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1. Introduction. This paper is devoted to the study of the validity in an

asymptotic sense of the perturbation method as applied to an eigenvalue-

eigenvector problem. Conditions under which the method of identification of

coefficients leads to convergent infinite series have been studied by Rellich

[l; 2; 3; 4], Nagy [l], and Wolf [l]. In more general cases, especially with

unbounded operators, this method may lead to only finite or possibly non-

convergent series. We would still be interested in whether these series are

valid asymptotically to the extent that they are defined. Titchmarsh [l] has

investigated this problem for special differential operators. Kato [2; 3] has

derived conditions sufficient for the expansions to be valid as far as they are

defined for an operator of the form HQ + tHx. The corresponding results do not

hold for operators with higher order terms, not even for the case H0 + t2H2.

(See Example 3.1.) This paper gives a set of conditions sufficient for the

validity of the expansions for operators defined by finite or infinite series.

Some familiarity with the formal method is assumed. For example, Chap-

ter VI of Pauling and Wilson [l ] should be sufficient.

We study operators on a Hilbert space 3C defined by a series (possibly

finite) H(t) =H0+tHi+t2H2+ • • • , where H0 is self-adjoint and the other

terms are symmetric. Let Xo be an isolated eigenvalue of H0 and </>0 a corre-

sponding normalized eigenvector. We would expect H(t) to have an eigen-

value converging to X0. The method of identification of coefficients leads to

series X(/) = X0 + /Xi-M2X2-|- • • • and (p(t) = 4>o + t<Pi + t2<p2 + ■ ■ ■ for the per-

turbed eigenvalue and eigenvector. We say these series are asymptotically

valid to iVth order if there exists a perturbed eigenvalue X(/) and a cor-

responding eigenvector <f>(t) such that tr"\\(t) — 2~lt-o <*M and t-N\\<p(t)

— 2~2it=o Li(Pi\\ tend to zero with t.

To guarantee the existence of the perturbed eigenvalue we impose certain

semi-boundedness conditions on the operators Hi and employ the theory of

the Friedrichs extension of a semi-bounded operator as developed by Fried-

richs [1; 2] and Rellich [5] (§2).

Any direct attempt to justify the identification of coefficients as a repeated

limiting process fails because the operators of our series may be unbounded.
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To avoid this difficulty we study the inverse operator. In an earlier paper

(Kramer [l ], hereafter referred to as A) the author proved a variety of theo-

rems concerning the validity of formal inverse expansions. Those theorems

pertinent to the present work are listed at the end of §2. Knowing the inverse

expansion to be valid we study the formal method applied to the inverse

operator with more success. Some changes in order must be made. Intuitively,

when using the formal method to obtain the rath term of the eigenvector ex-

pansion, we first take a limit and then apply the reduced resolvent (Defini-

tion 2.1) to both sides of an equation. To justify the result we must essentially

interchange these steps and apply the perturbed reduced resolvent first and

then take the limit.

In Theorem 3.1 we prove the results of the identification of coefficients

under our basic assumption. Using variational methods we then obtain the

stronger conclusion that the eigenvalue can be expanded to twice the order of

the eigenvector in Theorem 3.2. Odd order eigenvalue expansions are obtained

in Theorem 3.3.

§§4 and 5 are devoted to a study of the degenerate case. The formal proofs

are restricted to first order only but splitting at higher order is discussed

briefly. A point of interest in §5 is that the formal first order results are not

completely verified until second order conditions are imposed.

In §6 the adiabatic transformation is used to obtain uniquely determined

and "naturally" distinguished eigenvectors.

2. Preliminary lemmas. In this section we lay down certain fundamental

assumptions and establish a number of lemmas for later use. The conditions

on the operators of the series are the same as those used in A; namely, Hn>I,

Hi>0 ior i>0,t>0, and SD(#(/)) dense for t<t0. Then H(t) has a Friedrichs

extension H(t) and we study this extension instead of H(t) itself. We further

assume that Flo is the Friedrichs extension of its own contraction to £)(H(t)).

For our purpose, the most important property of the Friedrichs extension

is that given by the following lemma. For a proof, see Rellich [5].

Lemma 2.1. If A and B are symmetric operators semi-bounded from below

with A>B, and a and b are the least limit points of the spectrum of A and B

respectively, then a>b. If A has N eigenvalues less than a constant k, then B

has at least N eigenvalues less than k and the ith eigenvalue of A is not less than

that of Bfori<N.

Lemma 2.2. If k is a fixed constant, then the number of eigenvalues of H(t)~l

above k is a nonincreasing function of tfor t>0.

Proof. Obviously H(ti) <H(t2) ior 0<h<t2. The lemma follows immedi-

ately from the preceding lemma and the spectral mapping theorem (Stone

[1, p. 233]).

Lemma 2.3. If u0 is an isolated eigenvalue of multiplicity L of Hq1 and the
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spectrum of Ho-1 above po consists of isolated eigenvalues with total multiplicity

finite, then for sufficiently small t, B(t)~l has exactly L eigenvalues (counting

multiplicity) which converge to u0 and the remainder of the spectrum of B(f)~x is

bounded away from ju0.

Proof. Let Et(K) denote the resolution of the identity corresponding to

B(t)~l. From Theorem 3.1 A we have B(t)_1 converges strongly to HV1.

Therefore, (see Stone [l, p. 390]) if X is not an eigenvalue of Ha1 then

(£,(X) /, g) converges to (E0(\)f, g) for all /, g in 3C. Expanding

||£«(X)/ - -E0(X)/||S

as an inner product we see that its limit is zero so Et(K) converges strongly

to £o(X). Now if J is any interval containing p0 in its interior but no other

spectral point of Hf1 and F(t) is the projection of the spectral measure

of B(t)~l associated with /, then F(t) converges strongly to F(0). Conse-

quently, the dimension of F(t) cannot be less than that of F(0) for sufficiently

small t. Letting both end points of / approach uo we see that B(t)_1 has at

least L eigenvalues or a point of the continuous spectrum which approach p0-

Now apply Lemma 2.2 with k between po and the next lower spectral point

of H5"1. There are no points of the continuous spectrum of B(t)~l above k and

the number of eigenvalues of S(/)-1 above k cannot exceed that of HV1-

Therefore, there exist precisely L perturbed eigenvalues which converge to pto.

In the following we will use Ea to denote the projection associated with

Po and E(t) tor the projection associated with all of the L eigenvalues of

H(t)~l which converge to Oo-

lemma 2.4. The projection E(t) converges to Ea in norm.

Proof. This lemma follows from our earlier results that E(t) converges

strongly to Ea and that for sufficiently small t, the dimension of E(t) is exactly

equal to that of .Bo-

One of the most important tools for the identification of coefficients is the

reduced resolvent.

Definition 2.1. Let A he a self-adjoint operator with spectral measure

£(X) and T be an isolated spectral subset of A. Then the T-reduced resolvent

of A is defined as an operator valued function of p for all p in the union of T

and the resolvent set of A by the equation Rr(A, p) = f'(\— p)~ldE(X) where

the prime indicates that the integration is to extend over the complement of T.

Lemma 2.5. Let pto satisfy the conditions of Lemma 2.3 and let T(t) be the set

consisting of the L eigenvalues of B(t)~l which converge to ptofor t>0 and T(0)

be the set with p.0 as its single element. For sufficiently small t, S(t) = Rrw(B(t)~1,

Mo) defines an operator, and S(t) is uniformly bounded, strongly convergent to

S(0), and satisfies the relation S(t) \B(t)~l— uo} =I — E(t).

Proof. It is obvious that S(t) is defined for small t. The cited properties
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follow from the operational calculus and the strong convergence of H(t)_1

(proved in Theorem 3.1 A).

We now list the inverse theorems from A that we need for the present

work. For any positive integer i, Ai denotes the ith term in the formal ex-

pansion of H(t)~lm, that is,

Ai = 2-i        (~ 1) ^o HplHo HPiHo   • • • HPrHo .

Theorem 3.1 A. If <bE$>(Ai) for i<N and Atf>ES>(H(t)) for i<N, then
lim«.„ t-N\\H(t)-l(p- }Zlo t'ArfW =0.

Theorem 3.2 A. If <P satisfies the conditions of Theorem 3.1 A and

AxcpEHHW2), then lim(<„ tr^+1'»\\S(t)-14>-2JILo t'ArfW =0.

Theorem 4.1 A. If <p and \p satisfy the conditions of Theorem 3.1 A for order

N and M respectively, then

Af-l

(il(t)-l<P,*) = E <'(^.10
»=0

M+N j       M-l

- E «'Z 22(Ai-k<P,Hk_pAp+)
j=M        k—M    p=0

+ o(tM+N).

Theorem 4.2 A. If H(t) =H0+tHi and AN(p and Am* are defined and be-

long to £)(H(tyi2), then

Af

(H(t)-l<P, $) = E '*(*. A#)
i-0

- E tM+i+\(HiH-oY\ Au*) + tM+N+\STAN(t>, iiTAM+)
i-o

+ o(tM+N+l).

We conclude this section by giving as a lemma the theorem which Kato

uses as the basis for his investigation of asymptotic perturbation series. We

also use the theorem but in an entirely different fashion.

Lemma 2.6. If His self-adjoint and X is an isolated nondegenerate eigenvalue

and the interval (v—d, v+d) contains no point other than X of the spectrum of H

and \\(H—r))o}\\=e and ||w||=l then |X — v\ <e2/d and there exists an eigen-

vector cp corresponding to X such that ||0 —co|| <t/d. For fixed co, ||(i?—?;)co|| as-

sumes its minimum value for 7/ = (Ha, u).

Proof. See Kato [l].
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3. The nondegenerate case. For this section we assume po satisfies the

conditions of Lemma 2.3 with L = l and <p0 is a corresponding normalized

eigenvector. Then for sufficiently small t, B(t)~l has an isolated eigenvalue

p(t) converging to po- The perturbed eigenvector is determined only to within

a scalar factor. We obtain a unique eigenvector cb(t) by requiring tp(t) to be

normalized and (</>(/), c/>0) to be real and positive. The existence of cp(t) is

clear since it is only a suitable scalar multiple of E(t)cpo. Note that <p(t) tends

to cp0 as / tends to zero. The following theorem gives a finite expansion for p(t)

and cf>(t). We use E0 and So to denote E(0) and 5(0) respectively.

Theorem 3.1. If po and cpo are as above and ui = (Aicp0, c&o), <pi = S0(pj — Ai)cpo

and fii and </>,• are defined for Ki<N by the recurrence relations

i-l

(3-1) in = (Ai4i0,<po) — 2 ((p-i-i — Ai-,)cpj, cpo),
i-i

•-i

(3.2) (/ - E0)cpi = £ S0(ui-j - Ai-ticp,,
i=o

1 *-J
(3-3) (cbi, cAo) = - 7- E (*/. <Pi-i),

2 j—o

and AkcpiE£>(H(t)) for i + k<N, then p(t) =p0+tp.i+ ■ ■ ■ +tNuN + o(tN) and

4>(t) =d>o+t<Pi+ ■ ■ ■ +t"cpN+o(tN).

The proof is by induction. The case N = 0 is contained in the previous

discussion. Because the general proof is rather complicated we sketch a special

proof for IV =1 to help motivate the various steps. The perturbed eigenvalue

and eigenvector can be expressed as p(t) =uo+tr(t) and <p(t) =cp0+tp(t). We

have to prove lim^o r(t) =(Aicp0, cpo) and lim,,0 p(t) =So(pi—Ai)cp0.

From [B(t)~l-fjt(t) ]cb(t) = 0 we obtain [B(t)~l-p.a]tpo-tr(t)tp(t) +t[B(t)~l

—p0]p(r)=0. Since B(t)~1cp!>=Aocpo + tAi<p0 + o(t) by Theorem 3.1 Aand^40<po

= HV'c/>o=Poc/>o this reduces to r(t)<p(t) =Aicb0+[B(t)-1-p:o]p(t)+o(l). Now

taking the inner product of both sides with cp0 and using the self-adjoint prop-

erty of B(t)~l-p0 we obtain r(t)(cp(t), 0„) = (Ai4>o, cp0) + (p(t), [3(t)~l-p0]<Po)

+ 0(1). The term involving [£T(/)_1 — po]c/>o can be reduced as above and the

conclusion for r(t) followed by taking limits as I tends to zero.

Now we have p(t) = p0 + tpi + o(t) so the equation [B(t)~i—pi(t)]cp(t)=0

can be reduced to [B(t)-1 -pt(t)]p(t) = (ui-Ai)cb0+o(t). Applying S(t), the

reduced resolvent of the perturbed operator, to both sides and taking limits

we have lim,.0 [l — E(t)]p(t) =S0(tii—Ai)cp0. Since E(t) converges to E0 in

norm, we can replace E(t) by E0 if we prove that p(t) is bounded. This we

accomplish by proving (I-Eo)p(t) and E0p(t) bounded. From the equation

[l — E(t)]cp(t)=0 and the result that [l — E(t) ]p(t) is bounded we conclude

[l-E(t)]cp0 = O(t). This together with 0O= [l-E(t)]tj>o+E(t)cp0 yields 1

= 0(t2) +1 (cbo, cp(t))\2. Starting from cb(t) = (I-Eo)cb(t)+E0cp(t)  we obtain
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1 =\\(I-Eo)4>(t)\\2+\((p(t), (f>0\2, and hence \\(I-E0)(p(t)\\=O(t). This simpli-
fies to yield (I — E0)p(t) bounded in the limit.

To prove E0p(t) bounded express (p(t) as Eo<p(t) + [I—E0]4>(t) and obtain

the equation 1 =|[p0<A(/!)||2+ | [/-£0]<K0||2- Since [l-E0]<p(t) =0(t) we have

1 -\\E04>(t)\\2 = O(t2) or {1 -| Eo(p(t)\\} {l+\\Eo<p(t)\\} =0(t2). Since the second

factor tends to 2 we have ||P0</>(0|| = l+0(/2) or | (<b(t), <p0)\ =l+0(t2). But

c6(0 was determined by the condition that ((p(t), (pi) be positive so we have

((p(t), (p0) = l+O(t2). From this it follows that (p(t), 4>o) =0(t) so lim,,0 E0p(t)
= 0.

Thusp(/) is bounded and lim<,o (I — E0)p(t) =So(Hi — Ai)(f>oand lim(.0Pop(/)

= 0. This concludes the special proof for N=l.

Proof of Theorem 3.1. The theorem has been proved for ^ = 0, 1. We as-

sume it true for N—1. Then we have h(0 =Ho + tHi+ • ■ • + tN~1HN-i+tNr(t)

and <b(t)=4>o + t(t>i+ ■ ■ ■ + tN~14>,v-i+tNp(t). It remains to prove that

Iimj..o r(t) =hn and lim<<0 p(t) =4>n where pat and 4>n satisfy the relations (3.1),

(3.2), and (3.3).

The remainder of the proof is divided into thirteen parts. The first three

parts simply isolate the details of cancelling lower order terms from our main

equations. The fourth part gives us the result for r(t). In Part V we obtain

an expression for lim(_o [l — E(t) ]p(t). As before for A^= 1 we can replace E(t)

by £o if we prove p(t) bounded. The successful generalization of the device

used before is to split p(t) into its projections on the subspace determined by

(po + t<pi+ ■ ■ ■ +tN~1(f>N-i and the complementary subspace. Parts VI through

X are devoted to the proof that these are bounded. Part XI states the result

for lim (I — E0)p(t). In the twelfth part we calculate lim E0p(t). The last part

summarizes the results for p(t).

r

I. For r <N,        E (Ar-. - Hr-i)4>, = 0.
3=0

Proof. From (3.2) we obtain

(3.4) (A0 - Ho)(br = G4o - Ho)S0\   E (fr- - AT_i)<ps \ + (Ao- Ho)E0(br.

Since (A0—Ho)So = I — E0 by Lemma 2.5 with / = 0 and (Ao—Ho)E0

= (H0~1—ho)E0 = 0, equation (3.4) reduces to

(3.5) (A0  -  Ho)(br  =   ~   (I  -   Po)        E   (Ar—   ~   Hr-i)<l>s  \-

From (3.5) it follows that

E (Ar-.  -  Hr-,)4>.  =   Eo      E   (Ar-,  - Hr-,)(l>, \-
«=0 L s-0 J

By (3.1) we have
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— 1 r-l

E (Ar-.   —  Hr-i)4>z   =   Ar<t>0   —   Hr4>0   —   E  (Ar-.  ~  Hr-.)4>.
S—0 B—l

= A,4>0 — \ (Ar<po, (bo)  — E ({Ar-. — Hr-.}(b8, <po) \<bo

r-l

—   E   (Ar-.   —   Hr-i)<P.-
J=l

The   inner   product   of   cf>0   with   this   last   expression   vanishes.   Hence

Po[Es=o (Ar-,— Hr-i)<b.} =0 and I is established.

(N \    / N-l \ N-l

H(tyi - E^Mi)( E Hi) = tNT. (An-u - HN-k)(bk + o(tN).
1=0 /  \   j—0 / k—0

Proof. By Theorem 3.1 A the formal expansion for H(0-1</>y is valid to

order N-j; that is 8(t)-1(f>,=A0(Pj + tAi(pj+ ■ ■ • + tN->AN-](pj+o(tN-'). Sub-

stituting this expansion for B(t)~l(pj for all j and collecting terms we find that

the coefficient of tr for r<iVis Es-o (AT-.— Hr-.)<t>. which vanishes by I.

/ N-l \    /  N-l \ r N-l \

[H(t)-1 -  E M[   E Hi) = tN\ E (An-t ~ HN-k)4>k\
III. \ i-O / \   j-0 / {   k=l )

+ tNAN(bo + o(t»).

Proof. Immediate from II.

IV. lim r(t) = hn-
(-►0

Proof. From [27(0_i-m(0]<K0 =0 we obtain

[say* - e t*Hij ( E h)j - tNr(t)4>(t) + pla®-1 - E <v*}pW = o

which reduces to

N—1 i N-l \

E (Atf-k ~ HN-k)(pk + AN<Po +  <27(0_1 -  E ^HiVpO)
(3.6)      k=i V i=o        )

- r(t)(b(t) + o(l) = 0.

Taking the inner product with <£0 and using the self-adjoint property of

B(t)~l we obtain

N-l

r(l)(4>(t),<po) = (AN(bo,4>o) — E ((PN-k — AN-k)(t>k, <Po)
k-l

+ {p(t), \H(t)-1 - E <*i) =*o) + o(l).



1957] ASYMPTOTIC PERTURBATION SERIES 95

Since (11(/)_1 — E*I-V tipi)<po = o(t) the term involving p(t) tends to zero in the

limit. By assumption lim(.0 (<p(0, 4>o) = 1 so the result follows on taking limits.

N-l

V. lim {l - E(t)}p(t) = -   E S0(AN-i - w-i)<Pi.
«—O i-0

Proof. From {ify)-1-/*(<) }<p(t) =0 and II we have

N-l

{HO)"1   -   p.o}p(t)   =    -     E   (^N-i ~  PN-i)<t>i +  0(1).
i—0

Applying S(t) to both sides of this equation we obtain

N-l

(3.1) {I - E(t)}p(t) = - E S(t)(AN_i - p.N-i)4>i - S(t)o(l).
t-0

Part V follows from (3.7) and the uniform boundedness and strong conver-

gence of S(t).

Let er(/) = cpo+tcpi + ■ • • +tN~1<pN-i and P(t) be the projection on the one-

dimensional subspace determined by a(t).

VI. ||er(0||2 =l + tNt, (<Pi, **-<) + o(lN)-
t-1

Proof. From (3.3) by direct calculation.

VII. \\\I - E(t)}o(t)\\ = 0(t»).

Proof. This follows from the equation \l — E(t) }<p(t) =0 and the bounded-

ness of [l-E(t)}p(t) from V.

vm. \\{i - p(t)}cp(t)\\ = o(n.

Proof. By direct calculation we obtain er(/)= {/ — E(t) \a(t) + (cr(t),cp(t))cp(t)

from which it follows that l+0(tN) =\\{l-E(t)}a(t)\\2+\(o(t), (b(t))\2 or

||{l-£(/)}<r(/)||2=l-|(cr(r), <p(t))\2 + 0(tN). Similarly, starting from the

equation <p(t)= [i-P(t)}cp(f)+P(t)cp(f) we obtain \\[l-P(t)}cp(t)\\2 = l

- | (<r(t),cp(t)) 12 + 0(tN). Comparing this with the equation for || {I - E(t)cp(t)\\

yields

(3.9) || {/ - £(/)}er(/)||2_= || {/ - P(t)}<p(t)\\2 + 0(n.

Part VIII now follows from (3.9) and Part VII.

IX. \\{I-P(t)}p(t)\\=0(l).

Proof. This is an immediate consequence of VIII and the relation

{l-P(t)}p(t) = -t-»{l-P(t)}cp(t).

X. P(t)p(t) = 0(1).
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Proof. From <p(t) = P(t)cp(t) + {i-P(t) }<t>(t) we obtain 1 =\\P(t)<b(t) \2

+ || [l-P(t) }(b(t)\\2 so that 1 -\\P(t)(j>(t)\\2 = 0(t2N). Therefore {1 -\\P(t)(p(t)\ }

• {1 + ||P(/)<p(0||} = 0(t2N) and since the second factor tends to 2 it follows that

l-||P(/)c6(0||=O(/2tf) or ||<r(O||-*-|(0(O, <r(t))\ =l+0(t2N). Expressing (f>(t)

as a(t) + tNp(t) and using \\a(t)\\2 = 1 +0(tN) from Part VI we obtain (p(t), a(t))

bounded which is equivalent to P(t)p(t) bounded.

JV-l

XI. lim (7 — E0)p(t) = E S0(hn-j — AN-i)4>i-
«-0 )=0

Proof. By IX and X, p(t) is bounded. Obviously

||{/-£o}p(0 - {I - E(t)}p(t)\\ <\\E(t) -PoIMIpWII-

Part XI follows from Part V and the normed convergence of E(t).

I   N-l

XII. lim Eop(l) =-— E (<P>, 4>N-,).
<^o 2   ,_i

Proof. We now have <b(t) = a(t)+tN{l-E0}(pN+tff(p(t), <po)0o+o(/w)

where p is bounded. From the conditions that ||<p(0|| = 1 and (4>(t), <po) is real

we conclude (p(t), c5o) =2-1{ 1 —||cr(£)||2}. The desired result follows from

Part VI.

XIII. lim E0p(t) = 4>n, where 4>N satisfies (3.2) and (3.3).
l-,0

Proof. From XI and XII.

This concludes the proof of Theorem 3.1.

The complicated nature of the proof of the last theorem in comparison

with the formal method is due to proving the existence of the eigenvector ex-

pansion. The first four parts are routine and follow the standard pattern. The

formal counterpart of Part V would start from a formula for (Ho1— po)<A.v,

from which (I — Ei)4>N is obtained by use of the unperturbed reduced re-

solvent. Our material is a formula for {H(t)~1—Ho}p(t), so we apply the per-

turbed reduced resolvent to obtain {i— E(t)}p(t). To pass from this to

{l — E0}p(t) we must prove that p is bounded, and this causes most of the

difficulty of the proof.

Also the formal method usually involves giving Eo4>n an arbitrarily as-

signed value. We determine a unique eigenvector (j>(t) by the condition that

(4>(t), (pi) be real and then determine Po<p.v.

The hypotheses of Theorem 3.1 actually imply a much stronger conclusion

with respect to the eigenvalues. To prove this we depart from the identifica-

tion of coefficients and use Kato's theorem [Lemma 2.6].

Theorem 3.2. Under the conditions of Theorem 3.1 the perturbed eigenvalue

has an asymptotic expansion of order 2N.

Proof. Let u(t) = E^-o H< and v(t) = E?U I'm- From Theorem 3.1 it fol-
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lows that {B(t)-1 — r)(t)}co(t)=o(tN). Using Lemma 2.6 we conclude that the

perturbed eigenvalue is equal to (B(t)~lco(t), co(t)) to within terms of order 2N.

This inner product is equal to

IN min  (i.N)

E /*    E    (mr^i, *«-#).
i—l j=mai  (O.i—A^)

Since cp, and e/>;_> satisfy the conditions of Theorem 4.1 A for orders N—j and

N—(i—j) respectively, (B(t)~lcpj, c/>i_j) can be expanded to order 2N—i. We

would obtain the desired expansion by expanding each of these inner products

and collecting terms.

We obtain an odd order expansion of the eigenvalue by combining a

modification of the identification of coefficients with Theorems 3.2 A and

4.2 A. For simplicity the result is stated for operators of the form HQ+tHi

but it can be extended easily.

Theorem 3.3. If H(t)=H0+tHi and the conditions of Theorem 3.1 are

satisfied and in addition AkcpiE£)(B(t)U2) for i+k = N, then the perturbed

eigenvalue has an asymptotic expansion of order 27V+1.

Proof. Let co(t) = Ei^o t'cpi and v(t) be the expansion of p.(t) to order 2iV

obtained in Theorem 3.2. By Theorem 3.2 A we have || {B^)"1 — v(t) }co(t)\[

= o(tN+112). By Lemma 2.6, this implies that u(t) = (B(t)~lco(t), co(t)) to within

terms of order 2^+1. Using Theorem 4.2 A we can expand this inner product

to order 2N+1.

Example 3.1. An interesting example in connection with Theorem 3.1 is

furnished by the operator associated with the vibrating rod of small stiffness

clamped at both ends, H(c)cp = d2/dx2 + e(di/dx2) for e>0 with boundary

conditions e/)(0) =cp(l) =cf>'(0) =cf>'(l) =0. For convenience we discuss the oper-

ator itself instead of its inverse. The Friedrichs extension of the second

derivative subject to the above boundary conditions is obtained by relaxing

the conditions to 0(0) =0(1) =0. Therefore we select the second derivative

with these boundary conditions as H0. Then the smallest eigenvalue of HQ is

Xo = t2 with corresponding eigenvector c/>0 = 21/2 sin irx.

We can consider the perturbed operator as being of the form H0+tHi

with Hi the fourth derivative with boundary conditions c/>(0) =c6(l) =cp'(0)

= 4>'(l) =0. In this case (Hi<p0, </>o), the first term of the formal expansion for

\(t), is not even defined since e/>0 does not satisfy the boundary conditions for

Hi.
We can also consider the perturbed operator as being of the form Ho+tHi

+t2H2, with Hi the zero operator and H2 the fourth derivative. In this case

the first term of the formal expansion is defined with value zero. But the ex-

pansion \(t) =\0 + 0t+o(t) is not valid; the true expansion is

X(<) = Xo + 4ir2// + o(t).
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(Rayleigh [l, p. 300]). The conditions of Theorem 3.1 for N=l are not

satisfied since Ao4>o is not in the domain of H(t).

If we specialize the theorems of this section to the case H(t) =H0 + tHx we

obtain Kato's results for the corresponding case. Kato also studied essentially

self-adjoint perturbed operators. Such operators might not have inverses so

the methods of the present paper cannot be applied.

4. First order splitting; eigenvalues. For this section we assume p0 satisfies

the conditions of Lemma 2.3 with L> 1. We denote orthonormal unperturbed

eigenvectors by </>J, • • • , c6q. For sufficiently small t, 27(/)_1 has L eigenvalues

converging to p0 which we order according to magnitude; Hl(t) <M2W < • ■ •

<HL(L)- The following theorem gives a first order expansion of the eigenvalues

and a zero order result for eigenvectors. Further expansion of the eigenvectors

will be considered in the next section.

Theorem 4.1. If 4>oE£>(H(t)) for all k, then we may assume </>5 selected so

that (Aiqbl, 4>j0) =5iju{ with p}<p?< • • • <Pi- The perturbed eigenvalues satisfy

H'(t) =Ho + tu{+o(t). If the u{ are distinct, then there exist perturbed eigenvectors

(b'(t) such that llmt~o (p'(t) =(pJ0for all j.

Proof. Since lim^oM'W =Mo, we can express pt'(t) as p'(/) =Ho+tr'(t). We

must prove lim(<0 r'(t) =Hi- Since E(t) converges to E0, there exist perturbed

eigenvectors of the form

L

(4.1) iKO = E cdH'o + tp'(t)
i—1

where p'(t) is orthogonal to all $ and lim<_0 tp'(t) =0. By taking the norm of

both   sides  of   (4.1)   we  conclude   that  each   Cji(t)   is  bounded   and   that

Ef=i |cj«W|2 is bounded away from zero in the limit.

Obviously,

(+\t), {77M"1 - H(t)}<bok) = ({27«_1 - H(t)}p\t), 0o) = 0.

Expanding 27(/)_Ic4j to first order and simplifying, we obtain

k l k

(4.2) {Mi - r(t)}cjk(t) + E Cii(t)oiik(l) = - (tp (t), Atfo + ojk(l)).
t=i

Note that the right hand side of (4.2) vanishes in the limit.

From (4.2) we conclude that the r'(t) are bounded in the limit. Suppose

to the contrary that some r"(t) becomes unbounded on a sequence {tn} of

parameter values tending to zero. Since lim,<0 Et-i I cUk(t) |2 = 1, there exists

a v and a subsequence {t/ } such that c,(/„') remains bounded away from

zero. Then the first term in (4.2) for j = u, k=v will become unbounded as t

takes on the values tn'. On the other hand, all remaining terms are bounded,
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so the first must be also. Thus the assumption that r"(t) becomes unbounded

leads to a contradiction.

Now regard (4.2) as a system of L nonhomogeneous equations in the L

unknowns c,k (j fixed, k varying). For any t such that the determinant of

coefficients does not vanish, each c,k(t) must be the quotient of two deter-

minants. Each numerator determinant will have one column of terms which

tend to zero and other terms bounded. Therefore, each numerator tends to

zero. Since Ef=i |C;«W|2 is bounded away from zero in the limit, the de-

nominator must tend to zero. This results in the condition

(4.3) lim IT i Pi — r (/)} =0 for each j.
<->0    jfc=,l

Let C he a constant which is not a characteristic root of the matrix

(Ai0o, 0O) and let \tn} be a sequence of parameter values tending to zero such

that for each j, r>(t„) is either less than C or greater than C for all ra. From

(4.2) it follows that if r'(tn) —p* is bounded away from zero, then lim,,..,, c,k(t„)

= 0. From this we see that the <p'(tn) corresponding to those r'(tn) which are

less than C [greater than C] determine a projection which converges strongly

to that determined by those c/>0 such that L4ic/>0> <£o) is 'ess than C [greater

than C]. It follows that the number of distinct/'s such that r'(tn) is less than

C [greater than C] is not less than the sum of the multiplicities of the char-

acteristic roots which are less than C [greater than C]. Since the total number

of r's is equal to the total multiplicity of all roots, the equality must hold.

From this result and (4.3) it follows that lim^0 r'(t) =p.{ for all j.

The second conclusion of the theorem follows immediately from (4.2).

Remark. If Aicp^ is defined, then B1/2^ is also, but the converse is not true.

If we assume cj>lE£>(B(t)112) for all j, we can prove that the first order terms

in the expansions of the eigenvalues are the characteristic roots of the matrix

with -(B^Ho-'cpl B\l2H^cpi) = -(pn)2(B\l2cpi0, B\/2cpi) in the i, jth position.

We do not obtain conclusions with respect to eigenvectors in this case. The

proof depends on a generalization of Lemma 2.6 and will be omitted.

5. First order splitting; eigenvectors. We now proceed to the study of the

identification of coefficients as applied to the calculation of eigenvectors in

the degenerate case. The first order result of the formal method is that if the

numbers p{ of Theorem 4.1 are distinct, then the perturbed eigenvectors are of

the form <p'(t) =<p'Q + tcp[ - - ■ with (I-E0)cp{= -SoAicpl With first order in-

verse assumptions there exist perturbed eigenvectors cp'(t) =cpl+tco'(t) (Theo-

rem 4.1). To obtain unique vectors we impose the condition that (<b'(t), cpl)

he real. With no additional assumptions we easily prove {/ — E(t) }co'(t)

= —S0Aicp^+o(t) (Lemma 5.1). In order to replace E(t) by Ea we must prove

co'(t) bounded. Our success in the nondegenerate case suggests that we at-

tempt to prove (I — E0)co'(t) and Eoio'(t) bounded separately. The first of

these causes no difficulty (Lemma 5.2), but the author is unable to prove the
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second bounded with first order assumptions only. (Note that in the formal

method the corresponding term is computed at second order.) With second

order assumptions it is not difficult to prove EoO}'(t) bounded, (Lemmas 5.3

and 5.4), but we do not obtain its limiting value at this point. Now we have

co'(t) bounded, so we conclude {/ — E0}o)'(t) = — SoAi(p~o + o(t) (Lemma 5.5).

This result in turn makes it possible to verify the formal result for lim< „0 Eau'(t)

(Lemma 5.6). We also verify the formal result for the second order term for the

eigenvalue (Lemma 5.7). All results are collected in Theorem 5.1.

Lemma 5.1. With the hypotheses of Theorem 4.1;

{7 - E(t)}J(l) = - SoAKbi + o(t).

Proof. By expanding the equation { 77(/)_1 — n'(t) }</>'(£) =0 and cancelling

lower order terms we obtain {//(Z)"1— p0}«'(/) = — Ai4>o+ Hi<Po + o(l) - Apply-

ing the reduced resolvent S(t) to both sides of this equation and taking the

limit with respect to t we obtain the desired result.

Lemma 5.2. With the hypotheses of Theorem 4.1, \\(I — E0)u'(t)\\ =0(1).

Proof. From Lemma 5.1 and the equation {i — E(t) }(p'(t) =0, we obtain

|| {i-E(t) }<l>o\\=0(t). By direct calculation we have

||(7-£„)<H/)||2= 1- E I (*''(<), *o)|8,
1=1

ii(/-£(o)*oir = * - e K*o,*'«))r.i=i
Summing the last two equations yields

E ||(7 - £o)*'"(0||* = 1-1   I (*'(0, *o) I* = E IIU - £(0)*o|f
3-1 1,3=1 3=1

so that \\(I — E0)(p'(t)\\=O(t), which is equivalent to the statement of the

lemma.

Lemma 5.3. If the conditions of Theorem 4.1 hold and in addition Ax4>o

E%>(H(t)) for allj, then (w>'(t), <f>l)=0(t) for j^k.

Proof. Note that (u'(t), c6j) is equal in absolute value to the cik(t) of Theo-

rem 4.1. Because of the additional assumptions on (pl, we can replace the

terms oiik(l) and ojk(l) in (4.2) by Oijk(t) and Ojk(t),

(5.1)     {mi - r'(t)}cik(t) + E ca(t)Oiik(t) = - (tp'(t), Ai(b0 - Ojk(t)).
1=1

From (^4 i0o, <po) —OafA it follows that
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(5.2) (tp(t), Aicpl) = (yp\t), (Ai - pi)0o)({l  -Fo)0'W, [Ai - u\}<h).

From (5.1) and (5.2) we obtain

L    -l k

lc „    E t cH(t) {5«(pi - n(0) + O«*(0 j
(5.3) i_i

= - (fl{l - EoU'O), [Ai - pki}cpk0) - (lp'(t),0(l)).

Regard (5.3) as L — 1 equations in L — 1 unknowns /_1£y*(0> j fixed, jy^fe. The

coefficients are bounded in the limit and the determinant is bounded away

from zero in the limit. Therefore, t~lc,k(t) is bounded in the limit for j^k.

Lemma 5.4. With the hypotheses of Lemma 5.3, lim(,o (u'(t), <f>b) =0.

Proof. Expanding tb>(t) =Eo<p>(t)-(I-Eo)tp>(f) we obtain

cp\t) = (<p\t), cp'0) +      E     Cik(t)<t>o - (I - ER)cp1(t).
k=l,kyij

Calculating the norm of each side yields

i = i (<b\t), 4) r + e i c,k(t) i2+na - EoW(t%2.
k=l,k?£i

Applying the two preceding lemmas we obtain 1 — | (cp'(t), 0o)| 2 = 0(t2). Since

(<p'(t), 0o) is real and tends to one in the limit, 1 - | (cp'(t), cpJ0)\ 2 = 0(t2). The

statement of the lemma follows from this last equation.

Lemma 5.5. With the hypotheses of Lemma 5.3,

(I - E0)J(t) = -SoAicbi+o^).

Proof. By the three preceding lemmas, co'(t) is bounded. The desired result

follows from Lemma 5.1 and the normed convergence of E(t).

Lemma 5.6. With the hypotheses of Lemma 5.3,

lim (co\t), 0O) = (pi - pl)    {GSV4i0o, Aicbo) - (cbl, ̂20o)}
<-H)

for jj^k.

Proof. Expressing p>(t) in the form p,0 + tp{+t2r'(t) and expanding the equa-

tion (cb'(t), {B(t)~1-p'(f)}cpl)=0, we obtain

(0o - tSoAicpl + I E (<*>', 0o)<£o + o(t),
(^•4) \ ,=i

k    ,      2 d       k j   k 2   j, . \

tAicba + I A2<f>0 — /pi0o — t r (t) J = 0.
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For J9^k, this reduces to

(<»'((), (bo){Hl  -  Pl}   +  0(t)   +   (0o, ^20o)   -   (SoAx<pl, ̂4l0o)   =   0.

Taking the limit with respect to / we obtain the conclusion of the lemma.

Lemma 5.7. With the hypotheses of Lemma 5.3,

H (I) = Ho + Ihi + t Hi + o(t)

with

P2 =  — CSV4i0o, ̂4i0o) — (00, ̂ 20o).

Proof. Immediate from (5.4) for j = k.

The preceding results are collected to yield the following theorem.

Theorem 5.1. If (pi, Ax<poE£>(H(t)) for all j, then the perturbed eigenvalues

H'(t) and eigenvectors 4>'(t) determined as above satisfy

i i 23' 2
H (t) = Ho + tHi + t Hi + o(t ),

0(0   =   00 +'01+   0(t)

with

Hi = (Ai0o, 0o),

(7 - £o)0i = - 5^100,

(01, 0O)  =  (hi — Hi)     {(-SV410O, ̂4i0o)  — (00, ^20o)[,

3 i 3 3 3

Hi  —   —   (SoAlfyo, ̂ 4l0o)  +  (00, ^20o)-

A completely general discussion of splitting at any order would be ex-

tremely tedious. We consider only the simplest case, that in which the eigen-

value either does not split at all or else splits completely at any order. At any

order, whether the eigenvalue splits or not is determined by comparing the

characteristic roots of a matrix peculiar to that order. As the order increases,

the associated matrix becomes more and more complicated, but it always re-

mains symmetric. If we made the inductive assumption that the matrices en-

countered at orders less than N have equal characteristic roots they would

have to be multiples of the identity. This simple observation would allow

us to cancel all terms of degree less than N from the equation

({27(<r1-pI'W}0'W, 0o) =0

and so pass on to the proof that the A^th terms in the expansion of the eigen-

values are determined by the characteristic roots of the Nt\\ order matrix.
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Even for operators of the form H0+tHi, an eigenvalue can split at second

order. An example is

10   0] [    0   0    i

H(t) =   0    1    0   + t     0   0   0-

.0    0    2J l-i   0    0.

An extreme example of splitting is given by the matrix

ff /l-/cosg       -/sin A

\   -/sing   1-f/cosg/

with / = exp (—1~2) and g = 2/t. This matrix does not have a convergent series

expansion in powers of t but the expansion H(t) =I+0t+0-t2+ ■ ■ ■ is valid

asymptotically. For />0, the matrix has two distinct eigenvalues 1—/ and

1 +/ with the same asymptotic expansion. The eigenvalue splits but the split-

ting does not occur at a finite order. Another interesting property of this

matrix is that it is impossible to select perturbed eigenvectors which converge

as t tends to zero.

6. The adiabatic transformation. Let H0 be a self-adjoint operator, X0 an

isolated eigenvalue of H0 of multiplicity L, and E0 the projection on the cor-

responding eigenspace. Let H(t) be a self-adjoint perturbation of H0 such that

for t sufficiently small, the spectrum of H(t) near Xo consists of one eigenvalue

of multiplicity L. (That is, X0 does not split under the perturbation.) Denote

the projection on the corresponding eigenspace by E(t).

Perturbed eigenvectors are not uniquely determined by the conditions

that they be orthonormal and converge to previously selected unperturbed

eigenvectors. In fact, the quantities (cpl, 0O) are determined only to within

real part. We find it convenient to obtain unique eigenvectors by insisting

such terms be real, but this is an arbitrary and somewhat artificial require-

ment. In this section we introduce the notion of the adiabatic transformation

which gives rise to naturally distinguished eigenvectors.

Kato [4] has shown that if E(f) is of class C2 as a function of t, then there

exists a unitary operator U(t) defined on all of 3C which maps the range of

Eo onto the range of E(t). This operator is called the adiabatic transformation

corresponding to \(t) and the correspondence from selected cp3n to the vectors

<p'(t) = U(t)cpo is called the adiabatic change of eigenvectors. Note that we can

still select the 0o arbitrarily. It is only the change in eigenvectors that is dis-

tinguished.

The operator U is defined as the solution of the differential equation

U' = (E'E - EE')U

which takes on the initial value 1 for / = 0. From the existence of L ortho-

normal perturbed eigenvectors with Nth (N>2) order asymptotic expansions
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follows the existence of eigenvectors in the adiabatic form with the same

property.

If we define W(t) as U(t)E0, then W<p will be equal to t/0 for all 0 in the

range of £0, and W satisfies the simpler differential equation W'=E'W (see

Kato [4]). In particular

(6.1) W'(bi = E'<p\t).

Theorem 6.1. Let the perturbed eigenvectors in adiabatic form have the ex-

pansion

<p\t)   =   00 +  ty'l +  t<p\ +   ■   ■   ■   +  tN(j>N +  0(tN).

Then

k-l

((b'k, 0O)   =   -   1/k E K0r, 0*-r).
r=l

Proof. Using the given expansion to evaluate both sides of (6.1) and then

taking the (k — l)st derivative at / = 0, we obtain

(6.2)     ib\ii (0o, 0') (bL+i/k22sji (0L, 060L} = 0.
j-i   ( r=1 »=1       u=0 /

For k = l, the theorem follows immediately from the linear independence of

the vectors 0q. Assuming it holds for k <n we can prove that the coefficient of

4>l in (6.2) vanishes for 5 > 1. Therefore, the coefficient of 0o must also vanish

which yields the theorem for k=n, completing the induction.

In the degenerate case, we use this formula only when splitting does not

occur. The result for (0o, 4>{) in this section does not agree with that in the

previous section where the eigenvalue did split at first order. In the nonde-

generate case we obtain the perturbed eigenvector in adiabatic form by re-

placing (3.3) by

»-i

(0.-, 0o) = - 1/i Ei(0), 0.w)-
3=1
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