THE DIFFERENTIAL EQUATIONS OF BIRTH-AND-DEATH
PROCESSES, AND THE STIELTJES MOMENT
PROBLEM()

BY
S. KARLIN AND ]J. L. McGREGOR

CHAPTER 1

1. Introduction. A birth-and-death process is a stationary Markoff process
whose path functions X () assume non-negative integer values and whose
transition probability function

Pi(t) = Pr{X(t+4 ) = j| X(s) = i}
satisfies the conditions
P;ia(f) = Nt + o(2),
P;(t) =1 — (N + pa)t + o(h),
Piia(t) = pit + o(2),

as t—0, where \;, u; are constants which may be thought of as the rates of
absorption from state 7 into states 741, 2—1. As a guide to one’s intuition
it is useful to think of a material particle which moves from integer to neigh-
boring integer, the path function X(¢) being the position of the particle at
time ¢. An elegant description of these processes together with a survey of
applications may be found in Feller’s book [4, Chapter 17].

Using the above order conditions and the Markoffian nature of the process
it is easy to show that the infinite matrix P(¢) = (P;()), ¢, j=0, 1, 2, - - -
satisfies the equation

(1.1) P'(t) = AP(l), {20,
where 4 is the matrix
—(No + po), Mo 0 0
B1 =\ + w), M 0
A4 = 0 B —(et )y N = (ai;)

and a; =N\ if j=i+1, — \i4p) if j=4, p;if j=4—1, zero if | j—4| > 1. Equa-
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tion (1.1) is called the backward equation. With the aid of additional assump-
tions about the process it can be shown that the equation

(1.2) P'(f) = P({)4, >0,

called the forward equation, is also satisfied. In any case the initial condition
(1.3) P(0) = I, the identity matrix,

is satisfied.

The main purpose of this paper is to study the existence, uniqueness, and
the properties of the matrices P(f) which satisfy (1.1), (1.2), (1.3) and certain
auxiliary conditions. As will be shown later, for given 4 there are always
infinitely many matrices which satisfy (1.1), (1.2) and (1.3). Consequently
one is led to look for additional properties which may be used to pick out those
matrices P(¢f) which may serve as transition probability matrices. Two such
properties are

(1.4) Pii(t) 20,

(1.5) 2 P S 1.

. e
The inequality in (1.5) expresses the possibility that the diffusing particle
may disappear, either by going to infinity or by absorption at the zero state
in case wo is positive. Another property, here called the semi-group property
is expressed by the Chapman-Kolmogoroff equation

(1.6) Pt +5) = 3 Pul) Puss).
k=0

It has recently been shown by Feller [2] that the forward equation is in
general considerably more complicated than (1.2). The more complicated
forward equations correspond to processes with a state at infinity from which
a return to the finite states may occur with positive probability. No attempt
is made here to construct the transition matrix of the most general such proc-
ess, but it turns out that there are interesting families of such processes for
which the forward equation, when the state at infinity is disregarded, is
exactly (1.2). For these special processes the inequality

Pi(t 4 s) > 20 Palt)Pii(s), i, j< @
0sksow
is satisfied.

In principle the method employed is to look for an integral representation
of the matrix P(f) in terms of the eigenvectors of 4. This point of view leads
to the revelation of a very intimate connection between the theory of birth-
and-death processes and the theory of the Stieltjes moment problem. The
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study of the relationship between these two theories vastly enriches our
knowledge of birth-and-death processes and at the same time produces im-
portant new properties of the moment problem and its associated system of
orthogonal polynomials.

The time dependence of the transition probabilities is displayed in a
particularly simple and lucid manner in the integral representation. This
feature of the representation is crucial for the further study of birth-and-
death processes. It is found that many questions of limiting behavior as t—
are reduced at once to trivialities or to relatively simple analytical problems.

The main results of the present paper were summarized in [8]. It has since
been brought to our attention that integral representations for birth-and-
death processes were also discovered by Reuter and Ledermann [9]. These
authors used a method of passage to the limit from a system with a finite
number of states, and obtained the integral representation of the minimal
solution and of one other solution. By a similar limiting process an integral
representation of the transition matrix of a random walk was found in a
number of interesting cases by Kac [7]. The general representation formula
for random walks was described by the authors in [8], and will be discussed
in detail in a forthcoming paper. Integral representations for a special class
of one-dimensional diffusion processes were found by Hille [6], and recently
more general results have been obtained by McKean.

2. Outline of the method and results. It is assumed that the coefficients
i, 220 and p;, >0 are strictly positive and that ue=0. If u, is positive it may
be interpreted as the rate of absorption from the zero state into a minus-one
state which has the property that when the particle arrives in that state it
remains there ever afterward. The recurrence relations

—2Qo(x) = — (No + 10)Qo(%) + NoQ:(x),
_”Qn(x) = l/’nQn—l(x) - ()\n + ﬂn)Qn(x) + )\nQn+1(x), n

or more compactly,

v

1,

—xQ = AQ:
together with the normalizing condition
Qo(x) =1

determine a sequence {Q.(x)} of polynomials. It is shown in Chapter II
that these polynomials are the orthogonal polynomials of a solvable Stieltjes
moment problem. That is, there is at least one positive regular measure y on
0=x < =, of total mass one, with respect to which the polynomials are orthog-
onal.

The integral representation will now be derived in a purely formal way.
One forms the sequence of functions
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Sz, 1) = 22 Pii()Qi(x)

7=0
or equivalently the vector
f(=x, 8) = P()Q(x).
This vector satisfies the equation

af(x, 1)
ot

= P'()Q(x) = P()4Q(x) = — xf(x, 1),

and the initial condition

f(=x, 0) = Q(x).

Hence

[z, 1) = e=0()

or
filx, 1) = e7=Qu(x).
Now P;(t) is the jth Fourier coefficient of f(x, {) and hence

(1.7) Pul)) = m; f 1020 () ()
where
) 2 1
f G = = -

This is the integral representation formula.

No attempt is made to rigorize the above construction. Instead, after a
preliminary investigation of the polynomials Q,(x), the restrictions which
must be placed on y in order that the matrix P(¢) defined by (1.7) should have
all the desirable properties are investigated. This is followed by a separate
proof that a suitable matrix P(t) is representable in the form (1.7).

In Chapter II the correspondence between the set of all matrices 4 be-
longing to birth-and-death processes and the set of all solvable Stieltjes mo-
ment problems is established. It transpires that the processes with uo=0
generate all Stieltjes moment problems, and those with ue>0 generate all
Stieltjes moment problems which have a solution with a finite moment of
order minus one. The remainder of Chapter II contains a summary of the
elementary facts concerning the Hamburger moment problem and a survey
of the important properties of the polynomials Q,(x) and several related sys-
tems of polynomials.
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The first theorem of Chapter III is the assertion of a new positivity prop-
erty of orthogonal polynomials. This theorem, which is of independent ana-
lytical interest, is the main tool for much of the later work. The relationship
between the properties of  as a solution of the moment problem and the prop-
erties (1.1)—(1.6) for the corresponding matrix P(t) determined by (1.7) are
then investigated. Finally, by studying the properties of P(t) as a semi-group
of operators acting on a certain Hilbert space natural to the problem, it is
shown that any matrix P(¢) with properties (1.1)—(1.6) has a representation
of the form (1.7). The reader will find that these problems are treated in
somewhat greater generality than is indicated here.

In Chapter IV the behavior under passage to the limit from a system with
a finite number of states is considered. In this way some linearly ordered
one-parameter families of solutions P(¢) are discovered. The results are used
to obtain necessary and sufficient conditions for uniqueness of the matrix
P(t), and to prove a new theorem about completeness of the orthogonal poly-
nomials. Even in the case when there is only one matrix which satisfies (1.1)—
(1.5), the equality in (1.5) may fail to be satisfied. A necessary and sufficient
condition for the equality to hold is given in this chapter.

In Chapter V the total positivity of the matrices P(¢) is studied. This is an
analytical property of matrices (and continuous kernels) which is of funda-
mental importance for diffusion processes, but which has not previously been
studied in this connection. The subdeterminants of the transition matrix P(f)
are positive when the path functions of the process are “continuous.” Even
when the path functions are not continuous the subdeterminants have an
important probabilistic significance which is developed in a companion paper.

The value of the representation (1.7) lies in the facts that (i) the time
dependence is contained entirely in the simple monotonic factor e=** of the
integrand; and (ii) the dependence on 7 and j is also “factorized.” The
probabilistic consequences of the representation are investigated in the com-
panion paper. The present paper is devoted to a purely analytical study of
the basic properties of the representation. Many of the results were motivated
by probabilistic considerations but on the other hand some of the main theo-
rems were discovered first as analytical theorems and now lead to new ideas
of probabilistic significance.

CHAPTER II. THE RELATED SYSTEMS OF ORTHOGONAL POLYNOMIALS

1. The moment problem and the integral representation. The sequence
of polynomials {Q,.(x)} defined by the recurrence relations
Qo(x) = 11
(2.1) = 2Q0(x) = — (Mo + r0)Qo(%) + MoQ1(x),
— #Qn(x) = BnQn1(%) — (N + #n)Qn(%) + MaQnsa(x), nzl,
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are called the polynomials belonging to the matrix A. Because each \, is
positive, Q.(x) is a polynomial in x of exact degree #, the coefficient of x* in
Q.(x) being (—1)"/AoA1 - - - N1

The quantities

PVERED Wl
(2.2) mo=1, mp=—t

v

1

) n
MiM2 © ° C Mn

play a very fundamental role in the theory of the differential equations (1.1)
and (1.2). Since Ny =pnpmny1 the recurrence relation can be written in the
form

—2Qo(%)mo = )\o‘ll'o[Ql(x) - Qo(x)] — Mo

_xQ"(x)ﬂ-n = )‘"W"[Q'H-l(x) - Qn(x)] - )\n—lﬂ'n—l [Qn(x) - Qn—l(x)]y n ._2_ 1-
Consequently
2.9 —2 2 0,(ms = MmalQasa(®) — Qul®)] = 1o
and it follows by an induction that for x <0

1= Q0(%) <Qux) < -+ <Qu(x) <Qnpalx) <---.

Ifn=x1
n—1 1
(2.4) 0n(0) = 1+ po 2 ,
k=0 ATk

and hence the above inequalities are also valid when x =0 if uo>0. The follow-
ing theorem is an extension of a result of Favard [1].

THEOREM 1. There is at least one positive regular measure Y on 0 =x < «, of
total mass one, not supported by a finite set of points, such that

3 0, if i#j,
(2.5) J ewowme = i1

Proof. The system of equations [Qudy =1, [Q.d¢ =0, n>0, can be solved
recursively for the moments ¢, = [x"dy. For example [Q.dy =1 gives co=1,

and then
x —
0= [oay =[BT Tay
o

gives ¢;=MNo+uo. There are always [12] infinitely many regular, but not
necessarily positive, measures on 0 £x < « which have these moments. In the
remainder of the proof Y denotes one of these measures.
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From the recurrence formula it follows that if #=1 then

fwx"Q,‘(x)dw(x =0, 0 k<mn,
and
[ =00 = m [ (a0 @ae.
[1] 0
Consequently
[ onweman = ==, mn 0.

To prove the theorem it is therefore sufficient [12, p. 6] to show that all of
the determinants

Co €1 ***Cn C1 €2 " Cny1
€1 C2 " Cpy1 1) Ce €3 **° Cny2

(2.6) An=|- - , A =| , n>0
Cn Cny1® ° * Con Cnt1l Cng2 ° ° ° Co2ngl

are strictly positive.
For n =1 the determinant

Co €1 ***Cny 1

€1 Cy ***Cn x
P.(x) = .

Cn Cpy1* * ° C2p—1 x"

is a polynomial of degree =% and
f 2k Py (x)dy(x) = 0, 0= k<mn
0

Hence P,(x) is a constant multiple of Q.(x), and comparing coefficients of x»
Pn(x) = ("1)"()\(&1 st )\n—l)An—lQn(x)o
It follows that
) NoAr - - - Ap)?
(2.7) m=fxmmwm=Lﬂ——iﬂH,
0

Tn

and since Ag=1, that A,>0, =1, 2, - - - . Moreover,
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(2.8) A = (=)™ Pii(0) = (oMt + + - Aa)AnQnsa(0) > O.

This completes the proof.
From (2.7) and (2.8) it is found that for n =1

Afl—l

(2.9) (A A) = 1.0(0),
n—18n

(2.10) @2 _ !

280 Am0u00m(0)

Hereafter a posifive measure with the properties required by the above
theorem will be called a solution of the S moment problem. A not necessarily
positive measure on 0 <x < « with the same moments will be called a solution
of the BVS moment problem. A positive (not necessarily positive) measure
on — o <x< o with the same moments will be called a solution of the
H (BVH) moment problem. S and H are abbreviations of Stieltjes and Ham-
burger respectively while B.V. suggests bounded variation. A measure on an
interval a £x < «© where a> — © will be said to have left-bounded support.

The above theorem establishes a correspondence between a given birth-
and-death matrix 4 and a solvable Stieltjes moment problem. There is a con-
verse theorem. Suppose {Q,.(x)} is a sequence of real polynomials, the nth
polynomial being of exact degree n, orthogonal on 0 =x < « with respect to
a positive measurc Y. The zeros of the polynomials are then interior to the
interval 0 £x < « and it can therefore be assumed that Q.(0) =1 for every #.
The polynomials satisfy a recurrence formula [13, p. 41]

—2Q0(x) = BoQo(%) + CoQ1(x),
—2Qa(%) = A2Q0n1(x) + B.Qa(x) + CQnsa(x), n=1

where A,., B,., C. are real. Because of the normalization Bo+ Co=0 and
A.+B,+C,=0, n=1. The coefficient of x* in Q.(x) is (—1)*/CoCy - - - Cs
and since Q,(0) =1 this is equal to (—1)" multiplied by the product of the
reciprocals of the n positive roots of Q.(x). Consequently C,>0 for n=1. If
n=1 then

[ =0r0.@avn = avees (=9 0@a

so A4,>0. Hence the recurrence formula of the polynomials Q.(x) determines
a birth-and-death matrix with ue=0. The precise conditions under which it
is possible to renormalize the polynomials so that the recurrence formula de-
termines a birth-and-death matrix with uo>0, are given by the following
lemma.
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LeMMA 1. Suppose uo=0 and let {Q,.(x)} be the sequence of polynomials
determined by (2.1). Let u be a given positive number. Then there is a sequence of
positive constants {a,.} such that the polynomials R.(x) =a.Q.(x) satisfy a re-
currence relation of the form

Ry(x) =1,
—xRo(x) = — (N + pd)Ro(%) + N Ri(),
—2Ru(%) = pa'Ra1(%) — (N + pd )Ra(%) + N Raya(%), n 1,
pa > 0,N >0,

with ud =p, if and only if the series Y ¢ (1/\.m,) converges and u satisfies

° 1
">

n=0 AnTn

=L

Proof. Let {a,.} be any sequence of positive constants and R,(x) =a,Qa(x).
Then

Ro(x) = o,
Qo
—xRo = — NRo + Mo — Ry,
ay
Oy [+ 29
—an = MUn Rn—l - (xn + I-’rn)Rn + An Rn—{-l-
Qp—1 Optl

This recurrence formula is of the required type if and only if

ap = 1,
o1}
)‘0 - + B = X01
251
[+ 2% [+ 29
An + ua = M+ tin, ”.2_10‘
Qnt1 QOp—1
Let
14 Hn Qn
ro=—) o= —) Sn =
)\o )\n On—1
and

bh=rotroritrorret oo rery et

"1
D S

=1 ATy

Then the above relations may be written
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1
1= — =1,
S1
*)
1-— = r.(sn — 1), n=1
Snt+1

The s, are positive and s;=1/(1 —ro) > 1, so it follows by induction thats,>1
for all n. Expressing s,41 in terms of the 7; gives

Sngl = 1

Hence * has a solution with s,>1 for all » if and only if ¢, <1 for every =,
that is, if and only if

1

>

n=0 )‘n7rn

=L

REMARK. Using (2.10) the condition that Y (1/\,m,) converge can be ex-
pressed in terms of the moments. It will be seen later (Chapter 1V, especially
Lemma 6) that the minimum value of [3dy/x as ¢ ranges over all solutions
of the S moment problem is attained for a certain solution ¥min and [g @min/x

= Z: (1/)‘n7rn) .

THEOREM 2. Let y be any solution of the BVH moment problem with left
bounded support and suppose the integrals

(2.11) f xrdy(x), n=20,1,2---
are all absolutely convergent. Then the matrix P(t) = P(t; ¢) defined by

Pul)) = i [ 020,58

—o0

is (componentwise) analytic in the half-plane Re t>0, continuous in the half-
plane Re t =0, and satisfies (1.1), (1.2), (1.3). If ¥, Y1 are two such measures
and for some 1, j and all t in an interval a £t =20 (0=2a <b), Pij(t; ) =Pij(t; )
then Y =y1.

Proof. The analyticity and continuity properties are apparent, and the
orthogonality condition (2.5) shows that P(¢; ) satisfies (1.3). The deriva-
tives Py(t) can be computed by differentiation under the integral sign:

P = = [ (0000,

—o0

Using the recurrence formula for —xQ:(x) shows that P satisfies (1.1), and
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using the recurrence formula for —xQ;(x) and the relations Nors =pay1mns1
shows that P satisfies (1.2).

To prove the uniqueness statement, observe that for the special value
of 7, j the analytic function P;;(¢; ¥) —P;;(¢; ¥1) is identically zero, and hence
by the uniqueness theory of Laplace transforms the measure Y —y; is sup-
ported by the roots of the polynomial Q;(x)Q;(x). Since all the moments of
¥ —y are zero it follows that Yy =y1.

Since there are always infinitely many solutions of the BVH moment
problem which have left bounded support and for which the integrals (2.11)
are absolutely convergent, the above theorem shows that there are always
infinitely many matrices P(¢) which satisfy (1.1), (1.2) and (1.3). Conditions
on Y under which P(¢; ) will also satisfy (1.4), (1.5) and (1.6) are discussed
in Chapter I1I. The remainder of this chapter is devoted to a review of the
elementary facts concerning the Hamburger moment problem, and to an
analysis of some of the properties of the polynomials Q,(x) and of certain
related systems of polynomials.

2. The H moment problem. We first summarize a number of results which
are proved in [12, pp. 23-76].

DEFINITIONS. A measure ¥, is called a distribution of order n+1 associated
with the H moment problem if it consists of 41 masses located on the real
axis and has the correct moments of orders <2#; that is

fx"dtl/n=ck, k=0,1,---, 2n.

A polynomial ¢ is called a (real) quasi-orthogonal polynomial of degree n+1 asso-
ciated with the H moment problem if it is of the form

(%) = AQns1(x) + BQn(2)

where A and B are real and 4 #0. (This definition differs slightly from that
of [12, p. 35].)

(i) A quasi-orthogonal polynomial of degree n41 has n+1 real simple
roots; two such polynomials have a common root if and only if one polynomial
is a multiple of the other. For any real x, which is not a root of Q,(x) there is
a quasi-orthogonal polynomial of degree n+1 which vanishes at x,.

(i1) If ¢, is a distribution of order #+1 then its support is the set of zeros
of a quasi-orthogonal polynomial of degree n+1. Conversely, if ¢ is a quasi-
orthogonal polynomial of degree n+1, then there is a distribution of order
n-+1 supported by the set of zeros of q.

(iii) Let

(2.12) o@) =1/ 3 Ol

k=0
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if the series in the denominator converges, and let p(x) =0 otherwise. For
each real x, the maximal mass which a solution of the H moment problem
may have at xo is p(x). If p(xo) >0 there is one and only one solution of the
H moment problem with mass p(x,) at x,.

(iv) Let ¢, be the distribution of order n+1 which has mass at a fixed
point xo. Then as n— w0, Y, converges to the solution ¥ of the H moment
problem which has the maximal mass p(x,) at x,, in the sense that

lirg f(x)dyn(x) = f f(x)dy(x)
for every continuous function f which vanishes at infinity.

The first zero &, of Q.(x) is a decreasing function of # and hence tends to
a limit £, 20 as n— «. The distribution of order n41 supported by the zeros
of Q.41 converges as n— o to the solution of the H moment problem with the
maximal mass p(£) at &. This solution is of course also a solution of the S
moment problem.

(v) Let ¢ be any quasi-orthogonal polynomial of degree n+1 and let
0=<i<n+1. Let &,:;<k,;< - - - <&;,; be the roots of Q;(x). Then each of
the i+1 open intervals

— o < x < &

i < 2 < fiyryi 125 k<,
Lii<ax< + o

contains at least one zero of ¢. This precise statement will not be found in
[12]. The proof goes as follows. Let ., be the distribution of order n+1 sup-
ported by the zeros of ¢. If ¥, has no mass in one of the above open intervals,
then there is a polynomial f(x) of degree < which vanishes only at zeros of
Qi(x), such that f(x)Q:(x) =0 at each root of g.

Since

[ r@eman@ =0, [ diman =o,

this is impossible.

(vi) Let ¢ be any quasi-orthogonal polynomial of degree n+1, and
M, - - -, g1 be its zeros. If Y, is the corresponding distribution of order n+41
with mass v; at 7;, then the polynomial

ooy

(2.13) p(x) = g(x) 22

i=1 ¥ — 7,

is representable in the form

(2.19) oo = [ ELZI 4y
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where Y is any solution of the / moment problem or even any measure with
the correct moments of orders <#. p(x) is called the numerator of the quasi-
orthogonal polynomial ¢(x), and in the sequel will be denoted by ¢‘@(x). The
mapping ¢(x)—q‘®(x) is induced by a linear transformation in the space of
polynomials.

(vii) A solution y of the H moment problem is called extremal if the Parse-
val equation

[IICIEZCED>

is valid for every function f in L(¢). If the solution of the H moment problem
is unique then it is an extremal solution; if it is not unique then there is a
one-parameter family of extremal solutions. In the latter case each extremal
solution is a “step function,” i.e., it consists of a countable number of positive
masses located at the points of a discrete set on the real axis. The extremal
solution with mass at a point xo has the maximal possible mass p(x,) at that
point. In the case under consideration here, the S moment problem has a
solution, and every extremal solution of the H moment problem has left
bounded support. If the solution of the S moment problem is unique, it is an
extremal solution (of the H moment problem); if it is not unique then there
is a one-parameter family of solutions of the S moment problem which are
extremal. In fact, if the solution is not unique then the first zero &;,, of Q.(x)
converges to a positive limit £ as n— . For each x, in the closed interval
0 <x,=¢ there is an extremal solution of the .S moment problem with mass at
%9, and no extremal solution has mass at two points of this interval. Further-
more this accounts for all the extremal solutions of the S moment problem.

The final three sections of this chapter list a series of formulas of funda-
mental use throughout the paper. Aside from Lemmas 2 and 3, the results are
essentially known.

3. Properties of the polynomials. The polynomials

[ i@ou=in | =

H =
(2.15) { o%) = po,
Hn+1(x) = )\nﬂ'n[Qn-}-l(x) - Qn(x)]! n ; 0'
satisfy the recurrence relation
(2.16) J —xHo(x) = — poHo(x) + woH (%),

l—an+l(x) = ann(x) - ()‘n + #n+l)Hn+l(x) T+ pny1Hnpa(x).

The polynomials
(2.17) 0 (x) = f &9 =8 4y, n=01,---
x—y

(¢ is any solution of the moment problem) satisfy
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00 () =0,
(0)

Q1 (x) = — )\—o
(0)

{—wow=—wm+m®W@+de@+L
—202(2) = pa0nn(1) = (n + )0 (%) + MQan().

The polynomials

(2.18)

(2.19) B = [ ST gy, e,
satisty

Har(%) = Mmal0ata(2) — 00 ()],
and

Hy (z) = 0,

H(x) = — 1,

( (0) )
—xHOO)(x) = — #oHoo (x) + MoHlo (%) + po,

(2.20) | —2H (%) = NoHg (%) — (o + p)Hy + piHs (2) — N,

0) (0) (0) (0)
'an-oH(x) = MH, () — (\a + png1) Hopr(2) + pnt1Hnia(x), n = 1.

The following identities are easy consequences of the definitions and the
recurrence formulas

n—1 1
(2.21) Oau(2) = 1 + ; Hiyi(2) —
(2.22) 00w = 3 B ——
k=0 KTk
(2.23) Ho(2) = po — x 2, Qu(®)ms,
k=0
(2.24) HO ) = — 1= 23 00 (0)m,
k=0

(2.25) (x — y) i Qu(2)Qr(y) i = Apman [Qn+1(y)Qn(x) - Qn+1(x)Qn(y)]
= H,.+1(y)Qn(x) - Hﬂ+l(x)Q"(y)v

(2.26) Hosr(2)0(2) — HoM(®)0(2) = Mra [Qnir(£)0n (2) — Ora(2)0a() ]
1.
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Inspection of the recurrence formulas shows that the two systems of poly-
nomials {Q©@(x)}, =1 and {HQ,(x)}, =0, are orthogonal systems on
0=x<ew. If uy>0 the system {Hk(x)g, k=0 is an orthogonal system on
0=x< x, while if uy=0 the system Hk“(x)/—x} is a system of poly-
nomials orthogonal on 0 £x < «. In either case there is a natural correspond-
ence between solutions ¥ of the original .S moment problem and measures
relative to which the H system is orthogonal. This correspondence is ex-
pressed in the next two lemmas.

LEMMA 2. Suppose uo>0. Then there is at least one positive regular measure
0 on 0 =x < o such that

Ho(x) Ha(x) 0 if ms#n,
® Hn(x (X
(2.27) fo P ds(z) = l’ G omn

where wg =1, ) =po/ A1, n=1. If 0 is such a measure then
xd0(x)

Ko

dy(x) =

defines a solution { of the original S moment problem for which

(2.28) o f THE

x

Conversely if Y is a solution of the original S moment problem such that (2.28a)
is valid, then the measure 0, which consists of a mass 1 —puofydy/x located at
x=0 and is defined on 0 <x < o by df(x) =udy(x)/x, satisfies (2.27).

Proof. From (2.23)
20n(%)mn = Ho(x) — Hppr(%)
and hence if @ satisfies (2.27) then

r»ﬁkaQn(x) xdf(x) _ f”xk[Hn(x) _ Hn+1(x)] ()

Mo Ko Ho

=0 fork=0,1,---,n— 1,

and the integral is not zero if 2=n. It follows at once that dy =xdf/u, is a
solution of the original S moment problem, and uofsdy/x 1.

Now suppose ¢ is a solution of the original moment problem which
satisfies (2.28a) and let 6 be the measure described in the second part of the
lemma. Then 6 is a positive measure and [;df(x) =1. Since H,(0)=p, for
every n
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© Hn(x) . B © d_w 0 B n—1 d‘l/(x)
j:} " do(x) = 1 Ilo‘f0 " +j; [#o xngk(x)Wk] .

and this is zero if #=1. Moreover if 1 £kE<n

[T T by = nucimas [0 — Qa0 it

Mo 0
= 0,

while the integral is not zero if k=#n. This completes the proof.

LeMMA 3. If uo=0 there is at least one positive regular measure§ on 0 Sx <
such that

’ m,n = 0,

(%) =

f°° H"hl—l(x)'Hn+l(x) i an
0 —X —X

where m¢’ =1, w)' =No/Nam, for n 21, and such that

© df
)‘°f (x)é1
0 X

If 0 is such a measure then the measure ¢ which has a mass 1 —\ofg d8/x located
at x=0, and is defined on 0<x < o by d(x) =Nod0(x)/x, is a solution of the
original S moment problem. Conversely if Y is any solution of the original S
moment problem then d(x)=xdy(x)/No defines a measure 0 which satisfies the
above conditions.

The proof may be made to depend on the preceding lemma, and is omitted
The convergence properties of the four systems of polynomials Q., QF,

H,1, H®, were investigated by Stieltjes, who used the following lemma.

LemMA 4. The following statements are equivalent:

(1) As n— o, Qu.(x) converges for every complex x, uniformly in every circle
x| <R;

(2) Qa(x) is bounded as n— = for at least one x <0;

(3) The series

(2.28) > >

7=0 AnTn =m0

s convergent.
Proof. Let £, 7=1, 2, - - -, n be the zeros of Q.(x). From
n x
0 -0 T1(1-)
=1 1.

it is seen that for every complex x
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| On(®) | = Qu(—]| x])

1 n
(2.29) < 0.(0) [1 + L=l 2 ——]
n &
< Qu(0)elelen
where
21 Qn (0)
E 1 & Q»(O)

and that for s>0,
(2.30) Qa(—5) Z 0a(0)[1 + aus].

Hence in order that Q.(x) be bounded for some x <0 it is necessary that
0.(0) and o, are both bounded, in which case Q.(x) is bounded for every com-
plex x. Now Q.(0) is given by (2.4), and from (2.21), (2.23)

n—1

—04(0) = 3 2 m0:0).

k=0 NETE =0

It follows that (2) and (3) are equivalent. Clearly (1) implies (2). If (2) is
valid then Q.(x) is uniformly bounded in every circle |x| =R, and since Q,(x)
is a monotone sequence for each x <0, Q.(x) converges for each x <0, and by
the Stieltjes-Vitali theorem Q.(x) converges uniformly in every circle lxl =R.
Thus (1) and (2) are equivalent.

Applying the above lemma to the other systems of polynomials, the fol-
lowing results are obtained.

(a) If the series (2.28) converges then Q(x) converges uniformly in
every circle |x| <R.

(b) If the series

L n—1 1

(2.31) DTy, —

a=0 =0 NiT¢

(iorlwerges then H,.i(x) and H%,(x) both converge uniformly in every circle
x| =R

4. The limiting functions. In this section it will be assumed that both of
the series (2.28) and (2.31) converge, or what is the same thing, that both
of the series

0 0 1
Z Ty Z
nm0 n=0 xilﬂ-ﬂ

converge. Under these circumstances the limits
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Qul(®) = lim Qu(x), 0. (x) = lim Q. (=),

n—wo n—o
Ho(2) = lim Hopi(x),  Ho (%) = lim Hapy(x)
n—w n—w

all exist and are representable by the series

(2.32) Qu(x) =1+ g H —
(2.34) 0a(2) = E}Hﬁi’&(x) o
(2.35) Ho(%) = wo — xéon(xm,
(2.36) H ()= —1— 2 ZOQ,. (%),

the convergence in each case being uniform in every circle | x| £ R. The limit-
ing functions are entire functions and satisfy the identities

2.3 (5= 5) 3 0u(x)0u()m

n=0

Heo(9)Qw(%) — Ho(2)Qu(y),

1

(2.38) Ho(2)00 (x) — HY (2)0u(%)

where the series in (2.37) converges uniformly in every circle.

Since the only zeros of the polynomials are on 0 <x < « it follows from
Hurwitz’ theorem that the only zeros of the limiting functionsareon 0 =x < .
Moreover any zero of Q.(x) of order k=2 is a limit of k& zeros of Q.(x), and
because of the interlacing of zeros, is also a limit of zeros of H,;.1(x), so it is
also a zero of H,(x). On the other hand (2.38) shows that Q. and H, have no
common zeros. Hence all the zeros of Q. are simple zeros. Similar arguments
show that the functions Q2, H,, H? have only simple zeros.

Between each pair of successive zeros of H,,1(x) there is exactly one zero
of Qn(x). Hence each pair of successive zeros of H,(x) are separated by exactly
one zero of Q,(x).

An entire function f(x) is said to be at most of order one and of minimal
type if

f(x) = e|2| 8(1=z])

where 8(|x|) is a bounded function which is o(1) as |x|— . It is shown in
[12] that the functions Q., 09, H,, H? are at most of order one and of
minimal type. The referee has observed that in the present case these func-
tions are of order = 1/2. For example, suppose uo = 0, and let Q,(x)
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=Y %0 ani(—x)% Then @,,0=1 for all n and (2.21), (2.23) give for n =k =1

n—1 1 i
Z il 5, k-1

An,k = Z

=0 ATy j=o

A simple computation shows that 0 S a, » < C*/(k")?, where C= (D o (1/Aemy))
(X j0m;), and it follows that Q. is of order <1/2.

CHAPTER I1I. THE AUXILIARY PROPERTIES OF P(f, §)

1. The fundamental positivity theorem.

DEFINITION. A set of m =1 real numbers 7127, < - - - S, is said to be
separated by a set of m=1 distinct real numbers & <& < - - - <Epyrif
Eiéni§£i+h i=112""rm'

THEOREM 3. Let { be any solution of the H-moment problem with left bounded
support. Then the integrals

f e_ﬂQ"(x)d‘p(x), n = 0’ 1, 21 tt
are all strictly positive for t>0. Moreover if n =2 and if p(x) is a polynomial of
degree r, 1 =r <n whose roots are all real and separated by the roots of Q.(x),
and if p(0) >0, then the integral

‘fﬂﬁw@@uwwa

is strictly positive for £>0.

In the course of the proof of this theorem the following simple lemma is
required.

LEMMA 5. Let ;i=ne < - - - =1, be real numbers separated by the numbers
L<&Eh< - <Gy Let
n+1

=1

p(x) = 1 (n. — ),

i=1

Q(x)

&i—«x

Aix) = ’ 1=1,2,--+,n+ 1.
Then

n+1

p(x) = D Pa;d (%)

f==1
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where the coefficients a; are non-negative.

Proof. Since the £; are distinct

p(x) _ AR S'F
Q(x) i1 &i—x
where
o p(&) )
YAk

Since 4;(£.) is not zero and has the sign of (—1)* ! and since p(§;) is either
zero or else has the sign of (—1)!, the lemma follows.
Proof of the theorem. It is trivial that [ .e~*'dy(x) >0 for t20. Let

F.(f) =f e "' Qn(x)dY(x).

Then

d ©
= [eQotuo ()] = NoePotuot f 0 (x)d(x) > 0 fort = 0.

—

Since F;(0) =0 it follows that F;(¢) >0 for t>0.
Now suppose n=2. Then Q.(x)=Fk.(ti—x)((&—x) - - - (£.—x) where
k>0 and 0<§, <6< - - - <&, A polynomial of the form

'1'2 ‘r(x) fI (E':k - x)

k=1
where 154, <% < -+ - <i,=n will be called a factor of Q.(x) of degree 7.

If p(x) is a polynomial of the type described in the theorem then by the
lemma p has a representation

ﬁ(x) = Z Qgpig- - s idg l,(x)

1546 <13< » +<ip 50

where the coefficients ayy;,...;, are non-negative and not all zero. To each
factor of Q.(x) corresponds a function

f"x"z""r(t) =f — '1‘2 .,(x)Q,.(x)d:/x(x)
which vanishes at =0 if 1 <r<#n. Assume 1=r<#n and let ji, f2, * * *, Jner
be the complement of the set 41, 43, - - -, %, in the set 1, 2, - - -, n. Let D; be
the operator such that
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Dig(t) = et i [ettg (1) ].
dt

Then
1 ® 9
" Dabiy - Dt = o [ eridhancs
>0 fort = 0,
and if k<n—r .
** DDy - - Difuiye- i) limo = firige-niy inig---5(0) = 0.

Thus fi,...5,(t) is the solution of the differential equation (*) which satisfies
the initial conditions (*¥*). The differential equation can be solved by suc-
cessive integrations. Hence fi;,...;,(t) >0 for £>0, and

f " AR = T iieeoi S50

>0 fort > 0.
Finally since F,(0)=0 and

—E‘d[f'Ft]— t
e le w(8) ] = f1(?)

it follows that F,(¢) >0 for t>0.
Many interesting results can be obtained as corollaries of the above theo-
rem. Its most immediate consequence is the following theorem:

THEOREM 4. Let { be any solution of the H moment problem with left bounded
support, and P(t; ) the corresponding matrix (defined in Theorem 2). Then

Pii(t;¢) > 0
for every i and j, and for t>0.
Proof. It is trivial that

f 10, )0n () (%)

is positive for £ 20 if m =n. If m #n, say m <n then the roots of Q,(x) separate
the roots of Q.(x), @.(0) >0, and hence the integral is positive for :>0 by
Theorem 3.

2. Convergence when po=0.

THEOREM 5. Suppose po=0 and let  be any solution of the S moment prob-
lem. Then for each i and n and every t>0
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(3.1) 0< Y Pursti 9) < 3 Pultip) < L.

7=0 7=0

Each of the series

(3.2) 2 Pi(t;¥) = filt; ) Pe0,1,2,0
=0
converges uniformly on every finite interval 0 St =ty < «, and cou be differenti-

ated termwise any number of times, the resulting series being wiiformly cor-
vergent on every finite interval. The sums satisfy the inequalities

(3.3) 0 < fnlti W) < filti¥) £ 1
and the sequence { fit; t,b)} is a solution of

af
(3.4) e Af.

Proof. From (2.23)

Her® 1)

—X

(3.5) S Pativ) = [0

The polynomials H,4i(x)/ —x are orthogonal with respect to the positive
measure df(x) =xdy(x)/No. From Theorem 4 and

Ld ® H.(x
Z P,Oi(l; Y) = — )\of et -—+1—(-) db(x)
j=0 0 —X
it follows that
> Poiis ¥) <0, 1> 0.
i=0

Hence the sum Y 7o Poj(t; ¥) is strictly decreasing on 0 <¢< . Since this
sum is non-negative and has the value one at ¢==0, thc inequality

0< X Poslt; ¥) <1, t>0,

=0

follows. Theorem 4 implies that the function

< o « Hi(x) Han
2 [Piilti¥) — Pigr it )] = f g Heril2) Hon®) d6(x)
j=0 USR] —X —X

is strictly positive for £>0. This proves (3.1) and consequently that the series
(3.2) are convergent, with sums satisfying (3.3). Using (1.1)
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n

d n n
> EP;‘:'(‘;I/’) = pi 2, Pioyiti ) — N+ ) D Pii(ts )
=0 =0 =0

(3.6) )
+ N 2 P it ¥)

=0
with an obvious modification if ¢=0. It follows that

. d
(3.7 2 — Pt )

im0 di
converges on 0=<¢t< « and has uniformly bounded partial sums. Conse-
quently the partial sums of the series

0

> Pii(ti ¥)

=0
are uniformly bounded and uniformly equicontinuous. Therefore this latter
series converges uniformly on every finite interval, and (3.6) shows that (3.7)
also converges uniformly on every finite interval. By differentiating (3.6) &
times and making an induction argument on &, it is seen that the series

oo

dk
2 Ekpsf(t; ¥), E=0
=0

all converge uniformly on every finite interval. Letting n— « in (3.6) gives
(3.4).

THEOREM 6. Suppose uo=0 and let Y be any solution of the S moment prob-
lem. Then the series

3.9 S PuQ®),  Puld) = Pt 0,

converges absolutely for t=0 and all complex x, the convergence being uniform
over every bounded set 0<t<T, |x| <a. Moreover

(3.9) 2 | P00 | S el Qi(— | x|).
=0
Proof. For any ¢ >0 the polynomials
ity = &9, w=0,1,2--
Qn(_a‘)

satisfy the recurrence formula
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— 05 (1) = Ao Qs (%) + N Q1 (),
— 200 (2) = snQn1(2) — (A + un)Qn(2) + MnQnya(2),
where
: — Qn+1(—¢1)’ #: - Qn—l("‘a) )
On(—a) On(—a)

These polynomials are orthogonal with respect to the measure ¢* defined by

f_:dw(y) - [ :_ad'l/(y)-

Pl =« [ "0 ()0 (x)dy " (%)

Let

where ¥ =m;0?(—a). Then
Pii())0i(~a) = e*Qi(—a) Pi(1).

If Ix[ =<a then |Q,~(x)| =Q;(—a) and hence the series (3.8) is dominated by
the uniformly converging series

2 e~ a) Pii(0).
i=0
Since »_; Pi(t) <1 by Theorem 5, (3.9) follows.

3. Convergence when uo>0. The case uy>0 seems to be more difficult.
The theorem below gives a sufficient condition on a solution ¥ of the .S mo-
ment problem in order that the corresponding matrix satisfy (1.5). This suff-
cient condition has a natural probabilistic interpretation, discussed in the
companion paper. The remark after the theorem below shows that when the
solution of the .S moment problem is not unique there is a solution whose
corresponding matrix does not satisfy (1.5).

It was shown in Lemma 2 that when uo>0 there is at least one solution
¥ of the S moment problem for which

(3.10) pofm W@

x

THEOREM 7. Suppose puo>0 and let Y be a solution of the S moment problem
which satisfies (3.10). Then for each ©

(3.11) i Pult; ) = fi(t: ¥)

converges uniformly on every finite interval 0=<t=T, and
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0< fit;¢¥) <1 for t > 0.

All of the series obtained by differentiating (3.11) termwise a finite number of
times converge uniformly on every finite interval.

Proof. The proof employs the polynomials H,(x)/ue, which are orthogonal
on 0=x< o with respect to the measure § obtained from ¢ by the method
described in Lemma 2. From (2.23)

ki ® H, — Mo
mew=frmei@—ﬂwm,
0 —X

=0

and since H,;1(0) —uo=0,

n 0 -] Hn
61 Sruih) = [ @i — [ et T i
=0 0 0 Ko
Assume that # =1, and let
8) = [ 0w,
0
Setting £=0 in (3.12) gives g;(0) =1. By Theorem 3
g0 = = [ QD) <0 for >0,
0
s0
g:i(t) <1 fort > 0.

The roots of Qi(x) are separated by the roots of H,1(x), and 8 is a positive
measure because of (3.10). Hence by Theorem 3

bt Hppo(x
f e *'Qq(x) +1(%) do(x) > 0 fort>0
0 Ko
and
2 Pilts ¥) < gild), t>0.
=0
Letting n— = gives
0<fit;y) S glt) <1, t> 0.

The statements about uniform convergence follow by the argument that was
used in Theorem 5.

REMARK. Suppose po>0 and the solution of the S moment problem is not
unique. Let Yna.. be the extremal solution with mass at x=0, and P(¢)
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= P(t; Ymax). Then P(t) does not satis{y (1.5) for all £>0.
Proof. The mass concentrated at x==0 by Ynax is
1
p=- >0,
> w0.(0)
n=0

and

. )
}:YE Pu(i) = pTrJQZ(O)Q](O) = Qj(O) a

where > ¢ a;=1. If Q;(0)— = as i— = then

i

lim lim Py(f) = o

i—0 t-s
and hence P;;(t) >1 if 7 and ¢ are both large enough (depending on 7). On the
other hand if Q;(0)—M < » as i—» then

n e a;
lim lim lim > Py() = MY, —— > 1

n—o t—oo tow =0 =0 Q](O)

and hence

S P > 1
=0
if #, ¢ and ¢ are all sufficiently large.

4. Convergence when ¢ is a solution of the /{ moment problem. If ¥ is a
solution of the H moment problem with mass to the left of x =0 then Po(¢; ¢)
—+ © as t— o, However the matrix P(¢; ¢) still has very strong conver-
gence properties, as is shown by the following.

THEOREM 8. Suppose uo=0. Let § be any solution of the H moment problem
with support in the interval —a <x < © where a 20. Then the series

> Pults 10 = £ilt, 9

converges uniformly on every bounded region 0<t=<T, 0= ! ~c| <R, and the sum
satisfies

| £t 9| = @4Qu(—)
where b=max {a, |x| }.

The proof is very similar to the proof of Theorem 6.
5. The semi-group property. In the next theorem uo may be either zero or
positive.
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THEOREM 9. Let y be any solution of the H moment problem with left bounded
support. Let P(t) =P(t: ). Then for s=0, t=0 and every 1, j the series

i Pu(8) Pii(s)
k=0
converges. P(t) has the semi-group property (1.6) if and only if Y is extremal.
Proof. The functions
@) = e#0u(x),  g(x) = e7Q;(x)

are in Ly(y), and their Fourier coefficients relative to the orthonormal system

{ (me)12Qu(x) } are
o = f Q) (m4) Qu() Y (%),

by = f we'“”Qf(x)(W»)”’Qk(x)d'l/(x)~

Hence the series
2, Pi(t) Pyj(s)

i aby = D

k=0 k=0 L
is convergent. If { is extremal the sum of this series is
Pt +s)
—
¥

f °of(x)g(s*c)al!l/(x) = f °0‘9""'Q¢(x)e""Qi(x)dsl'(x) =

that is, P(¢) satisfies (1.6).
Conversely suppose P(t) satisfies (1.6). Let f(x) =e~**R(x) where £>0 is
fixed and R is a polynomial. Then R is a finite linear combination of the Q;,

R(®) = T ad)

and

[T 1@ v = T as [ 0020000

—o0

P;i(2t k() P jx(t
- Z a,-&i l( ) Z a'a’ Z k( ) I"( )
[¥) LF} k=0 Tk
© P‘lk(t) 2

>

k=0

‘Z a; (1rk)”2

S| [ smouaeorave) |

k=0
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Thus the Parseval equation holds for f. But functions of the type f(x) =e~**R(x)
are dense in L,(¥) and consequently the Parseval equation is valid for every
fin L.(¥), so ¢ is extremal.

6. The representation theorem. In this section it is shown that the inter-
esting solutions of (1.1) and (1.2) have a representation of the form P(f)
= P(t; ¢). Throughout this section uo may be either zero or positive.

The sequence {7r,.} may be regarded as a positive measure on the space
of the non-negative integers. To within a constant factor it is the only posi-
tive measure on this space such that the matrix 4 acts as a symmetric oper-
ator on a suitable dense subspace of the Hilbert space L.(w) consisting of all
sequences f = { f(n)} of complex numbers for which

A2 = 2 | f) |21n < .
n=0
The inner product of this space is(?)

9 = 2 fn) g o

n=0

and Af is defined by

UN() = 3 ansf(B)

k=0

where
Lo if k=n-—1,
—NaFpn) i k=,
An .k =
An if E=n+1,
0 otherwise.

It follows from the relations N7, =pn417 41, or what is the same thing, a;m;
=Q;Tj, that

(41, g = (f, 4¢)

whenever f and g terminate (f(n) =g(n) =0 for all large =).

DEFINITION. A matrix C=(c;;) is said to have the symmetry property if
ciymi=c;m; for every ¢ and j.

Since 4 is both row finite and column finite the matrix products 4 C and
CA are well defined for every matrix C.

LEMMA 6. Every matrix which commutes with A has the symmetry property.
In particular every matrix which satisfies both (1.1) and (1.2) has the symmelry

property.

() * and — represent symbols for conjugate complex.



1957] BIRTH-AND-DEATH PROCESSES 517

Proof. Suppose C=(c;;) commutes with 4. Then for every ¢ and j, m;(CA);
= 7l','(A C)ij and 7!','(14 C)ji = Wj(CA)ji SO W;(CA).'j - 7rj(A C)j;‘ = 7l'i(A C)ij
—m;(CA);:. Using the symmetry property of A this may be written as

) 0
™ 2 (cami — cramp)an = 2 (Crima — € ) Qi
k=0 k=0

When j=1 the two members of (*) differ only in sign, so each member is
zero:

Z (Cik7ri - Ckﬂrk)aki = Oy 1= 0) 11 2) .
k

This equation is of the form
(cormo — c10m1)810 = 0
if =0, and
(Ci,ip1i = Cip1,iTiy1) @igr,i + (Ciiams — Ciy,imio)@im1,i = 0
if >0, from which it follows that
Ci it1Ti — Cig1,iMip1 = 0, 1=0,1,2,:--.
Now assume that for ¢=0, 1, 2, - - -
Ci,itnTi — Ciyn,iTign = 0
whenever 1 £n <p. Setting j=74p in (*) gives

Z (cirms — CLiTk) Bk igp = Z (Ck,i4pTh — Citp, KTiyp) ki
k k

By the above assumption the left member reduces to
(Ciritpt1Ti = Citpt1,iTidpt1) Bitpt1, ity
and the right member reduces to zero if =0 and to
(Cic1,ippmic1 — Citp,im1Titp) @i,
if 2>0. It follows that
Ci it pbiTi — Cigpt1,iTitpt1 = 0, 1=0,1,2,-..
and hence by induction on p
cifmi — Cpm; = 0, ,7=0,1,2,..-.
THEOREM 10. Let P(t), t=0, be a matrix which satisfies (1.1), (1.2), (1.3),
(1.4) and such that

(3.13) i Pii(t) £ Me*

i=0
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for every © and all t =0, where A >0, a =0 are constants. Then
(3.14) (Tf)(@) = 22 Pu(0f()
7=0

conzverges absolutely for every f in Lo(w) and defines a bounded linear self-adjoint
operator of Lo(w) intoitself. The mapping t—7T is continuous on 0 St < o rela-
tive to the strong operator topology.

Proof. Let f& Ly(m), t=0. Then

ITdlr = 2| Putosi m
= Z( > l’i/:(/)>< Z i) lf(j) |2> ™
S Meet 32 Pi(ms] () |2
< (Meat)ZHfHQ-

Hence T is a bounded operator with HT,] < Me®t. That T, is sclf-adjoint
follows from the fact that P(¢) is real and has the symmetry property.

It follows by the argument used in Theorem 6 that for each 7 the series
(3.13) converges uniformly on every finite interval. Let g be a terminating
element of Ly(m), let €>0 and =0 be given. If 0=Ss=t+1=4 then

1Tig — Tegll? < 2Met 3 | g(j) [2rs 20 | Pist) — Pisls) | -
i 1=0

For each fixed j there is an index #; such that

Z‘MC“AHgHZ Z Pji(l) + P,;(s) < €

i=n;

provided 0 =<s=<4, and hence

nj—1
1T — Tugl|? < ¢ + 2Meo4]|g||2 I:lj‘x > | Pult) = Pii(s) |
% =0
where E is the set of j for which g(7) #0. The right hand side—e as s—t. Since
€ is arbitrary it follows that T,g—T g as s—t. But terminating functions are
dense in Ly(7) and hence the strong continuity is established.
A bounded operator T on Ly(m) is called positive definite if (T, f) 20 for
every f in Ly(w). If T, S are bounded operators the inequality T'=.S means
that T'—S is positive definite.

THEOREM 11. Let ¢ be a solution of the II moment problem with left bounded
support and {Ti}, t=0, be the family operators determined by P(t;y). Then the
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operators { T} are positive definite and

(3.15) To 2 T fort z 0.

If the equality in (3.15) holds for some t >0 then ¥ is extremal, and in this case
the operators {T,}, t20, form a one parameter semigroup. The inequality

(3.16) T, =T, for0=s=t
is valid if and only if Y is a solution of the S moment problem.

Proof. Let f be a terminating element of L.(w) and
fl) = 22 ()0u()ms.
Then ‘
(T, ) = Z Puf DO .

= S OO wms [ o002

-0

= [Tl @ anca

—0

z 0.

Since terminating functions are dense in Ly(w) it follows that (Tf, f) 20 for
all fin Ly(w). It is clear also that (T, f) is a decreasing function of ¢ for every
terminating f and hence for all f, if and only if ¥ has no mass to the left of
x=0. Again if f is terminating

(T4.9) = T UG F B ] " URDHG [ 00H)
>

7=0

2
iy

[ @i

—o0

and by Bessel’s inequality

@10 s [ o] J@ Pava

—c0

= (Taf, ).

As before this inequality remains valid for any f in Ly(w). Now suppose
Tf;= Tay, for some #o>0. Then the Parseval equation

0

[ e Payiw) = £

=0

[ oo @av| =,

—
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is valid whenever f(x) is a polynomial, and therefore for every function in
L:({), showing that ¢ is extremal. On the other hand if § is extremal, then by
Theorem 9

(T:Tof)(3) = E ; P;i(t) P () f(k)
= 2. Palt+ 9)f(k)

for all fin Ly(w), and therefore T'.T,=T¢y,.

THEOREM 12. Let P(t) be a solution of (1.1), (1.2), (1.3), (1.4) such that
(a) for every i and for t=0

M

1
=3

Pii(t) £ Me~

where M is a positive constant and « is a real constant;

(b) The operators {Tt}, t=0, determined by P(t) are positive definite.

Then there is a unique solution ¥ of the H moment problem with left bounded
support, such that P(t)=P(t; ). The support of ¥ is contained in the interval
—asSx< o,

Proof. Theorem 2 implies that y, if it exists, is unique.

The operators K, =T}, t=0 are positive definite and || K| < M. Let f
be any terminating sequence and form the function

o(t; ) = o(t) = (K, f).
Then ¢(t) =0 for t=0. Using (1.1) and (1.2) it is easily shown that
¢"(t; f) = ¢(t; (A — al)f).

Thus ¢’’(t) =0, and since (4 —al)f is terminating, the argument can be re-
peated. Evidently all the even order derivatives of ¢ are non-negative on
0=<t< ».Suppose ¢'(to) >0 for some t,=0. Then ¢’ (t) 20 implies ¢’(f) Z ¢’ (to)
for t=1¢, and

t
80 = o) + [ $@ar = = 18w, ‘2 b

to
Hence ¢(t)— = as t—o. But ¢(t) =(K.f, /)= M- Hf“2 This is a contradiction,
and therefore ¢’(f) £0. Again the argument can be repeated, and it is seen

that all the odd order derivatives of ¢ are non-positive on 0 =¢< «. Conse-
quently ¢(¢) is completely monotonic on 0 =¢< e, and has a representation

o) = [ " uda(e)
0
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where 8 is a positive measure on 0 ££< «. Since ¢ and all of its derivatives
are continuous at ¢ =0, the integrals

f £dB(D), n=0,1,2--
0

are all convergent. Choosing f to be the function

1 if =0,
f(i)={ E

0 if 20
gives
Pul) = o) = [ eorape
or
(3.17) Pyo(t) = f o:e-=‘d¢(x),

where ¥ is a positive measure on —a<x< » with finite moments of all
orders. The representation for the other elements of P(¢) now follows by
differentiating (3.17) under the integral sign and using (1.1), (1.2). That ¢ is
a solution of the moment problem is a consequence of (1.3).

In the probabilistic applications hypothesis (b) of the above theorem is
somewhat unnatural. It should be observed however that when P(t) has the
semi-group property the operators { T}, #=0 form a semi-group of self adjoint
operators and are automatically positive definite;

(Tof, f) = (Teef, Tepef) 2 0.

In view of this remark, Theorem 12, and Theorems 2, 4, 5, 9 the following
assertion can be made.

When =0 formula (2.12) establishes a bi-unique correspondence be-
tween the set of all extremal solutions of the S moment problem and the set of
all matrices P(¢) which satisfy (1.1), (1.2), (1.3), (1.4), (1.5), (1.6).

7. Laplace transforms. The Laplace transform of a matrix P(f) which
satisfies (1.1), (1.2), (1.3) and

| Pis(t)| £ Me=, 0St< w,

where M and « are constants, will be expressed in terms of polynomials. Let
(3.18) R(s) = f et P(t)dt, s> o
1]

Then
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(3.19) —I + sR(s) = AR(s) = R(s)A.

The solution of (3.19) leads to the introduction of the sequences of poly-
nomials Q® (x) = {Q¥(x) }, #, k=0, defined by

(k)

{ QO (x)EO’ k=011y21"'y

(3.20) 5<k) _ xQ(k)(x) _ AQ(k)(x),

where 8% = {8f} and &} is the Kronecker symbol. For £=0 the polynomials
{O¥(x)} are the polynomials defined in (2.17). It is easily seen that

K
Qr(- '(x) =0 for n < k,

Qil-ci-)l(x) = —1/\

and that for n=k+1, Q¥ (x) is of exact degree n —k—1. A particular solution
of —I+sR(s)=AR(s) is
Ri(s) = 0:"(—9),
and the most general solution of sR(s) =AR(s) is of the form
Rii(s) = gi(s)Qi(—s).
Hence the most general solution of (3.19) is of the form

(€2}

Rii(s) = Qi" (s) + £i(5)Qi(—s)
where
gi(s) = Roj(s).
Since R(s) has the symmetry property
Roi(s) = Ry(s)m;
= 07 (=97 + g0 =)
and it follows that
(3:2) Rifs) = 0:"(=9) + Q=903 (=9)m; + 0= 5)0:( =) Ross).
Similar considerations show that the most general solution of
(3.22) sR(s) = AR(s) = R(s)4
is of the form

(3.23) R;i(s) = Qi(=5)Qi(—=95)miRoo(s).
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From (3.21) and the symmetry property of R(s)

(€]

0 (= 9)mi+ Q=905 (= s)mars = Q5 (=9)mi + Q= 9)QL (= s)mers
If >4, say j=1i+4n then 0P(—5)=0 and

(%)
) © Q.+n(x)

(3.24) Qz+n(x)Q1 (%) — Qs (x)Qc+n( x) =

)

From the special case of (3.24) with n =1 we obtain the useful formula
<o)

Qn+1(x) z 1

Q,,_,_l(x) im0 NemiQry1(2)Qr(%) .

Now let ¢ be a solution of the S moment problem and R(s) the Laplace
transform of P(¢; ). Then for s>0

Q«(2)Q(x)

T Tt dy(x) = Rii(s)

(3.25)

(€))

= Qz (—3) + Qi(_s)ROi(S)
= 096 + 0l=9m; [ L2 gy
*+s

and therefore
0°(s) = = fQ() Q(S)d\v()

This equation is clearly valid for all s, and remains valid if ¢ is replaced by
any measure with the correct moments of orders <7+4j—1.

CHAPTER IV. TRUNCATED PROBLEMS, ORDERED FAMILIES OF SOLUTIONS,
UNIQUENESS THEOREMS, HONESTY OF THE MINIMAL SOLUTION

1. Linear ordering of the extremal solutions. As n— the first zero of
Qx(x) converges to a finite limit £ = 0. If the solution of the H moment problem
is not unique, then for each x¢ in the interval — o <x,=§ there is an extremal
solution of the H moment problem with positive mass at x,. This solution,
V.o, has no other mass to the left of £ The following theorem will be proved.

THEOREM 13. Suppose the solution of the H moment problem is not unique,
and let — o <xo<x1=E. Then

Pii(l; 'l’zl) é Pii(t; 'l’zo)) 4 g 0, i’ jr = 0, 1: ttT

Before proving this theorem the order relations between solutions of cer-
tain truncated problems will be studied. Forz=1,2,3, - - - and — o <A< 0,
let
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[— o+ 1) . o 7]
M1 Mt M
(4.1) A(n, ) =
Y SN S W
n Hn —(Atpa)
and
(4.2) P(t; n, \) = e4(»M),
P(t; n, \) is the unique solution of
(4.3) P'(t; n, \) = A(n, N)P(¢; n, N),
(4.4) PO;n,N) =1

where here I is the (n+1)-square identity matrix. The behavior of P(¢; n, 0)
and P(¢; n, \,) as n—» was investigated by Reuter and Lederman (11].
They showed that P(¢; n, N\,) converges to the minimal (see below) solution,
and that a subsequence of P(¢; n, 0) converges to a solution of (1.1), (1.2),
(1.3), (1.4), (1.5) which is in some cases different from the minimal solution.
For each of these two solutions they established an integral representation.

Let y..» be the distribution of order n+1 supported by the zeros of the
quasi-orthogonal polynomial

F(x, m,)) = — 20a(%) — [10n-1(2) — (A + #a)0n()]

4.5
(4.5) = MQari(8) + (A = A)Qa().

Then

IIA

n

Pil) = i [ D0 Har(x), 05 4j

defines a matrix P(¢) which satisfies (4.3), (4.4) and hence P(f)=P(t; n, N).
LEMMA 5. If Nk <\ then

(46) P.‘,‘(l; n, )\) < P.‘,‘(l; n, )\*)
for every t>0 and 0Lz, j<n.
Proof. Let
Ck()\) = kadil/,.,)‘(x), k= 0, 1, 2, ..

The moments cx(\), 2 =<2n are independent of N\, in fact they are the correct
moments for the original S moment problem. The moment c¢z.41(A) can be
computed from the equation
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0= f(—x)"F(x, n, )\)d‘l/n,)\(x)

which is of the form

- A
0= ———con11(\) + —————— 2 + terms independent of A.
>\0)\1 R )\n—l ? +1( ) )\oxl o )\,._1 ? P

Hence c2.41(A) is a strictly increasing linear function of A. Using the Taylor
expansion of e¢—=*

Patin V) = Paltin ) = 7 [ 000 [Har(@) = dhun(a)]
(—DF (=) (mpprnee
T M Ma N A Cn+1—i—
+ 0(t2n+2—i—f)'
with a slight modification if 2=0 or §=0. Hence
P;i(t; m, N) < Pyi(t; n, Ns)

Y [c2nr1(X) — Cant1(0s)

for all sufficiently small positive ¢. If ¢, {, are two positive values of ¢ for which
the inequalities hold then

Pi(ty + ta; m, N) = 27 Palts; m, N) Pij(ta; 1, )
k
< Z Pty n, Ne) Pri(t2; 1, Nx)
k

= Pii(ti + t25 1, M),

and the lemma follows.
The matrix P(¢; n, N) is also a solution of

4.7 P'(t; n,\) = P(t; n, \)A(n, \), and

its elements are strictly positive on 0<f{< «. A convergent sequence of
matrices may be obtained by making X depend on 7, A=\(%) in such a way
that the distributions ¥, ) converge to a solution y of the H moment prob-
lem, and hence

lim P(¢; n, N(n)) = P(¢; ¢).

n—o
It was pointed out in Chapter 2 that the sequence of distributions of order
n+1 supported by the zeros of Q,.1(x) converges to an extremal solution. This
solution will henceforth be denoted by Y¥mi.. Thus

(4.8) lim P;,‘(l; n, )\n) = P,‘j(l; ll/m;n)
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for every 1, j, and for Re t=0. Reuter and Lederman [9; 11], showed that if
£ = {E,-(t) } is any solution of

(1) FO =04, tz0,
2 &0 =z0, for t = 0 and each j
1§ =4
@& 8O = {0 it i
then
£i() = Pii(t; Ymin) for ¢ = 0 and each j.

For this reason P(¢; Ymin) is called the minimal solution. When (2.28) con-
verges Ymin is supported by the zeros of Q,(x).

The distributions ¥, a(ny also converge if they all have mass at some fixed
point xo, and if the solution of the II moment problem is not unique the
limiting distribution is the extremal solution with mass at x,. If

xo = lim &0 = £
n—oo
where &, is the first zero of Q,(x), then the limit is again Ymin.

Proof of Theorem 13. The first zero of F(x, n, N) is the smallest solution

xo of

Qni1(x) -1 A

Qn(x) Aa
Dividing (2.25) through by x —v and letting y—ux it is found that

i Qnia(2)

dx  Qu(x)
if x is real and Q,(x) 0. Since Qn1(x)/Qn(x)—>+ © as x—— 0 and ——
as x—é&;,,~, it follows that for each real \, F(x, %, N) has exactly one zero in the

interval — o <x <£;,,, and this zero x,(\) is a strictly increasing continuous
function of N\, with

<0

lim xo(\) = &1,4,
At

lim xy(\) = — oo,
Ao—w
Now suppose — o <xg=<{=Ilim,., {1,.. The value N(xo) of N for which ¥,x
has mass at x, is the inverse function of x,(\). By the lemma P;;(t;n, NM(xq))
is a decreasing function of x,. The theorem follows by letting n— .

When the solution of the S moment problem is not unique it is convenient
to have a name for the solution with maximal mass at x =0. It will henceforth
be called Ymax, although P(¢; Ymax) is not maximal in the same sense that
P(t; Ymin) is minimal.
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As A—+ «, n of the zeros of F(x, n, \) convergz to the n zeros of Q,(x)
and the other zero 7,4.1(\) tends to + «. Since the moments of orders <2#n
are independent of N, the mass v,.1(\) located at 7,41(N) vanishes, in fact

Yrb1(N) (11 (N)) 21— 0 as A — o,

Consequently ¥, converges to the distribution ¢,_1a,_, supported by the
zeros of Q,(x). The functions e=#!Q;(x)Q;(x) are all bounded on 0 £x < « and
therefore

lim P;;(t; n, N) = Py(t;n — 1, May)

A—®

for £>0, 7, j, <n—1. One corollary of this is that P;;(¢; n, N.) tncreases as n
increases.

2. Uniqueness theorems. Necessary and sufficient conditions in order
that there be one and only one solution of (1.1), (1.2), (1.3), (1.4), (1.5) will
now be obtained.

LEMMA 6. For s=0
® d’l’min 1
(4.9) ) >
0o X + N n=0 )\nTnQn(_s)QrH—l( S)
where both members may be infinite for s=0. If uo>0 then
® d‘l’min had 1 1
w [ > - 1= lim ——
0 x n=0 )‘nﬂ'nQn<O)Qn+l(0) Landd Qn(o)

Proof. Let y,, be the distribution of order -1 supported by the zeros of
Qat1(x). From (2.17) and (3.25)

0)

fm d‘l’n(x) Qn+l(—s) e 1
o X+ Qn+1(—8) k=0 MemrQr(—5)Qrsa(—5)

and since

© d " 0
f ‘0 (x) = f 8_"Po,o(t; n, )\,.)dt
0 x+s 0

(4.9) follows by monotone convergence as n— . If uy>0 then H,1(0) =p,
and hence

Wmin 1 1 ] . 1
0 = Mo =1-lim ——-
" f # ; Hn+1<0) [Qn«» 0ura(0) e 0n(0)

THEOREM 14. If uo=0 the following statements are either all true or all false.
(1) There is only one matrix P(t) which satisfies (1.1), (1.2), (1.3) and which
for some M =1 satisfies
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2 Pii(h) ’ =M forallt = 0 and every i, n.
j=0

(2) The solution of the S moment problem is unique.

(3) The series
o 1
> (rn + N )

n=0 nTn,

is divergent.

Proof. If (3) is false then Ymax has the mass (X mom.)~! located at the
origin, while [§ (@Ymin/x) converges by Lemma 6. Hence Ymax and Ymia are
different and (2) is false.

If (2) is false then Theorems 2, 4, 5 show that (1) is false.

Suppose (1) is false. Let P(t), PW(¢) be two distinct matrices with the
stated properties and let

Rii(s) = f mr“[Pﬁ(t) - P53, s> 0.
Then
> Riils)

2M .
< — forall s > 0, and every ¢, n.
i=0 s

Now from (3.23)
R,i(s) = Qi(—=5)Qi(—s)miRo(s)

and Roo(so) #0 for some so>0. Hence Q;(—sy) is bounded and Z;';O Qi(—so)m;
converges. The first of these conditions implies by Lemma 4 that > (1/\,7,)
converges and the second implies that »_m, converges. Thus (3) is false, and
this proves the theorem.

COROLLARY. When uo>0 the solution of the S moment problem is unique
if and only if

> 1r,.Q:(0) diverges.
n=0
Proof. Applied to the recurrence formula for the polynomials Q.(x)/Q.(0),
Theorem 14 shows that for the solution of the moment problem to be unique
it is necessary and sufficient that one of the series

© © 1

S m0a0), X

n=0 - n=0 )\r»WnQn(O)Qn;l-l(O)

is divergent. Lemma 4 shows that the second of these two series is con-
vergent.
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THEOREM 15. If uo>0 then in order that there be only one matrix P(t) which
satisfies (1.1), (1.2), (1.3), (1.4), (1.5), it is necessary and sufficient that at least
one of the two conditions

(1) The solution of the S moment problem is unique,

® d‘pmin(x)
@ w [ -1,
0 x
be satisfied; or equivalently that the single condition
ol 1
3) > (ﬂ'n + ) diverges
0 AnTn

be satisfied.

Proof. Denote by R(s) the Laplace transform of the difference of any two
matrices which satisfy (1.1), (1.2), (1.3), (1.4). Then

Rii(s) = Qi(—95)Qi{(—s)m;Roo(s).

If (2) is satisfied then, by Lemma 6 it is seen that Q;(—s)— » as i—». But
R;j(s) is bounded as 2— « and hence Ry,o(s) =0. On the other hand if (2) is not
satisfied but (1) is satisfied then Q;(—s) is bounded as j— « and

0

> r,Qj-(O) diverges.

i=0

Hence since

2 Rii(s) <

=0
it again follows that Rgo(s) =0. Thus if either of the two conditions hold the
matrix P(¢) is unique.

To show that (3) holds if and only if at least one of (1) and (2) hold, ob-
serve first that by Lemma 6, (2) holds if and only if Q,(0)— «, and hence
by (2.4), if and only if >_(1/\.mr,) diverges. Thus if (3) is satisfied then either
(2) holds or Y, diverges and (1) is satisfied. Conversely if (3) is not satisfied
then neither is (2), and moreover Q,(0) is bounded so > _,Q2(0) converges
and (1) is not satisfied.

Now suppose' neither (1) nor (2) is satisfied. Then since (3) is false the
limiting functions Qu, H., Q¥, HY exist. The first zero £ of Q,(x) is also the
first point in the support of Ymia. For 0 <xo =<£ let ¥, denote the extremal solu-
tion whose first jump is at x,, and let

L] d 0
¢(20) = uof Vulz) :

x
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It will be shown that ¢ is continuous, and since ¢(£) <1, that ¢(x,) <1 for all
xy sufficiently close to £. Theorem 7 then guarantees that P(¢) is not unique.
If Y.,.» is the distribution of order n+1 whose first jump is at x, then

[ @20n(3) _ Hir(x)Qn(x0) = Hua(a)Qn ()
o x—y  Hun(®)Qu(m) — Hua(x)0n(2)

Letting n— « and then setting x =0 gives

(0) )

H, (O)Qw(xo) - Hw(xO)Qw (O).
H(0)Qu(%0) — Heo(%0)Qu(0)

The quasi-orthogonal polynomial H,1(0)Q.(x) —H,41(x)(Q.(0) has a zero at
x=0, a zero in each of the # —1 open intervals formed by the successive zeros
of Q.(x), and a zero beyond the last zero of Q.(x). Hence the entire function
H,(0)Qn(x) — H,(x)Q4(0) has no zero in 0 <x<§, and in fact it has no zero
at x =¢ because H, and Q, have no common zero. Thus ¢ is continuous on
0<x =%, and the theorem is proved.

3. Honesty of the minimal solution. A matrix P(¢) which satisfies (1.1)-
(1.5) is sometimes called honest if

¢(%0) = — o

(4.10) S P =1, 120,i=0,1,---

=0

Using (1.6) and the kind of argument found in the remark after Theorem 7,
it is easily shown that if there is a solution of the .S moment problem with
mass at x =0, then the solution with maximal mass at x =0 generates an hon-
est matrix provided po=0. On the other hand, when uo=0 and Ymin is the
only solution of the S moment problem, the corresponding matrix P(¢; ¥min)
may fail to be honest. The analytical aspect of this situation will be examined
and a necessary and sufficient condition for the honesty of P(¢; ¥min) Will be
given.

Lemma 7. If P(t) is a solution of (1.1), (1.2), (1.3), (1.4), (1.5) such that
for some ©
(4.11) > Pt =1 forallt = 0,

j=0

then wo=0 and (4.11) is valid for every 1.

Proof. Let

fi(s) = f e"‘[l - Z P,-,»(t)jl dt, s> 0.
0 7=0

Thenf(s) = {fi(s) } is asolution of Af(s) = sf(s) and hence fi(s) = Const. Qi(—s).
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Since f;i(s) =0 for some ¢, it follows that f;(s) =0 for each 7 and hence (4.11)
is valid for every 4. The argument used in Theorem 6 shows that (4.11) can
be differentiated term by term, and for =0 this gives

0= — (Ao + po) 2 Poi(f) + No 2 Pii(t),
=0 =0
so that ue=0.
THEOREM 16. In order that
(4.12) > Piit; Ymin) = 1, t20,i=0,1,2,---
=0
it is necessary and sufficient that uo=0 and the series
) 1 7

(4.13) > >

=0 NjTi izo

be divergent.

Proof. Lemma 7 shows uy=0 is necessary. Suppose uo=0 and (4.13) con-
verges. By Lemma 4, Q.(x) converges as n— ® to an entire function Q,(x)
with Q.(0) =1. The first zero of Q,(x) is positive, say at £=2a>0. Conse-
quently Y¥ni, has no mass in the interval 0 £x <2a. The polynomials

are orthogonal on 0 =x < « with respect to the measure 3 defined by

[ - [ " ().

Pty = =; [ " () U ()48 ()

Let

where 7y =1,0%(a). Then
Qie)
Qi)
and since 0 < Q.(a) <Q.(a) <1 for every #n and )_; Pi(t) <1,
Qw(a)

which is less than one for large ¢. Thus the divergence of (4.13) is necessary.

Pii(t; Ymin) = €=t P,

2 Pis(ti¥min) <
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Now suppose uo=0 and (4.13) diverges. Defining f(s) as in Lemma 7 we
again have fi(s) =const. Q;(—s). Since (4.13) diverges, Q:(—s)— «, while
fi(s) is bounded as 72— «. Hence f;(s) =0 for all 7 and (4.12) follows.

It is interesting to observe that there may be matrices P(¢f) which satisfy
(1.1), (1.2), (1.3), (1.4) and for which the sums

S Pl

are bounded uniformly in 7 and ¢, but not bounded by one. For example if
o =0, and the solution of the S moment problem is not unique then for any
c>1

P(t) = P(l; ‘l/min) + C[P(t; ‘/’max) - P(t; ¢min)]

defines a matrix which satisfies (1.1)—(1.4) but

> Pu(t) £ ¢ = lim Y Pi(1).
=0 1= g

4. Extremal solutions of the second kind. Throughout this section it is
assumed that Y_m,+1/\,m, < .Alinearly ordered family of solutions different
from the extremal solutions will now be studied. The solutions in question are
obtained by truncating the matrix 4 in a different way than was done in §1,
and then passing to the limit. The matrix (4.1) corresponds to a process in
which the particle may disappear permanently after it reaches the final (nth)
state. Variation of the parameter A amounts to variation of the rate at which
this absorption occurs. The method of truncation now considered corresponds
to allowing the particle to return into the system after it has been absorbed.
The parameter which is varied is the length of time the particle remains in the
absorbed condition. By passing to the limit one obtains the transition proba-
bilities of a process which is of the type called “elementary return process”
by Feller [2; 3]. The study of these processes reveals a remarkable new fact
about the Stieltjes moment problem, namely that when the solution is not
unique there is a natural family of solutions ¢ such that the polynomials
{Q,,(x)} together with the limiting function Q. (x) form a complete orthogonal
system in Ly(¥).

For the sake of simplicity only the case uo=0 is treated. Let

[~ —No No

pr =) N
(4.14) B(n, p) = ' B
PR C WUV IS W
L I —u
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where 0 <u < ». The state # corresponds to the absorbed condition and the
limiting values u =0, u= « correspond respectively to permanent absorption
and instantaneous return. The transition probability matrix of the corre-
sponding process is

Pa(t) = B,
Although the polynomial
(4.15) Ga(2) = — 20a(%) + £{Qn(2) — Quoa() }

is not a quasi-orthogonal polynomial belonging to the original S moment
problem, it may be viewed as a quasi-orthogonal polynomial belonging to a
new S moment problem generated by a new infinite matrix 4 * which agrees
with 4 in the first # rows only. Consequently there is a distribution ¢, with
jumps at the #n+1 zeros of G,(x) such that

Prsi® = 77 [ 020,000

where
%* .
T =T for0=j=n-1,
* Mn
Tpn = — Tn.
n

This distribution has the first 2z —1 moments prescribed for the original S
moment problem, but if uu, the moment ¢}, of order 2z will be different.
This moment can be computed from the equation

0= f (= 2) "G, (2) (%)

which is of the form
0= [[(=90u&a) + [ (=9m110®) ~ 0as(2) 90

*
Con
=— — —2)" 10, _1(%)dYa(x
e =i [ (@)
+ terms independent of u.
Hence ¢}, is a strictly increasing linear function of p.

LEmMMA 8. If 05i<n, 0=5j<n—1 then for each fixed t>0, P, ;(t) is a
strictly increasing function of u.

The proof, which is similar to the proof of Lemma 5 is omitted. The
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main difference is that here the result is not true for j =# because m, has been
replaced by .
The mass pF of the distribution ¥, at x=0 is

* n * n—1
pn =1 Zrk=p,/(p,n1r,,+p,21rk>.
k=0 k=0

In order that this have the value 1/ (o + D _poo i) Where 7, >0 is a prescribed
constant, it is necessary and sufficient that

MnTn

7roo+Z7rk

k=n

(4.16) p =

With this choice of u as a function of #, it will be shown that the sequence of
distributions ¥, converges to a solution of the S moment problem. Replacing
u by its value as given above,

(4.17) Ga(%) = — 2Qa(2) + Ha(x) / (m,, + 2 m,)
k=n
which converges uniformly in every circle to

H (%)
(4.18) Go(®) = — 2Qx(x) +

el

when n— « . The numerator Ga(x) of G,(x) (relative to the new moment prob-
lem) is given by

G, (%) =

(0) ® Gn(x) - Gn(y)
j:) —x—_y—— dyna(y)

and since the integrand is a polynomial in y of degree » it is permissible to
replace ¥, by any solution ¢ of the original S moment problem. Hence

(4.19) GOx) = — 208 (%) + HY (%) / <7rw +3 n)
k=n
and when n— o this converges uniformly in every circle to
©
H, (x
(4.20) G (%) = — 20a (%) + Ho @)
Too

Since G,.(x) has a zero at x =0, a zero in each of the n —1 open intervals formed
by successive zeros of Q,(x), a zero beyond the last zero of Q.(x), and no other
zeros, it follows that G,(x) has a simple zero at x =0, a simple zero in each of
the intervals formed by successive zeros of Q.(x), and no other zeros. The
identity
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0 ) 1
(4.21) Geo(#)Qe (%) — Gy (¥)Qu(%) = -

shows that G,(x) and G2 (x) have no common zeros.
Since for each x <0

asn — o«

(0) 0
fw du(y) _Gr () Go (®)
0 Xx—y Ga(x) G(x)
the distributions ¥, converge to a distribution y and

(0)

RIS
0 x =9 Geo(x)

For A >0, n=k,

Cr+1
4

A 0
f xtdyn(x) < ck, f xkdYa(x) = )
0 A
from which it follows that ¥ is a solution of the original S moment problem.
Clearly ¢ is a discrete distribution supported by the zeros of G..

The measure ¢ will now be written Y(x; 7,) to display its dependence
on m,. When the parameter u in the truncated matrix B(n, u) is determined
by the formula (4.16) the corresponding matrix P,(f) =e*2"® becomes a
function P,(¢; 7,) of .. In view of the convergence of ¥, to ¢

Pii(t; ¥(x; 72)) = lim Py i(2)
n—w
for each 1, j and every ¢t>0. Since P,_;,;(t) is an increasing function of p and
u is a decreasing function of 7, the following theorem is immediate.

THEOREM 17. For each i, j and every t =0
P, i(t; ¥(x; 7))
s a decreasing function of T, on 0 <w,< .

As remarked at the end of Chapter II, the entire functions Q. (x), H(x)
are of order one and of minimal type, i.e.,

| Qu(®) |, | Ha(x)| = el=tsazd

where 8(|x|) is a generic symbol for a function which is bounded and o(1)
as Ix] — . It follows that e=='Q,(x), e **H,(x), considered as functions on
0=x< =, vanish at infinity for each ¢>0. Moreover the sequence of functions
e~*Q,(x) is dominated on 0 =x < « by the function e—*'Q,(—x) which itself
vanishes at infinity. Hence for £>0 and each j
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n—oo

fim s [ QU0 HW() = ;[ T 0 (902 ().

Here ¢ can be taken to be any solution of the moment problem. By a similar
argument

© H, © H,
lim e =0 (x) (=) dy(x) =f e *1Q(x) @ dy(x), t>0.
n—w 0 —X 0 —X
If x is a point in the support of Y(x; w,) then
0 = 1sGo(%) = — 2Qu(#)Te + Ho ()
0
H(x) —Qo(2) Ty if x50,
(4.22) = ©
—x —Qu(x)Te + <7r,,° + 2 7rk> if x=0.
k=0
Consequently for >0
) © H"
2 Piiti ¥(x; 1)) = lim e *'Qy(x) 1) AY(x; T)
=0 now J g —x
® H (%)
(4.23) = f e*'Q(x) A (x; 75)
0 —X

=1- rwfwe—”‘Q;(x)Qw(x)dw(x; To)-

By a similar calculation, for ¢>0,

@28 T [T 00D 7 = 1 = 7 ) T L) (s ).
=0 0

0

Since the left member of (4.24) is non-negative
ro [T O D7) S 1
0
and it follows by monotone convergence as ¢ -0 that Q,(x) EL,(Y(x; 7)) and
wmmei(x)du//(x; T < 1.
0

This integral is not zero because Q.,(0) =1. The left member of (4.23) is con-
tinuous and has the value 1 at {=0. Hence

(425) Wwwai(x)Qw(x)d\l’(x; 7"») = 01 i= Oy lr 2) St .
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Thus Qu, Qo, O1, Qs, - - - is an orthogonal system in Lo(Y(x; 7,)). It will be
shown that this system is complete.
Let

(4.26) K(%, 9) = Qu(#)Qu(¥)7e + Z Qu(®)Qu(y) .

This series converges uniformly in every finite square 0=x, ySA <. If
x#y (2.37) gives

Qu(2) Ho(y) — Qu(y) Hu() ,

(4.28) K(x,5) = Qu(%)Qu(y) 7w + P z# Y,
and letting x—y
(4.29) K(, 9) = Qu(3)70 + Qu() Ha(y) — Qu(y) Hal9).

Now suppose x, y are in the support of Y (y; m.) and x5y. Then H,(z)
=2Q,(2)T, for z=x, y and hence K(x, y) =0. If y is in the support of Y(x; 7,)
and vy(y) is the mass at y then

(0) 0)

_Go() _ Ha () —30a)
G (3)  HI() = 504 ()mo = Qa3

Setting H,(y) =yQ,(y)7, in the identity (2.38) gives

(4.30) ()

) ) -1

Hoo - © w = N
() = ¥0 (y)m 00

and hence
1 _ 1
0297w + 30u(9)0d (70 — Qu(HL(y)  K(9,9)

Thus if x, y are in the support of ¥(x; 7,)

(4.31) ~(y) =

0 if x5y,
(4.32) Ky ={1
if x=49.
v(9)

For fixed x in the support, K(x, ¥) considered as a function of y is therefore
in Ly(Y(x; 7)) and for any g in Ly(Y(x; 7))

63 = [ 0K Ndvlyim) = (¢ K(x, ).

Moreover the partial sums
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Ka(#, 3) = 0u(8)0u(3)Ta + 3 0u(x)0u(3)me

k=0

considered as functions of y converge in Ly({/(x; 7)) because

n+p 2 L Py
[Ka(x, ) = Kntp(z, |2 = 2 Qu@)me = 20 Qulx)ms

k=n+1 k=n+1

which —0 as n— .
Now let g be any continuous function with compact support. Then

L)

lim (g, Ka(x, ) = lim g Ka(x, y)dY(y; 7o) =f g(y) K(x, y)dy(y; 7o),
0 0

n—o n—o

which shows that K,(x, -)—>K(x, -) in L:(Y(x; 7,)). It follows that if g is
orthogonal to Q, and every Q, then for each x in the support of Lo(¥/(x; 7))

g(x) = (g’ K(z, -)) = lim (gr Ka(x, -)) =0,

n—o
that is g=0. This completes the proof of the following theorem.

THEOREM 18. The functions Qu, Qr, k=0,1,2, - - - form a complete orthog-
onal system in Ly(Y(x; 7).

The norm of Q, is obtained from

1 = Q4(0)

f K(0, y)Qu(»)d¥(y; 7o) = lim K0, 3)Qx(y)d¥(y; 7e)
(4.33) ’

n—o 0

- f "0 d(y; 7).

The entire functions meGe(x), T.G%(x) converge to H,(x) and H(x) as
T»—0, and it is easily shown that ¥(x; 7T,) —>¥max When m,—0. When 7,—0
the functions G, (x), G%(x) converge to —xQ.(x) and —xQ%(x), and it can be
shown that ¢ (x; 7u)—¥min. These facts will be assumed without giving the
details of the proof.

Define the matrix P(¢; ) for =0, 0<m,< © by

@3 Pultied = [ o Q@O@N(E T, ij= =01,
0
For 4, j< ® it has been shown that P;(¢; m,) is a nonincreasing function of

e for t=0. Moreover if >0 and 7, j < « then
(4.35) 1= Piilt;¥ma) > 2 Pii(t; ma) > 2 Pii(t; ¥min),

i< i< <o

the inequalities being strict because since the sums are nonincreasing func-
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tions of ¢, failure of strict inequality for some ¢,>0 would imply, for example,
that Pio(t; Ymax) =Pio(t; To) for 0=t=1{y and hence Ymax=¥(x; m,) which is
false. Consequently

(4.36) 0 < Pty me) < 1 fort>0,i=0,1,2,---.

Finally P,.(¢; T.) is clearly a strictly decreasing positive function of ¢. Thus
P(t; 7,) is elementwise strictly positive for :>0. It is clear that P;;(0; m,)

=0;,1,j=0,0,1, - --,and from (4.23), (4.24),
(4.37) > Pultime) =1 fort=0,0<i=< w.
0sijse

From the above completeness theorem it follows that P(¢; m,) has the semi-
group property. This completes the proof of the following:

THEOREM 19. The matrix P(t; w,) defined by (4.34) is elementwise strictly
positive for t >0, reduces to the identity matrix for t =0, its rows sum to 1 for all
t=0, and it has the semi-group property

Pi(t+ sima) = 2. Pull; To) Pri(s; ma).

Osksoo

5. Other methods of passage to the limit. We end the chapter with a brief
discussion of a more general truncation procedure.
Consider the matrix

—No Mo
pr —M+w) M
Comnw=| o
I“n—; —()‘n—; + pa1) M
u -\ + )
Assume the solution of the .S moment problem is not unique and let

0= % < &= 1lim§q

n—o

Let 7, >0 be a given constant. If u is determined by the equation u,m, =pum,
and then A is chosen so that

_ Hn( xO)
On(20)Tes

which gives A>x=0 then the unique measure ¥, of order #+1 used in the
representation of e'¢™*# is supported by the zeros of the polynomial

Ga(x) = (%0 — £)On(20)Qn(%) 7o + [Hn(x)Qn(xO) - Hn(xO)Qn(x)].

and ¥, has mass

>\=xo
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1

Pn(xo) =
Or(x0) i + On(0) T

k=0

at xo. When n— o the polynomials G,(x) converge to an entire function
G.(x), the distributions ¥, converge to a distribution ¢ supported by the
zeros of G, and ¢ has mass

1

Peo(xo) =

> Qulao) T + Qol(0) 7

at xo. As before the polynomials Q.(x) together with the limiting function
Q.(x) form a complete orthogonal system in Ly(¥). Defining an augmented
matrix P(¢; xo, T,) in the obvious way one obtains a semi-group of element-
wise positive matrices for which

E P’l(t’ %o, Tw) é 1.

0sjso

Here however, the equality fails for £ >0 if x,>0.

CHAPTER V. TOTAL POSITIVITY OF THE SEMI-GROUP SOLUTIONS

1. The positivity of the matrices P(¢; ¢) for all solutions ¢ of the S mo-
ment problem played a fundamental role in studying the structure of these
matrices. In this chapter a more general kind of positivity theorem is estab-
lished. It is shown that if P(¢) is a matrix belonging to either of the two
linearly ordered families of solutions studied in Chapter IV then the de-
terminants

det (Piu iv(t)) ’

for t>0; 41 <t < + + » <8n, 1<j2< - - - <Jja are strictly positive.

In a separate paper the probabilistic meaning of these determinants is
given (for stationary Markoff processes in general). Here we are concerned
with establishing the positivity of the subdeterminants for the special proc-
esses considered.

If C=(cij) is any finite or infinite matrix the k-square determinant

Ciyiv  Ciyda * " Ciyix
Cigiy  Cigig * * * Cigiy
Cixiy Cigin ® * * Cirin

will be denoted by
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C<1:11:z s 1k)
Jijz * * Ik

It will always be assumed that 7; <7< « + + <4 and 1 <j2< - - - <ji. The
determinant is called a subdeterminant of C and is called a principal subde-
terminant if 1;=71, ta=742, * * * , Tk =Jk.

C is called totally positive (strictly totally positive) if its subdeterminants of
all orders are non-negative (strictly positive). C is called a Jacobi matrix if
ci;=0 for |i—j| >1.

LEMMA 9. Any Jacobi matrix whose elements are all non-negative and whose
principal subdeterminants are all non-negative is totally positive.

This is proved in [5, p. 457].

LemMA 10. If C is a finite real Jacobi matrix with off-diagonal elements all
non-negative then e'C is totally positive for t=0.

Proof. For given t=0, I+tC/n is totally positive when # is large, by
Lemma 9. The multiplication rule for subdeterminants shows that a product
of totally positive matrices is totally positive. Hence

e/¢ = lim (I + E)
f—r o0 n
is totally positive.

If ¢ is an extremal solution of the .S moment problem, or an extremal solu-
tions of the second kind, then P(¢, ¥) is an elementwise limit of matrices of
the form e*4» where the 4, are Jacobi matrices with off-diagonal elements
non-negative. It follows that for any such ¢ and for t=0 the matrix P(¢, )
is totally positive. It will be shown that these matrices are strictly totally
positive for ¢>0.

LEMMA 11. Let Y be any solution of the S moment problem and let t=0. Then
PR
ran () >0
11 c 0 1
i.e., the principal subdeterminants are strictly positive.

Proof. The formula
F R,
ran (P
11 ° 1k
Qil(xl) o Qq(xk) 2

=Ty Wy f e f (ot +apt| dy(xy) + - - d(xp)

0581<n e p <0 Qiu(m1) - - - Qulwx)
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shows that if the left member is zero for some {=0 then the determinant in
the integrand must be identically zero on the support of dy(x1) - - - dy(xi)
and hence the left member is zero for t =0, which is a contradiction. The result
is also valid for P(t; m,) with 4= oo,

The next two lemmas are due to Gantmacher and Krein [5, pp. 453-454].

LEMMA 12. Let B =(b;;) be a totally positive matrix with m rows and n col-
umns, and let 1 =1, <4, < - - - <i,=m be a set of p row indices beginning with
1 and ending with m. If the rows 4y, - - -, 1, are linearly dependent while the
rows i, - - -, ip—1 and the rows iy, - - -, 1, are linearly independent, then the
rank of B is p—1.

LEMMA 13. Let B be a totally positive mXn matrix and 1 =4, <1:< - - - <ip
=m:l=k<k< -+ <k,=n.lIf

B(il'”i">=o
By by

A FI
() o)
By- - by By -k

then B has rank p—1.

while

DEFINITION.

]1‘..],6

=1

is called quasi-principal if Y 5., |i,—j,

LEMMA 14. If B is a totally positive matrix whose elements are all positive
and whose principal subdeterminants are all positive, then all the quasi-principal
subdeterminants of B are positive.

Proof. An induction on the order p of the subdeterminant is made. The
hypothesis guarantees the case p =1. Assume the result proved for all orders
<p, and suppose if possible that

F R
(o)
ki ky
where the subdeterminant is quasi-principal. Let B* be the matrix obtained
from B by deleting all rows of index <4; or >1, and all columns of index

<k, or >k,. Since
B(il o i"") # 0 5% B(i2 o i"),
Breo - ko By -k
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Lemma 13 shows that B* has rank p —1. Let A =max (¢, k1). Because of the

quasi-principal property
ik SRS h4+p— 1= 14, ky

Consequently the principal subdeterminant
B(h,h+1,---,h+p—1>
kL k+1,--- k+p—1
of order p is zero, which is a contradiction.

THEOREM 20. If Y is an extremal solution of the S moment problem, or an
extremal solution of the second kind, then P(t; ) is strictly totally positive for
each t>0.

Proof. It follows from Lemma 14, Lemma 11, and the fact that P;;({) >0
for >0, that all the quasi-principal subdeterminants of P(¢, ¥) are strictly
positive. Let ¥ be an extremal solution and

By
B(t) = P(t;¥) (j )

. ’
1).")_7?

be a subdeterminant of P(¢, ) and call

(t>0),

y4
M= |i—j
v=1

the index sum of B(¢). If M =1 then B(f) >0. The proof will be by induction
on M. We assume every subdeterminant of P(¢; ¢) with index sum <M is
positive.

Suppose m >max (45, j,) and let C(¢) be the m-square matrix formed by
the first m+1 rows and columns of B(¢). If t>0, s>0, then

E P,’lk(l; “//)Pk;l(s; ¥), -, Z Pt ‘l/)Pkip(S; ¥)

B(t+ s) =
2 Piu(t; ) Pri(si ¥), - - -
Consequently
T S
B(t+5s) = 2 Pt (“ 1”)P(s;¢)( § .’)
05k i<ky< -+ <y k- ky Jr - J»

v

R Bk
> oy Dot )
05Kk1< - - <kpgm ko kp Jis J»
Now when the index sum of B(f) is M >1, there is at least one term in the
above sum for which both factors have an index sum <M. This term is posi-
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tive, all other terms are non-negative, and hence B(t+s)>0. With minor
modifications the same method can be used when ¥ is an extremal solution
of the second kind.

The next theorem is a slight extension of a theorem of Loewner [10] on
totally positive matrices.

THEOREM 21. Let P(t), 0 =t <ty be a jamily of totally positive matrices which
is elementwise differentiable with respect to t at t=0, and for which P(0)=1. If
all subdeterminants of P(t) of orders 1 and 2 are non-negative then the infinitesi-
mal matrix P'(0) is a Jacobi matrix.

Proof. Let
Pt

a,~,~=lim-ﬁx z;é]’
-0 !
. Py —1

ai; = lim — -
—0 13

If j>i+1,

0<P(t)(i i+1>— t 4+ o(t)
= i1 g )T T T

and from a,; =0 it follows that a,;;=0. If j<7—1 a similar argument shows
that a.-j=0.

2. Variation diminishing properties. A sequence x = {x,} is said to have
a change of sign at & if x;x; <0, where j is the first index >k for which x;50.
It will be shown that when P is a strictly totally positive matrix and x = {x,}
has exactly # changes of sign, then y=Px has at most # changes of sign.

The matrix P=(Py,) is first extended so that 7 becomes a continuous
variable. P = (P,,;) is defined by

Poj = 0P;j+ (1 — 0)Psyy,j

where

a=0i+1—0GE+1), 0<6=<1.

IIA
IA

The extended matrix is still strictly totally positive in the sense that if
<@ - - <Qny, 1<j2< -+ - <ja and if no half-open interval i Sa<i+1
formed by two consecutive integers contains more than one of the a;, then

oy, @
P( ,1’ ,") > 0.
]l) ey, ]”
This can be seen by expressing the determinant as a convex combination of
the 2 determinants
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! 2
zly . e e , 1"
P ( ] j )
J1, * oy In
where 7, is either 4, or 7,4 1.
Suppose x = {x,«} has exactly k changes of sign. Let

)’(0‘) = E Pyjx;.

It is assumed that either P is elementwise bounded and ) _; |x;| < e or
that x is a bounded sequence and )_; Pi;< » for each 4. The numbers x; can
be divided into groups

X1y Xy * * xvl; xvﬁ—lv xr;+2, tt xvz; cety ka+l; x’k+2) AR

so that the elements of the first group are, say, all 0, the second group all
=0, the third group all <0, etc., and so that each group contains a nonzero
element.

The function y(a) can be expressed in the form

k+1

y(@) = D €Car
r=1
where
”r
Car = Z Pai' xi|
j=ry_1+1
and = —1, &= —€_1. Now if ey <ay< - - - <41 and no two of the a, are

in the same half open interval i<a<i+1, then det (C.,,) can be expressed
as a positive linear combination of the determinants

» <a.1 . a.k+1>

]l o .. ]k+1
with at least one nonzero coefficient. Hence det (C,,,) >0 and y(a) cannot
vanish for each of the values a=aj, - - -, ar41. On the other hand y(a) is

linear in each of the intervals s <a=<i+1. Consequently the sequence y = Px
has at most k changes of sign. This proves the following.

THEOREM 22. If P=(P(t)) is a strictly totally positive solution then the
transformations

Vi = E P;i(t)x;, u; = Z P;i(t)v;

of 1o to L, and L to Iy respectively, are sign variation diminishing.
For the first of these transformations a sharper result can be established
when D_; P;;(f)=1; namely, if x;=X for at most  values of j then y;=\ for
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at most k values of 7. These properties strongly spell out the diffusive nature
of the process. The results of this section should be compared with the cor-
responding variation diminishing properties possessed by convolution trans-
formations defined by means of Pélya frequency functions ([15], see also
[16 Chap. 4]).
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