation. We denote by 2JI the aggregate of all strictly positive solutions of

IIx = x, and by W the corresponding set for II'.

Definition 14.- Two strictly stochastic matrices II and IF will be called

similar if they stand in the relationship (14.1), where zGSO?. The vector x' defined

in (14.3) will be called the (canonical) image of x.

We have now the obvious but important

Theorem 14.1. The similarity is a symmetric and transitive relationship.

The transformation (14.3) is a one-to-one mapping of 3JJ onto 9JF which is a

lattice isomorphism, that is, for x, yG3JJ

(14.4) (xHy)'= x'ny',        (xUy)' = x'Uy'.

In particular, the vector z itself is mapped into z' = l. In this way an

arbitrary positive solution of Hz = z can be made to play the r&le of the

unit solution. It is possible to introduce notions of relative boundedness, rela-

tive sojourn solutions, etc. However, we can proceed in a more direct man-

ner.

Theorem 14.2. Let both z and x be sojourn solutions. Then the image x'

is a sojourn solution if xgz, and is unbounded otherwise.

Proof. To begin with, let x^z. From (9.1) we have x(~\(z — x)=0, and

therefore xT\(l — x') =0. By Theorem 9.1 this is equivalent to the assertion

that x is a sojourn solution. Next, suppose that x^z does not hold. Then

there exists a nonzero sojourn y ^1 — z such that x^y. By Theorem 8 there

exists a sojourn set Y such that y(i)>l— t for iEY. Now x'(i)>e~1(l — e)

for iE Y and x' is therefore unbounded.

We see thus that when z is a sojourn solution, the boundary of E defined

by the matrix II' consists of a part of the boundary defined by II. On the other

hand, if z is not a sojourn solution then the sojourn solutions of IFx' = x' need

not be images of the sojourn solutions of IIx = x. In the next section it will

be shown that nevertheless there exists a simple connection between the

boundaries of all similar stochastic matrices.

Probability interpretation. For simplicity let us begin with the case where

z is a minimal sojourn solution (Definition 12.1). To z there corresponds an

isolated boundary point y and, for the random walk defined by II, we know

that z(i) represents the probability of an ultimate asymptotic approach to y

if the initial position is i. It is then clear that II'(*, j), as defined in (14.1)

represents the conditional one-step transition probability from i to j evaluated



46 WILLIAM FELLER [September

on the hypothesis of an ultimate asymptotic approach to y. In statistical termi-

nology: out of a sample of mutually independent random walks obeying

II we consider the subpopulation of those which ultimately land at y. The

process defined in this way is the same as a random walk with transition proba-

bilities IF. It is now clear that in this new process the boundary point 7 will

be approached with probability one, so that y must be the unique boundary

point for II'.
Next consider the case where z = piz1+p2z2, where the z< are minimal

sojourn solutions and pi>0. If pi=p2 = l, then z is again a sojourn solution,

and the above probabilistic interpretation requires only a slight rephrasing.

In particular, the boundary of IF will now consist of the two boundary points

71 and 72 corresponding to zx and Z2. If pi^p2 different weights are attached

to the two boundary points: if a particle ultimately approaches 7< it has

probability pi/(pi+p2) to belong to our subpopulation defining II'.

Obviously a similar probabilistic interpretation can be given in the most

general case. Using the notions of boundary and real valued functions on this

boundary our description requires only a trivial rephrasing.

We conclude this section by two theorems which, though of considerable

interest will not be used in the sequel. The second illustrates the power of the

present method.

Theorem 14.3. If the point i is transient [recurrent] for the matrix II, then

it is transient [recurrent] for each similar matrix II'.

Proof. It is known (see [6, Chapter 15, §5]), that i is transient if, and only

if, Yn II"(i, i)< 00. A glance at (14.2) completes the proof.

Theorem 14.4. Suppose that E is indecomposable-recurrent^). Then

x(i) = const, is the only non-negative solution of IIx = x.

Proof. By assumption no proper subset of £ is a sojourn set, and there-

fore by Lemma 7.2 there can exist no nonconstant bounded solution x^O.

(That x = l is a solution follows from Theorem 11.1.) Suppose now that

x>0 is an unbounded solution of IIx = x, and consider the matrix II' of (14.1)

with z = l+x. Let ui and u{ he the vectors with components

1                                    x(i)
ui (i) =-> u{ (i) =- •

w    i + x(i) w    i + x(i)

Then ui and u2 are independent bounded solutions of II'u'==u'. But this

is impossible, since E is indecomposable-recurrent not only relative to II,

but relative to IF as well.

15. Relatively maximal ideals. The total boundary. The preceding con-

siderations show that, probabilistically and analytically, similar matrices

(") Cf. Definition 11. The character of E remains unchanged when H is replaced by a

similar matrix.
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are closely related. Theorem 14.2 establishes in some cases an obvious con-

nection between parts of the boundaries 33 and 33' defined by two similar

matrices II and II'. It is easily seen by the same method (and will be shown

in a different way) that in general the boundaries II and II' have a common

part (defined by solutions such that both x and x' are bounded) but that

each boundary contains points which do not have an image on the other.

It will now be shown that it is possible, and natural, using the totality

2Jc of all positive solutions of IIx = x, to introduce a boundary 33* which is the

same for all matrices similar to II; the boundary 33 as introduced in §13 by

means of bounded solutions will be a subset of S3*, and £+93 embedded in

£+93*.
The notion of sojourn set can be formulated invariantly for the whole

family of similar matrices (Definition 15.2), but the notion of sojourn solution

has no intrinsic meaning. The procedure of §13 requires therefore two modi-

fications. Instead of ideals in © we have to use ideals in 9W, but here we

change the definition so as not to distinguish between x and the scalar

multiples px. Moreover, in © we had maximal ideals because © has a maxi-

mal element (lattice unit) sE. Maximal ideals in 3JJ need not exist, and are

in any case not usable for our purposes. We use a relative maximality.

Definition 15.1. A subset /C2ft will be called an ideal in 9U if
(1) xUy EI, whenever x, y EI;

(2) zEI, whenever z^x, xEI, zE'Sfl;

(3) pxEI, whenever p^O, xEI-

The ideal I will be called maximal relative to uG9K if uEI but u EL for each

ideal L properly containing I.

It will be noticed that the transformation (14.3) takes an ideal which is

maximal relative to u into an ideal maximal relative to u'. In this sense the

notion of relatively maximal ideals refers to the family of similar matrices

rather than to an individual matrix. Note that if / is maximal relative to both

u and v then it is maximal also relative to vSJv and to uHw.

We proceed to prove the existence of relatively maximal ideals and to

describe them. If II is strictly stochastic, we may simplify the language by

taking u = l. In fact, the transformation (14.3) permits us to reduce the

general case to this apparently special case.

Theorem 15.1. Let II be strictly stochastic, and I an ideal in $1 maximal

relative to 1. Let J be the set of all sojourn solutions in I, that is, J = ir\<£>.

Then: (a) J is a maximal ideal in ©. (b) in order that an element xE^Si belong

to I it is necessary and sufficient that to each e > 0 there exist a sojourn solution

s such that

(15.1) xC\s<ts «£/.

(c) Conversely, if J is an arbitrary maximal ideal in © and I is defined as the
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set of all xEffi which satisfy condition (b), then I is an ideal in SR, maximal

relative to I.

Proof. (1) Obviously J is an ideal in © and we have to prove that it is

maximal. Let Ji be any ideal in © such that /C-A- If J is a proper subset of

Ji there exists an element s such that sEJi but sEJ- Denote by Ii the set of

all elements of 3ft of the form x\Jy, where xEI and y^ps. Clearly h is an

ideal, and IEli- Now / is maximal relative to 1, and therefore x and y can

be chosen so that x\Jy = l. We have then(21)

(15.2) 1 - s = (x\Jy)r\(l - s) = {(1 -s)nx} \J {(I - s)Hy}.

Buty^ps and so (1— s)fYy = 0 by Theorem 9.2. Accordingly, (15.2) reduces

to 1—s = (l—s)f>\x or 1— s^Sx. Now xEI and since / is an ideal, we have

1— sEI and therefore 1—sEJ- Again, JiEJ> so that 1—sEJi- It is seen

that Ji contains both s and 1— s, and therefore also sU(l-s)=l. Thus

Ji = @, and / is maximal as asserted.

(2) Next let / be an arbitrary maximal ideal in © and define / by the

property (b). We show that / is an ideal. Requirements (2) and (3) of Defini-

tion 15.1 are trivially fulfilled. To verify that (1) holds, choose x, yEI- By

(15.1) there exist two sojourn solutions sA and sB such that

(15.3) xHisA^t-sA,       yr\sB^e-sB

and saG-^. sbEJ- By Lemma 13.3 this implies that also sadbG-^. On the

other hand, using Theorem 9.2 we get from (15.3)

(15.4) xr\sAnB ^ e-SAnB,       y C\ sAnB ^ e-SAns

and therefore (using the distributive law as in (15.2))

(15.5) (x Wy) D sAr\B = (if\ sAnB) U (y P\ sahb) ^ e-SAnB.

Thus xWyG-7 and so / is an ideal in 9K.

(3) We show that / is maximal relative to 1. Let xGSK be an arbitrary

element such that x(£I- By definition this means that there exists an 17 >0

such that for each sojourn solution sa

(15.6) if xi C\sa ^ vsa    then   sA E J-

Now define sx and sa as in Lemma 13.4. A comparison of (15.6) and (13.4)

shows that sAEJ (possibly sa=0). On the other hand, 1 = sa+sx = sa[Usx,

and therefore sxEJ. Moreover, sx satisfies (13.3). In other words, if xGA

then there exist sojourn solutions sa and sx such that

(15.7) x ^ TJSx, SxG.1,      8a$I,      sx + sa = 1.

(") The distributive law used in (15.2) holds in every vector-lattice; see [l, Theorem 7.6] or

[2].
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(This result will be used in the proof of Theorem 15.2.)

To complete the proof, consider an arbitrary ideal Ix in 2Jc such that

iiD-^and 1EL- Then saEL and consequently SxEL- It follows now from

the first inequality in (15.7) that xEIi- We see thus that xEI implies xEIi,

and hence IiCL This proves the asserted maximality of / relative to 1,

and also that if / is maximal relative to 1 it is necessarily of the form de-

scribed in the theorem.

We propose to define a boundary 33* by a procedure analogous to that

of §13, except that ideals in 9K are to be used instead of ideals in @. For that

purpose it is necessary to define an intrinsic analogue to sojourn sets.

Definition 15.2. Let U. be strictly stochastic and let z be an arbitrary element

of 9ft. A set A C£ will be called carrier of z if for the matrix II' of (14.1) the sets
A and E are equivalent.

Spelled out in detail and without reference to the transformation (14.1)

our definition amounts to the following. As in §3 it is seen that

,. _ 0. f(*) = lim lC(i, j)z(j), iEA;
(15. o) n->«>

f(0 = 0, i E A,

always defines a vector £ = ^   (the  limit  being  attained monotonically).

Similarly

(15.9) z* = limir,C
n—*«

exists, and z* ^ z. The set A is carrier of z if and only if z* = z.

It will be noticed that if A is a carrier for z, then it is also carrier of the

image z' of z for any similar matrix II'. Moreover, if £ is transient, then by

Theorem 11.3 there exists a sequence Ax~DA<0) ■ • • , ("1-4 n = 0, of carriers of

z. Each sojourn set A is, of course, carrier of sa.

We let 33* stand for the set of all ideals in 97? which are maximal relative to

some xEWl-

Definition 15.3. For a strictly stochastic II and a transient^2) E we in-

troduce in £ + 33* a topology as follows.

A set QC£+33* is open if to each point «£fin33* there corresponds a vector

xESSR such that

(a) The ideal co is maximal relative to x.

(b) The set fl contains a subset of E which is carrier of x.

(c) The set fln33* contains each /3£93* which is maximal relative to some

u^x.

Theorem 15.2. The space £+33* of Definition 15.3 is a Hausdorff space.

(B) As in Definition 13, the assumption that all points be transient is introduced for con-

venience of formulations only. Note that E is transient with respect to any matrix similar to n

(Theorem 14.3).
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Proof. The union of open sets is trivially open. Also, every subset of £

is open. To prove that the intersection of two open sets ft and ft is open,

consider an element a>G93* common to ft and ft. Let x and y be the corre-

sponding elements described in the definition. In view of the isomorphisms

described in Theorem 14.1 there is no loss of generality (but only change of

notation) in supposing that xUy = l. Then w is maximal relative to 1. We

know from (15.7) that there exist two sojourn sets X and Y such that

(15.10) x ^ TjSX,       y ^ i?sy, sx G w, sY G <*■

By the definition there exist two sets A Cft and 5Cft which are carriers of

x and y, respectively. Now ||x|| ^1 and it is seen from the definition of a

carrier set (see (15.8)—(15.9)) that xgsi. Hence sx^sA by (15.10). Further-

more, the set X is defined only up to an equivalence, and in view of Theorem

9.2 we may choose XEA. A similar argument holds for Y. We have therefore

(15.11) TYCft-        FCft,

and obviously X and Y are carriers of sx and sy, respectively. As before, let

J=wP\© be the set of all sojourn solutions contained in w. Theorem 15.1

shows that / is a maximal ideal. Then sxEJ and syG^ by (15.10), and

hence SxnrG-^ by Lemma 13.3. Now /C«, and thus sxrwEJ- The set

XC\ Y is a carrier of sxnr, and is contained in the intersection of ft and ft

(see (15.11)). Thus ftHft satisfies the conditions (a) and (b) of Definition

15.3 with sxnr playing the r61e of x. Condition (c) is trivially satisfied since

if /3 is maximal relative to some ugsmr then by definition ($E&i and /3Gft

and so /SGftHft.
It remains to prove that to any two points of £ + 33* one may find two

nonoverlapping neighborhoods. By Theorem 11.3 this is trivial unless both

points are in S3*. Let ui?*u2 be two points of 93*. If co< is maximal relative to

x,-, then automatically «< is maximal relative to xjUxj. As before there is no

loss of generality in assuming that xiWx2 = l. In other words, it suffices to

verify the separation property for two elements w< both of which are maximal

with respect to 1.

According to Theorem 15.1 the intersections /,=w,n© are two distinct

maximal ideals in ©. As in the proof of Theorem 13.1 there exist two sojourn

sets Ai and A2 = E—A, such that SAiEoii, but sa,G"2 and sa,G«i- Moreover,

sa1+sa, = 1. Let ft = .4i+all elements of 93* which are maximal relative to

some x^sa<. Then ft is an open set containing «,-. If coG 93* is maximal

with respect to some x^sa^ then there exists an element SA^SAt such that

u is maximal relative to sa (see (15.7)). Now the ideal J=wn@ does not

contain sa and hence it contains SAt by Lemma 13.2. Accordingly w can not

be maximal relative to any elementy ^sa„ and so wGft implies wGft- Then

ft and ft are nonoverlapping, and the theorem is proved.

The points of 93* are ideals in STJi and therefore 93* formally depends on
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the matrix II. However, if II is replaced by a similar matrix II' then the

image /' of an ideal / is again an ideal and it is clear that the boundary as

such remains unchanged. Therefore we have

Theorem 15.3. Each matrix of the family % induces the same boundary

S3* and the same topology.

The space £+93 of Definition 13 is an open set in £+93*.

In other words, S3* may be considered as the union of the boundaries,

constructed by means of bounded solutions, for all matrices similar to the

given matrix II.

16. The adjoint boundary. Instead of considering II as an operator on

column vectors, we now consider the dual operator. That is, if a= {a(l),

a(2), • ■ ■ } is a row vector, we consider the new row vector all, provided it

is meaningful. This is certainly the case whenever 2^laC7)| < °°.

We are interested in particular in the eigenvectors a =all, that is, the solu-

tions of (1.3). To the set ty there correspond the eigenvectors satisfying the

conditions

(16.1) «0') = o,      2>0') = i.

to 9JJ all eigenvectors such that a(j) ^0. It is well known (see, for example

[6, p. 329]) that in the case of a matrix II which is not partitioned (i.e., not

of the form (11.3)) there exists at most one eigenvector a satisfying (16.1).

However, Derman [5] has shown that there may exist many unbounded

positive eigenvectors.

If a is any strictly positive(23) solution of a=all we define a new matrix

(16.2) n*(i,i)--^-n(;,0
«(*)

which is strictly stochastic. In the case where a is a probability vector,

n*(t, j) is simply the transition probability of the time reversed random walk,

or the inverse probability to II. This notion has been introduced by Kolmo-

gorov [7] (see also [6, p. 321]). To Derman [5] is due the simple, but im-

portant, observation that the transformation (16.2) remains probabilistically

meaningful and useful even if J*a(i) = oo,

Suppose now that there exists a second strictly positive solution (3 of

(J = ($11. Put

0(*)
(16.3) **(*)- ^-.

a(i)

Then

(16.4) n*x* - x*, x* > 0.

("») Cf. the footnote to §14.
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Conversely, if (16.4) has a solution x*>0, then the vector (J defined by (16.3)

is a solution of fj = fill. Also

(16.5) Mna,)=n*(i,;)^.p(i)   u **(*)

We have thus

Theorem 16. If a runs through the set of all positive solutions of a=aH,

then the matrix II* of (16.2) runs through a family of similar matrices. Con-

versely, each matrix similar to II* is of the form (16.5) where §is a positive solu-

tion of (J = fin.

It is thus seen that the study of positive solutions of a =all is reduced to

that of solutions x=IIx.

Definition 16. The boundary of Eas defined in §15 by the similar matrices

II* will be called the adjoint boundary defined by II.

The probabilistic meaning is given inasmuch as (16.2) corresponds to a

time-reversal for the random walk.

17. Examples.

I. Unbounded solutions: the unsymmetric one-dimensional random walk.

Changing the notation slightly, we let i run through all integers, and put

(17.1) n(i, i + 1) = p,       U(i, i-l) = q, -co<t<«.

where p>q>0, p+q = l. Clearly IIx = x has the unique bounded solution

x = l, and the unique unbounded solution defined by x(i) = (q/p)i. Each set

i^a is a carrier set for the former, and i^a for the latter. The boundary 93

consists of a single point, 93* of two. The equation a=all has the two un-

bounded solutions «(*") = 1, and a(i) = (p/q)\ The two topologies coincide in

this case.

II. Symmetric random walk in N^3 dimensions. It has been proved by

Murdoch [9] that in this case x = l is the only non-negative solution of

IIx = x. Moreover, a = all has the solution a(i) = 1, and with this solution the

matrices II and II* are identical. Both the boundary and the adjoint bound-

ary reduce to a single point each and again the two topologies are identical.

III. We show that the boundary and the adjoint boundary need have no

relationship to each other.

Relabeling the points, let £ consist of the points A„, Cn (»^0), and

Bn (n^l). The reader is asked to draw a diagram with the points ordered

on three parallel lines A, B, C. We define

n(An, An+i) = n(C„, Cn+i) = 1 - €„, n ^ 0,

(17.2) nU»,  Bn)   =   n(C„,  Bn)   =   en, tt   ̂    I,

U(Bn,  An-l)   =   Tl(Bn,  Cn-l)   =   1/2, M   ̂    1

where
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(17.3) €0 = 0, U>0(i^l), E«»<°°.

The equations llx = x admit of the two linearly independent solutions

1 1   °° 1
xi,i(An) = —- ± — Z) (1 - «*).               Xl,l(BH) = —,

2 2   i=n 2

(17.4)

Xx.2(Cn)   =  —  + — £ (1   -   **)•
2        2 i_n

There exists no solution, bounded or unbounded, of IIx = x linearly inde-

pendent of xi and X2.

The boundary 93 =93* consists of two points a andy; a set is a neighborhood

of a if it contains a and all points A „ with n =• N. Intuitively a and y represent

the "points at infinity" of the lines A and C, respectively, and xi gives the

probability that the random walk will be ultimately constrained to the

line A. The set E — Bx—B^— ■ ■ ■ is equivalent to E.

On writing down the adjoint equations a=all one notices immediately

that a(Cn) =a(An) and hence that a=aJI has a solution which is unique up

to a scalar multiplier. This solution is

a(A0) = a(Co) = 1,

1 (1  -  €x)   •   •   •   (1  -  tn-x)
(17.5) a(An) = a(Cn) = -a(Bn) =- •

2e„ €i • • • e„

Now the inverse matrix is

n*(An,  Bn+x)   =  n*(C„,  Bn+x)   =   1   ~   C,

(17.6) U*(An,  An-x)   =  n*(Cn,  Cn-l)   =   en,

U*(Bn, An)   = W(Bn, Cn)   =   1/2.

The uniqueness of the solution of a=all shows that the adjoint boundary con-

sists of a single point. From (17.6) it is clear that with probability one the

random walk will pass infinitely often through each of the lines A, B, C.

Thus the adjoint boundary consists of a unique point: to each neighborhood of it

there exists an integer N such that the neighborhood contains all points An, B„,

Cn with n^N. That is to say, each neighborhood contains the complete

neighborhood of two boundary points of 93 plus infinitely many other points.

IV. Continuous solutions. Imagine the points of £ ordered according to a

dyadic branching scheme and labelled accordingly as 0, 1, 00, 01, 10, • ■ • .

Generally, if 5 stands for any finite sequence of zeros and ones, then 5 repre-

sents a point of £ and we define

(17.7) n(5, 50) = n(5, 51) = 1/2.

Obviously the set of all points starting with 8 is a sojourn set, and the



54 WILLIAM FELLER

corresponding sojourn solution is easily written down. For example, if

5 = 0110 then s equals 1 at all points 5, 50, 51, etc. It equals 1/2, 1/4, 1/8

respectively at the points Oil, 01, and 0 and s equals 0 at all other points.

Clearly there are no minimal sojourn solutions, so all sojourn solutions

are continuous. We have seen that to each dyadic interval of (0, 1) there cor-

responds a sojourn solution. Taking linear combinations it is readily seen that

the sojourn solutions are in one-to-one correspondence with sets of positive

Lebesgue measure in (0, 1) so that to sets on (0, 1) which are equivalent in the

sense of Lebesgue there corresponds the same element s£©. Likewise, the

elements xEty are in one-to-one correspondence with the measurable functions

on (0, 1) which are non-negative and whose essential upper bound does not exceed

unity.

In this particular case it is natural to define a boundary isomorphic to

the interval (0, 1). The boundary which we have defined in terms of maximal

ideals is larger: on it the boundary values of xEty are continuous instead of

merely being bounded.
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