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1. Introduction. The differential equation with which this investigation is

concerned is of the form

(1.1) JBf»=0,

with

(1.2) £(w) m wiv + \2{P(z, \)w" + Q(z, \)w' + R(z, \)w).

The differentiations (indicated by accents or by a Roman superscript) are

with respect to the (complex) variable z. For this variable a domain will be

specified. The symbol X in the equation signifies a parameter. This is assumed

to be large in absolute value and is dealt with also as being complex. The

functions P(z, X), Q(z, X), and R(z, X), for such z and X are assumed to be

expressible as power series in 1/X with coefficients that are functions of z thus

(1.3) (?(*, X) = £ %^,

R(z, x) = Y ——
n=0      Xn

Equations (1.1) in which X is real, or pure imaginary, or in which the functions

P(z, X), Q(z, X) and R(z, X) are merely polynomials in 1/X, or even just func-

tions of z, are, of course, included as special cases.

The salient feature of the whole investigation is that the domain of the

(complex) variable z in which the differential equation (1.1) is considered, is

one that includes a zero of the coefficient Po(z). Such a zero is called a turning

point (or a transition point) of the differential equation. The discussion is

restricted to the case in which this zero is simple.

In a z-region that includes a turning point, the solutions of such a differ-

ential equation as (1.1) in general depend upon a parameter, such as X, in so
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intricate a way, as to have quite distinct functional forms in different parts

of the region. What these forms are is not easily determined, for the asymp-

totic methods that may be regarded as classical in the theory of ordinary

linear differential equations fail completely in such regions. Yet it is precisely

there that many differential equations which arise in physical applications are

of the greatest interest and importance. This is familiarly the case with cer-

tain differential equations of the second order that are central to the theories

of micro-wave propagation and quantum mechanics. An instance from differ-

ential equations of the fourth order, namely from ones of the form (1.1), is

the so-called "Orr-Sommerfeld" equation of hydrodynamics,

<*V        ( , ) dhp
- -  [iaRHy) -c] + 2a.}-

(*-4)

+  jl'ai? To^co - c) + -f\ + a4W = 0.

This is basic to the analysis of the stability of a laminar fluid flow. A char-

acterization of the onset of turbulence in such a flow requires the forms of the

solutions of this differential equation in a neighborhood of the point in which

the function [co(y)— c] vanishes, namely of the turning point. The existing

literature of the subject of the present paper has essentially all been moti-

vated, more or less directly, by the need for the solution forms of the differen-

tial equation (1.4). I have in mind especially some papers by W. Wasow

[l; 2; 3], and by D. Meksyn [4; 5]. More extensive lists of references to

Jiydrodynamical treatises and research papers are given by these authors.

Every linear differential equation of the form

* dk~nw

(1.5) Ex»a„(z,X)-r—- = 0,
n-0 dzk~n

in which the coefficients an(z, X) are analytic in X at X= <», has associated

with it an auxiliary algebraic equation, namely the equation

k

Y<*n(z,   °0)X*-»  =   0.
n-0

The configuration of the roots of this auxiliary equation, and especially their

multiplicities, have much to do with the asymptotic forms of the solutions of

the differential equation. Except in the elementary case of constant coeffi-

cients, these roots, and hence the pattern of such multiplicities as occur among

them, depend upon z. It is because this pattern is peculiar at a turning point,

that such a point has especial significance with respect to the differential

equation's solution forms.

The classical methods of asymptotic solution for equations of the form

(1.1) are applicable only in 2-regions over which the auxiliary roots maintain
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an unchanging pattern, namely over which distinct roots remain distinct, and

multiple roots, if any, maintain their multiplicities identically in z. A turning

point, on the other hand, is, by definition, one at which an isolated multiplic-

ity occurs. The configuration of the roots is therefore different at such a point

than it is elsewhere in the neighborhood. In the instance of the differential

equation (1.1) the auxiliary equation is

(1.6) x4 + Po(z)x* = 0.

In a deleted neighborhood of the turning point this has two roots that are

simple, and another that is identically double. At the turning point, the roots

all coincide in a single four-fold multiplicity.

The limiting form of the differential equation (1.1) as X—><» is the differ-

ential equation of the second order

(1.7) Po(z) w" + Qo(z) w' + R0(z) w = 0.

For the differential equation (1.1) the turning point is an ordinary point. For

the equation (1.7), on the other hand, it may well be a regular singular point,

and is in fact so unless the functions Qo(z) and Ro(z) as well as Po(z) vanish

there. Of the two exponents of the equation (1.7) relative to this point, one

is 0. The other one we shall designate by p. The necessity of distinguishing

the cases in which p is an integer from those in which it is not, is familiar in

connection with the differential equation (1.7). We shall see that it carries

over into the discussion of the equation (1.1). Indeed this circumstance has

largely dictated the organization of the present paper. A differential equation

(1.1) for which p is not an integer is designated in the following as being

regular, and the theory which is presented for such equations is called the

general theory. A differential equation for which p is an integer is termed

irregular. Such equations we have classified into four categories, on the basis

of the adaptations of method that needed to be made for them. For equations

of three of these categories the solution forms are obtained. Equations of the

remaining category unfortunately appear to elude our method, at least in its

present form.

The results of the paper may be summarized thus: Any z in the domain

specified for this variable, and any X of large modulus, lie within so-called

associated regions. By this association an integer h is identified, and for the z

and X of these regions four linearly independent solutions wh,j(z),j = 0, 1,2,3,

are singled out. The forms of these solutions are set forth by the Theorems

1, 2, 3, and 4, of §§13, 14, and 15. Each of these forms consists of a certain

exponential factor, and, aside from that, of an explicit part which is a poly-

nomial in 1/X plus a remainder term which is of higher degree in 1/X. The de-

gree of this polynomial part, which in fact signifies the degree of explicitness

of the solution forms obtained, can be arbitrarily pre-chosen. If this degree

is chosen to be zero the dominant terms of the solution forms alone are ob-
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tained. An exponent 5 which appears in the statements of the theorems has

the value 0 for differential equations (1.1) that are regular or of the irregular

categories defined in §17. Its value for an equation of the category dealt with

in §18 is given in (18.1).

The hydrodynamical equation (1.4) is always irregular, as is any equation

(1.1) in which Qo(z) vanishes at the turning point, and hence, of course, as is

any equation (1.1) in which the term in the first derivative is lacking. The

category of the equation depends upon its parameters and its coefficient func-

tion o)(y). The character of the computations by which the equation's cate-

gory may be determined is indicated in §§19 and 20.

In the matter of method the present paper differs wholly from all others

known to me on this subject. These latter all depend, in the first instance,

upon applications of the method of steepest descent to the solutions of the

given differential equation as these are expressed by Laplace contour inte-

grals. They therefore depend upon the representability of the solutions in

such a form, and are thus of very limited generality. They commonly require

that arg X be constant, that Po(z) be some special function, that <2(2, X) be

vanishing and Ro(z) nonvanishing, that P(2, X) and R(z, X) be linear poly-

nomials in 1/X2 etc. The results obtained by them are explicit only to the ex-

tent of the dominant terms. No such specialized requirements figure in the

present paper, and, as has already been said, the solution forms are obtained

to an arbitrarily pre-assigned degree of explicitness.

The method of the present paper is an extension of one that I have previ-

ously developed in connection with differential equations of the second and

third orders [6; 7; 8; 9; 10], This depends upon the construction of a so-called

related differential equation, which is one whose solution forms are known,

and which, at the same time, resembles the given differential equation to an

arbitrarily prescribed degree. From the known solution forms for the related

equation, those for the given differential equation can be inferred. The con-

struction of the related equation proceeds by certain formal algorithms. This

is carried out in Part I of the paper. The inference of the solution forms is

then a matter of rigorous analysis. This is carried out for the equations of

regular type in Part II. Differential equations of irregular type are dealt with

in Part III. The categories are there defined, and, to the extent that was feasi-

ble, the adaptations and modifications of theory by which the results of Part

II are made applicable to these equations are there set forth.

The adjustments and hypotheses under which the discussion is to proceed

are conveniently set down at this point. There is no loss of generality in locat-

ing the origin of z at the turning point. For the convenience of it we shall do

so. The hypotheses are then the following:

(i) The domain of the variable 2 is a bounded closed region Rz of the com-

plex plane that includes the origin in its interior.

(ii) The functions Po(z) and J^Pl0,2(z)dz are nonvanishing in R, except at
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the origin. At the origin Po(z) has a zero that is simple, i.e.

(1.8) P0(0) = 0,        Po' (0)5*0.

(iii) The parameter X is bounded from zero, and is otherwise eligible to

take on any complex values.

(iv) The coefficients Pn(z), Qn(z), and R„(z) of the series (1.3) are analytic

in R2 and these series, if they are infinite, are convergent when |x| is suffi-

ciently large.

(v) The exponent of p of the differential equation (1.7), relative to the

origin, namely

(1-9) P= 1-O„(0)/P„'(0)

is not a negative integer.

Beyond those indicated by these explicit statements, there are certain

limitations upon the region Rz both as to size and shape, that cannot be con-

cisely summarized and set forth here. They will appear in the course of the

discussion. Their significance is minor. The essential matter is that Rz be a

full neighborhood of the turning point, and this remains assured.

It should be noted that the stipulation by hypothesis (v) that p be not

a negative integer is not as restrictive as it may seem to be at first glance.

For when p is a negative integer, we may transfer the attention to the adjoint

of the equation (1.1). This is a differential equation which is also of the form

(1.1), but in which p is a positive integer. The solution forms of the adjoint

equation may thus be determinable, and from these, as is familiar, the solu-

tion forms of the given equation are readily obtainable.

Part I. Formal algorithms

2. A method of undetermined coefficients. The processes for formally

solving ordinary linear differential equations, for large values of a parameter

X, generally yield expressions in which there appear power series in 1/X.

When such expressions are obtainable, they cannot ordinarily be expected to

be actual solutions of the differential equation, but only formal ones, due to

the fact that the series they contain are divergent. It is, however, also widely

true that truncations of these series, say at the terms in 1/Xm, yield functions

that represent actual solutions asymptotically, at least in suitably restricted

domains of X and a. The explicitness of these representations increases, of

course, with the integer m. When m = 0, namely when only the first terms of

the power series are retained, the representations extend only to the so-called

dominant terms.

We shall see that these remarks apply in particular to differential equa-

tions of the type (1.1). To say that we shall derive asymptotic representations

that extend to an arbitrary degree of explicitness, is therefore to say that we

may permit the positive integer m to be arbitrarily chosen. That we shall do.
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And we shall assume from this point on that such a choice has been made

once for all. The specifically chosen value of m will be held to throughout the

discussion.

The procedure upon which we will now enter may be outlined as follows:

With L(u) standing for a differential form

(2.1) L(u) = u'" + X2p(Z, \)u' + X2?(z, X)«,

which is of the third order, and in which the coefficients p(z, X) and q(z, X)

are tentatively undetermined, the equation

r(z, X)
(2.2) L'(u) + j-^- L(u) = 0,

with any coefficient r(z, X) is a differential equation of the fourth order.

Through the formula

(2.3) 77 = a(z, X)« + — Q(z, \)u",

in which the coefficients (2(2, X) and Q(z, X) are specific but momentarily un-

determined there is associated with each solution uj of the equation (2.2) a

function 77/. These functions 77,- are, in their turn, the solutions of a certain

differential equation of the fourth order which we shall, in the end, designate

as the related equation. We shall show that by a suitable term by term deter-

mination of the functions p(z, X), q(z, X), &(z, X), and Q(z, X), as polynomials

in 1/X, we can make the coefficients of the related equation the same as those

of the given differential equation to the extent of all terms of a lower power

than the (m + l)th in 1A-

The formalism by which this program is carried out constitutes Part I of

this paper. It will be found, when this has been done, that the equation

(2.4) L(u) = 0,

is one for which the forms of three linearly independent solutions are obtain-

able from the literature. These solutions evidently also fulfill the equation

(2.2). We shall then determine the function r(z, X) so as to make a fourth

solution of the equation (2.2) known. The four solutions u}, j = 0, 1, 2, 3

then yield through the formula (2.3) a corresponding set of four solutions o

the related equation.

Let p(z, X), q(z, X), Q,(z, X), and <B(z, X), be polynomials of the degree m i

1/X, and r(z, X) a power series, thus

(2.5) p(z, X) = Y —-' l(z, X) = Y -—>
n=0       X" n—0       Xn

(2.6) r(Z)X) = f:^,
n-0      X"
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and

(2.7) «fcX)-f^,       e(z,x) = E^,
n=0    A* „_0       Xn

with coefficients pn(z), qn(z), rn(z), an(z), and yn(z), that are analytic functions

in the domain Rz, and which, beyond that, are to be determined below. In

more explicit form the equation (2.2) is

uw + —— u'" + X2 \pu" +\p' + q + -^—] u'

(2.8)

+ ['' + ^>}=°-

With u taken to be any solution of this equation, the relation (2.3) defines

a corresponding function 77. The derivative of this 77 is a linear form in u, u',

u", and u'", and its higher derivatives are likewise representable by such

forms, if at each differentiation the function uiv is eliminated by the use of the

equation (2.8). We shall need these forms, but we shall need them explicitly

only to the extent of their terms in 1/Xm. Therefore we shall represent them

with their terms of degrees higher than the mth in 1/X designated in the

aggregate by E(z, X)/Xm+1. By this the symbol E(z, X) is introduced as a

generic designation for a function which is analytic in z and a power series in

1/X. To this symbolism we shall hold throughout the paper. In conjunction

with (2.3) we have, therefore, the formulas

1 1
77' = a'u + a«' H— e'u" -\— qu'",

x2 x2

V'' = [a'' - qe + -^iE\u+[2a'-(p' + q)e + ^-Ey

+ [a - pe + 1 e"] u" + g- e' + ^ b] W",

(2.9) v'" = |a'" - 3q'e' - q"e + -^ e\u

+ ha" - 3(p' + q)Q' - (p" + 2q')e + — e\u'

+ \3a' - 3pe' - (2p' + q)Q + — e"' + —- e 1«"
L x2 xm+1   J

+ \a - pe + — e"H-e\«'",
L x2 xm+3   J
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and finally that

,iv = r-xy(a - pe) + aiv - 6q'e" - 4?"e' - q'"e + —^ e u

+ \-\*(p' + q)(a - pe) + 4a'" - 6(p' + q)e" - 4(p" + 2q')e'

- (p"' + 3q")e +-f! u'
Xm_1    J

+ T-x2p(a - pe) + 6a" - 6pe" - 4(2p' + q)e' - 3(p" + q')e

H—eiv-|-E \u"
X2 Xm+1    J

+ ua' - 4pe' - (3p' + q)e + — e'" + — e]u'".

With the operator £ as defined in (1.2), therefore, it follows that

(2.10) £(77) = X2{S0« + Siu' + S2u"} + S3u'",

with

So = Pa" + Qa' + [R - q']a + [p - p]q'e

-\— {aiv - 65'e" - 4q"e' - q'"e} -\-e,
X2 \m+1

Si = 2Pa' - [p' + q- Q]a +[p- P][p' + q]e

+ — {4a'" - 6[p' + q]e" - 4[p" + 29']e' - [p'" + 3q"]e}
A

(2.1D +-^- E,

s2= [p - p][a - pe] + — {6a" - [6p - p]e" - [8p' + iq- Q]e'
X2

- [3P" + 3q' - R]e} +le'v + -i-£,
X4 \m+3

4 1
s3 = [2P - 4p]e' - [3p' + q - Q]e + 4a' + — e"' -j-e.

\2 Xm+1

The functions Sj as thus given are all expressible as power series in 1/X.

We propose to remove from these series their initial polynomial segments of

degree m, by making appropriate determinations of the hitherto unspecified

coefficients of the formulas (2.5) and (2.7).
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3. The first determinations. The constant terms of the formulas (2.11)

for the functions Sj(z, X) in powers of 1/X, are the left-hand members of the

equations

7W + (?o«0' + i?o«o — <Mo' + [po — Po]qo'yo = 0,

. 2P0ao   — pooco + Qo<*o — a0qo + [po — Po][po  + ?o]to = 0,

[Po - po][oto - po7o] = 0,

[2P0 - 4po]To  - [3po' +qo~ Qoho + 4a0' = 0.

These equations constitute a nonlinear simultaneous differential system for

the functions po(z), <Zo(z), a0(z) and -yo(z). We shall show that the system ad-

mits a solution, the elements of which are analytic functions. By assigning

these solution values to the functions, we shall achieve the removal of the

initial terms of the formulas (2.11).

The third one of the equations (3.1) is solved at once by taking

(3.2) Po(z)=P0(z).

In consequence of this, the first two equations (3.1) involve as unknowns only

the functions qo(z) and a0(z). On adding to this pair the derivative of the

second equation, we obtain a system from which the quantities qo(z) and

qo (z) can be eliminated. The eliminant relation can, by virtue of (3.2), be

written in the form

(3.3) Po(-)    + [2P£ - Qo] (—) + [Po" - Qo' + Ro] (—) = 0.
\oV \ao/ \ao/

This is a differential equation for l/ao(z).

The equation (3.3) is singular at the origin. Since it is, in fact, the adjoint

of the differential equation (1.7), its exponents relative to z = 0 are 0 and —p.

Because p is not a negative integer, by hypothesis, the solution to which the

exponent 0 applies is analytic, namely nonlogarithmic. To its constant term

we may assign the value 1. Therewith l/ao(z), and hence a0(z) itself, have

been determined so that

(3.4) «0(0) = 1,

and the determinations are analytic in Rz when that region is suitably con-

fined.
The second equation (3.1) now gives for ^0(2) the formula

«o'(z)
(3.5) q0(z) = Q0(z) - P„'(z) + 27>0(z) ——,

ao(z)

whereas, with this at hand, the final equation (3.1) is a differential equation

for 7o(z). This can be written in the form
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l-Po'   ■  a°'"1 2ai
Yo   +    — H-To = —— >

L Fo a0 J Fo

and accordingly has the integral

(3 • 6) 70(2) = —— \<*o(z) - —-].
Po(z) L ao(z)J

There is an indeterminacy in this formula at the origin. However, if yo(z) is

taken to be continuous, its determination is thereby made analytic. It is use-

ful to observe that the relation

(3.7) [a0(z) - pa(z)ya(z)] * 0

is assured for all z in Rz. This follows from the fact that the left-hand member

of the relation has, by (3.6) and (3.2), the value l/a0(z).

4. The second determinations. The coefficients of 1/X in the formulas

(2.11) are the left-hand members of the respective equations

Poa" + Qoai + [Fo - qi ]«i - a0q{ +/o,i = 0,

,.   .. 2P0a{ — [po  + qo — <2o]«i — a0qx + fi.i = 0,
(4-1) r ir 1

[Pi- pi][a0- poyo] = 0,

-2P0y{ - [3pi +qo- Qo]yi + /3.1 = 0,

in which

/0.1 = Pi<*o" + Q*xo  + Riao + [pi - Piko'70,

(4.2) /1.1 = 2Piao' - [pi - Qx]a0 + [px - Px][po' + ?o]to,

fz.i = 4a/ + [2Fi - 4pi]To' - [3p/ + qi - Qx]y0.

We shall show that the functions £i(z), 21(2), 0:1(2) and 71(2) can be determined

to be analytic and to fulfill these equations. By making those determinations

we shall remove the terms in 1/X from the formulas (2.11). One special case

can"be quickly disposed of. If the differential equation (1.1) does not involve

the first power of X, namely if Fi(2), Qx(z) and i?i(2) are all zero, the system

(4.1) is fulfilled by the determinations

(4.3) px(z) = 0,        qx(z) m 0,        ax(z) m 0,        yx(z) m 0.

In the general case the discussion proceeds as follows.

Because of the relation (3.7), the third equation (4.1) imposes the deter-

mination

(4.4) Pi(z) =: Pi(z).

This makes the functions/0,i and/1,1 known, and the first two equations (4.1)

are accordingly a system for the functions ai(z) and 0:1(2). We deal with this
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system in the following way. Let the variable 7i be introduced to replace ai

by means of the relation

C   h(z)
(4.5) o-i = a0 I    —— dz.

J     a-o(z)

Because a0 fulfills the first two equations (3.1), this transforms the initial pair

of equations (4.1) into the forms

Poll + \Po — + Qo~\ Ii - mi + /o,i = o,
(4.6) L       «o J

2P07i - a0?i + /i.i = 0.

To this pair of equations we add the derivative of the second one, and from

the resulting system of three equations eliminate the functions qi(z) and

qi (z). The eliminant relation is

(4.7) P„7i' + [~2Po' - Qo - 3Po —1A = ["/0il - fU + /M —].
L a0 J L a0 J

This is a differential equation for 7i(z). It has a singular point at z = 0, and,

with respect to this, the exponent — p — 1. Since p is not a negative integer,

this exponent is neither zero nor a positive integer, and the equation (4.7),

being nonhomogeneous, accordingly admits an analytic solution. We take

this solution for 7i(z). In terms of this the second equation (4.6) gives qi(z)

by the formula

(4.8) qi(z) = -— [/i.i(z) + 2P„(Z)/1(2)],
<*o(z)

whereas «i(z) is given by the relation (4.5).

With the determination of «i(z) thus made, the function /3,i has become

known, and the fourth equation (4.1) is accordingly one in which yi(z) is the

only unknown. We may give this equation the form

rp.'     «.'i       /,.,

L Po        «o J 2P0

It accordingly has the integral

(4.9) yi(z) = —— f'ao(z)f3,i(z)dz.
2P0aQ J o

With proper definition at its point of indeterminacy, this is analytic.

5. Further determinations. When n is any integer not exceeding m, the

coefficients of the terms in 1/Xn in the formulas (2.11) are the left-hand mem-

bers of the equations
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PoCtn"   + Qodn    +   [P-0  ~   ?o' ]a„  ~  ao?n    + fo.n  =   0,

2P0an   —  [po' + qo — Qo]otn — ao?n + fl.n = 0,

[Fn  —  Pn] [cto —  Poyo] + /2,n  =   0,

-2F„7„'  -  [3pi + qo~ Qohn + f».« = 0,

with functions/j,„(z) that are given by the formulas

n    n— j

fo.n   =   PnOtO   + Qn<X0 +  Rnd0  +   «„-2  +   Y  Y   [P J  ~   Pi\li 7n-j-i
j=2  i=0

n-l

+  Y  {Pian-i + Qian-j +   [Rj — qj]ctn-i ~ 6(7,_i7„_i_,-
J=l

— 4ff,_i7„_,_i — c7,-_i7„_,-_ij ,

n     n— j

fl.n  =   2Pna'o -   [pn - Qn]do + 4«„"2 +  Y Y   [pi ~  Pi][p'i   + S<]y«-W
,=2   1-0

n-l

+   Y   {2PjCi'n-i -   [Pi +  qi — Qi\an-j —   0[p'j-l +  qj-xhn-1-i
»'-l

(5.2) - 4[p'/_i + 2oy_1]7Li-,- - [p"-i + 3c;'^i]7n_i_,},
n—1 n—/

^2,n   =   6a„_2 + 7„_4   —   22 22   [Pj —   Pi\pan-j-i
j=2  i=0

n-l

+   Y   { [Pi - PiW-i -   [6pi-l -  Pi-lWn'-l-i
)=1

- [8p;_i + 4c/,-_i - Qj-i]y'n-i-j - [3p'i-i + 3q'j-i - F,_i]7„_i_,},

ft..  =   4«n + 47n-2 +   Y { [2Pf ~ ipiWn-i ~   Wi + q, ~ Qihn-j}.
)'=1

We shall show, by the method of induction, that the functions pn(z), qn(z),

otn(z) and 7«(2) can be determined to be analytic, and to fulfill these equations,

and thus that all terms in 1 /Xn, with ra ̂  m, can be removed from the formulas

(2.11).
Suppose, therefore, that the functions

(5.3) pj(z),       q,{z),       aj(z),       7,(z),

for/ = 0, 1, • • • , (ra —1), have been determined and are analytic. The func-

tion /2,n, as given by (5.2), is then constructed of known analytic functions,

and from the third equation (5.1) we draw the determination

(5.4) P„(Z)   =   Pn(z)  +  «o(z)/2.n(z).

In consequence of this, the functions/0,„ and fx,„ are known, and the first two



156 R. E. LANGER [January

equations (5.1) are accordingly a system for the functions qn(z) and an(z).

The substitution

«   O f   /n(z) A
(5.5) a„ = a0 I    —— dz

J    a0(z)

transforms this system into

P07n' + \Po — + Qol /» - <*«?»' + /o,n = 0,
(5.6) L       «0 J

2P„7„ - «„?„ + /i., = 0.

When this new system has been augmented by adjoining the derivative of the

second of its equations to it, the elimination of qn(z) and q„ (z) is possible, and

results in the equation

(5.7) P07„' + [~2P„' - Qo - 3P0 —17„ = ["/,.„ - /,'. + /i,„ —1.
L a0 J L a0 J

This equation has an analytic solution, which we take for 7„(z). The second

equation (5.6) then yields the formula

(5• 8) qn(z) = —- [fUz) + 2P0(z)In(z) ],
<xo(z)

and the formula (5.5) gives an(z).

The function/3,„ of (5.2) is now known. The fourth equation (5.1), which

can be written in the form

*+r«.+ *-L_£,
L Po        «o J 2P0

is accordingly a differential equation for yn(z). It has the integral

(5 • 9) yn(z) = —— f 'ao(z)f3,n(z)dz.
ZFooco J o

This is what was to be shown.

It is worth observing that for an equation (1.1) that involves only even

powers of X the functions (5.3) with odd subscripts are all identically zero.

This should, of course, be expected. It is easily proved by the method of in-

duction, for it will be seen that if the functions (5.3) vanish for odd values of

j that are less than n, and n itself is odd, then the functions (5.2) are all zero.

6. The differential equation in 77. With the functions p(z, X), q(z, X),

&(z, X), and e(z, X) now determined, the coefficients of the differential equa-

tion (2.2) are specified except for terms that are of higher degree in 1/X than

the mth. Also the formula (2.3) has been made specific. Through this formula
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each solution of the equation (2.2) defines a corresponding function 77. These

latter functions are, in their turn, the solutions of a certain differential equa-

tion. This equation we are now ready to determine.

From the system of five equations (2.3), (2.9) and (2.10) we may eliminate

the quantities u, u', u" and u'". The eliminant relation, which is the equation

we wish to obtain, is found to be

(6.1) Dx(z, X)t7 - D2(z, \W + D3(z, X)v" - B,(z, \)v'" + D,(z,X) £(v) = 0,

in which the coefficient Dt(z, X), for any i, is the determinant that results from

the elision of the elements of the ith row from the array

a 0 —e 0
x»

a' a —e' — e
X2 X2

a"-s'eH—— e   2a'-{p+q)Q+—-E       a-pe+— e"      — cn—-e(6.2) Xm+1 vr  "        X™+I *       X" X2 X»+3

a'"-3q'e'-q"e 3a"-3{p+q)& 3a'-3pQ'-(2p+q)e a-pe+~ e"

-I-—E -(p'+2q')e+——E -\-e"'H--E        -\—— E

Xs5o X25i X252 S,

The coefficient Dt(z, X) with i = 5 does not involves the function Sj. It

can evidently be expressed as a power series in 1/X, and the leading term of

that series is found to be <xl[ao—poyo]2. By (3.6) and (3.2) the value of this is

identically 1. This coefficient Db(z, X) is therefore nonvanishing in Rz when

|X| is sufficiently large, and its reciprocal, Dj1(z, X) is likewise expressible in

powers of 1/X with 1 as the constant term. We may therefore write the equa-

tion (6.1) in the form

(6.3) £(7,) + /(„, z) = 0

with

(6.4) l(V, 2) = - Df1 [TW " D3V" + D2V' - Dxr,].

The coefficients D,(z, X), with * = 1, 2, 3, 4, all do depend upon the func-

tions Sj, and these latter were reduced to be of the order of l/Xm+l by the de-

terminations of the functions (2.5) and (2.7). From their formulas it is there-

fore easily seen that these coefficients with i = l, 2, 3 are of the order of

1/X"1-1, whereas T?4 is of the order of 1/Xm+1. The structure of the for-

mula (6.4) is thus

(6.5) l(v, 2) = \-^[E(z, \W" + X2£(z, Xy + X2£(z, X)ij' + X2F(z, X),].

We make one further observation concerning the coefficient Ds(z, X). Let
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m0(z), Mi(z), u2(z), u3(z), he any linearly independent solutions of the differen-

tial equation (2.8), and let their Wronskian, as a function of z, be denoted by

V?(u0, «i, u2, u3; z). The equations (2.3) and (2.9) then show that the Wron-

skian of the corresponding functions 77 is given by the formula

(6.6) W(tj0, vu V2, 773; z) = DB(z, \)W(uo, uh u2, u3; z).

From this it follows that

D( (z, X) _ W(?7o, 771,772,773; 2)      'W'(mo, «i, ut, u3; z)

Dh(z, X)      *W(t7o, 771,772,773;z)      VP(u0, uu u2, u3; z)

Now the terms on the right of this equation have respectively the values of

the coefficients of 77'" and u'" in the differential equations (2.8) and (6.3).

Since these coefficients are each of the order of 1/Xm+1, it follows that D'&/Da

is of that order, and hence that D'b(z, X) is itself so. The inference which this

permits is, that in the expression of 7*5(2, X) as a power series in 1/X, the

terms, to those of the mth degree, are all constants with respect to z.

A summary of the formal deductions we have thus far made is the follow-

ing. We have determined the functions (2.5), and therewith the differential

equation (2.4). This is a differential equation of the third order, of a type

for which the forms of complete sets of linearly independent solutions are

known [9]. These solutions are, however, clearly also solutions of the equa-

tion (2.2), namely of (2.8), and their corresponding functions 77 given by the

formula (2.3), are therefore solutions of the differential equation (6.3). To

complete the set of solutions for this latter equation, one more solution is

requisite. We shall determine such a one by an appropriate specification of the

function r(z, \)/\m+l of (2.6). This latter function, since it is of the order of

1/Xm+I has played no role in our deductions thus far.

The equation (6.3) has coefficients which differ from those of the given

differential equation (1.1) only by terms that are of the relative order of

1/Xm+1. When we have made it solvable by our choice of the function r(2, X)

namely when we have made it an equation whose solution forms are all

known, we shall call it the differential equation related to the given one.

Part II. The general theory

7. The determination of r(z, X). Differential equations of "regular" type.

Since the solutions of the equation (2.4) are known, and are also solutions of

the differential equation (2.2), we have available three linearly independent

solutions of this latter equation. To make up a complete set of solutions

another one must be obtained. We shall now see that such may be done, at

least generally, by a determination of the coefficient r(z, X) in the equation

(2.2). Inasmuch as this coefficient appears in the equation only in product

with 1/Xm+1, it has not been of sufficiently low degree in 1/X to have affected

the deductions thus far.
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Let u3(z, X) be the polynomial of degree m in 1/X,

(7.i) ui(z,\) = Y-Jr1'
n=0        X"

in which the coefficients Un(z) are analytic but undetermined. From the for-

mula (2.1), with p(z,\) and q(z, X) given by (2.5), we find, then, the evalua-

tion (2)

Tt      , *<£   PoUri   +   qoUn +   Hn(U)
(7.2) L(ui) = X2 Y -'—>

n=0 X"

where 2m' is the larger one of the integers 2m, and m + 2, and

(7.3) Hn(U) m V'n-2 + Y [pV'n-i + qtU^i].
3=1

We propose to determine the functions U„(z) so as to give to the leading term

of the sum in (7.2) the value 1, and to each one of the next following m terms

the value 0.

Since H0(U)=0, the leading term of the sum in (7.2) will have the value 1

if

(7.4) p0Uo' + q0Uo = 1.

This differential equation for Ua(z) has a singular point at 2 = 0. Its exponent

there is seen directly to be —qo(0)/po (0), and, by virtue of the determinations

(3.2) and (3.5), this is precisely the constant p that is given by the formula

(1.9). Now whether or not the differential equation (7.4) admits of an analytic

solution, is familiarly bound up with this exponent p, specifically with whether

p is or is not zero or a positive integer. We shall distinguish between these

cases, and shall designate the given differential equation (1.1) as being of the

regular type if p is not zero or a positive integer, and as of an irregular type

in the contrary case. The discussion of differential equations of an irregular

type we shall relegate to Part III of this paper. Throughout the present part,

namely Part II, we shall therefore confine the attention to differential equa-

tions of the regular type. For these the differential equation (7.4) admits of

an analytic solution. We take this for Uo(z).

The nt terms after the first one of the sum in (7.2) vanish if

(7.5) PoUn'   +  q0Un  =   -   Hn(U), »  =   1, 2,  •  •  •   , M.

It is easily shown, by induction, that the functions Un(z) may be determined

to be analytic and to fulfill these equations. The function TT„(z) is known

when the functions Uj(z) for j<n have been determined. The equation (7.5)

(2) It is to be understood, of course, that any symbol p, q, or U, with a subscript that does

not occur in (2.1) or (7.1) is to be assigned the value 0.
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is then a differential equation for Un(z). Like the equation (7.4) it admits of

an analytic solution. We give Un(z) that determination for m = 1, 2, • • • , m.

The consequence of this is that the evaluation (7.2) has been made to be

more specifically

(7.6) 7(m3)=X2   1+    Y   -T-H-
L n-m+1 X"      J

By virtue of (7.6) the function 7,(m3) is of the order of X2and its derivative

is of the order of X_m+1. Therefore the ratio —L'(u3)/L(u3) is of the order of

1/Xm+1, and the product of Xm+1 by this ratio is a power series in 1/X. We as-

sign this series to be r(z, X), thus

L'(u3)
(7.7) r(z,X)= -X»«-7---

L(u3)

Now with this determination it is clear that m3(z, X) is a solution of the differ-

ential equation (2.2). Were it to be linearly dependent upon the solutions

which also fulfill the equation (2.4), it would itself fulfill this latter equation.

Since it fulfills the relation (7.6), which is contradictory to (2.4), no such

linear dependence maintains. The function m3(2, X) and any three linearly

independent solutions of the equation (6.7) accordingly make up a complete

set of solutions of the equation (2.2). The corresponding functions 77, under the

relation (2.3), thus comprise a fundamental set of solutions of the differential

equation (6.3). This latter equation is therefore solvable, in the sense that its

solution forms are known. We shall henceforth refer to it as the related equa-

tion.

8. Solutions of the related equation. Of the solutions of the related equa-

tion (6.3), one, namely the one that corresponds, through the formula (2.3),

to m3(z, X) as given by (7.1), is explicitly known. The others correspond

similarly to solutions of the equation (2.4). Concerning these latter the follow-

ing facts are known [9].

The relation

i      Cz 1/2

(8.1) £ = —\ I    f,   (z)dz,
I     Jo

defines £ as a variable that depends upon X and z. Near z = 0 this variable has

the character of Xz3'2, and is thus double valued. To account for this con-

sistently the domain Rz will be taken henceforth to be a two-sheeted Riemann

surface with 2 = 0 as a branch point, and the only one. The inverse of £ as a

function of z is three-valued. Therefore the image of Rz under the mapping

relation (8.1) is a three-sheeted Riemann surface i?£. Upon this again the

origin is a branch point, and is the only one. The domain i?j depends upon X

as well as upon Rz. This dependence, however, applies only to its orientation
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and size;—by changes in arg X it is rotated about its origin, and by increases

in |X| it is proportionately magnified.

Any chosen points X and 2, of which X 7^0 and 2 is in Rz, are included in the

regions of a so-called associated pair. Of such a pair of regions, the one, A,

is a sector of the complex X-plane with vertex at the origin, and the other,

i?*, is a sub-region of Rz that in every case includes the origin [9, p. 104].

Every associated pair of regions has an integer h attached to it. This is by

virtue of the fact that R%, the image of R£ under the mapping (8.1), is, for

every X in A, wholly within the sector

(8.2) ^_lV+£^arg?g^ + -iV-6,

e being a suitably small positive constant. The differential equation (2.4) has

a set of solutions uhj(z, X), / = 0, 1, 2, which for all X and z in these regions A,

i?* have the forms

dkuh,0 _ d"yh,o      r2"+k,3E(z, X) log X

dzk dzk \mx+l-2kl3

dkuh,i      dkyh,i      ^-1l2+k'3e^E(z,\)log\

(8.3) -=-1-j
dzk dzk \mx+l-lktt

dkuh,2     dkyh,2     {r-U**-*l*tr*tE(z, X) log X

dzk dzk \mx+l-2ktf

We proceed to explain these formulas.

The integer mx, which is denoted by m in [9] but which is not necessarily

the m of the present paper, may be chosen arbitrarily large. For our present

purpose we shall take it to be the larger one of the integers m and 3.

The functions yh,j are expressed in terms of certain other functions Vk,j

thus

(8.4) yh,j(z, X) = A(z, \)Vhli + — B(z, X)V'h,,- + — C(z, X)V'',,-,     / = 0, 1, 2,
X X2

with coefficients A (z, X), B(z, X) and G(2, X) that are specifically determinable

polynomials of degree mx in 1/X, having coefficients that are analytic in 2

[9, §3]. Of the functions Vh,j the first one is given by the formula

33M-ie(i-2»)UTi «   T(u+ra/3)
(8.5) F„,o(z, X) =-*(z) Y [3g-(»-</i)A{j/»].#

T(3p) n_o    T(ra +1)

The other two are given by the formulas
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(,r\l/2 °° f3gC2ii/3)(A-l)£2/3]n

3 / „tj T(n + l)r(l - M - m/3)

/T\l/2 » r3g(2ii/3)At2/3|n
2(—I    ««'-"!>»*W Y-—-y

\ 3 ) ntJ T(n + l)r(l - « - m/3)

in the order Fa,i(z, X) and Vn,2(z, X) respectively if the integer h is even, and

in the order Fa,2(z, X) and Vh,i(z, X) respectively if h is odd. The function

^(z) that appears here is given by the formula

(If.'*""*)"
(8.7, *«-^-,

the indeterminacy at z = 0 being resolved to make it continuous. By virtue

of the hypothesis (ii) of §1 both ^f(z) and its reciprocal are analytic. Therefore

they are, of course, also both nonvanishing in Rz. The symbol p stands for a

certain polynomial of degree m in 1/X with constant coefficients,

(8.8) M=Z?"
n-0   X"

The leading term of this has the value q0(0)/3po (0), namely, by (3.2), (3.5)

and (1.9)

(8.9) „„=_-?-.

For suitably large values of £, namely when | £| > N, with some sufficiently

large positive constant N, the functions Vhj(z, X) are representable by the

asymptotic formulas

(8.10) Vh,i(z, X) ~ VWf-uVt Y  r    ^ i   '
„=o [-3i£]n

Vh,2(z, X) ~ ^(z)tf'll2e-^ Y T^T- •
n-o   [3i£]n

The coefficients k„ and vn in these relations are constants for which formulas

are available [8, (3.5), (3.7)]. Finally, in the formulas (8.3) the symbol f is

to be interpreted thus

IN,   when     I £ I   ^ N,
(8.11) f = \

U,     when    | £ |  > N.
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The forms (8.3) have been established for k = 0, 1, 2, by the theorems of

the paper [9]. For the purpose we have in view it is important to observe

that they are valid also for k = 3. That can be done as follows. The functions

yhj are known [9, (5.9)] to have the forms

dhy\.o
-J-Jl = x2*/3f-2*-2*/3£(z, X),

dzh

(8.12) —— = \*wp-w+mE(z, X),
dzk

_^! = x2*/^-i/2+*/»£(z, X), * = 0, 1, 2, 3.
dzk

Inasmuch as these functions fulfill a differential equation of the form

L(y) = X-""-1^, \)y" + \E(z, \)y' + X2£(z, \)y],

it follows that
L(yh.o) = x-^+'r^z, X),

L(yh,i) = V*Mp-»'UfE(«, X),

L(y*,t) = X-"»+1f*-1'2e-2fF(z, X).

Therewith the final term of the formal identity

(8.13) u'i'.t - y'n'j = - Kp[u'h,j - y'h,j] - \2q[uh,j - yhJ] - L(yhij),

is appraised.

The appraisal of [«*,,— y*,y] may be taken directly from the relations

(8.3), and the same may be done for [unJ—y'nJ]. When this latter is coupled

with the fact that po(z) is of the order z which is to say of the order of (£A)2'8.

the relation (8.13) is seen to yield the respective forms (8.3) with k = 3.

We find it convenient to denote the function u3(z, X) of (7.1) alternatively

by Uh,t(z, X), whatever the integer h may be. This is for the sake of uniformity

in the notation. The functions 77*,, with/ = 0, 1, 2, 3, that correspond to the

uh,j through the formulas (2.3) and (2.9), are then a complete set of solutions

of the related equation. We have given their forms explicitly to the extent

of all terms up to those of the razth degree in 1/X.

9. The enlistment of an integral equation. With the purpose of setting up

an analytic procedure by which the unknown forms of the solutions of the

given differential equation (1.1) may be inferred from the known solution

forms of the related equation (6.3) we resort now to the device, which is

familiar, of transforming the differential equation into an integral equation.

We explain how this may be done in the following, giving first the formal

motivation, and then, by a reversal of the reasoning, the actual method. For

any solution w(z) of the given differential equation (1.1) the function l(w, z)
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given by the formula (6.4) is specific, and w(z) is thus clearly a solution also

of the nonhomogeneous differential equation

£(W) + l(W, z) = l(w, z).

The reduced associate of this equation is the related equation (6.3). There-

fore, w(z) is expressible in terms of the solutions of the latter, in particular in

terms of the functions Vh,i(z), it being always assumed that l(w, z) is known.

The formula for this is obtainable by the method of variation of constants.

With the Wronskian V?(vh,o, Vh.i, Vh.i, Vh,3; z) denoted in brief by V?(z), and

with Aj(t) standing for the cofactor of the element Vh,j(z) in the determinant

A(z, 7) given thus

Vh,o(z)    Vh,l(z)    Vh,2(z)    Vh,3(z)

,.   .. ,.      , Vh,o(t)    Vh,i(t)    Vh.i(t)    Vh,s(t)
(9.1) A(z, t) =      , , , ,

Vh,o(t)    Vh,i(t)    Vh,i(t)    Vh,3(t)

Vk,o(l)       Vh,l(t)      Vh,i(t)       Vh,3(l)

this formula is

3 s {*' A -(t)

(9.2) w(z) = Y CjVh,j(z) - Y Vh,i(z) I    -1— l(w, t)dt.
i-o j-o J xj V?(t)

The limits of integration zy are assignable as any appropriate values that are

independent of z, and the constants Cj are then specific of the solution w(z)

that is in question. The formula (9.2) is differentiable, and hence l(w, z) itself

can be formed from it. The result so obtained is the relation

(9.3) l(w, z) = Y Kvh.j, z) \cj - J* 0,(01(1*, t)dt\,

with

(9.4) Qj(t) = -^ •
W(0

This reasoning was merely heuristic, since it was built from the beginning

on the assumption that l(w, z) was known. A reversal of the reasoning yields,

however, the following practicable method.

Let/(z) be a solution of the integral equation

(9-5) f(z) = Y Kvhj, z) \cj -  f 'iij(t)f(t)dt\,
j-o L J tj J

in which the constants Cj and the limits Zj have any assigned values. Then in

terms of this function, and with the same Cj and z,-, let the function w(z) be

given by the formula
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(9.6) w(z) = Y Vh,i(z) \ci - f Qj(t)f(l)di\.
y-o L J ij J

We may see, as follows, that this function w(z) is a solution of the given differ-

ential equation (1.1).

The sum
3

Y Vhj(z)Qj(t)
i-o

has the value A(z, t)/W(t). The determinant A(z, t) and its first two partial

derivatives with respect to z vanish at t = z, and its third partial derivative

has the value — W(z) for that t. The derivatives of the formula (9.6) are ac-

cordingly

dkw      « dknh j(z) r       r * 1

for £ = 1, 2, 3, 4, with S4,4 = l and 8t,4 = 0, when k^i. We obtain from this

£(w) = Y £(Vn,j)\cj - f'nj(t)f(t)dt\+f(z).
j=o L J tj J

By substituting for f(z) its value, as that is taken from (9.5), the relation is

given the form

£(w) = Y [£(vhj) + l(r,Hj,z)]\cj -  f Qj(t)f(t)dt\,
y=o L J ij J

and in this each term on the right is zero, since each function r]hj fulfills the

equation (6.3).

By the method that has thus been described, the analyses that lead to the

forms of solutions of the differential equation (1.1), are effectively referred

to considerations of the solutions of respective integral equations (9.5). This

is the method by which we shall proceed below.

10. Some appraisals. For the analyses of the equations (9.5) and (9.6)

with which we shall wish to deal, we must draw to hand the forms of the func-

tions Vh,j(z), and of their respective combinations l(vhj, z) and Slj(t). These

forms will, however, not be needed to any such degree of explicitness as has

been given in §8. The characters of their dominant terms generally suffice.

It was observed in §8 that the functions dkyh,j/dzk, with/ = 0, 1, 2, 3, have

the forms (8.12). By the relations (8.3) in which, it will be recalled, ?rai^3,

so that mx^k, the respective functions dkunj/dzk are shown to have those

same forms. The demonstration is extended to the corresponding functions

dkr)h.j/dzk by the relation (2.3). An appeal to the evaluations

f±« = f±"o£(z, X)
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which follow from (8.9), leads thus to the first three of the appraisals

dhVh.O
—J-L.  =   X2*/3f-2..0-2*/3£(Zj X))

dzk

—^1  =  X2*/3fM0-l/2+*/3g2f£(Zj X)f
dzk

(1°-1} dk
—^  =   X2*/3^0-l/2+i/3e-2f£(2( X)j

dzk

dkVh.a

-it = *'■»■

The fourth one of these is observable directly from the relations (2.7) and

(7.1). By virtue of the formula (6.5), we find accordingly that

Kvh.o, z) = \-™+vzr^-mE(z> X),

Kvh.u z) = \-™+v*^iWE(z, X),

l(v„,2, z) = X-»+7/3f°+1/6e-2rE(z, X).

Kvh.z, z) = X-"'+1£(2, X).

In the Wronskian V?(un,o, mb,ii w*,2, Uh,3; z), each element u'h'J is replaceable

by the respective form L(uh,j), since that replacement merely augments one

row of a determinant by multiples of the other rows. Then since L(uh,j) =0

for j = 0, 1, 2, whereas, by (7.6),

T        E(z, X)T
(io.3) L(Uh.3) = x2-«|^i + -^rj.

with(3) 8 = 0, we see that this Wronskian has the value

T      -E(z, x)n
X2-8W(m„,„, m„.i, m„,2; z)   1 + j-

The Wronskian that remains in this expression involves only solutions of the

differential equation L(m)=0. Its value is known [9, (5.11)] to be

— 6X2[l+£(X)/X]. Inasmuch as D0(z, X) of §6 is also of the form

[l+£(z, X)A], we draw from the relation (6.6) the evaluation

(10.4) W(2) = - 6X4-»   1 + —-  .

(') We write the formula (10.3), and some subsequent ones, with the inclusion of an ex-

ponent S. The purpose of this is to make the formulas adaptable to the considerations of Part

III of the paper, where the differential equations at issue are of an irregular type. Throughout

the present part of the discussion, namely throughout Part II, in which the differential equation

is of the regular type, the value of S is always zero.
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The formula (9.4) now yields

Oo(0 = \s-V°(l)E(t, X),

Slx(t) = X^f-^-w^Or-tfOiE&X),
(10.5)

Qt(t) = X5-2r"°"1/2(0e2f("F(/, X),

Uz(t) = X'-2F(^, X).

The symbol f (/) denotes, of course, that function of / which f, in (8.11), is of z.

11. Paths of integration. A locus in the region Rz has been referred to

[9, §7] as a 7-curve, if its image in i?j under the mapping relation (8.1), is a

broken line, namely a continuous chain of straight segments of which both

the number and the slopes are bounded, on which the real part of £ is mono-

tonic. We shall adopt that terminology here. Also we shall apply the designa-

tion "S-curve," to any locus which in i?j appears as a circular arc centered at

the origin joined to a segment of a radial line. Finally we shall refer to any

locus that issues from the origin, and which appears as straight in i?j, as an

"outward radius."

Any region i?£, that is associated with a X-region A, has certain properties

which are important, and which we here recall [9, p. 104]. Its image region

Rf is star-shaped with respect to its origin. Therefore every point of it can be

reached from the origin along an outward radius. Near the origin, it contains

only a single segment of any arc on which |£| is constant. Because of this

it is possible to find within the region a point z* distinct from the origin,

from which every point of the region can be reached along a 5-curve. Finally

every such region contains two points zr and zi whose salient properties are the

following: that every point of the region can (for any X in A) be reached from

zr along a 7-curve on which the real part of £ monotonically decreases, while

every point can (for any X in A) be reached from zi along a 7-curve on which

the real part of £ monotonically increases.

When z is restricted to a region i?,, and the points Zj are taken in that

region, the paths of integration in the equations (9.5) and (9.6) are inconse-

quential, since the integrands are analytic. We therefore have the option to

choose these paths so as to facilitate appraisals of the integrals. The paths

that are found to be convenient for this are the outward radii and the 7-

and S-curves.

As has already been indicated in (9.5) and (9.6), we shall designate the

variable of integration always by t. We shall suppose a point z* to have been

chosen. Since this is fixed in R$, its image point £(z*) is a multiple of X. We

may therefore assume that the relation | £(z*) | > N maintains, since it is

assured when |x| is sufficiently large. Therefore, by (8.11), f(z+) = £(z*).

12. Some lemmas. For use in the analyses of the equations (9.5) and

(9.6), it is convenient to have certain facts formulated in the manner of

lemmas.
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Lemma 1. For any constant a whose real part is not negative, for 2* in a re-

gion Rz, and for t on the b-curve from z* to z, the function

(12.1) r(z)ra(D

is bounded uniformly, for X and z in the associated regions A, Rz.

When 2 is in that part of i?£ in which | ?| ^ | £(z*) |, the 5-curve is one along

which I f (t) I is nonincreasing. Its smallest value is therefore [ f (2) |. Thus

r(2)r~!W is in absolute value at most 1. The same is true of its crth power

(12.1). When 2 is in the part of the region in which | £| > | £(2*) |, the 5-curve

is one along which |f(/)| has its smallest value at 2*. Thus, since %(t) =£(/)

along the path, we have

I f(2)r1w I ^ I £(z)r:(z*) 1 •

In this the right hand member is bounded, since it is independent of X and is

analytic in the closed region Rz.

Lemma 2. For any constant a whose real part is not positive, and for t on

the outward radius to z, the function (12.1) is uniformly bounded in the regions

KRf.
This follows directly from the fact that | £"(t) | ^ | f(z) | along the path.

Lemma 3. For any complex constant a the function

(12.2) f"(z)r"We2f(2)-2f('),

is uniformly bounded for t on the y-curve from zT to z, and the function

(12.3) r(z)r"We-2f(z)+2!'(,),

is uniformly bounded for t on the y-curve from zi to z. This is a known lemma

[9, §8].

With the use of the symbol 7i(z, t, X) to signify generically a function that

is bounded when X is sufficiently large, and that is analytic in 2 and in t

for the domains of these variables that may be concerned, we have also

Lemma 4. An integral of the form

(12.4) J \V"rin(t)E(z, t,\)dt\,

in which the path of integration is an outward radius, a h-curve, or a y-curve, is

uniformly bounded for X and 2 in the associated regions A, Rz.

From the formulas (8.1) and (8.7) it is readily found that

di      (i\yi3(3$yi*
(12.5) — = •

dz 29(z)
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From this, and the fact that ^(z) is bounded, it follows that \dt\ is less than

a certain fixed multiple of | a*£(01 /|X2/8£1/8(/) |. Since also | f | ^ | £|, the inte-

gral (12.4) is seen to be less than some specific multiple of the integral

1       r z  I d% I
(12.6) -r-r—       +-r^>

taken over the same path. Now on an outward radius, or on the straight seg-

ment of a 5-curve, | o"£| and a"|£| are equal, except possibly for sign, and the

integration accordingly contributes to the total value of (12.6) the difference

of two amounts that are of the form | £/X|1/3. This contribution is independent

of X and is bounded in Rt. On the circular arc of a S-curve we have |o"£|

= \t-\d9, and hence the integration contributes to the total value of (12.6)

an amount that is less than 2tt| £/X|1/3. Consider, finally, the integration over

any segment of a 7-curve. On the straight line along which this segment lies,

let £0 be the point nearest the origin. Then |£| ^|£— £o|, whereas \d!-\

= ±d| £ — £o|. The contribution to the value (12.6) is thus seen to be no more

than a difference of two certain values | (£ —£o)/X|1/3. Since the number of

such segments is bounded, the lemma is proved.

13. A solution wn,o(z). We turn now to the intended applications of the

integral equation method that was set up in §9. Beginning with the integral

equation (9.5), we shall, in this section and in §§14 and 15, make specific

choices of the integration limits z;- and of the constants Cj. Corresponding to

these, the equation has, in each instance, a solution/(z). The functional form

of this we shall appraise. With the function f(z) at hand we shall then turn

to the formula (9.6), which yields a respective function w(z). This was shown

in §9 to be a solution of the given differential equation. The form of this

solution, and of its derivatives, since the formula (9.6) is differentiable, will

thus be brought to hand.

In the integral equation (9.5), let the limits of integration be assigned thus

Zi = zr,        22 = Zi,

(13.1) (2*, if the real part of [^0 + 1/2] is positive,
Zo = Zz =  \

10,   if the real part of [/x0 + 1/2] is not positive.

Therewith let the choice of constants c0 = 1, c,=0, for/5^0, be made. With/0

written in the place of/, the equation is then

(13.2) /„(«) = l(Vh,o, z)-Y KVh.h z) f 'm)fo(t)dt.
;'=0 J tj

We shall consider this equation for X and z in any pair of associated regions

A, R%, the integer h being the one that is attached to them by the relations

(8.2). The points zr, zt and 2* shall be those that were referred to as such in

§11. The paths of integration from zr and z\ shall be 7-curves, that from z*
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a 5-curve, and that from the origin an outward radius.

We begin by multiplying the equation (13.2) through by Xm_7/3f2"°+4/3. It

can then be expressed in terms of the functions Yj(z) and Po(z) that are given

by the formulas

3) F°(Z) = Xm~7n^"0+i'H^h-0' 2)' Yi& = Xm-7/3r"0-1/6e2f/(r;*.2, z),

Yi(z) = X"-7/3r*°-1/6e-2%?A,i, «).        Y3(z) = X—%»,„ z),

and

(13.4) Fo(z) = Xm-7/3f2"o44'3/0(z).

The form that is thus given it is

1     rz
(13.5) Fo(z) = Y0(z) +-       K0(z, t, \)F0(t)dt,

\m->J

the integration still extending over the several paths that are more explicitly

indicated in (13.2). The formulas for the kernel K0(z, t, X) on these several

paths are the following ones

-x7'3-5Fo(2)fio(or2"o"'"3(0

- xi-sf2"o+4/3(z)F3(2)fi3(/)r2'")-4/3(0

on the path from zo (or z3),

(13.6) K0(z, t, X) =    -X7/3-sf"",+s/2(z)e2fU,lri(z)12i(/)r2"0-4/3W

on the path from zr,

_X7/3-5f8(.0+3/2(z)e-2r(»)72(2)f22(i)f-2M-4/3(/)

on the path from zj.

The functions (13.3) are all bounded, namely are all of the type E(z, X).

This is shown by the evaluations (10.2). By the use of the relations (10.5) it

can be shown, therefore, that K0(z, t, X) has the forms

f (E(z, t, X))

, ffl'3(z)£(2, I, X)|
+ x'/3r1/3W{r2"°+1(z)r2"°-1(0}|     X4)3-[

(13.7) K0(z, t, X) = on the path from z0 (or z3),

Xl/8f-l/3(^{f3f.0+3/2(2)J-3M-3/2(/)e2f(z)-2ni)}£(Zi /_ X)

on the path from zr,

Xl/3f-l/3^){f3M+3/2(z)J-S^o-8/2^)<,-2f(r)+2f(O}£(0i /( X)

on the path from zj.



1957] A CLASS OF ORDINARY DIFFERENTIAL EQUATIONS 171

In these evaluations each quantity within braces is bounded on the path that

is in question. Where that is not obvious, it is assured by the lemmas of §12.

It follows, therefore, by the Lemma 4, that there exists a constant Mo with

which the relation
2

(13.8) f | Ko(z, t, \)dt |   < Mo,

maintains. On the basis of this, familiar reasoning [9, §9] may be applied

to establish the fact that the equation (13.5) has, when m>d, a solution

F0(z) that is bounded, namely that is of the type E(z, X). The relation (13.4)

shows accordingly that

(13.9) /o(z) = X-m+7/3r2"0_4/3P(z, X).

We turn now to the equation (9.6). With the functions Ooj(z) given by the

formulas

(13.10) 6o,j(z) =  f 'Qj(t)fo(t)dt, j = 0, 1, 2, 3,
J Sj

that equation defines the function wk,o(z), and its first three derivatives, thus

dkWh,o       dkT]h,o       -L dkriK,j
(13-n) -^ = ̂ 7S,,-'WV'      *-*".«.«■

As to the functions (13.10), we may use the appraisals (10.5) and (13.9) to show

that they have the forms

0o.o(z) = X-»+8 r'x'/3r1/3(<){ \dt,
•'•o I    f(0     /

0o,i(z) = X-"+8r3'",-8/2(z)e-i!rU)

/Xl/3f-l/3(i) {f3„„+3/2(0)r3M-3/2(<)g2f(«)-2r(O}£(/i X)dt,

*r

6o.i(z) = X-m+5r3'")_3/2(z)e2f(i)

• f witr^lP^'Ktir^^'Ktie-w+nt'^E&xidt,

Oo.%(z) = x-B,+8r2"°-1(z) f xi'3r1/sw{f2'",+1(z)r2'",-1(0}^, x)a.

The lemmas of §12 are applicable to these, to show first that all quantities

that appear within braces are bounded on the respective integration paths,

and then that the structures of the functions 80,j(z) are, in fact, the following
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flo.oOO = X-»+5F(2, X),

&o,i(z) = X—+*r3"°-3/2<r2rF(z, X),

0o.»(z) = X-"1+5r3"0_3/2e2r-E(z, X),

»o,iW = X-m+{r2"0-1Ti(z, X).

These evaluations, along with those of (10.1), may be substituted into the

formulas (13.11). The conclusion that is thereby reached is the following one.

Theorem 1. For X and z in any pair of associated regions, the differential

equation (1.1) has a solution w»,o(z) to which the formulas

dkwh,o      dkr,h,0      r2*°~2kl3E(z, X)

(13.13) --=--H--^—-, * = 0, 1, 2, 3,
02* dz* X"-s-2s/s

apply.

The significance of the symbols in these formulas is recalled to be the fol-

lowing:

For X and z in associated regions (defined in [9, §7]) the relations (8.2)

are fulfilled by some integer h. Thereby h is identified.

The function 77^,0 is given by (2.3). Its coefficients a(z, X) and 6(2, X) are

determined in §§3, 4 and 5, and the function un,o(z) is described in §8.

The meaning of f is given by (8.11) and (8.1).

The value of p0 is given by (8.9) and (1.9).

If the differential equation (1.1) is regular, namely if p, as given in (1.9),

is not zero or a positive integer, the value of 5 is zero.

The symbol E(z, X) signifies a function that is analytic in 2 and uniformly

bounded when |X| is sufficiently large.

The integer m can be arbitrarily assigned.

14. A pair of solutions wh,i(z), w/,,2(z). When each integration limit is as-

signed to be zt, and the choice of constants Ci = l, Cj = 0, for/s^l, is therewith

made, the integral equation (9.5) is specifically

(14.1) fx(z) = l(VKx, z) - Y Kvhj, z)  f 'Qj(t)fx(l)dl.
3=0 J ll

The processes and reasoning we shall apply to this are analogous to those of

§13. The equation, after being multiplied by Xm_7/3f~'")_1/6e~2!' appears as

(14.2) Fi(z) = Yx(z) +-- f Kx(z, t, \)Fx(t)dt,
X"^JJ2,

with

(14.3) Fx(z) = x-'/^n/ie-if/^),

and with the kernel
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Ki(z, t, X) = - X7'3-8r3'","3/2(z)e-2!'(z)Fo(2)Oo(Of'">+1/6(Oe2f(')

- XT'MFi(*)Oi(flf',,fl"(J)«V(,)

- X7/3-8e-4f^)F2(z)fi2(0f0+1/6We2!'(1>

- X1-8r"°"1/6(z)e-2!'u)F3(z)S)3(0fM+1/6(/)e2«').

The evaluations (10.5), and the boundedness of the functions Yj(z), show this

to be of the form

, .   E(z, t, X)
Ki(z,t,\) = xi/3rl/3w{r3"o_3/2(z)f3'")+3/2w«_2!'(i)+2r(,)} —■L-L-!—-

r(»)
+ X1'3r1/3W£(z, /, X) + X1'3r1/3(/) {e-4f<z>+4fc>} £(z, /, X)

+ X-1{r"0+1/6(z)f0+1/6We-2f('>+2f(»}£(z, 7 X).

The lemmas of §12 show that the quantities within braces are bounded, and

then further that there exists a constant J7i such that

f   | Ki(z, t, \)dt I   < Mu
J zi

There is therefore a bounded solution £1(2) of the equation (14.2), and thus,

by (14.3),

(14.5) /i(z) = X-m+7'3f»+1'6e2f£(2, X).

In terms of the functions

Ki(z) =  f Uj(t)fi(t)dt, j = 0, 1, 2, 3,

the equation (9.6) now defines whii(z), and gives its derivatives, by the for-

mulas

dkWh.i      dkr)h,i      JU dkr]h.i
(14.6) --= —— - £0,.,(z)——, £ = 0,1,2,3.

dzk dzk        y_o dzk

The evaluations (10.5) and (14.5) show that the forms of the functions 0i,j(z)

are

Ol.o(z)   =   X--»+«f3™+l/2e2f

f xi/3rl/3W{r3"o_1/2(z)f3"o+1/2(0«_2fU)+2fC')}£(z. *.*)#.

8i,i(z) = X-»+8 f X1'3r1/3W£(z, t, \)dt,
J n

01.1(a) = X-"+8e4f f \1i3r1,KD{e-ilM+il(-')}E(z,t,\)dt,
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#1.3(2) = X-^wM/V

• f xi'3r1/3W{r",r"1/2(z)r''o+1/2W«_2{'U)+2J'<')}.E(z, ,,x)*.

The lemmas of §12 show that each integral here involved is of the type

E(z, X). Therefore we may draw from the relations (14.6) the following con-

clusion:

Theorem 2. For X and 2 in any pair of associated regions, the differential

equation (1.1) has a solution wnil(z) to which the formulas

dkwhll      dkr)h,x      fo-i/2+*/3e2r£(z X)
(14.7) -^i = _i^+i-\J-L,        ft = 0,1,2,3,

dz" dz* X-*-'-2*/3

apply.

The significance of the symbols was recalled in connection with Theorem

1.
The integral equation (9.5), with each integration limit assigned to be zr,

and with the constants c2 = l, cy = 0, for/5^2, is

(14.8) /-,(*) = Z(t,m, z) - Y Kvh,i, «) f "fliW/iW*.
J-0 J *r

The discussion given above of the equation (14.1), is essentially adaptable to

the equation (14.8) by making the replacements of zj by zr, and of el by e~~*.

The conclusion that is obtainable in that way is the following one.

Theorem 3. For X and z in any pair of associated regions, the differentia

equation (1.1) has a solution wn,2(z) to which the formulas

dkwh,2      dkVh 2      ^<r-^+ki*e-»E(z, X)
(14.9) -^i=_^i+i-LL_L,       ft = 0,1,2,3,
V dzk dzk \m-i-2klt

apply.

The significance of the symbols was recalled in connection with Theorem

1.
15. A solution wh,z(z). A final form in which we shall consider the integral

equation (9.5) is

(15.1) ft(z) = Kvkz, z)-Y Kvh.i, z) f a,-(t)Mt)dt,
3-0 J tj

in which the integration limits are assigned thus
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Zi = Zr, Z2 = Z\,

(15.2) LZ*, if the real part of [p0 + 2/3] is negative,
Zo = z% =  -\ r ,

(0,   if the real part of [u0 + 2/3 J is not negative.

After multiplication by X"1-1 the equation appears as

(15.3) F3(z) = Y3(z) +- f Ki(z, t, \)F,(t)dl,
\m-Sj

with

(15.4) Ft(z) = X"-1/3(z),

and with the kernel

-\vt-tjr-imr-m(z)Y0(z)Qo(l) - \1~sYt(z)Qs(t),

on the path from Zo (or z3),
(15.5) K3(z,t,\) = \

-\7ia-^"o+li6(z)e2^''>Yx(z)Qx(t), on the path from zr,

-\7i3-^"o+l^(z)e-^MY2(z)Q2(t), on the path from zh

The form of this kernel is

( . . E(z, I, X)      E(z, I, X)
Xl/3ri/3(/){r2M0-4/3(z)r2,„+4/3(i)} +—-■-,

r(0 x
on the path from Zo

K3(z, t, X) = ■xi/3r1/3W{rM+1/6(z)r"°-1/6(0e2r(2)-2f(,)}F(z, t, X),

on the path from zr,

Xl/3r-l/3(;){^o+l/6(z)r^o-l/6(;)e-2f(«)+2f(»]£(Z) t> X),

on the path from zt.

The reasoning that may be applied to this, to show that F3(z) is bounded,

proceeds as in §13. The conclusion is that

(15.6) /,(f) - X—+lE(z, X).

The formula (9.6) now takes the form

dkwh,3       dkVh,3        ' dkVh,j
(15.7) _-—— = ——-2^ 9s,j(z) —-—. k = 0,1,2,3,

dz" dz"        y-o dz"

with the coefficients

(15.8) 03,/(z) =  f Q3{t)f3(l)dt, j = 0, 1, 2, 3.

We find that these latter are of the forms



176 R. E. LANGER [January

03,O(Z)   =   X-«-4/3+5f 2^0+4/3    f    Xl/3f-l/3(/){f-2M0-4/3(z)f 2^0+4/3(^)1        ^'    ' dt,

J *0 f(t)

031(Z)   =   X-",-4/3+87-M0-l/6e-2f

•   f X1'3r1/3W{fM0+1/6(z)r'i0-1/6We2fU)-2f(o}7:(z,/, X)d/,

03,2(z) = X-'"-4/3+sr,">_1/6e2!'

• f xi/3r1/3W{r"+1/6(z)r'io_1/6(0e-2fU)+2!'(')}£(z, i, x)&,
•7 J,

03,3(z) = X-m-1+8 f  £(z, /, X)<fc.

In these forms each integral is a function of the type E(z, X). The equations

(15.7) therefore permit the conclusion:

Theorem 4. For X and z in any pair of associated regions, the differential

equation (1.1) has a solution Wh,3(z) to which the formulas

d»wh,3       dkVh,3      f4/3-2*/3£(Z, X) + r2/3+*/3Ti(z, X)      E(z, X)
-=-1-f- ■-'   k = 0, 1, 2, 3,

1      dzk dzk Xm-4/3-2*/3-J X^1-8
f

apply.

The significance of the symbols was recalled in connection with Theorem

1.

Part III. Differential equations of irregular type—

AN EQUATION OF HYDRODYNAMICS

16. Some formal relations. The analysis given in Part II above was re-

stricted to differential equations of the type that was defined to be regular,

namely to equations (1.1) for which the value of the constant p, given by

the formula (1.9), is neither zero nor a positive integer. It has therefore left

for consideration in this part of the paper the equations of an irregular type.

These constitute a large and important class of differential equations (1.1).

That will be recognized at once from the fact that they include, among others,

all those equations that involve no term in the first derivative. The hydro-

dynamical equation (1.4) is irregular by virtue of that feature.

For a differential equation (1.1) of the regular type, the limiting form as

X—-> oo, namely the equation

(16.1) P0(z)w" + Qo(z)w' + Ro(z)w = 0,

necessarily has a singular point at the origin. In the instance of an equation

of the irregular type, that may or may not be the case; the origin may be
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either an ordinary point or a singular point, and in the latter event the singu-

larity may be actual or only apparent. In other terms, for an irregular differ-

ential equation the limiting form (16.1) may admit just one analytic solution,

or it may admit only such solutions. These alternatives, although they are

not the whole criteria, will be seen to supply the initial earmarks for a certain

categorical classification of irregular differential equations. For the definitive

classification the coefficients of the equation (1.1) aside from those that ap-

pear in (1.6) will also be significant.

In terms of y, where y = w/a0(z), the differential equation (16.1) appears as

f ao' "1 T      «»" a0' 1
Poy" + \Qo + 2P0 — \y' + \Po — + Qo — + F0  y = 0.

L a0 J L        «o a0 J

This, however, is actually the equation

(16.2) poy" + [pi + q0]y' + qi y = 0,

as may be verified by substituting for Ro the value given it by the equation

(3.3), and then heeding the relations (3.2) and (3.5). The equation (16.2),

however, is integrable, since its left-hand member is a perfect derivative. A

first integral of it is the equation

poy' + qoy = c,

and with c = 0, and e=l, respectively, this admits the solutions G0(z) and

Go(z), where

So(z) = exp(-  I    -?— dz),

(16.3) V    J    MZ)     '
/dz

po(z)So(z)

These functions are therefore solutions of the equation (16.2), and their prod-

ucts by cto(z) are solutions of the differential equation (16.1).

The function So(z) is in every instance analytic. It has a zero of the order

p at the origin, since —qo(0)/po (0) =p. The function G0(z) is in some instances

analytic and in other instances not so. When the latter is the case, it is be-

cause G0(z) includes a constant multiple of the product S0(z) log z, which is

singular at z = 0.

The use of the form (7.1) for a function u3(z, X) led, in §7, to the equation

(7.4), and this latter equation was assured of an analytic solution, because

it was there assumed that p was not zero or a positive integer. Our assumption

now is to the contrary, since we are here considering irregular differential

equations (1.1), and because of that the deductions of §7 are not invariably

applicable. A modification of them must be resorted to, and to that end we

begin by taking for «3(z, X) a new formula, namely
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(16.4) «3(z,X)= £-^>
n-0       X"

in which 5 is a non-negative integer for which a determination will be given

below. The substitution of this form into the expression L(m) yields the result

(16.3) W-X''f W'+*g- + *-(P),
n-0 Xn

in which 2m" is the larger one of the integers 2(w + 5) and (m + 5)+2, and

(16.6) 77„(7J) a 11,1* + Y [piUn-j + ?/#_,■].
i-l

It is to be understood, of course, that any symbol pj or qj whose subscript is

not of the set 0, 1, 2, • • • , m, and any symbol Uj whose subscript is not

of the set 0, 1, 2, • • • , (m + b), is to be assigned the value zero. The condition

that the first (m + b + l) terms of the sum (16.5) have respective constant

values kn is, therefore, that the functions 77„(z) of (16.4) fulfill in turn the

equations

(16.7) PoU: + qBUn = kn- Hn(U) n = 0,1,2, ■■-, (m + 5).

These differential equations have the general solutions

r  kn - Hn(U)
(16.8) £7.(«) = So(z)       -— <fe + c„8o(z),

J poSo

the c« being arbitrary constants of integration. We shall show that in terms

of the function sets

S0(z),Si(2), • • •  ,Sm+8(2),

G0(z),Gi(z), ■ ■ ■ ,Gn+t(z),

of which the members are defined successively by the formulas

/Hn(&)-dz,
Po&o

(16.10)
C   Hn(G)

Gn(z) = - £„(z)       —— dz, n = 0, 1, 2, • • • , (m + 8),
J     po&o

the relations (16.8) can be put into the form

(16.11) U„(z) = Y [kn-,Gj(z) + Cn-j&te)].
i-o

Since H0(U)=0, it can be seen at once, from (16.8) and (16.3), that the

relation (16.11) is valid when m = 0. We shall show that its validity for every
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integer ra less than a specific one, s, implies its validity for ra = 5. Suppose,

then, that the relation (16.11) is valid for every ra less than s. The terms in

the formula

H.(U) m U",U + Y [piU',-i + Jitf-i],
2-1

can then be evaluated by it, wherefrom it follows that

B.(U) = Y [k.-2-,Gi' + c._2-iS7']
i-0

•     l-l

+ ZE [pi(k.-i-,Gi + c+i&i) + qi(k.-t-.tGi + c,_,_,S,)].
1-1   1=0

The replacement of the summation index i by (j — 2) in the simple sum, and

by (j — l) in the double sum, gives this the form

H.(U) = Y [k.-iCr'^i + C._ySy",]
j-t

+ tt [ki-jtiPj-i + qfij-i) + c.-j(p&U + qi&j-i)}.
i-i i-i

In the simple sum the limit on/ may now be lowered to 1, since only a vanish-

ing term is thereby added, and the order of summation in the double sum may

be changed. The result is the formula

B.(U) = ZJ^-yfc + Y (PiG'i-i + <?£,-*)]

+ C-JCi + Y (P&-i + ?«Sy_o]j ,

which is, more concisely,

(16.12) H.(U) = Y [k.-iHj(G) + C-jH,(&)].
i-i

The substitution of this into the relation (16.8) yields, by virtue of the

definitions (16.10), the equation (16.11) with n = s. This is what was to be

shown.

17. The determination of r(z, X). The irregular categories 1 and 2. With

the equations (16.7) formally fulfilled, the evaluation (16.5) assumes the form

(17.D TW = WZr+   E ^l-
'   n-0 X" n-m+t+l        X"      )
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We wish to achieve this form, and to do that while retaining for its right-hand

member the highest possible degree in X. This means that we shall seek to

determine the functions 7_/„(z) to be analytic, with the assignment of a non-

vanishing value to the earliest element of the sequence k0, ki, k2, • ■ • for

which such a determination can be made. The extent to which that is possible

depends upon the functions (16.9), since Un(z) is expressed in terms of these

by the formula (16.11).

The category 1. An irregular differential equation (1.1) shall be classed

as in the category 1, with respect to the integer m, if the functions Gn(z) ior

m = 0, 1, • • • , m, are all analytic.

In the instance of a differential equation of this category, we shall take

the integer 5, in the form (16.4), to be zero, and in the formulas (16.11) we

shall take ko to be 1, and all the other constants to be zero. The resultant

formulas (16.11) are then, more simply,

Un(z) = Gn(z), n = 0, 1, • • • , m.

This is precisely the determination of the functions Un(z) that was made in

§7. The deductions of Part II of this paper are therefore applicable without

any modifications to differential equations of the category 1.

Theorem 5. A differential equation (1.1) which is of the irregular category

1 with respect to the integer m admits, in any pair of associated regions of z and

X a set of solutions w>,,j(z) ,j = 0, I, 2, 3, which have the forms given by the Theo-

rems 1, 2, 3, and 4, with 5 = 0.

There are differential equations that are in the category 1 with respect to

any (every) m. The equation

wiv + X W = 0,

is an example of such a one. For this equation

L(u) = u'" + Xhu' - X2m,

and the determination m3(z, X)=— 1 is possible. Thus G0(z)=—1, and

G„(z)=0, for m^O.
On the other hand a differential equation may be in the category 1 for

integers m that are below a certain bound, but not for larger m. Ii the set

Gn(z) for m = 0, 1, 2, • • • , m, contains a nonanalytic member the differential

equation is not in the category 1 with respect to that m. For many purposes

the solution forms given by the Theorem 5 for some quite small integer m are

adequate.
It will be observed that the category 1 includes only differential equations

whose limiting forms (16.1) have no actual singularity at z = 0. For whenever

there is an actual singularity the very first element of the set Gn(z) is non-

analytic.
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The category 2. An irregular differential equation (1.1) shall be classed

as in the category 2 with respect to a given m if for a pair of integers v and

a, with

v ^ a ^ m,

the relations

8»(z) analytic for   ra < v,

&Jz) not analytic,
(17.2)

Gn(z) analytic for   ra < cr,

Ga(z) not analytic,

maintain.

The forms of the nonanalytic components of the functions &r(z) and G,(z)

are easily determined. Since TT„(S) is analytic, the integrand of the formula

(16.10) for S,(z) is a ratio of two analytic functions. Its singularity is therefore

a pole. The residue at this pole is nonvanishing, since £„(z) would otherwise

be analytic. The nonuniform part of the integral is therefore a constant mul-

tiple of log z, and the nonanalytic part of &,(z) is accordingly such a multiple

of So(z) log z. The same conclusion is to be drawn for the function G„(z).

In the formula (16.4) we now again take 5 = 0. To the constants kn in the

relations (16.11) we assign the values &o = l, k„ = 0 for ray^O. Then we take,

in this instance, c„ = 0, for ra<(cr — v), and leave the remaining constants c„

to be determined in the manner to be described below. The formulas (16.11),

as they are hereby reduced, are

Un(z) = Gn(z), for ra < (cr - v),

(17.3) »z?+'
Un(z)   = Gn(z) +     Y   Cn-ySy(z), for (* - l>)   £ « _ «.

y-o

The functions Uo(z), Ui(z), • • • , U„-i(z), all involve only analytic terms,

and so are clearly analytic. The next function of the set is Uc(z), for which the

formula (17.3) is

v-l

U,(z) = Gc(z) + Y c,-ySy(z) + c,_„S,(z).
y-o

In this the only terms that are not analytic are the first and last ones; in

each of these the nonanalytic component is a constant multiple of &0(z) log z.

The sum of these components may be made to vanish by assigning an ap-

propriate value to c,-,. We give the constant c„_, this determination, and thus

obtain an analytic determination of U,(z).

We consider now the next function Uc+i(z). Since H,+i(U) is analytic, it

is to be seen from the formula (16.8) that U„+i(z) is analytic except possibly
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for a component which is a constant multiple of S0(z) log z. However the

formula

r-l

(17.4)     f7,+i(z) = G,+i(z) + Y c„+i-,-Sy(z) + c,_h-iS,(z) + c^^+^z),
i-0

shows that this component is in part contributed by the term c„_F+iS,(z). It

can therefore be made to vanish by assigning an appropriate value to the

constant ca-,+u We make this assignment, and thus obtain an analytic de-

termination of(4) 7J„+i(z).

The reasoning that has thus been applied to the function Un(z) with

M = (<r+1), is now reapplicable successively with n = (a+2), ■ • • , m. It is

thus found that with suitable value assignments to the constants cff_„

c,_,+i, • • • , cm-„ analytic determinations of the whole set of functions Z7„(z)

are obtainable. To the remaining constants cn, namely those for n>(m—v),

we may assign the value 0. From these determinations the evaluation (7.6)

again results. The deductions proceeding therefrom in Part II of the paper

require no modifications.

Theorem 6. A differential equation (1.1) which is of the irregular category 2

with respect to the integer m admits in any pair of associated regions of z and X

a set of solutions Wh,j(z) ,j = 0,l,2,3, which have the forms given by the Theorems

1, 2, 3, and 4, with 5 = 0.

The differential equation

wiv + XW + [X + z]w' + w = 0

is one which is of the category 1 with respect to m = 1, and of the category 2

with respect to any m that is greater than or equal to 2. In this instance

L(u) = u'" + XW + [-X2 + X + z]u.

The integers v and a for which the assertions (17.2) apply are found to be

respectively 1 and 2.
18. The irregular category 3. An irregular differential equation (1.1) shall

be classed as in the category 3, with respect to a given integer m, if the asser-

tions (17.2) apply to it for some pair of integers a and v, with a <v ^m.

In the instance of a differential equation of this category, we shall assign

to the integer 5 in the formula (16.4) the value

(18.1) 5 = r-<r.

Then we shall take ki = 1, and kn = 0, for mj^5 in the relations (16.11) and leave

(*) It should be observed that the functions G„+i(z) and £,+i(z) which are present in the

formula (17.4) involve nonanalytic components that are not merely constant multiples of

So(z) log z. The reasoning given shows, however, that these components cancel out.
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the constants c„ to be determined. The forms to which these relations are thus

specialized are

n

Un(z) = Y Cn-/S/(z), for ra < S,

(18.2) '- .

Un(z) = Gn-i(z) + Y Cn-£i(z), for 5 g ra ^ m + 8.
3-0

In accordance with these formulas the first v of the functions Un(z) are ana-

lytic, because they include only analytic terms. The next one has the formula

r-l

U,(z) = G,(z) + Y c,-fr(z) + Co&,(z).
i-o

In this the terms under the summation sign are analytic. Each one of the

other two terms includes a nonvanishing component which is a multiple of

So(z) log z. The sum of these components can be made to vanish by assigning

an appropriate value to c0, and this value is not zero since Cfz) is in fact non-

analytic. We make this assignment, and so obtain an analytic determination

of Uv(z). Inasmuch as c0t^0 we observe retrospectively that the first function

of the set, namely Uo(z), is not identically zero.

The reasoning whereby it may now be shown that suitable value assign-

ments to the constants C\, c2, • • • , cm-«, result in analytic determinations of

the functions U,+i(z), Ur+,(z), • • • , Um+i(z), is precisely that which was used

in §17 in connection with differential equations of the category 2. To the re-

maining constants, namely to c„ with n>(m—a), we may assign the value 0.

The effect of these determinations is to give the relation (17.1) the explicit

form

IX« n-m+8+l        X"      )

On the basis of this the function r(z, X), as defined by the formula (7.7), is

again a power series in 1/X, and the relation (10.3) maintains when 5 is given

the value (18.1). With 5 so evaluated the entire discussion of part II of this

paper is applicable to the differential equations we are presently considering.

Theorem 7. A differential equation (1.1) which is of the irregular category 3

with respect to the integer m admits, in any pair of associated regions of z and X

a set of solutions wnj(z), / = 0, 1, 2, 3, which have the forms given by the Theorems

1, 2, 3, and 4, with o=v—a, where v and a are the integers specified by the asser-

tions (17.2).

The method we have thus given, has been shown to yield the solution

forms of all differential equations (1.1) that are of the regular type or of an
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irregular category 1, 2, or 3. There are, however, some equations (1.1) that

escape inclusion in any one of these classes. These equations are irregular,

and are ones for which the function Go(z) is nonanalytic, whereas all members

of the set Sn(z) for m = 1, 2, • • ■ , m, are analytic irrespective of how large m

is chosen. The nonanalyticity of Go(z) excludes these equations from the

categories 1 and 2, and shows that they are all of the kind whose limiting form

(16.1) has an actual singularity at z = 0. The analyticity of the functions

Si(z), 82(2), ■ • • , fim(z), for every m, precludes the existence of an integer v,

and thus excludes the equations from the category 3. In every instance of this

sort, the associated equation L(u)=0, for m= =0, is formally solvable by a

power series in 1/X with coefficients that are analytic in z.

An example of such an equation is

wiv + [X2(2 + z2) + \]w" - 2X2w = 0.

For this the equation L(u) =0 is

u"' + [X2(z + z2) + X]m' - X2(l + 2z)w = 0,

and this has the solution

1
M =   (Z + 22) + — •

\

When, in the case of a given differential equation (1.1) for which G0(z)

is nonalytic, no integer v that fulfills the specification (17.2) has been found,

the alternative of the existence or nonexistence of such an integer remains un-

resolved. Although the applicability of our method depends upon it, we have,

at this moment, no practicable method for making this resolution.

19. The hydrodynamical equation. The differential equation

(19A) ^-2a'a^+^-iaRr-c)w-av-^\ = 0'

which was already given above under (1.4), is central to the theory of the

laminar flow of a fluid, and is therefore familiar in the literature of hydro-

dynamics. The symbol R that appears in it stands for a Reynold's number

that is ordinarily ve'ry large, a and c are small or moderate parameters, and

co, the velocity profile, is a known function of y whose second derivative is

ordinarily taken to be nonvanishing. The variable y is directed perpendicu-

larly to the planes bounding the flow, and the range between these planes con-

tains a point y0 at which the function [u(y) —c] has a simple zero. This point

(the turning point) appears to be a source of vibrations that engender

turbulence. A determination of the forms of the solutions of the equation in

a region about this point is therefore of the essence, in the analysis of the

stability of the flow. A derivation of the differential equation (19.1) is given
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by D. Meksyn [4]. That author [4; 5], as well as W. Wasow [l; 2; 3], make

studies of the equation, and give references to other such studies.

The notational changes

z = y — yo, « = i>,

(19.2) u(y) - c
X2 = - iaRu'(yo),        Po(z) =       „   N    >

co (y0)

give the equation (19.1) the form

(19.3) wiv + X2 Tfo(z) + — PJ w" + X2 \Ro(z) + — R21 w = 0

with

K,(«) = -a2P0(z) -Fo"(z),
(19.4)

F2 = - 2a2,        R2 = a4.

The function u(y) being unspecified, the function Fo(z) is likewise so. We

therefore take it to be given near z = 0 by a power series

(19.5) Fo(z) = z+ az2+bz3 + czi+ ■ ■ ■ .

Since Q(z, X), and hence Qo(z), is in this case vanishing, the equation is of the

irregular type, with p = l. To determine the applicability of our theory we

shall seek to determine the equation's category.

In the instance (19.3) the differential equation (3.3) is

Po(z) (—)   + 2F0'(z) (—)   - a2F0(z) (—) = 0.
\ao/ \a0/ \ao/

This, by virtue of the formula (19.5), has a solution

l l l r l l ii
— = 1 -I-a2z2-aa2z3 +    -a4 H-a2a2- ba2   z4 + • • • ,
ao 6 18 L.120 20 15       J

wherefrom it follows that

1 1 T 7 1 11
a0 = 1-a2z2 H-aah3 +    -a4-a2a2 -\-ba2   z4 +

6 18 1.360 20 15      J

The formulas (3.6) and (3.5) accordingly give

1 4 T 1 49 7       "I
7o =-a2z-\-aa2z2 +    — a4-a2a2 -j-ba2   z3 + • • • ,

3 9 L.90 90 15      J

qo= - 1 - 2az -\—a2 + 3b\z2 -\ — aa2 + 4c\z3 + ■ ■ ■ ,
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and from the formulas (16.3) it is therefore to be found that

8o(z) = z + az2+\—a2 + b\z* + [— aa2 + c   z4 + • • • ,

G0(z) = - 2a80(z) log z - 1 - az -   — a2 - 3o2 + 3b \z2 + • • • .

We shall suppose, in the considerations of this section, that

(19.6) co"(y0) * 0.

Then P0" (0)7*0, namely, by (19.5), Ot*0. The function G0(z) is thus non-

analytic.

The differential equation (19.3) involves only even powers of X. Therefore,

as was observed in §5, the functions an, yn, pn, qn and 8n, with odd subscripts

all vanish. We may therefore turn to the evaluations of §5 for m = 2. As it is

given by the appropriate formula (5.2), we see that

(19.7) /,., = 6a0" - 5p„7o" - [8po' + iqoho - [3po" + 3q{ - R0]yo.

Power series segments are available for all terms in this formula. Thus we

find that

2 8
f2i =-a2-aa2z + • • • ,

3 3

and hence, by (5.4), that

8             8
p2(z) =-a2-aa2z + • • • .

The formulas (5.2) likewise show that

/i,2 = 2P2ao  ~ piaa + 4ad"' + [p, - P2][po' + qQ]yo - 6[p£ + q0]yo'

- 4[p„" + 2qi ]yi - [po'" + 3q0" ]y0.

From this, and the fact, to be seen from (5.8), that q2(0) =fi,2(0), we draw

that

4
qt(z) = — aa2 + • • • .

O

We turn now to the formula (16.6). In accordance with that

Ht(&) = j-a2 + 6b 1 + I-aa2 + 24clz +

On the basis of this, it is readily determined, from the formula (16.10), that

the nonanalytic component of 82(z) is
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12 [ab — 2c]S0(z) log z.

This component vanishes in the exceptional cases in which ab = 2c, namely in

which P0"(0)Po"'(0)=Pov(0). By (19.2) these cases may be characterized

otherwise as those in which cd"(y0)«"'(yo) = 0)'(yi)ailv(yo). In all cases, there-

fore, in which

(19.9) co"(y0)co"'(y0) ^ «'(y0)««*(y0)

the function S2(z) is nonanalytic. Any differential equation (19.1) which ful-

fills the conditions (19.6) and (19.9) is thus in the category 3, with cr = 0 and

v = 2. The Theorem 7 applies to it, with 5 = 2, and any m greater than 1.

We shall not pursue further the classification of this differential equation,

with the general coefficient (19.5), in the exceptional cases in which the condi-

tion (19.9) is not fulfilled. To do that we should have to consider the analytic-

ity of &n(z) for higher subscripts ra. That would require greater precision than

is afforded by the representation of Po(z) through the short series segment

(19.5). In the following section we shall consider a special case of the equation

(19.1) in which neither of the conditions (19.6) and (19.9) is fulfilled.

20. The differential equation for Couette flow. The plane Couette flow of

an incompressible viscous fluid is described by the differential equation (19.1),

with w a linear function of y, namely [w(y) —c] =co'(y0) [y— yo]. By the nota-

tional changes

r iFco'(yo)
z = ct[y — y0[,        w = -p,        X2 = -

a2

the equation is in this instance given the completely specific form

(20.1) <o" + [X2z - 2]w" - [X2z - l]w = 0.

This is the equation (19.3), with

F0(z) = z,        Pj = - 2,        R0(z) = - z,       R, = 1.

We shall show that this equation is in the category 1, at least with respect to

every integer m that is less than 6.

In the instance of the equation (20.1), the differential equation (3.3) has

the analytic solution l/ao = sinh 2/2. From this, and the formulas (3.5) and

(3.6), we draw, therefore, that

ao = z csch z,

sinh z
70 = csch Z-y

z

qo = 1 — 2z coth z.

Inasmuch as the limiting form of the equation (20.1) as X—> 00 has no singular-

ity, the functions G0(z) and £0(z) are both analytic. Their formulas are
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sinh2 2
80(z) = -,

z

sinh (2z)
CM =-7^ •

2z

For the calculations that are to be made, the power series representations

are advantageous. In the place of the closed formulas above we shall therefore

refer to their equivalents.

1 7 31 127
a0 = 1 - ■—■ 22 -1-24-■-26 -|-28 + • • • ,

2-3 23-32-5 24-33-5-7 27-33-52-7

111 1 1
— =   1 -|-Z2 + - Z* + - Z6 + •- 28 +  • • •  ,

ao 2-3 23-3-5 24-32-5-7 27-34-5-7

1 1 17 47
y     -    _   _  z  _|-z3-z6 ^-z7 _|_   .

3 2-32-5 23-33-5-7 24-34-52-7

2 2 4 2
Oo =   — 1-z2-\-z4-z6 -|-28 + • • • .

3 32-5 33-5-7 33-52-7

1 2 1
8C = z -\-z3 H-z8 H-z7 + • • ■ ,

3 32-5 32-5-7

2 2 4
So =    -   1-Z2-Z4-26 +   ■ •  •  .

3 3-5 32-5-7

The differential equation (20.1) involves only even powers of X. Therefore

the determinations of §§4 and 5 with odd subscripts all yield vanishing re-

sults, and we need consider only those for which the subscripts are even. The

expression for/2,2 has been given in (19.7). From that, it may be found that

2 43 983
/i.i =-z2 +-z4 + • • • .

3 32-5 22-33-5-7

The relation (5.4) accordingly gives

8        38 128
p2 =-z2 +-z4 + • • • .

3       32-5 32-5-7

With p2(z) thus determined, all functions entering into the formulas for

/o,2 and/1,2 are known. The latter of these formulas was given in (19.8), and

the former, as it may be drawn from (5.2) is

/o.2 = P2ao" + RiCXo + ao   + [p2 — P2]qo7o

- 6?0'To" - 4<7d"7o' - qi" Jo.
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In powers of z, these are found to proceed thus

16 104 10534
/0,2   =-1-Z2-24 +   •   •   •   ,

32-5      33-5-7 34-52-7

176

The calculation next before us, is that of the solution of the differential

equation (5.7). For the coefficients of this equation we determine the repre-

sentations

\2P0' - 3P0 — j = 2 + 22 + • • • .

r , «o' "I        16 4856[/..,-/,.,+/„-J- —+—»•+•••,
From these the solution is found to be

8 1172
72 =-1-z2 + • • • ,

32-5      33-5-7

and in terms of this latter the formulas (5.5) and (5.8) yield

8 124
a2 = - 2 -\-23 + • • ■ ,

32-5 32-5-7

16 272
q2 = - z -|-■-z3 + • • • .

32-5 32-5-7

We may now evaluate f3,2. This is explicitly

(20.3) /3,2 = 4a2' + 4To'" + [2P2 - 4p2]7o   -  [ipi + ?i]to,

in accordance with which

56 1616
/3'2=-^5~ + i^7z2+---*

It is thus to be found from (5.9) that

28 68
72 =-+ -Z2-i-.

32-5      32-5-7

The relations to be used next are those of §16. Recalling that all functions

pj(z) and <7j(z) with odd subscripts are zero, we find from (16.6) that
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2 22 584

H,(E) = -7-Fr"+Fi^'+---'

H&>--jL. ,+ ....

The formulas (16.10) therewith yield the representations

2 2 176
g2  =-+ - 22-. Z4 _|-

3 32-5 33-5-7

a-jij,.+ ...,

and from these we see that the functions S2(z) and G2(z) are both analytic.

The calculation proceeds now to the determinations of §5 for ra=4. The

formulas (5.2) that are immediately relevant are

/*.« = 6a2" + 7oT - [P* - pi][poyi + Piyo] - [opo ~ Pohi'

(20.4) - [8pi + 4q0]yi - [3p0" + Sqi - Ro]yi + [P» - pi]a,

- [6p2 - P,]ya - [8p{ + iq2]yi - W' + 3q2' - P2]7o,

and

/i,4 = - plat + 4ai" + [p2 - P2]{ [pi + qo]y2 + [pi + ?2]7o}

(20 5) + 4^°' + ?°-'70 " 6^°' + q^" ~ 4^°" + 2?°'^2'

- [pi" + 3qi']y2 + 2P2ai - [pi + q2]a2 - 6[pi + qihi'

- 4[pi' + 2qi ]yi - [pi" + 3qi' ]y0.

From the expression of f2,i in powers of z we draw, through (5.4), the evalua-

tion

1048
pi =-z + • • • .e       32-5-7

Thereupon/i,4 can be evaluated, and from that the formula (5.8) leads to

1528
qt =-1- Oz + • • • .

33-5-7

We shall not carry the calculations much further. Indeed, since the ex-

plicitness of the series representations we have set down is almost exhausted

at this point, the use of longer series segments would be requisite to carrying

the calculations on. From the representations that have been derived, it is

found that the power series for TT4(S) and TT4(G) both lack the term in the

first power of z. The quotients of these series by p0(z)S0(z) therefore have no
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terms in 1/z, and thus the integrals in the relations (16.10) introduce no

logarithmic terms. The functions 84(z) and G^z) are thus both analytic. Since

the functions G&(z) and G6(z) vanish, and are therefore analytic, the differen-

tial equation (20.1) is seen to comply with the requirements for inclusion in

the category 1, at least ior all m that are less than 6.
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