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Chapter I

1. Introduction. A birth-and-death process is a stationary Markoff process

whose path functions X(t) assume non-negative integer values and whose

transition probability function

Pi,(t) = Pr {X(t + s) =j\X(s) = i}

satisfies the conditions

Pi,i+l(t) = \d+ o(t),

Pi,i(f) = 1 - (\i + pi)t+ o(t),

Pi.i-l(t) = Pd + o(t),

as /—>0, where X,-, pi are constants which may be thought of as the rates of

absorption from state i into states i + l, i — l. As a guide to one's intuition

it is useful to think of a material particle which moves from integer to neigh-

boring integer, the path function X(t) being the position of the particle at

time t. An elegant description of these processes together with a survey of

applications may be found in Feller's book [4, Chapter 17].

Using the above order conditions and the Markoffian nature of the process

it is easy to show that the infinite matrix P(t) = (Pi,(t)), i, j = 0, 1, 2, ■ ■ ■

satisfies the equation

(1.1) P'(t) = AP(l), f^O,

where A is the matrix

--(Xo + mo), Xo 0 0"

Mi — (Xi + Ml). Xl 0

A = 0 p2. — (X2 + M2),    >^2 = (an)

and a,y=X,if j = i + l, —(\i+m) it j=i, jit.if j = i — 1, zero if \j— i\ >1. Equa-
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tion (1.1) is called the backward equation. With the aid of additional assump-

tions about the process it can be shown that the equation

(1.2) P'(t) = P(l)A, t£0,

called the forward equation, is also satisfied. In any case the initial condition

(1.3) P(0) = 2, the identity matrix,

is satisfied.

The main purpose of this paper is to study the existence, uniqueness, and

the properties of the matrices P(t) which satisfy (1.1), (1.2), (1.3) and certain

auxiliary conditions. As will be shown later, for given A there are always

infinitely many matrices which satisfy (1.1), (1.2) and (1.3). Consequently

one is led to look for additional properties which may be used to pick out those

matrices P(t) which may serve as transition probability matrices. Two such

properties are

(1.4) Pa(t)>0,

(1.5) I>«(0£1.
J-O

The inequality in (1.5) expresses the possibility that the diffusing particle

may disappear, either by going to infinity or by absorption at the zero state

in case uo is positive. Another property, here called the semi-group property

is expressed by the Chapman-Kolmogoroff equation

00

(1.6) Pij(t + s) = V p,h(t)Pkj(s).
4=0

It has recently been shown by Feller [2] that the forward equation is in

general considerably more complicated than (1.2). The more complicated

forward equations correspond to processes with a state at infinity from which

a return to the finite states may occur with positive probability. No attempt

is made here to construct the transition matrix of the most general such proc-

ess, but it turns out that there are interesting families of such processes for

which the forward equation, when the state at infinity is disregarded, is

exactly (1.2). For these special processes the inequality

Pu(t + s) >    £   Pik(t)Pki(s), i, j < oo

is satisfied.

In principle the method employed is to look for an integral representation

of the matrix P(t) in terms of the eigenvectors of A. This point of view leads

to the revelation of a very intimate connection between the theory of birth-

and-death processes and the theory of the Stieltjes moment problem. The
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study of the relationship between these two theories vastly enriches our

knowledge of birth-and-death processes and at the same time produces im-

portant new properties of the moment problem and its associated system of

orthogonal polynomials.

The time dependence of the transition probabilities is displayed in a

particularly simple and lucid manner in the integral representation. This

feature of the representation is crucial for the further study of birth-and-

death processes. It is found that many questions of limiting behavior as t—> °°

are reduced at once to trivialities or to relatively simple analytical problems.

The main results of the present paper were summarized in [8]. It has since

been brought to our attention that integral representations for birth-and-

death processes were also discovered by Reuter and Ledermann [9]. These

authors used a method of passage to the limit from a system with a finite

number of states, and obtained the integral representation of the minimal

solution and of one other solution. By a similar limiting process an integral

representation of the transition matrix of a random walk was found in a

number of interesting cases by Kac [7]. The general representation formula

for random walks was described by the authors in [8], and will be discussed

in detail in a forthcoming paper. Integral representations for a special class

of one-dimensional diffusion processes were found by Hille [6], and recently

more general results have been obtained by McKean.

2. Outline of the method and results. It is assumed that the coefficients

X,-, i^O and pit i>0 are strictly positive and that po^O. It p-o is positive it may

be interpreted as the rate of absorption from the zero state into a minus-one

state which has the property that when the particle arrives in that state it

remains there ever afterward. The recurrence relations

-xQo(x) = - (Xo + po)Qo(x) + \0Qi(x),

— xQn(x)   =   UnQn-l(x)   ~   (K +  Pn)Qn(x)   +  \nQn+l(x), M   ̂    1,

or more compactly,

-xQ = AQ,

together with the normalizing condition

Qo(x) =. 1

determine a sequence {dCO} of polynomials. It is shown in Chapter II

that these polynomials are the orthogonal polynomials of a solvable Stieltjes

moment problem. That is, there is at least one positive regular measure yp on

0 ^x < oo, of total mass one, with respect to which the polynomials are orthog-

onal.

The integral representation will now be derived in a purely formal way.

One forms the sequence of functions
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X

Mx, t) = 22 Pu(t)Qi(x)
1=0

or equivalently the vector

/(*, 0 = P(t)Q(x).

This vector satisfies the equation

of(x, t)
——- = P'(t)Q(x) = P(l)AQ(x) = - xf(x, t),

dt

and the initial condition

fix, 0) = Q(x).

Hence

f(x, t) = e-"Q(x)

or

Mx, t) = e-"Qi(x).

Now Pn(t) is thejth Fourier coefficient of/,(x, t) and hence

/» QO

e-*>Qi(x)Qj(xW(x)
o

where

p 00 1

I    Qj(x)dUx) = — ■
J o tr j

This is the integral representation formula.

No attempt is made to rigorize the above construction. Instead, after a

preliminary investigation of the polynomials Q„(x), the restrictions which

must be placed on \p in order that the matrix P(t) defined by (1.7) should have

all the desirable properties are investigated. This is followed by a separate

proof that a suitable matrix P(t) is representable in the form (1.7).

In Chapter II the correspondence between the set of all matrices A be-

longing to birth-and-death processes and the set of all solvable Stieltjes mo-

ment problems is established. It transpires that the processes with po = 0

generate all Stieltjes moment problems, and those with p0>0 generate all

Stieltjes moment problems which have a solution with a finite moment of

order minus one. The remainder of Chapter II contains a summary of the

elementary facts concerning the Hamburger moment problem and a survey

of the important properties of the polynomials Qn(x) and several related sys-

tems of polynomials.
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The first theorem of Chapter III is the assertion of a new positivity prop-

erty of orthogonal polynomials. This theorem, which is of independent ana-

lytical interest, is the main tool for much of the later work. The relationship

between the properties of \p as a solution of the moment problem and the prop-

erties (1.1)—(1.6) for the corresponding matrix P(t) determined by (1.7) are

then investigated. Finally, by studying the properties of P(t) as a semi-group

of operators acting on a certain Hilbert space natural to the problem, it is

shown that any matrix P(t) with properties (1.1)—(1.6) has a representation

of the form (1.7). The reader will find that these problems are treated in

somewhat greater generality than is indicated here.

In Chapter IV the behavior under passage to the limit from a system with

a finite number of states is considered. In this way some linearly ordered

one-parameter families of solutions P(t) are discovered. The results are used

to obtain necessary and sufficient conditions for uniqueness of the matrix

P(t), and to prove a new theorem about completeness of the orthogonal poly-

nomials. Even in the case when there is only one matrix which satisfies (1.1)-

(1.5), the equality in (1.5) may fail to be satisfied. A necessary and sufficient

condition for the equality to hold is given in this chapter.

In Chapter V the total positivity of the matrices P(t) is studied. This is an

analytical property of matrices (and continuous kernels) which is of funda-

mental importance for diffusion processes, but which has not previously been

studied in this connection. The subdeterminants of the transition matrix P(t)

are positive when the path functions of the process are "continuous." Even

when the path functions are not continuous the subdeterminants have an

important probabilistic significance which is developed in a companion paper.

The value of the representation (1.7) lies in the facts that (i) the time

dependence is contained entirely in the simple monotonic factor e~xt of the

integrand; and (ii) the dependence on i and j is also "factorized." The

probabilistic consequences of the representation are investigated in the com-

panion paper. The present paper is devoted to a purely analytical study of

the basic properties of the representation. Many of the results were motivated

by probabilistic considerations but on the other hand some of the main theo-

rems were discovered first as analytical theorems and now lead to new ideas

of probabilistic significance.

Chapter II. The related systems of orthogonal polynomials

1. The moment problem and the integral representation. The sequence

of polynomials {Qn(x)} defined by the recurrence relations

'      Q0(x) =- 1,

(2.1) ■ -xQo(x) = - (Xo + no)Qo(x) + \oQi(x),

-xQn(x)  =  UnQn-l(x)  -  (X„ + Un)Qn(x) + KQn+l(x), » £  1,
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are called the polynomials belonging to the matrix A. Because each X„ is

positive, Qn(x) is a polynomial in x of exact degree n, the coefficient of xn in

Qn(x) being (-l)VXoXi ■ • • Xn_i.

The quantities

^°^1 ' ' ' ^n_1

(2.2) iro = 1,        ir„ = -> n ^ 1,
PiPi • ■ ■ Pn

play a very fundamental role in the theory of the differential equations (1.1)

and (1.2). Since X„irn=/in+iirn+i the recurrence relation can be written in the

form

— xQo(x)tTo   =   \oTTo[Ql(x)   —  Qo(x)]   -  Po

— xQn(x)ir„ =   \nirn[Qn+l(x)  — Qn(x)]  — \n-lWn-l[Qn(x)   — Qn-l(x)], »  ^   1.

Consequently

71

(2.3) -X E Qi(x)Tj  =   \nTTn[Qn+l(x)   ~ Qn(x)]   ~  po

and it follows by an induction that for x<0

1 = Qo(x) < QAx) <      ■ < Qn(x) < Qn+i(x) < ■■■ .

Itn^l

(2.4) Q„(0) = 1 + po E-'
k=a   XtXii

and hence the above inequalities are also valid when x = 0 if mo>0. The follow-

ing theorem is an extension of a result of Favard [l].

Theorem 1. There is at least one positive regular measure xp on 0 f£x < oo , of

total mass one, not supported by a finite set of points, such that

[0,      if   i^j,
(2.5) Qi(x)Qi(x)dxP(x) =1 .

J0                                        — >     if    i = J-
TTi

Proof. The system of equations fQ0dxp = l, fQndxp = Q, n>0, can be solved

recursively for the moments cn=Jx"dxp. For example fQodxp=l gives c0 = l,

and then

JC Xo + po — x
Q1dyP = )-dxp

gives ci=\o+p.o- There are always [12] infinitely many regular, but not

necessarily positive, measures on0^x< °o which have these moments. In the

remainder of the proof xp denotes one of these measures.
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From the recurrence formula it follows that if n ^ 1 then

/» OO

j    xkQn(x)dxP(x   =0, 0 ^ k < n,
Jo

and

/» ac /■ CO

I    (-x)"(3„(x)#(x) = /in I    (-xJ-'Q^x)^*).
■1 0 ^ 0

Consequently

"771,71

I    em(*)Q.(*)#(*) = -1 m.n^O.
Jo T»

To prove the theorem it is therefore sufficient [12, p. 6] to show that all of

the determinants

Co     Cl      • • • cn Cl        c2      • ■ • Cn+1

Cl      C2        ■   ■   ■   Cn+1 (1) C2 Cz        ■   ■   ■   Cn+1
(2.6) A„ =     •      • , A„   =    • ,     n > 0

Cti      Cn+1  '   '   '   C2ti Cn+1      Cn+2  "   '   '   C271+1

are strictly positive.

For n £; 1 the determinant

Co     Ci      • • • C,,_i       1

Cl      C2        '   '   '   Cn X
Pn(x)   =        ■ ■

Cn      Cn+1  ■   ■   •   C2n-1      X"

is a polynomial of degree %n and

/» 00

I    xkPn(x)dxP(x) =0, 0 ^ k < n.
Jo

Hence Pn(x) is a constant multiple of Qn(x), and comparing coefficients of x"

P„(x) = (-l)"(X0Xi • • • Xn_i)An_i()n(x).

It follows that

f°° (X0Xi • • • Xn_i)2
(2.7) An = x"Pn(x)dxP(x) =--A,,!,

Jo t„

and since A0 = l, that A„>0, n = l, 2, ■ • -.Moreover,
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(2.8) A"' = (-l)"+l2>n+1(0) = (XoXi • • • Xn)An<2„+1(0) > 0.

This completes the proof.

From (2.7) and (2.8) it is found that for w^l

(2.9) ^ = ^(0),
A„_iA„

(An)2 1
(2.10) -,-

A^A'1'       K^Qn(0)Qn+i(0)

Hereafter a positive measure with the properties required by the above

theorem will be called a solution of the S moment problem. A not necessarily

positive measure on 0 ^x < °o with the same moments will be called a solution

of the BVS moment problem. A positive (not necessarily positive) measure

on — oo <x< oo with the same moments will be called a solution of the

II (BVH) moment problem. 5 and H are abbreviations of Stieltjes and Ham-

burger respectively while B.V. suggests bounded variation. A measure on an

interval a^x< oo where a> — oo will be said to have left-bounded support.

The above theorem establishes a correspondence between a given birth-

and-death matrix A and a solvable Stieltjes moment problem. There is a con-

verse theorem. Suppose J(?n(x)} is a sequence of real polynomials, the wth

polynomial being of exact degree w, orthogonal on 0^x< oo with respect to

a positive measure \p. The zeros of the polynomials are then interior to the

interval 0 ^x < oo and it can therefore be assumed that <2„(0) = 1 for every w.

The polynomials satisfy a recurrence formula [13, p. 41]

-xQo(x) = BoQo(x) +CoQi(x),

-xQn(x) = AnQn-i(x) + BnQn(x) + CnQn+i(x), n ^ 1

where An, B„, C„ are real. Because of the normalization 2?0+Co = 0 and

,4„+23n + Cn = 0, w^l. The coefficient of xn in Q„(x) is (-l)"/C0Ci - ■ • C„

and since £>„(0) = 1 this is equal to ( — 1)" multiplied by the product of the

reciprocals of the w positive roots of Qn(x). Consequently C„>0 for wSjl. If

w ̂  1 then

f (-xYQn(x)d-p(x) = AJCn-i f   (-x)^Qn^(x)dUx)
Jo Jo

so ^4„>0. Hence the recurrence formula of the polynomials Qn(x) determines

a birth-and-death matrix with p0 = 0. The precise conditions under which it

is possible to renormalize the polynomials so that the recurrence formula de-

termines a birth-and-death matrix with po>0, are given by the following

lemma.
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Lemma 1. Suppose mo = 0 and let {Qn(x)\ be the sequence of polynomials

determined by (2.1). Let p. be a given positive number. Then there is a sequence of

positive constants ja„j such that the polynomials Rn(x) =anQn(x) satisfy a re-

currence relation of the form

Ro(x) =■ 1,

-xR0(x) = - (Xo' + p{)Ro(x) + Xo'lti(x),

-xRn(x)   =   Pn'Rn-l(x)   -  (X„'   + p^)Rn(x)  + \n" Rn+l(x), »  £   1,

Pn    >   0, Xn'   >   0,

with p.o =p,, if and only if the series Eo (1/Xnir„) converges and p. satisfies

1
mE--=i.

n-0   X„7r„

Proof. Let {«„} be any sequence of positive constants and Rn(x) =anQn(x).

Then

Ro(x) = a0,

<*o
— xRa = — Xo-Ro + X0 — Ri,

ai

an an

— xRn  =   Pn -Rn-1 ~  (X„ + P«)Rn + X„- Rn+l.
«n-l <*n+l

This recurrence formula is of the required type if and only if

ao = 1,

a°
X0-h Ai = Xo,

«i

OCn                         Ctn

Xn-h  Pn  -  =   X„ + Pn, »  g   li
a„+i a„-i

Let

P Pn CXn
fo — —> r„ = -; Sn = -

Xo X„ a.n—1

and

tn = r0 + r0ri + r0rir2 + • • • + r0ri ■ • • r„

= pL --
i=l   A.-JTv

Then the above relations may be written
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1
1-= r0,

Si

(*) 1

1-= r„(sn — 1), n S> 1.
Sn+l

The sn are positive and Si = l/(1 —r0)>l, so it follows by induction that5„> 1

for all w. Expressing sn+i in terms of the r{ gives

rQri • • • r„
Sn+l =  1 H-

1   -  tn

Hence * has a solution with s„>l for all w if and only if tn<l for every w,

that is, if and only if

00       1

m£—-si.
n=0    r^nTTn

Remark. Using (2.10) the condition that £(1/X„7r„) converge can be ex-

pressed in terms of the moments. It will be seen later (Chapter IV, especially

Lemma 6) that the minimum value of fgdUx as \p ranges over all solutions

of the S moment problem is attained for a certain solution U™ and /0"^m;„/x

= £o"   (1/^nTTn).

Theorem 2. Let \p be any solution of the BVH moment problem with left

bounded support and suppose the integrals

x"dxP(x), n = 0, 1, 2, • • -
-00

are all absolutely convergent. Then the matrix P(t)=P(t; \p) defined by

Pij(t) = tj f   e-^Qi(x)Qj(x)d^(x)
J -00

is (componentwise) analytic in the half-plane Rel>0, continuous in the half-

plane Re/^0, and satisfies (1.1), (1.2), (1.3). If \p, \px are two such measures

and for some i, j and all t in an interval a^t^b (0^a<b), Pa(t; \b) = Pa(t; U

then \f/=U

Proof. The analyticity and continuity properties are apparent, and the

orthogonality condition (2.5) shows that P(t; xp) satisfies (1.3). The deriva-

tives P'tj(t) can be computed by differentiation under the integral sign:

e-*'(-x)Qi(x)Qj(x)d+(x).
-co

Using the recurrence formula for —xQt(x) shows that P satisfies (1.1), and



1957] BIRTH-AND-DEATH PROCESSES 499

using the recurrence formula for — xQ,(x) and the relations X„irn=jun+i7Tn+i

shows that P satisfies (1.2).

To prove the uniqueness statement, observe that for the special value

of i,j the analytic function Pi,(t; xp) —Pi,(t; ypi) is identically zero, and hence

by the uniqueness theory of Laplace transforms the measure yp—ypi is sup-

ported by the roots of the polynomial Qt(x)Q,(x). Since all the moments of

yp— ypi are zero it follows that yp=ypi.

Since there are always infinitely many solutions of the BVH moment

problem which have left bounded support and for which the integrals (2.11)

are absolutely convergent, the above theorem shows that there are always

infinitely many matrices P(t) which satisfy (1.1), (1.2) and (1.3). Conditions

on xp under which P(t; yp) will also satisfy (1.4), (1.5) and (1.6) are discussed

in Chapter III. The remainder of this chapter is devoted to a review of the

elementary facts concerning the Hamburger moment problem, and to an

analysis of some of the properties of the polynomials Qn(x) and of certain

related systems of polynomials.

2. The Hmoment problem. We first summarize a number of results which

are proved in [12, pp. 23-76].

Definitions. A measure xpn is called a distribution of order n + l associated

with the H moment problem if it consists of n + l masses located on the real

axis and has the correct moments of orders ^2n; that is

/OO

x*dxpn = Ck, k = 0, 1, • • • , 2».
-00

A polynomial q is called a (real) quasi-orthogonal polynomial of degree n + l asso-

ciated with the H moment problem if it is of the form

q(x) = AQn+i(x) + BQn(x)

where A and B are real and At^O. (This definition differs slightly from that

of [12, p. 35].)
(i) A quasi-orthogonal polynomial of degree n + l has n + l real simple

roots; two such polynomials have a common root if and only if one polynomial

is a multiple of the other. For any real x0 which is not a root of Qn(x) there is

a quasi-orthogonal polynomial of degree M-f-1 which vanishes at x0.

(ii) If ^„ is a distribution of order n + l then its support is the set of zeros

of a quasi-orthogonal polynomial of degree n + l. Conversely, if q is a quasi-

orthogonal polynomial of degree n + l, then there is a distribution of order

n + l supported by the set of zeros of q.

(iii) Let

(2.12) p(x) = 1 / zZQ\(x)itk
I     *=o
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if the series in the denominator converges, and let p(x)=0 otherwise. For

each real x0 the maximal mass which a solution of the H moment problem

may have at x0 is p(x0). If p(x0) >0 there is one and only one solution of the

H moment problem with mass p(x0) at x0.

(iv) Let \pn be the distribution of order w + 1 which has mass at a fixed

point x0. Then as w—><», U converges to the solution ip of the H moment

problem which has the maximal mass p(x0) at x0, in the sense that

lim   f   f(x)dUx) =   fW/(x)#(x)
n->»   J—m J _oo

for every continuous function/ which vanishes at infinity.

The first zero £i,„ of Q„(x) is a decreasing function of w and hence tends to

a limit iji^O as w—>oo. The distribution of order w + 1 supported by the zeros

of Qn+i converges as w—>oo to the solution of the II moment problem with the

maximal mass p(£i) at £1. This solution is of course also a solution of the 5

moment problem.

(v) Let q be any quasi-orthogonal polynomial of degree w + 1 and let

0^i<n + l. Let £i,i<£2,.< ' " " <£».>' be the roots of Qi(x). Then each of

the i + 1 open intervals

-    oo    <   X   <  £l,i,

tk.i < x < Zk+i,i, 1 ^ k < i,

£..< <  X <  +   oo

contains at least one zero of q. This precise statement will not be found in

[12]. The proof goes as follows. Let U be the distribution of order w + 1 sup-

ported by the zeros of q. If U has no mass in one of the above open intervals,

then there is a polynomial f(x) of degree <i which vanishes only at zeros of

Qi(x), such that f(x)Qi(x) ^0 at each root of q.

Since

J f(x)Qi(x)dU(x) = 0, f<?i(x)dUx) * 0,

this is impossible.

(vi) Let q be any quasi-orthogonal polynomial of degree w + 1, and

Vi, ■ ■ ■ , »7n+i be its zeros. If U is the corresponding distribution of order w + 1

with mass 7,- at 17,-, then the polynomial

(2.13) p(x) = q(x) £ -2*L-
i=l   X — v,

is representable in the form

/'  q(x) - q(l)
x — l
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where yp is any solution of the II moment problem or even any measure with

the correct moments of orders ^n. p(x) is called the numerator of the quasi-

orthogonal polynomial q(x), and in the sequel will be denoted by q(0)(x). The

mapping q(x)—>qm(x) is induced by a linear transformation in the space of

polynomials.

(vii) A solution yp of the II moment problem is called extremal if the Parse-

val equation

r\f(x)\2dxP(X)   =   El    f     /(X)<2„(X)#(X)     Tn
J —oo n=0 I J —oo

is valid for every function/in L2(xp). If the solution of the Hmoment problem

is unique then it is an extremal solution; if it is not unique then there is a

one-parameter family of extremal solutions. In the latter case each extremal

solution is a "step function," i.e., it consists of a countable number of positive

masses located at the points of a discrete set on the real axis. The extremal

solution with mass at a point Xo has the maximal possible mass p(x0) at that

point. In the case under consideration here, the 5 moment problem has a

solution, and every extremal solution of the H moment problem has left

bounded support. If the solution of the 5 moment problem is unique, it is an

extremal solution (of the H moment problem); if it is not unique then there

is a one-parameter family of solutions of the .S moment problem which are

extremal. In fact, if the solution is not unique then the first zero £i,„ of Qn(x)

converges to a positive limit £ as w—>°o. For each Xo in the closed interval

0 ^x0 ^| there is an extremal solution of the 5 moment problem with mass at

Xo, and no extremal solution has mass at two points of this interval. Further-

more this accounts for all the extremal solutions of the 5 moment problem.

The final three sections of this chapter list a series of formulas of funda-

mental use throughout the paper. Aside from Lemmas 2 and 3, the results are

essentially known.

3. Properties of the polynomials. The polynomials

(2 15) I   H0(X) ' M°*
Hn+l(x)   =   \n1Tn[Qn+l(x)   - Qn(x)], W   ^   0,

satisfy the recurrence relation

f    — xllo(x) = — poHo(x) + poHi(x),
(2.16) {

{-xHn+i(x) = X„#„(x) - (Xn + pn+i)Hn+i(x) + pn+iHn+2(x).

The polynomials

^(0>/ ,      f C"W -Qn(y)
(2.17) Qn  (x) =        -dxP(y), n = 0, 1, • • •

J x. — y

(xp is any solution of the moment problem) satisfy
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Qo\x) = 0,

QT(x) = - 1
Xo

(2  18) {-^(^ = - (Xo + Mo)Qo0)(x) + XoClV) + 1,

— xQn    (x)   =   flnQn-l(x)   —   (Kn + Hn)Qn    (x)   + ~KnQn+l(x).

The polynomials

(0) C     Hn+x(x)   —   Hn+x(y)
(2.19) Hl+x(x) =        ——-—~ #(y), » = 0, 1, • • ■

J x — y

satisfy

Hn+l(x)   =   \nTTn[Qn+l(x)   — Qn    (x)],

and

2200)(x) ^ 0,

H?\x) =- - 1,

r rr(0)/   \ rr(0V   \    i t7<0V   1   J— x220  (x) = — fi0Ho   (x) + nottx   (x) + uo,

(2.20) • -xHx\x) = X022o0)(x) - (X0 + ndH™ + Mi222(0)(x) - X0,

-xHn+i(x) = \nHn (x) — (X„ + Mn+i)22„+1(x) + y.n+iHn+2(x),    n ^ 1.

The following identities are easy consequences of the definitions and the

recurrence formulas

(2.21) Qn(x) = 1 +  £  Hk+1(x)-,
k=0 XfcTfc

(2.22) Qn\x) = £ Hi+x(x)-,
k=0 Xfc7Tfc

n

(2.23) 22n+i(x) = mo - x £ Qk(x)irk,
k=o

(2.24) H„li(x) = - 1 - x £ <3l°'(x)x,,
A:=0

n

(2.25) (x - y) £ e*(x)Qt(y)xt = X„7r„[<2n+1(y)e„(x) - 0„+i(x)(2»(y)]
k=0

= 22n+1(y)Qn(x) - 22n+1(x)t7n(y),

(2.26) H„+1(x)Qn°\x) - H™i(x)Qn(x) = X„xB[e„+1(x)en(0)(*) - Qn+i(x)Q„(x)]

= 1.
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Inspection of the recurrence formulas shows that the two systems of poly-

nomials {(?i,0)(x)}, m^I and {H^+i(x)}, w2;0, are orthogonal systems on

0^x<oo. If p,0>0 the system {Hk(x)\, k^O is an orthogonal system on

0^x<oo, while if uo = 0 the system \Hk+i(x)/ — x) is a system of poly-

nomials orthogonal on 0 :£x< oo . In either case there is a natural correspond-

ence between solutions yp of the original 5 moment problem and measures 6

relative to which the H system is orthogonal. This correspondence is ex-

pressed in the next two lemmas.

Lemma 2. Suppose /i0>0. Then there is at least one positive regular measure

8 on 0 ^x < oo such that

0    if   m j^ n,
C  Hm(x)   Hn(x)

(2.27) j      -— —^dd(x) =     1
Jo        Po Po —    if   m = n

,irm

where ir0' =1, xn' =juoA»-iTn-i, » ^ 1 • If 6 is such a measure then

xdd(x)
dxp(x) = -—

Mo

defines a solution xp of the original S moment problem for which

/'" dxp(x)-^^ 1.
0 x

Conversely if xp is a solution of the original S moment problem such that (2.28a)

is valid, then the measure 6, which consists of a mass 1 —p0fodxp/x located at

x = 0 and is defined on 0<x< oo by dO(x) =podyp(x)/x, satisfies (2.27).

Proof. From (2.23)

xQn(x)lTn  =   Hn(x)   —  Hn+l(x)

and hence if 6 satisfies (2.27) then

xn  I    xkQn(x) - =1    xk\-d9(x)
Jo Po Jo L    Po Mo      J

= 0 for k = 0, 1, •••,»- 1,

and the integral is not zero if k = n. It follows at once that dyp = xd0/p,o is a

solution of the original S moment problem, and p-ofcTdxp/x^l.

Now suppose xp is a solution of the original moment problem which

satisfies (2.28a) and let 6 he the measure described in the second part of the

lemma. Then 6 is a positive measure and JQdd(x)=l. Since Hn(0) =,uo for

every n



504 S. KARLIN AND J. L. McGREGOR [July

/•" Hn(x) ("° dip       rxr n^J \dMx)
-^de(x) = l — mo I    -+ I   Lo-x£e,(x)xfcp^,

o Mo Jo        X J0     L fc=0 J       X

and this is zero if wSil. Moreover if 1 ̂ k<n

C °°      H (x) C°
I    x" ——<#(*) = Xn_1xn_1 I    **-» [(?„(*) - e„_x(x)]#(x)

Jo Mo Jo

= o,

while the integral is not zero if k = n. This completes the proof.

Lemma 3. If uo = 0 there is at least one positive regular measure 6 on 0 ^x < °o

such that

/•- Hm+i(x)  Hn+i(x) 8m,n
I-dd(x) =-> m,n^0,

Jo —x —x x„"

where x0" =1, ir" =Xo/X„x„/or w^l, and such that

/""  dd(x)--g 1.
o         x

2/0 is such a measure then the measure \p which has a mass 1 —\ofod8/x located

at x = 0, and is defined on 0<x< oo by d\p(x) =\odd(x)/x, is a solution of the

original S moment problem. Conversely if \p is any solution of the original S

moment problem then dd(x) =xd\p(x)/\0 defines a measure 6 which satisfies the

above conditions.

The proof may be made to depend on the preceding lemma, and is omitted.

The convergence properties of the four systems of polynomials Qn, Qn°\

Hn+i, H®^ were investigated by Stieltjes, who used the following lemma.

Lemma 4. The following statements are equivalent:

(1) As n—*oo, Qn(x) converges for every complex x, uniformly in every circle

(2) Qn(x) is bounded as w—>oo for at least one x<0;

(3) The series

(2.28) JT-Lf^.
n=0   X„Xn   j_o

is convergent.

Proof. Let £,-, i = l, 2, • • • , « be the zeros of Qn(x). From

Qn(x)   =Qn(0)fl(l-^)

it is seen that for every complex x
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\Qn(x)\ sg.(-|*|)

r     1*1^ i~\n
(2.29) =C(0)   i + —Zr

L n hJ

^ ()„(0)el»l'»

where

a i       e-'w
Cn   =   2-1   -   —-TT '

ti ^ 0.(0)

and that for 5>0,

(2.30) Qn(-S)   ̂ Qn(0)[l  +  CTns].

Hence in order that Qn(x) be bounded for some x<0 it is necessary that

Qn(0) and crn are both bounded, in which case Qn(x) is bounded for every com-

plex x. Now Qn(0) is given by (2.4), and from (2.21), (2.23)

-<?-'(0) = E 7^~ E x,^(0).
*-0     XfcXj;   j_0

It follows that (2) and (3) are equivalent. Clearly (1) implies (2). If (2) is

valid then Qn(x) is uniformly bounded in every circle \x\ ^R, and since Qn(x)

is a monotone sequence for each x<0, Qn(x) converges for each x<0, and by

the Stieltjes-Vitali theorem Qn(x) converges uniformly in every circle | x| ^R.

Thus (1) and (2) are equivalent.

Applying the above lemma to the other systems of polynomials, the fol-

lowing results are obtained.

(a) If the series (2.28) converges then Q®\x) converges uniformly in

every circle | x | ^R.

(h)  If the series

oo n—l       1

(2.31) zZ^lZ-
n-0 t-0   XjX<

converges then U„+i(x) and H„+i(x) both converge uniformly in every circle

|x| ^R.

4. The limiting functions. In this section it will be assumed that both of

the series (2.28) and (2.31) converge, or what is the same thing, that both

of the series

00 00 1

E "■»,     E t—
n—0 n—0   XBXn

converge. Under these circumstances the limits
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Qx(x) = limQn(x), Qx (x) = lim Qn  (x),
n-*« n—*=o

Hx(x) = lim 22„+l(x),        Hx (x) = lim Hn+i(x)
n—K*> n—*<*>

all exist and are representable by the series

(2.32) Q„(x) = 1 + £ Hn+i(x) -,
n=0 r\nTn

00 1

(2.34) QT(x) = 22Hn+i(x)->
n-=0 A„7rn

CO

(2.35) Hx(x) = mo - x £ <2n(x)x„,
n-0

(2.36) 22l0)(x) = - 1 - x £ (AxK,
n=0

the convergence in each case being uniform in every circle [ x| 5=2?. The limit-

ing functions are entire functions and satisfy the identities

co

(2.37) (x - y) £ Qn(x)Qn(y)*n = Hx(y)Q„(x) - H„(x)Qx(y),
n=0

(2.38) 22„(x)el0)(x) - H(°\x)Q„(x) = 1

where the series in (2.37) converges uniformly in every circle.

Since the only zeros of the polynomials are on 0^x< oo it follows from

Hurwitz' theorem that the only zeros of the limiting functions are on 0 ^ x < oo.

Moreover any zero of Q„(x) of order £2:2 is a limit of k zeros of Q„(x), and

because of the interlacing of zeros, is also a limit of zeros of 22„+i(x), so it is

also a zero of H„(x). On the other hand (2.38) shows that Qx and Hx have no

common zeros. Hence all the zeros of Qoo are simple zeros. Similar arguments

show that the functions Q{®, Hx, H^ have only simple zeros.

Between each pair of successive zeros of Hn+X(x) there is exactly one zero

of Qn(x). Hence each pair of successive zeros of Hx(x) are separated by exactly

one zero of Qx(x).

An entire function f(x) is said to be at most of order one and of minimal

type if

f(x)  =  el»l-8(1*1)

where 5(|x|) is a bounded function which is o(l) as |x|—>oo. It is shown in

[12] that the functions Qx, Q®\ Hx, H{® are at most of order one and of

minimal type. The referee has observed that in the present case these func-

tions are of order   ^ 1/2.   For example,  suppose p0 = 0,  and  let  QJx)
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= E£=o <*»,*(-*)*• Then a„,0 = l for all n and (2.21), (2.23) give for n^k^l

n-l 1 i

an,k = 2-i -' Z XjOj-.i-i.
j=0    XjX,'   j=o

A simple computation shows that 0 ^an,k §= Ck/(k\)2, where C= (E«™ o (1/X.x,))

■ (E/™ o TTj), and it follows that <2«o is of order 5= 1/2.

Chapter III. The auxiliary properties of P(t, xp)

1. The fundamental positivity theorem.

Definition. A set of ot 2:1 real numbers 171^772^ • • • ^17™ is said to be

separated by a set of m + l distinct real numbers £i<i;2< ■ ■ • <?m+i if

£i ^ Vi ̂  S<+i, * = 1, 2, • • • , m.

Theorem 3. Let \p be any solution of the H-moment problem with left bounded

support. Then the integrals

/»00

I    e-*'Qn(x)dxP(x), n = 0, 1, 2, • • •
J -00

are a// strictly positive for t>0. Moreover if n^2 and if p(x) is a polynomial of

degree r, l^r<n whose roots are all real and separated by the roots of Qn(x),

and if p(u) > 0, then the integral

/oo
erxtp(x)Qn(x)dxp(x),

-00

is strictly positive for t>0.

In the course of the proof of this theorem the following simple lemma is

required.

Lemma 5. Let 571^772^  • • • ^rjnbe real numbers separated by the numbers

£i<&< • • • <£n+i. Let

n+l

Q(x) = II (fc - X),
1=1

71

P(x)  =  II 0?, - x),
! = 1

Q(x)
Ai(x) = -, i = 1, 2, ■ ■ ■ , n + 1.

U — x

Then

71+1

P(x) = E'a.'^iC*)
t=-l
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where the coefficients a,- are non-negative.

Proof. Since the £< are distinct

P(x)   = n+'       ai

Q(x)       i=x  %i— x

where

P(ti)
ai = - ■

Am

Since Aidi) is not zero and has the sign of ( — l)'-1 and since p(£.) is either

zero or else has the sign of ( —1)*_1, the lemma follows.

Proof of the theorem. It is trivial that flme~xtd\p(x) >0 for t^O. Let

e-*<e„(x)#(x).
-00

Then

— [gO-o+M)*/?,^)] = x0e(x°+,'°)' I    e-x'Qx(x)diP(x) > 0       for I 1 0.
A J -00

Since 2q(0) =0 it follows that Fx(t) >0 for />0.

Now   suppose   w^2.   Then   ()„(x) =£„(£i— x)(£2— x) • ■ • (£„ — x)   where

£„>0 and 0<£i<£2< • • • <£n- A polynomial of the form

r

^n,V•»•,(*) = n (&* - *)
*-i

where l^ii<4< • ■ ■ <^r^w will be called a factor of Qn(x) of degree r.

If p(x) is a polynomial of the type described in the theorem then by the

lemma p has a representation

P(x) = £ otili1...irAili,...ir(x)

la»l«l<" • •<«rS'>

where the coefficients atl,v-.•, are non-negative and not all zero. To each

factor of Qn(x) corresponds a function

Xco
e-*>Aiii2...ir(x)Qn(x)dxP(x)

-00

which vanishes at / = 0 if 1 ̂ r <w. Assume 1 ̂ r<n and let jx, j2, • ■ • , jn-,

be the complement of the set ix, i2, ■ ■ ■ , ir in the set 1, 2, • ■ • , n. Let Di be

the operator such that
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d    r
Dig(t) = e-M — [eti>g(t)].

dt

Then

DhDh ■ ■ ■ Din_Jnil...ir(t) = — f   c-^(x)#(x)
(*) «n-'-oo

> 0 for f Si 0,

and it k<n — r ♦

(**) DhD,, ■ ■ ■ DiJhtl...ir(t)]n = fiA..-ir Mt...h(0) = 0.

Thus/,!,■,.. .,-,(0 is the solution of the differential equation (*) which satisfies

the initial conditions (**). The differential equation can be solved by suc-

cessive integrations. Hence/,•,>,...,-,(/) >0 for t>0, and

/OO

e-xtp(x)Qn(x)dxP(x) = E«M."-<,/<..-,-".vC0
-OO

> 0 for / > 0.

Finally since 1\,(0) =0 and

e-«d7[e*Fn(t)\=fi(t)
dt

it follows that Fn(t)>0 for <>0.

Many interesting results can be obtained as corollaries of the above theo-

rem. Its most immediate consequence is the following theorem:

Theorem 4. Let xp be any solution of the H moment problem with left bounded

support, and P(t;xp) the corresponding matrix (defined in Theorem 2). Then

Pu(t; yp)>o

for every i and j, and for OO.

Proof. It is trivial that

e-"Qm(x)Qn(x)dxp(x)
-OO

is positive for flzO if m=n. Itm^n, say m <« then the roots of Q„(x) separate

the roots of Qm(x), Qn(0)>0, and hence the integral is positive for t>0 by

Theorem 3.

2. Convergence when ,uo = 0.

Theorem 5. Suppose Mo = 0 and let yp be any solution of the S moment prob-

lem. Then for each i and n and every i>0
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n n

(3.1) 0 < £ Pi+i,j(t; +) < £ Pij(t; i) < 1.
J-0 j=0

Each of the series

CO

(3.2) 22Pu(t;i)=fi(f,i) * = 0, 1, 2, •••
J-0

converges uniformly on every finite interval 0^t^t0< oo, awJ caw &e diffen

ated termwise any number of times, the resulting series being uniformly con-

vergent on every finite interval. The sums satisfy the inequalities

(3.3) 0 < fi+i(t; iP) ̂  fit; *) ^ 1

awrf //se sequence \fi(t; \p)} is a solution of

df
(3.4) Ii"**-

dt

Proof. From (2.23)

(3.5) 22Pii(f,+)=  C<r*'Qi(x) Hn+1 X) #(*).
,=o Jo — x

The polynomials 22n+1(x)/ — x are orthogonal with respect to the positive

measure dd(x) =xd\p(x)/\o. From Theorem 4 and

A    . fw        22„+i(a;)

,_o Jo — x

it follows that

n

22 P'°id;+) < o, <> o.
1=0

Hence the sum  £"_02,oj(*; 'Z') is strictly decreasing on 0^t< oo. Since this

sum is non-negative and has the value one at / = 0, the inequality

0 < £ Poi(t; *)< 1, oo,
J=0

follows. Theorem 4 implies that the function

A r ,        \«    f"        Hi+i(x)   Hn+x(x)
£ [i^*;*) - Pi+x,i(t;+)] = —-       e~*> -   K-±—±±ld6(x)
j=o X,ir,- »/ o — x — x

is strictly positive for t>0. This proves (3.1) and consequently that the series

(3.2) are convergent, with sums satisfying (3.3). Using (l.l)
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E —Pi&\+) = v< E Pi-iM;*) - (X.- + m) E Pud; *)

(3.6)
n

+ \i E Pi+i,i(f, *)
j=0

with an obvious modification if 2 = 0. It follows that

(3.7) i;-7-*«(*; *)
j-0   <«

converges on 0^<oc and has uniformly bounded partial sums. Conse-

quently the partial sums of the series

E Pu(f, *)
J-0

are uniformly bounded and uniformly equicontinuous. Therefore this latter

series converges uniformly on every finite interval, and (3.6) shows that (3.7)

also converges uniformly on every finite interval. By differentiating (3.6) k

times and making an induction argument on k, it is seen that the series

»    dk

z2-Pu(f,4>), k^Q
i=o  dt"

all converge uniformly on every finite interval. Letting n—> =o in (3.6) gives

(3.4).

Theorem 6. Suppose p.o = 0 and let \p be any solution of the S moment prob-

lem. Then the series

(3.8) E A-,M<2,(x),        Pa(t) = Pii(t;yP),
j-o

converges absolutely for rStO and all complex x, the convergence being uniform

over every bounded set 0 St ST, \x\ Sa. Moreover

(3-9) Z \Pi,(t)Q,(*)\   Se^'Qi(-\x\).
j-0

Proof. For any a>0 the polynomials

*    ,      Qn(x — a)
Qn(x)=--r--, » = 0, 1,2, •••

Qn(-a)

satisfy the recurrence formula
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— xQo(x) = X0(?o(x) + X0<3i(x),

-XQ„(X)   =   Mn(?»-l(x)   —   (X„   +   fJ-n)Qn(x)   +  \„Qn+x(x),

where

* Qn+i(-a) * Q„_!(-a)
Xn   —   Xn -;-—J fln   =   kln   -;-  ■

Qn(-a) Qn(-a)

These polynomials are orthogonal with respect to the measure xp* defined by

f   dp(y) =   [' °#(y).
J  -CO J -OO

Let
/% oo

P*j(t) = x*       e-*'Q*(x)Q*(x)d>P*(x)
Jo

where ir*=iTjQ^( — a). Then

Pii(t)Qj(-a) = e«<Qi(-a)P*j(t).

If |x| ga then |@y(x)| ^Qj(-a) and hence the series (3.8) is dominated by

the uniformly converging series

22e°'Qi(-a)P*j(t).
1-0

Since £,Pj(<)^l by Theorem 5, (3.9) follows.

3. Convergence when po>0. The case po>0 seems to be more difficult.

The theorem below gives a sufficient condition on a solution xp of the S mo-

ment problem in order that the corresponding matrix satisfy (1.5). This suffi-

cient condition has a natural probabilistic interpretation, discussed in the

companion paper. The remark after the theorem below shows that when the

solution of the 5 moment problem is not unique there is a solution whose

corresponding matrix does not satisfy (1.5).

It was shown in Lemma 2 that when po>0 there is at least one solution

xp of the 5 moment problem for which

r M dxp(x)
(3.10) Mo --t\ 1.

Jo x

Theorem 7. Suppose po>0 and let xp be a solution of the S moment problem

which satisfies (3.10). Then for each i

(3.11) £*«(/;*)- /<«;*)
1=0

converges uniformly on every finite interval O^t^T, and
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0 < fi(t; yp) < 1 for t> 0.

All of the series obtained by differentiating (3.11) termwise a finite number of

times converge uniformly on every finite interval.

Proof. The proof employs the polynomials Hn(x)/p.n, which are orthogonal

on 0^x< oo with respect to the measure 0 obtained from yp by the method

described in Lemma 2. From (2.23)

" rx [Hn+i(x) - po]
TlPi,(f,+)=        e-*>Qi(x) 'dxp(x),
j-0 J o — x

and since Hn+i(0) — Mo = 0,

(3.12)     i>,jC;*)=   f°°e-*>Qi(x)d8(x) -  f  <r«QHx) ^^ d0(x).
j-o J o J o Mo

Assume that n^i, and let

f* OO

gt(t) =   |    e-"Qi(x)dS(x).
Jo

Setting r = 0 in (3.12) gives g<(0) = 1. By Theorem 3

/• 00

e-*<Qi(x)dxP(x) < 0 for t > 0,
o

so

gi(t) < 1 for t > 0.

The roots of Qi(x) are separated by the roots of Un+i(x), and d is a positive

measure because of (3.10). Hence by Theorem 3

/. oo                  H     (x)
e-*'Qi(x) ——-dd(x) > 0 for t> 0

o Po

and

n

E p«(<; ^) < Ut), i > o.
j-0

Letting n—> oo gives

0 < /,(/; ^) S gi(t) < 1, / > 0.

The statements about uniform convergence follow by the argument that was

used in Theorem 5.

Remark. Suppose ju0>0 and the solution of the 5 moment problem is not

unique. Let xpmn* be the extremal solution with mass at x = 0, and P(t)
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= P(t; '/'max). Then P(t) does not satisfy (1.5) for all t>0.

Proof. The mass concentrated at x = 0 by U** ls

1
P = -> 0,

CO

£ *nQn(0)
n=0

and

lim Pij(t) = px^(0)12,(0) = ^~- a/
«-.«, Qj(0)

where £^° oy = l. If Qi(0)—>oo as t—»oo then

lim lim 2\,(0 = oo

and hence P ,;■(<) > 1 if i and / are both large enough (depending onj). On the

other hand if Q,(0)—>M < oo as i—>oo then

"                          °°      a ■
lim  lim  lim   £ P^t) = Af £ -— > 1
n->»    t'-»«o    (-.co    J=0 )=0   Qj-(O)

and hence

£ p,-,(0 > 1
1=0

if w, i and t are all sufficiently large.

4. Convergence when i/- is a solution of the H moment problem. If xp is a

solution of the TImoment problem with mass to the left of x = 0 then Poo(t; xp)

—*+oo as /—>oo. However the matrix P(t; xp) still has very strong conver-

gence properties, as is shown by the following.

Theorem 8. Suppose uo ^ 0. Let xp be any solution of the H moment problem

with support in the interval —a^x< oo where a ^0. JTzew the series

CO

£ Pud; *)Qi(x) = Ut, x)
J-0

converges uniformly on every bounded region 0 ^t g T, 0 g | x| ^R, and the sum

satisfies

\Mt,x)\   ^e»Qi(-b)

where & = max [a, \x\ }.

The proof is very similar to the proof of Theorem 6.

5. The semi-group property. In the next theorem p0 may be either zero or

positive.
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Theorem 9. Let xp be any solution of the H moment problem with left bounded

support. Let P(t) =P(t; yp). Then for s^O, /StO and every i, j the series

00

E Pa(t)Pk,(s)
k=0

converges. P(t) has the semi-group property (1.6) if and only if xp is extremal.

Proof. The functions

f(x) = e-"Qi(x),       g(x) = <r"Qlx)

are in L2(xp), and their Fourier coefficients relative to the orthonormal system

{(irk)ll2Qk(x)\ are

ak=   f   e-*>Qi(x)(*kyi2Qk(x)dyp(x),
•J-oo

/OO

er"Q,(x)(irk)1l*Qk(x)diP(x).
-00

Hence the series

" -     Pik(t)Pki(s)
2-i o-kbk = 2-i-
i=0 *=0 Xj

is convergent. If xp is extremal the sum of this series is

C°                          CM                                       -P.-j(< + *)
f(x)g(x)dxp(x) =        «-»«&(*)«-"Q,(x)dxP(x) =-,

•7-00 ^-00 Xj

that is, P(f) satisfies (1.6).

Conversely suppose P(t) satisfies (1.6). Let f(x) =e~xiR(x) where OO is

fixed and R is a polynomial. Then R is a finite linear combination of the Qi,

R(x) = £ cxiQlx)
i

and

I     |/(*)[»#(*) = E«<«j j    «rJ*<g<(*)Q,(*)#(*)
''-OO »,j •'-OO

Pa(2t) -   Pik(t)Pik(t)
=  2^ «•«) - =   2^ a>5J 2-r -

i,j Xj j,j k=0 Xfc

= 2,   2. «< 7—7^
Ar—0 I     i (irk)1'*

= e| r /(x)g,(^)(^)i/2#(^.
4=0 I •/ -00
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Thus the Parseval equation holds for/. But functions of the type/(x) = e~x'R(x)

are dense in L2(xp) and consequently the Parseval equation is valid for every

/ in L2(xp), so xp is extremal.

6. The representation theorem. In this section it is shown that the inter-

esting solutions of (1.1) and (1.2) have a representation of the form P(t)

= P(t; xp). Throughout this section p0 may be either zero or positive.

The sequence {7rn} may be regarded as a positive measure on the space

of the non-negative integers. To within a constant factor it is the only posi-

tive measure on this space such that the matrix A acts as a symmetric oper-

ator on a suitable dense subspace of the Hilbert space L2(ir) consisting of all

sequences/= {/(w)} of complex numbers for which

ll/H2= £  |/(n)|V.< =o.
n=0

The inner product of this space is(2)

(f,g) = 22 f(n)[g(n)}* *n
n=0

and Af is defined by

(Af)(n) = £ on.kf(k)
*_0

where
Mn if    k = n — 1,

— (X„ + Mn)    if    k = n,
an,k = \

X„ if    k = n + 1,

0 otherwise.

It follows from the relations X„x„=p„+ixn+i, or what is the same thing, a,-/7r,-

= aj{Wj, that

(Af, g) = (f, Ag)

whenever/ and g terminate (f(n) =g(n) =0 for all large w).

Definition. A matrix C =(<;,-,) is said to have the symmetry property if

CijWi = CjiTj for every i and j.

Since A is both row finite and column finite the matrix products AC and

CA are well defined for every matrix C.

Lemma 6. Every matrix which commutes with A has the symmetry property.

In particular every matrix which satisfies both (1.1) and (1.2) has the symmetry

property.

P) * and — represent symbols for conjugate complex.
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Proof. Suppose C=(d,) commutes with A. Then for every i and j, Tn(CA)i,

= 7r,-C4C),7 and Tr,(AC),i = irj(CA),i so in(CA)i, — ir,(AC),i = in(AC)ij
—iTj(CA)ji. Using the symmetry property of A this may be written as

OO 00

(*) 2-i (ci*x,- — ckiTfk)akj = 2-i (ckjf'k — c,kiri)aki.
i=0 k=0

When j = i the two members of (*) differ only in sign, so each member is

zero:

E (dkTi — ckiirk)aki =0, i = 0, 1, 2, • • • .
k

This equation is of the form

(coixo — Ci0xi)aio = 0

if i = 0, and

(c»,j+ixt- — c,+i,ix,-+i)o,+i,j + (c,',,-_ixj — C{-i,(iri-i)ai-i,i = 0

if OO, from which it follows that

Ci,i+iTi — Ci+ijTTi+i = 0, i = 0, 1, 2, • • • .

Now assume that for i = 0, 1, 2, • • •

Ci,i+nTri Ci+ntxKi+n U

whenever 1 SnSp- Setting j = i+p in (*) gives

2-i (cjfcXj — ckiTTk)akii+p = 2-i (ck,i+pirk — c,-+p,iX,+p)ai,-.
k k

By the above assumption the left member reduces to

(Ci,i+-p+\TTi       Ci+p+ixiiri+p+i)ai+p+iti+p,

and the right member reduces to zero if i = Q and to

(c»-i,t+j,x,-_i — c,-+j,,,-_ix,+p)a,_i,l-

if OO. It follows that

Ci,i+p+iiTi — c,+j,+i,iXi+P+i = 0, i = 0, 1, 2, • • •

and hence by induction on p

djTTi — Cuirj =0, i, j = 0, 1, 2, ■ ■ ■ .

Theorem 10. Let P(t), t^0, be a matrix which satisfies (1.1), (1.2), (1.3),

(1.4) and such that

OO

(3.13) Z PuU) ^ Me"
j-o
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for every i and all t^O, where M>0, aS:0 are constants. Then

(3.14) (Ttf)(i) = £ Pij(l)f(j)
)=0

converges absolutely for every f in 2,2(x) and defines a bounded linear self-adjoint

operator of L2(ir) into itself. The mapping t—>Tt is continuous on 0 5= I < oo rela-

tive to the strong operator topology.

Proof. Let/G2,2(x), t^O. Then

oo co 12

l|zv||s= £ £p;(/)/(/,i x,
i=0      ;'=0

co      /    co \      /    oo \

^ £   Zp«(0)( £PX0|/O')|2)7r,
i-O \ ft=0 /  \ ;=0 /

^ Me^22Pn(t)Tj\f(j)\2
a

g (Afe<")2||/||2-

Hence Tt is a bounded operator with [| 7\j| :£ Afea!. That Tt is self-adjoint

follows from the fact that P(t) is real and has the symmetry property.

It follows by the argument used in Theorem 6 that for each i the series

(3.13) converges uniformly on every finite interval. Let g be a terminating

element of L2(ir), let e>0 and /^0 be given. If 0 g.? ^t + 1 =A then

||2Vg - Tsg\\2 ̂  2Me°* £  | g(j) |2x,- £ | Pad) - Pji(s) | .
;' i=0

For each fixed j there is an index w,- such that

00

2A2C^||g||2 £ Pji(t) + PH(s) < e
i=nj

provided 0^5SA, and hence

\\Ttg - Tsg\\2 < e + 2Me°%\\2 max   £  | Pi%(t) - Pji(s) \
iiE     i=0

where E is the set of j for which g(j) ^0. The right hand side—>e as s—H. Since

e is arbitrary it follows that Tsg—*Ttg as s—H. But terminating functions are

dense in L2(ir) and hence the strong continuity is established.

A bounded operator T on L2(t) is called positive definite if (Tf,f) ^0 for

every / in L2(w). If T, S are bounded operators the inequality T>,S means

that T — S is positive definite.

Theorem 11. Let xp be a solution of the II moment problem with left bounded

support and { Tt}, t^O, be the family operators determined by P(t; xp). Then the
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operators \ Tt} are positive definite and

(3.15) Tit S; Tt fort St 0.

If the equality in (3.15) holds for some OO then yp is extremal, and in this case

the operators \Tt], /StO, form a one parameter semigroup. The inequality

(3.16) T, St Tt for OS s St

is valid if and only if yp is a solution of the S moment problem.

Proof. Let/ be a terminating element of L2(ir) and

/(*) = Z/(•)&(*)»*i
Then

(Ttf,f)= E Pii(t)f(j)[f(i)]*ir>
a

= E/dOlJWfxiXj f"'er"Qi(x)Qi(x)d-yp(x)

Xoo
<rxt\}(x) \2di(x)

-00

?t o.

Since terminating functions are dense in L2(ir) it follows that (TJ, /)StO for

all/ in L2(ir). It is clear also that (Ttf,f) is a decreasing function of t for every

terminating / and hence for all /, if and only if xp has no mass to the left of

x = 0. Again if/ is terminating

(Ttf,f) = E [/«]7(*)*<*i»* f V<e,(x)e,(x)#(x)  fV*<(23(;y)<2*(y)#(y)
i/A «J —oo ^ —oo

00 I      /»oo |2

= Z e-x'f(x)Qi(x)dyp(x) It;,
j=0 I "^ -oo I

and by Bessel's inequality

(2V,/)=£   fV**« |/(*)|»#(*)
•^ -oo

= (T»f,f).

As before this inequality remains valid for any / in L2(w). Now suppose

7f0= T2t(s for some /0>0. Then the Parseval equation

/• oO oo     I       f* oo 2

1 | e-*'°/(x) |WW =  Z    I    e-*<>}(x)Q,(x)dxP(x)   xy
•7 _M ,=o | J _„o
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is valid whenever/(x) is a polynomial, and therefore for every function in

L2(xp), showing that xp is extremal. On the other hand if xp is extremal, then by

Theorem 9

(TtT,f)(i) = £ £ Pij(t)Pjk(s)f(k)
i    *

= £ Pikd + s)f(k)
k

for all / in L2(ir), and therefore TtT, = Tt+S.

Theorem 12. Let P(t) be a solution of (1.1), (1.2), (1.3), (1.4) such that

(a) for every i and for t^O

£ Pad) S Me°"
)=0

where M is a positive constant and a is a real constant;

(b) The operators {Tt}, t^O, determined by P(t) are positive definite.

Then there is a unique solution xp of the II moment problem with left bounded

support, such that P(t) =P(t; xp). The support of xp is contained in the interval

— a^x< oo.

Proof. Theorem 2 implies that xp, if it exists, is unique.

The operators Kt = e~c"Tt, t^O are positive definite and \\Kt\\ ^M. Letf

be any terminating sequence and form the function

<P(t;f) = <b(i) = (AV,/).

Then <p(t) ̂ 0 for t^O. Using (1.1) and (1.2) it is easily shown that

<b"(t;f) = 4>(f,(A ~al)f).

Thus 4>"(t) ^0, and since (A —al)f is terminating, the argument can be re-

peated. Evidently all the even order derivatives of <p are non-negative on

0^t< oo . Suppose <j>'(ta) >0 for some /0^0. Then <£"(/) ^0 implies<p'(t) ^d>'(t0)

for t^to and

4>(t) = <t>(h) +   \    4>'(r)dr ^(l- toWdo), I ^ to.

Hence <p(t)^> oo as t-> oo . But <p(t) = (K,f,f) ^ M■ \\f\\2. This is a contradiction,

and therefore <£'(/) ^0. Again the argument can be repeated, and it is seen

that all the odd order derivatives of <p are non-positive on 0^/< oo. Conse-

quently <p(0 is completely monotonic on 0^t< oo, and has a representation

p CO

0(0 = I   e-twa)
Jo
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where fi is a positive measure on 0:S£< oo. Since cp and all of its derivatives

are continuous at / = 0, the integrals

/» oo
£»#(*), n = 0, 1, 2, • • •

o

are all convergent. Choosing/ to be the function

(1    if    i = 0,
'«> -i,.„

gives

/» 00

Poo(0 = e-«*(0 =        e-<f-°)'i/3($)
«7o

or

(3.17) Poo(0 =  I    e-*'dxp(x),
J -a

where yp is a positive measure on — aSx< oo with finite moments of all

orders. The representation for the other elements of P(t) now follows by

differentiating (3.17) under the integral sign and using (1.1), (1.2). That yp is

a solution of the moment problem is a consequence of (1.3).

In the probabilistic applications hypothesis (b) of the above theorem is

somewhat unnatural. It should be observed however that when P(t) has the

semi-group property the operators { Tt}, t St 0 form a semi-group of self adjoint

operators and are automatically positive definite;

(Ttf,f) = (7W, Tmf) St 0.

In view of this remark, Theorem 12, and Theorems 2, 4, 5, 9 the following

assertion can be made.

When /io = 0 formula (2.12) establishes abi-unique correspondence be-

tween the set of all extremal solutions of the S moment problem and the set of

all matrices P(t) which satisfy (1.1), (1.2), (1.3), (1.4), (1.5), (1.6).
7. Laplace transforms. The Laplace transform of a matrix P(t) which

satisfies (1.1), (1.2), (1.3) and

| Pa(t) |   S Me<", 0 S t < «>,

where M and a are constants, will be expressed in terms of polynomials. Let

/% CO

(3.18) R(s) =   I    e-"P(t)dt, s > a.
J o

Then
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(3.19) -2 + sR(s) = AR(s) = R(s)A.

The solution of (3.19) leads to the introduction of the sequences of poly-

nomials <2w(x) = {Qnk)(x)}, w, k^O, defined by

(k)

,, _ / <2o  (*) - o, k = 0, 1, 2, • • • ,
(3'20) \-im - xQik\x) = AQ(k\x),

where 8ik) = {5*} and h\ is the Kronecker symbol. For k=0 the polynomials

\Qn\x)\ are the polynomials defined in (2.17). It is easily seen that

(k)

Qn   (x) =- 0 for n ^ k,
(k)

Qh+x(x) = - 1/Xi

and that for n^k + 1, Qn (x) is of exact degree w —&—1. A particular solution

of -I+sR(s)=AR(s) is

Ru(s) = QiD(-s),

and the most general solution of sR(s) =AR(s) is of the form

Ri,(s) = g,(s)Qi(-s).

Hence the most general solution of (3.19) is of the form

Ru(s) = Q(i'\s) + gj(s)Qi(-s)

where

gj(s) = Roj(s).

Since R(s) has the symmetry property

Roj(s) = Rjo(s)tj

= Qj  (-s)ttj + go(s)Q](-s)ir

and it follows that

(3.21) Rij(s) = Qln(-s) + Qi(-s)QT(s)Ti + Q,(-s)Q,(-s)njR0.0(s).

Similar considerations show that the most general solution of

(3.22) sR(s) = AR(s) = R(s)A

is of the form

(3.23) Ru(s) =Qi(-s)Qj(-s)irjRoo(s).
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From (3.21) and the symmetry property of R(s)

Qi" (-s)rt + Qi(s)Qf\-s)ir^i = Q,-°(-5)xj + Qj(-s)QT(-s)^i.

ltj>i, say j = i+n then @,w(— s) = 0 and

(3.24) Qi+n(x)Q?\x) - Qi(x)Q?+\(x) = - ^^ ■
Xi

From the special case of (3.24) with n = 1 we obtain the useful formula

(3.25) -=-Z-;-;—
<2n+l(x) ft=0   \kVkQk+l(x)Qk(x)

Now let xp he a solution of the 5 moment problem and R(s) the Laplace

transform of P(t; yp). Then for 5>0

r Qi(x)Qi(x)
xj , dxP(x) = Ri,(s)

J X + s

= Q?(-s)+Qi(-s)Roi(s)

(;) r Qi(x)
= Ql (s) + Qi(-s)*i     ^di(x)

J     X + s

and therefore

Qi  (s) = xj     Q,(x)-dxP(x).
J X — 5

This equation is clearly valid for all s, and remains valid if xp is replaced by

any measure with the correct moments of orders Si+j — l.

Chapter IV. Truncated problems, ordered families of solutions,

UNIQUENESS THEOREMS, HONESTY OF THE MINIMAL SOLUTION

1. Linear ordering of the extremal solutions. As re—>oo the first zero of

Q„(x) converges to a finite limit £ St 0. If the solution of the Hmoment problem

is not unique, then for each Xo in the interval — oo <x0S^ there is an extremal

solution of the H moment problem with positive mass at Xo. This solution,

xpx<s, has no other mass to the left of £. The following theorem will be proved.

Theorem 13. Suppose the solution of the H moment problem is not unique,

and let — oo <x0<Xi^£. Then

Pu(t; ypxi) S Pu(t; *Xt),       t St 0, i, j, = 0,1, • • •.

Before proving this theorem the order relations between solutions of cer-

tain truncated problems will be studied. For« = l,2,3, • • • and —oo<X<oo,

let
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~ — (Xo + Mo)    »    X0

Ml — (Xi + Mi)     Xi

(4.1) A(n,\) = . '. .

Mn-l     — (X„_l + Mn-l) Xn_!

Un — (X+Mn)_

and

(4.2) P(t;n,\) = e<^»».

P(t;  n, X) is the unique solution of

(4.3) P'(t; n, X) = A(n, \)P(t; n, X),

(4.4) P(0;w, X)=2

where here 2 is the (w + l)-square identity matrix. The behavior of P(t; n, 0)

and P(t; n, Xn) as w—>oo was investigated by Reuter and Lederman (ll].

They showed that P(t; w, X„) converges to the minimal (see below) solution,

and that a subsequence of P(t; w, 0) converges to a solution of (1.1), (1.2),

(1.3), (1.4), (1.5) which is in some cases different from the minimal solution.

For each of these two solutions they established an integral representation.

Let xpn,\ be the distribution of order w + 1 supported by the zeros of the

quasi-orthogonal polynomial

F(X,   n,  X)   =    -   xQn(x)   -    [MnCn-l(x)   -   (X +   Hn)Qn(x)]

= X„e„+i(x) + (X - K)Qn(x).

Then

Pn(l) = *i j" e-x>Qi(x)Qj(x)dU*(x), 0 =2 i, j ^ n

defines a matrix P(t) which satisfies (4.3), (4.4) and hence P(t)=P(t; n, X).

Lemma 5. 2/X*<X then

(4.6) Pij(t;n,\) <Pij(t;n,\*)

for every t>Q and 0<i, j<n.

Proof. Let

ck(\) =   f x*#„,x(x), k = 0, 1, 2, • • • .

The moments c*(X), k^2n are independent of X, in fact they are the correct

moments for the original S moment problem. The moment C2n+i(X) can be

computed from the equation
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0 =   f (-x)nF(x, n, X)#„.x(x)

which is of the form

-1 X
0 = -C2n+i(X) H-c2n + terms independent of X.

XoXi • • • Xn_l XoXl ■ • • Xn-1

Hence c2n+i(X) is a strictly increasing linear function of X. Using the Taylor

expansion of e~xt

P,i(t;n,\) - Pij(t;n,\*) = x,- Je-x'Qi(x)Qj(x)[#„,x(x) - #n,x.(*)]

(-1)< (-1)' {-t)2n+l-i-j

- *i —-:— —-:— ,0    ,   <      :-TT [c2»+i(X) - c2n+i(X*)
X0Xi • • • X,_i X0Xi • • • X,_i (2« + 1 — i — j)l

+ 0rtin+t-i-f)i

with a slight modification if i = 0 or j = 0. Hence

Pij(t; n, X) < Pad; n, X*)

for all sufficiently small positive t. If h, t2 are two positive values of / for which

the inequalities hold then

Pii(h + h; n, X) = £ Pik(tx; n, \)Pk,(t2; n, X)
k

< 22 PikUu n,\*)Pkj(t2; ii,\*)
k

= Pudi + h; n, X*),

and the lemma follows.

The matrix P(t; n, X) is also a solution of

(4.7) P'(t; n, X) = P(t; n, \)A(n, X), and

its elements are strictly positive on 0</<oo. A convergent sequence of

matrices may be obtained by making X depend on w, X=X(w) in such a way

that the distributions ^n,x(n) converge to a solution xp of the H moment prob-

lem, and hence

lim P(i; n, \(n)) = P(l;U-
n—*co

It was pointed out in Chapter 2 that the sequence of distributions of order

w + 1 supported by the zeros of @„+i(.r) converges to an extremal solution. This

solution will henceforth be denoted by ^mi„. Thus

(4.8) lim Pi,(i; n, X„) = Pij(t; Uin)
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for every i,j, and for Re <St0. Reuter and Lederman [9; 11 ], showed that if

£W = {£j(0 } is any solution of

(i)    r(o = ma, t st o,
(2)        Jj(/) St 0, for / St 0 and each j

(1    if   j = i,
(3)   m = i  .. .   •

(0      if     JF^l

then

£jW ?t P,-,-(/; fmin) for 2 St 0 and each /

For this reason P(t; xpmin) is called the minimal solution. When (2.28) con-

verges xpm-,n is supported by the zeros of Qx(x).

The distributions \pn,\(_n) also converge if they all have mass at some fixed

point x0, and if the solution of the H moment problem is not unique the

limiting distribution is the extremal solution with mass at x0. If

x0 = lim £i,„ = £
n—>«

where £i,„ is the first zero of Qn(x), then the limit is again ^mi„.

Proof of Theorem 13. The first zero of F(x, n, X) is the smallest solution

Xo of

Qn+l(x)    ^   i X__

Qn(x) Xn

Dividing (2.25) through by x— y and letting y—»x it is found that

d   Qn+i(x)
- < 0
dx   Qn(x)

if x is real and <2„(x)^0. Since Qn+i(x)/Qn(x)—>+ =o as x—> — oo and —>— oo

as x—*£i,„~, it follows that for each real X, F(x, n, X) has exactly one zero in the

interval — oo <x<£i,„, and this zero x0(X) is a strictly increasing continuous

function of X, with

lim  x0(X) = £i,„,
x->+°=

lim  x0(X) = — oo.
A—*— eo

Now suppose — oo <x0=5? = lim„_0O5i,n. The value X(x0) of X for which i/vx

has mass at x0 is the inverse function of x0(X). By the lemma Pi,(t;n, X(x0))

is a decreasing function of x0. The theorem follows by letting n—* oo .

When the solution of the 5 moment problem is not unique it is convenient

to have a name for the solution with maximal mass at x = 0. It will henceforth

be called ^Wx, although P(t; i/wO is not maximal in the same sense that

P(t\ ypmui) is minimal.
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As X—>+ oo, n of the zeros of F(x, n, X) converga to the w zeros of Qn(x)

and the other zero ij„+i(X) tends to + oo. Since the moments of orders ^2w

are independent of X, the mass 7„+i(X) located at rjn+iQi) vanishes, in fact

7„+i(X)(7,„+1(X))2»-I-^0 as X-+ =o.

Consequently xpn,\ converges to the distribution «^„_i,x„_i supported by the

zeros of Qn(x). The functions e~xtQi(x)Qj(x) are all bounded on 0=Sx< oo and

therefore

lim Pad; n, X) = Pud; n—1, X„_i)
X—>«

for />0, i,j, Sn — 1. One corollary of this is that Pad; n, X„) increases as n

increases.

2. Uniqueness theorems. Necessary and sufficient conditions in order

that there be one and only one solution of (1.1), (1.2), (1.3), (1.4), (1.5) will

now be obtained.

Lemma 6. For s^O

(4.9)        r — -± —!—>
Jo        X+S „=0   X„X„(2n( — s)Qn+l( — s)

where both members may be infinite for 5 = 0. If uo>0 then

/•-  #mta - 1 1
Mo I      - = Mo X, -~ = 1 — hm-•

Jo * n-0   KrrnQn(0)Qn+l(0) »— Qn(0)

Proof. Let xpn be the distribution of order w + 1 supported by the zeros of

<2n+i(x). From (2.17) and (3.25)

/•«     <#„(x)     =    _   Qnll(-S)    =      »      _1

Jo      x+s Qn+x( — s)        k=o \kirkQk( — s)Qk+i( — s)

and since

r°° dxpJx)       r°°
-!-^- = e-"Po,o(f,n,\n)dt

J0        X+S Jo

(4.9) follows by monotone convergence as w—>oo. If po>0 then 22n+i(0) =p0

and hence

r - du,       -      i    r i ii i
Mo  I      - = Mo 2-i-= 1 — lim -•

Jo X tk    22„+1(0) LCn(O) Qn+l(0)l «-..     Qn(0)

Theorem 14. 2/p0 = 0 the following statements are either all true or all false.

(1)  There is only one matrix P(t) which satisfies (1.1), (1.2), (1.3) andwhich

for some M^l satisfies
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n

Z P'i(t)   = M       for all t St 0 and every i, n.
i-o

(2) The solution of the S moment problem is unique.

(3) The series

tU + rP)
n-0 \ AnX»/

is divergent.

Proof. If (3) is false then xpm&Ji has the mass (Zn-o71"")-1 located at the

origin, while fo(dypmi„/x) converges by Lemma 6. Hence i/wx and ypm-,r, are

different and (2) is false.

If (2) is false then Theorems 2, 4, 5 show that (1) is false.

Suppose (1) is false. Let P(t), Pm(t) be two distinct matrices with the

stated properties and let

/. 00

e-"[Pu(t) - P\i(t)]dt, 5>0.
o

Then
" I      2M

2-i Ra(s)   = - f°r aU 5 > 0, and every i, n.
j-0 5

Now from (3.23)

R,i(s)   = Qi(-s)Qj(s)ir,RW(s)

and 7?oo(5o) ^0 tor some 50>0. Hence Qi(-So) is bounded and Zj"=o Qi(~5o)xy

converges. The first of these conditions implies by Lemma 4 that E(1/Xnx„)

converges and the second implies that E71"" converges. Thus (3) is false, and

this proves the theorem.

Corollary. When /io>0 the solution of the S moment problem is unique

if and only if
oo

E x„Q„(0) diverges.
n=0

Proof. Applied to the recurrence formula for the polynomials Qn(x)/Qn(0),

Theorem 14 shows that for the solution of the moment problem to be unique

it is necessary and sufficient that one of the series

00 00 1

E x„(22t,(o),      E-:—
n-0 n-0    X„X„()„(0)(7„+l(0)

is divergent. Lemma 4 shows that the second of these two series is con-

vergent.
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Theorem 15. If po>0 then in order that there be only one matrix P(t) which

satisfies (1.1), (1.2), (1.3), (1.4), (1.5), it is necessary and sufficient that at least

one of the two conditions

(1)  The solution of the S moment problem is unique,

(2) Mo I      -= 1,
Jo x

be satisfied; or equivalently that the single condition

(3) £ (x„ -|-) diverges
o   \ XBx„/

be satisfied.

Proof. Denote by R(s) the Laplace transform of the difference of any two

matrices which satisfy (1.1), (1.2), (1.3), (1.4). Then

Ru(s) = Qi(-s)Qj(-s)irjRoo(s).

If (2) is satisfied then, by Lemma 6 it is seen that Qi(— s)—>oo as i—>oo. But

Rij(s) is bounded as t—> oo and hence Ro.o(s) =0. On the other hand if (2) is not

satisfied but (1) is satisfied then Qj(—s) is bounded as j—-><x> and

OO

£ t"A?j(0) diverges.
J-0

Hence since

00

£ Rii(s)  <   oo

7=0

it again follows that Roo(s) —0. Thus if either of the two conditions hold the

matrix P(t) is unique.

To show that (3) holds if and only if at least one of (1) and (2) hold, ob-

serve first that by Lemma 6, (2) holds if and only if £>n(0)—><», and hence

by (2.4), if and only if ^(1/X„t„) diverges. Thus if (3) is satisfied then either

(2) holds or £x„ diverges and (1) is satisfied. Conversely if (3) is not satisfied

then neither is (2), and moreover £>n(0) is bounded so £x„(}n(0) converges

and (1) is not satisfied.

Now suppose'neither (1) nor (2) is satisfied. Then since (3) is false the

limiting functions Qx, Hx, Q(°\ H® exist. The first zero £ of Qx(x) is also the

first point in the support of ^min. For 0<x0^j£ let xpXlj denote the extremal solu-

tion whose first jump is at x0, and let

., .     r° <am*)
<J>(X0) = Mo   I       - •

Jo x
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It will be shown that cp is continuous, and since <p(l~) <1, that $(x0) <1 for all

x0 sufficiently close to £. Theorem 7 then guarantees that P(t) is not unique.

If ypx„,n is the distribution of order n + l whose first jump is at x0 then

rK  dxpXa,n(y) _ Hn+i(x)Qn(x0) - Hn+i(xo)Qn  (x)

Jo        x — y Hn+i(x)Qn(xo) — H„+i(xo)Qn(x)

Letting n—> oo and then setting x = 0 gives

hT(0)Q„(x0) - H„(xo)qI°\o)
cb(xo)  =   — Ho-

H„(0)Q„(x0) - Ha(x0)Qai(0)

The quasi-orthogonal polynomial Hn+i(0)Qn(x) —Hn+i(x)Qn(0) has a zero at

x = 0, a zero in each of the n — l open intervals formed by the successive zeros

of (Xi(x), and a zero beyond the last zero of Qn(x). Hence the entire function

Hoo(0)Qx(x) — Hx(x)Qx(0) has no zero in 0<x<£, and in fact it has no zero

at x = £ because H„ and Qx have no common zero. Thus </> is continuous on

0<x^£, and the theorem is proved.

3. Honesty of the minimal solution. A matrix P(t) which satisfies (1.1)-

(1.5) is sometimes called honest if

00

(4.10) E 1^(0 = 1, '£ o, » = 0, 1, •••.
j-o

Using (1.6) and the kind of argument found in the remark after Theorem 7,

it is easily shown that if there is a solution of the 5 moment problem with

mass at x = 0, then the solution with maximal mass atx = 0 generates an hon-

est matrix provided p-o = 0. On the other hand, when p.0 = 0 and \pmin is the

only solution of the 5moment problem, the corresponding matrix P(t; ypmin)

may fail to be honest. The analytical aspect of this situation will be examined

and a necessary and sufficient condition for the honesty of P(t; ypmin) will be

given.

Lemma 7. If P(t) is a solution of (1.1), (1.2), (1.3), (1.4), (1.5) such that

for some i

(4.11) E 1^(0 = 1 forallt^O,
j-0

then /io = 0 and (4.11) is valid for every i.

Proof. Let

Ms) =   f   c-"|~l - E Pii(D\dt, s > 0.
J 0 L j=0 J

Then/00 = \fi(s)) is a solution of Af(s) =sf(s) and hence fi(s) = Const. Qi( — s).
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Since ^(5) =0 for some i, it follows that/i(s) =0 for each i and hence (4.11)

is valid for every i. The argument used in Theorem 6 shows that (4.11) can

be differentiated term by term, and for i = Q this gives

CO CO

0 = - (Xo + mo) £ Po,-(0 + Xo £ Pij(t),
1—0 j—0

so that po = 0.

Theorem 16. 2w order that

00

(4.12) £ Pij(t; Ur,) = 1, tz% 0, i = 0, 1, 2, • • •
j-0

it is necessary and sufficient that p0 = 0 and the series

(4.13) £ -£x<
j_o X,-x,- i=o

be divergent.

Proof. Lemma 7 shows po = 0 is necessary. Suppose po = 0 and (4.13) con-

verges. By Lemma 4, Qn(x) converges as w—>°o to an entire function Qx(x)

with QX(0) = 1. The first zero of Qx(x) is positive, say at £ = 2a>0. Conse-

quently ^min has no mass in the interval 0Sx<2a. The polynomials

,  n       Qn(x + a)

Qn(a)

are orthogonal on 0^x< 00 with respect to the measure /3 defined by

p x /» x+a

j   dfl(x) = dxP(x).
Jo Jo

Let

g% co

Pij(t) = x*  I    e-xtUi(x)Uj(x)di3(x)
Jo

where ir* = TnQn(a). Then

QM     *
Pii(f, Um) = tr" —7- Pud),

Qi(a)

and since 0 <Qx(a) <Qn(a) < 1 for every w and £, P*(t) g 1,

22 Pitt;*™) ^^yr
i (?«.(«)

which is less than one for large I. Thus the divergence of (4.13) is necessary.
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Now suppose ju0 = 0 and (4.13) diverges. Defining f(s) as in Lemma 7 we

again have fi(s) = const. Qi( — s). Since (4.13) diverges, (?.(~~5)—>c0> while

fi(s) is bounded as j—> oo. Hence ft(s) =0 for alH and (4.12) follows.

It is interesting to observe that there may be matrices P(t) which satisfy

(1.1), (1.2), (1.3), (1.4) and for which the sums

E Pn(t)
i=o

are bounded uniformly in i and t, but not bounded by one. For example if

Po = 0, and the solution of the 5 moment problem is not unique then for any

OI

P(t) = P(t; xpmi„) + c[P(t; ./w) - P(t; xpmin)\

defines a matrix which satisfies (1.1)—(1.4) but

oo co

E Pa(t) ^ c = lim  E PiM-
j=0 '-*"    j=0

4. Extremal solutions of the second kind. Throughout this section it is

assumed that E7r"+ VXtiX„ < oo . A linearly ordered family of solutions different

from the extremal solutions will now be studied. The solutions in question are

obtained by truncating the matrix A in a different way than was done in §1,

and then passing to the limit. The matrix (4.1) corresponds to a process in

which the particle may disappear permanently after it reaches the final (wth)

state. Variation of the parameter X amounts to variation of the rate at which

this absorption occurs. The method of truncation now considered corresponds

to allowing the particle to return into the system after it has been absorbed.

The parameter which is varied is the length of time the particle remains in the

absorbed condition. By passing to the limit one obtains the transition proba-

bilities of a process which is of the type called "elementary return process"

by Feller [2; 3]. The study of these processes reveals a remarkable new fact

about the Stieltjes moment problem, namely that when the solution is not

unique there is a natural family of solutions xp such that the polynomials

{Qn(x)} together with the limiting function Q„(x) form a complete orthogonal

system in L2(xp).

For the sake of simplicity only the case po = § is treated. Let

— Xo Xo

Mi     — (Xi + pi)    Xi

(4.14)   B(n,p) =

Mn-1      — (X„_l +   Mn-1)       X„_l

P — P     -
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where 0 <p < oo. The state w corresponds to the absorbed condition and the

limiting values p = 0, p= oo correspond respectively to permanent absorption

and instantaneous return. The transition probability matrix of the corre-

sponding process is

Pn(t) = e'B<-n'"K

Although the polynomial

(4.15) Gn(x) = - xQn(x) + u{Qn(x) - Qn-i(x)}

is not a quasi-orthogonal polynomial belonging to the original S moment

problem, it may be viewed as a quasi-orthogonal polynomial belonging to a

new S moment problem generated by a new infinite matrix A * which agrees

with A in the first w rows only. Consequently there is a distribution xpn with

jumps at the w + 1 zeros of Gn(x) such that

/* co

Pn«.i(t) = x* I    e-x<Qi(x)Qj(x)dxpn(x)
Jo

where

x,- = x,- for 0 ^ j g w — 1,

*      un

X„   =   - Xn.

M

This distribution has the first 2w —1 moments prescribed for the original 5

moment problem, but if u^un the moment c*„ of order 2w will be different.

This moment can be computed from the equation

0  =  J     (-x)»->Gn(x)dxPn(x)

which is of the form

0  =   j,(-x)"Qn(x)dxPn(x)   + M j (-x)"~l[Qn(x)   - ^,(x)]#n(x)

= ^    C'\-a f (-x)"-lQn-i(x)dxpn(x)
XoXi • • ■ X„_i J

+ terms independent of u.

Hence c*n is a strictly increasing linear function of p.

Lemma 8. If O^i^n, Ogj^w-1 then for each fixed t>0, P„.ij(t) is a
strictly increasing function of u.

The proof, which is similar to the proof of Lemma 5 is omitted. The
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main difference is that here the result is not true for j = n because x„ has been

replaced by x*.

The mass p* of the distribution xpn at x = 0 is

Pn  =   1   I    Z T* =  V-  /   ( MnXn + P Z 7r* ) •
' *=0 '        \ k~0       /

In order that this have the value l/(jK+ Z^o"-*) where irx > 0 is a prescribed

constant, it is necessary and sufficient that

MnXn

(4.16) p=---

Xm  +   / . TTk

With this choice of p as a function of n, it will be shown that the sequence of

distributions \pn converges to a solution of the 5 moment problem. Replacing

p, by its value as given above,

(4.17) Gn(x)   =   -   xQn(x)  +  Hn(x)   /   (Tx +   Z »*)

which converges uniformly in every circle to

UM(x)
(4.18) Gx(x) = - xQx(x) +-

X«o

when m—»oo . The numerator Gn(x) of G„(x) (relative to the new moment prob-

lem) is given by

_(o> r°> Gn(x)-Gn(y) Jf , ^
Gn   (x) =   I       -dxpn(y)

Jo x — y

and since the integrand is a polynomial in y of degree n it is permissible to

replace xpn by any solution xp of the original 5 moment problem. Hence

(4.19) Gn\x)   =   -   XQn\x)   +  Hn\x)   /   Lx +   Z T*)

and when n—>°° this converges uniformly in every circle to

rr<0V   >,
fO) (0) "oo   (XI

(4.20) Gx(x) = - xQV(x) +-— •
x„

Since Gn(x) has a zero at x = 0, a zero in each of the n — l open intervals formed

by successive zeros of Qn(x), a zero beyond the last zero of Qn(x), and no other

zeros, it follows that Gx(x) has a simple zero at x = 0, a simple zero in each of

the intervals formed by successive zeros of Qx(x), and no other zeros. The

identity
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(4.21) Gx(x)Qx\x) - Gx\x)Qx(x) = -
Tco

shows that Gx(x) and G{T(x) have no common zeros.

Since for each x < 0

r dUy)    gT(x)    gx\x)
I-=->-as w —* oo

J0     x — y        G„(x)        Gx(x)

the distributions xpn converge to a distribution xp and

/•-    dxP(y)   _^Gx\x)

Jo      x - y       Gx(x)

For A>0, n^k,

CA C° c*+i
I    xkdxpn(x) ^ ck, |    xkd\pn(x) ^ ->

J0 J a A

from which it follows that xp is a solution of the original 5 moment problem.

Clearly xp is a discrete distribution supported by the zeros of Gx.

The measure xp will now be written xp(x; ttx) to display its dependence

on Xoo- When the parameter u in the truncated matrix B(n, u) is determined

by the formula (4.16) the corresponding matrix Pn(t) = e<-B(n-"> becomes a

function P„(t; irx) of Xoo. In view of the convergence of xpn to xp

Pud; Hx; t,o)) = Hm Pn-.i.id)
n—>a>

for each i, j and every />0. Since Pn-ti,j(t) is an increasing function of u and

p is a decreasing function of irx the following theorem is immediate.

Theorem 17. For each i, j and every t^O

Pi.id; xp(x; x„))

is a decreasing function of irx on 0 <irx < oo.

As remarked at the end of Chapter II, the entire functions Qx(x), Hx(x)

are of order one and of minimal type, i.e.,

| Qx(x) | , | Hx(x) |   = eW«CI»l>

where 5(|x|) is a generic symbol for a function which is bounded and o(l)

as |x|—>oo. It follows that e~x'Qx(x), e~x'Hx(x), considered as functions on

0^x< oo, vanish at infinity for each t>0. Moreover the sequence of functions

e~xtQn(x) is dominated on Ogx< co by the function e~xtQx(— x) which itself

vanishes at infinity. Hence for t>0 and each j
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/• 00 /» OO

lim tj       e-"Qn(x)Qj(x)dp(x) = x,-       e-x'Qx(x)Qi(x)dxP(x).
n—*ao Jo Jo

Here xp can be taken to be any solution of the moment problem. By a similar

argument

("°                Hn+i(x)                 rx               Hx(x)
lim e~xtQi(x) -dxP(x) =        e~"Qi(x)-—d\P(x),     t > 0.

n-.oo   J 0 — X J0 — X

If x is a point in the support of xp(x; irx) then

0 = txGx(x) = - xQx(x)tvx + Hx(x)

so

„ . .        f-CooWxoo if    x ^ 0,
17oo(x)

(4.22) -— = ( »      \
-x — Qoo(x)x,„ + (i« + Ln if    x = 0.

\ lb-0 /

Consequently for OO

oo r% oo Tf      (nc\

2ZPii(t;yp(x;irx))=lun    \    er*<Q,(*)-^-#(x; x„)
j—o "-• °°  «7 o — x

(4.23) =   f  e'xlQi(x) ^-^ dxP(x; tx)
Jo —x

f* oo

= 1 - x.  I    e-^e,(x)Q00(x)#(x; »,).
•^ o

By a similar calculation, for OO,

CO /«  00 /.CO

(4.24) Z»* I    e"I'(2M(x)e)(x)#(x; xj = 1 - x„  I    e_I'<2M(x)#(*; xj.
j=0       " 0 ^ 0

Since the left member of (4.24) is non-negative

("°   -xl    2
Xoo  I     e     Qx(x)dxp(x; xj ^ 1

Jo

and it follows by monotone convergence as t—>0 that Q00(x)Gl-2(^'(x; x„)) and

f°°    2
xM I    Qx(x)dxp(x; ttx) S 1.

«7 o

This integral is not zero because Qx(0) = 1. The left member of (4.23) is con-

tinuous and has the value 1 at / = 0. Hence

/% 00

(4.25) tx I    Qi(x)Qx(x)dxP(x; *•„) = 0, t = 0, 1, 2, • • • .
J 0



1957] BIRTH-AND-DEATH PROCESSES 537

Thus Qx, Qo, Qi, Q2, • ■ ■ is an orthogonal system in L2(xp(x; wx)). It will be

shown that this system is complete.

Let

00

(4.26) K(x, y) = Qx(x)Qx(y)irx + £ Qk(x)Qk(y)irk.
k=o

This series converges uniformly in every finite square O^x, y^^4<oo. If

Xr^y (2.37) gives

Qx(x)Hx(y) - Qx(y)Hx(x)
(4.28) K(x, y) = Qx(x)Qx(y)*x + V'K - >      x * y,

x — y

and letting x—>y

(4.29) K(y, y) = <?L(y)x„ + Q'x(x)Hx(y) - Qx(y)Hx(y)-

Now suppose x, y are in the support of xp(y; wx) and x^y. Then Hx(z)

= zQx(z)wx for z = x, y and hence K(x, y)=0. If y is in the support of <^(x; irx)

and 7(y) is the mass at y then

„    c?(y) n:\y) - yQ:\y)
(4.30) 7(y) = -=-

Gj(y)      Hj(y)- yQJ(y)Tx-Qx(y)rx

Setting 2200(y)=y@00(y)xoo in the identity (2.38) gives

22oo (y) - yQx (y)xM m ——-

Q»(y)
and hence

1 1

y(y) = QXy)*. + yQ-(y)QJ(y)*. - Q.(y)HJ(yf   K(y, y) '

Thus if x, y are in the support of ^(x; wx)

0       if    x ?± y,

(4.32) K(x, y)=      1
-    if    x = y.
.7(y)

For fixed x in the support, K(x, y) considered as a function of y is therefore

in L2(xp(x; wx)) and for any g in L2(xp(x; irx))

g(x) = f g(y)K(x, y)dxp(y; O = (g, K(x, ■)).
Jo

Moreover the partial sums
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n

Rn(x, y) = Qx(x)Qx(y)irx + Z Qk(x)Qk(y)^k
k—o

considered as functions of y converge in L2(xp(x; irx)) because

n+p oo

\\Kn(x,   ■)   -   Kn+P(x,   -)\\2=      Z   QI(*)t* ̂       Z   Ql(x)Tk
k—n+1 fc=n+l

which —>0 as n—» oo.

Now let g be any continuous function with compact support. Then

/» 00 f% 00

lim (g, K„(x, ■) = lim   |    g(y)Kn(x, y)dxP(y; ttx) =   J    g(y) K(x, y)dxP(y; irx),
n—*ao n—*oa   •-'o •'0

which shows that K„(x,  ■)—*K(x,  ■) in L2(xp(x; irx)). It follows that if g is

orthogonal to Qx and every Qk, then for each x in the support of L2(xp(x; x„))

g(x) = (g, K(x, ■)) = lim (g, Kn(x, ■)) = 0,
Tt—► «

that is g = 0. This completes the proof of the following theorem.

Theorem 18. The functions Qx, Qk,k = 0,l,2, ■ ■ ■ form a complete orthog-

onal system in L2(yp(x; irx)).

The norm of Qx is obtained from

/» oo /» oo

1=Q..(0)=|    K(0,y)Qx(y)d^(y;nx) = lim\    Kn(0,y)Q.(y)<kp(y,Tx)

(4.33)

= t» I   <3oo(y)#(y; xj.
J 0

The entire functions irxG„(x), TrxG°„(x) converge to Hx(x) and H° (x) as

x„—>0, and it is easily shown that xp(x; tJ->xpmBX when trx—>0. When x*,—>0

the functions G„o(x), C7l(x) converge to — xQx(x) and —x<3^(x), and it can be

shown that xp(x; irx)-+ypmin.- These facts will be assumed without giving the

details of the proof.

Define the matrix P(t; irx) for /StO, 0<xM< oo by

(% co

(4.34) Pi,(t; rx) = r, I    e-«Qi(x)Qi(x)d*(x; x„), i,j = oo, 0, 1, • • • .
■lo

For i, j< oo it has been shown that Pi,(t; irx) is a nonincreasing function of

irx for /StO. Moreover if OO and i, j< °o then

(4.35) 1 = V Pir(t;ypmKi) > Z Pt#; xj > Z Pu(t;yp™«),
j<cx> J<oO 7<«3

the inequalities being strict because since the sums are nonincreasing func-
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tions of /, failure of strict inequality for some i*o>0 would imply, for example,

that Pio(t; U&*)=Pio(t; irx) for O^t^to and hence U™=XP(X; ""co) which is

false. Consequently

(4.36) 0 < Pix(t; xM) < 1       for t > 0, i = 0, 1, 2, • • •.

Finally P„ooo(^; irM) is clearly a strictly decreasing positive function of I. Thus

P(t; Xoo) is elementwise strictly positive for />0. It is clear that P,y(0; Too)

= S,v, i,j= oo, 0, 1, • • • , and from (4.23), (4.24),

(4.37) £    Pu(l;irx) = l ioit^O, Ogigoo.
0£ Jgoo

From the above completeness theorem it follows that P(t; irx) has the semi-

group property. This completes the proof of the following:

Theorem 19. The matrix P(t; irx) defined by (4.34) is elementwise strictly

positive for t>0, reduces to the identity matrix for t = 0, its rows sum to 1 for all

t^O, and it has the semi-group property

P,j(t + s; ttx) =    £   Pik(t; irx)Pkj(s; irx).
Og fcjsOO

5. Other methods of passage to the limit. We end the chapter with a brief

discussion of a more general truncation procedure.

Consider the matrix

— Xo Xo

Mi      — (Xi + Mi)     Xi

C(n, X, u) = ■ ■

Mn-l (Xn-1 +   Mn—l)     X„_l

M ~(X+ m)  -

Assume the solution of the 5 moment problem is not unique and let

0 S xo < £ = lim £i,„.
n—*co

Let Too>0 be a given constant. If u is determined by the equation m„t„=pt00

and then X is chosen so that

22„(x0)
X = Xo->

Qn(x0)irx

which gives X>x0=^0 then the unique measure xpn of order w + 1 used in the

representation of e'C(n^'") is supported by the zeros of the polynomial

Gn(x) = (x0 - x)Qn(xo)Qn(x)irx + [Hn(x)Qn(x0) - IIn(Xo)Qn(x)],

and xpn has mass
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1
Pn(Xo) = -;-

^      2 2
2^Qk(xo)irk + Qn(xo)rrx,
*=0

at Xo. When w—>oo the polynomials Gn(x) converge to an entire function

67oo(x), the distributions xpn converge to a distribution xp supported by the

zeros of Gx, and xp has mass

1
Poo(*o)   =  -

00

^—s      2 2

£<2*(X0)XA + (?oo(*o)Xoo

0

at x0. As before the polynomials Qn(x) together with the limiting function

Qx(x) form a complete orthogonal system in L2(xp). Defining an augmented

matrix P(t; x0, wx) in the obvious way one obtains a semi-group of element-

wise positive matrices for which

£   Pud; xo, tm) ^ 1.
OSJSoo

Here however, the equality fails for t>0 if x0>0.

Chapter V. Total positivity of the semi-group solutions

1. The positivity of the matrices P(t; xp) for all solutions xp of the 5 mo-

ment problem played a fundamental role in studying the structure of these

matrices. In this chapter a more general kind of positivity theorem is estab-

lished. It is shown that if P(t) is a matrix belonging to either of the two

linearly ordered families of solutions studied in Chapter IV then the de-

terminants

det (Pin,(t)),

for />0; ti<*'2< • • • <in,ji<J2< ■ ■ • <jn are strictly positive.

In a separate paper the probabilistic meaning of these determinants is

given (for stationary Markoff processes in general). Here we are concerned

with establishing the positivity of the subdeterminants for the special proc-

esses considered.

If C= (dj) is any finite or infinite matrix the ^-square determinant

Ct'lJl     Cijj-j • • • CiUk

CijJl      Cj2/2  ■   '   "   ciUk

C'kii     citi-i ' ' ' Cibii,

will be denoted by
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/iii2 ■ • • ik\

\jiji • • ■ jJ
It will always be assumed that ii<i2< • • • <ik and ji<j2< • • • </*• The

determinant is called a subdeterminant of C and is called a principal subde-

terminant if ii=ji, i2=j2, ■ • ■ , ik=jk-

C is called totally positive (strictly totally positive) if its subdeterminants of

all orders are non-negative (strictly positive). C is called a Jacobi matrix if

Ci, = 0 for |t— j\ >1.

Lemma 9. Any Jacobi matrix whose elements are all non-negative and whose

principal subdeterminants are all non-negative is totally positive.

This is proved in [5, p. 457].

Lemma 10. If C is a finite real Jacobi matrix with off-diagonal elements all

non-negative then etc is totally positive for t StO.

Proof. For given iStO, I+tC/n is totally positive when n is large, by

Lemma 9. The multiplication rule for subdeterminants shows that a product

of totally positive matrices is totally positive. Hence

etc = lim (1 -\-)
n-.=o \        n /

is totally positive.

If xp is an extremal solution of the S moment problem, or an extremal solu-

tions of the second kind, then P(t, xp) is an elementwise limit of matrices of

the form etAn where the An are Jacobi matrices with off-diagonal elements

non-negative. It follows that for any such yp and for /StO the matrix P(t, xp)

is totally positive. It will be shown that these matrices are strictly totally

positive for OO.

Lemma 11. Let xp be any solution of the S moment problem and let t^O. Then

/*i • • • ik\
P(i; +)[.       . ) > o,

Vi • • • Ik/

i.e., the principal subdeterminants are strictly positive.

Proof. The formula

, (ii • • • ik\
P(t; *) (.        . )

\ii ■ ■ • iy

Qn(xi) ■ ■ ■ Qn(xk)   2

= »i, • • • *ik  J   '"'  J     e~(*1+ ""•+It)'    • dxP(xi) ■ • • dxP(xk)

Ogl,<...zt<oo Qik(Xl)   ■  ■  • Qik(Xk)
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shows that if the left member is zero for some t^O then the determinant in

the integrand must be identically zero on the support of dxp(xi) • • • dxp(xk)

and hence the left member is zero for / = 0, which is a contradiction. The result

is also valid for P(t; nrx) with ik= oo.

The next two lemmas are due to Gantmacher and Krein [5, pp. 453-454].

Lemma 12. Let B = (bij) be a totally positive matrix with m rows and n col-

umns, and let l=ix<i2< ■ ■ ■ <iP = m be a set of p row indices beginning with

1 and ending with m. If the rows ix, • ■ • , ip are linearly dependent while the

rows ix, • ■ ■ , ip-x and the rows i2, ■ ■ ■ , ip are linearly independent, then the

rank of B is p — 1.

Lemma 13. Let B be a totally positive mXn matrix and l=ix<i2< ■ ■ ■ <iP

= m:l=kx<k2< • • ■ <kp = n. If

B(k-i>) = 0

\kx ■ ■ ■ kj

while

/ix ■ ■ • ip-x\ /it • • • iP\
B[ 1^0,        23 )^0

\&1 • • •   kp-x/ \k2 ■ ■  ■ kp/

then B has rank p — 1.

Definition.

cf*1"'*)
Vi • • •jJ

is called quasi-principal if £*_i \i,— j,\ Sl.

Lemma 14. If B is a totally positive matrix whose elements are all positive

and whose principal subdeterminants are all positive, then all the quasi-principal

subdeterminants of B are positive.

Proof. An induction on the order p of the subdeterminant is made. The

hypothesis guarantees the case p = l. Assume the result proved for all orders

<p, and suppose if possible that

bC1" "^-0
\*i • • • kj

where the subdeterminant is quasi-principal. Let B* be the matrix obtained

from B by deleting all rows of index <ix or >ip and all columns of index

<kx or >kp. Since

/ h • • ■ iP-i\      n      „/»»••■ * A
B[ )^0^2j( ),

\^! •  •  • kp-if \k2 ■ ■  • kp)
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Lemma 13 shows that B* has rank p — 1. Let h = max (ii, ki). Because of the

quasi-principal property

ii, ki S h S h + p - 1 S iP, kp.

Consequently the principal subdeterminant

th,h+l,--- ,h + p-l\

\k, k + I, ■ ■ ■ , k + p - 1/

of order p is zero, which is a contradiction.

Theorem 20. If xp is an extremal solution of the S moment problem, or an

extremal solution of the second kind, then P(t; xp) is strictly totally positive for

each OO.

Proof. It follows from Lemma 14, Lemma 11, and the fact that Pi,(t)>0

for OO, that all the quasi-principal subdeterminants of P(t, xp) are strictly

positive. Let xp be an extremal solution and

B(t) = P(t;xP)(H''   ' '["), (<>0),
Vi. • • ■ ,Jp/

be a subdeterminant of P(t, xp) and call

V

M = Z I *» - h I»=i

the index sum of B(t). If MSI then B(t) >0. The proof will be by induction

on M. We assume every subdeterminant of P(t; xp) with index sum <M is

positive.

Suppose m>max (ip, jp) and let C(t) be the w-square matrix formed by

the first m + l rows and columns of B(t). If OO, 5>0, then

Z PiAt; yp)Pkh(s; f), • • • , Z P<At; yp)Pkip(s; xp)

B(t + s) =

Z PiAl> *)Pni(*i *).•■■

Consequently

B(t + s)= Z        *«;#)(*'     iP)p(s;xP)(ky     k*)
OS fc!<*2< ■••<*„ \«1   •   •   •   kp/ \Jl   •   '   •   Jp/

6      E     «.)(*'• "!•)<*'(*'"'')■
0sfci<---<*pS"> \*i  •  '   •  «p/ \Jl '  '   - Jp/

Now when the index sum of B(t) is M>1, there is at least one term in the

above sum for which both factors have an index sum <M. This term is posi-
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tive, all other terms are non-negative, and hence B(t+s)>0. With minor

modifications the same method can be used when xp is an extremal solution

of the second kind.

The next theorem is a slight extension of a theorem of Loewner [10] on

totally positive matrices.

Theorem 21. Let P(t), O^Ktobe a family of totally positive matrices which

is elementwise differentiable with respect to t at t = 0, and for which P(0) =2. If

all subdeterminants of P(t) of orders 1 and 2 are non-negative then the infinitesi-

mal matrix P'(0) is a Jacobi matrix.

Proof. Let

,.     Pa(t) .      .
au = hm-, i j£ j,

i^o      t

,.   Pu(t) - i
an = Irm-•

«->o t

Uj>i + 1,

(    i        i+l\
0 S P(t)    .   ,   , .        = - aut + o(t),

\i + 1       j    /

and from a,y^0 it follows that a<y = 0. If j<i — 1 a similar argument shows

that a,-,- = 0.
2. Variation diminishing properties. A sequence x= {x,} is said to have

a change of sign at k if xkXj<0, where j is the first index >k for which Xy^O.

It will be shown that when P is a strictly totally positive matrix and x = \xj\

has exactly w changes of sign, then y = Px has at most w changes of sign.

The matrix P=(Pa) is first extended so that i becomes a continuous

variable. P = (Pa.j) is defined by

Pai = ePu + (1 - 6)Pi+Uj

where

a = di + (1 - 6)(i + 1), 0 g d g 1.

The extended matrix is still strictly totally positive in the sense that if

ax<a2< • • • <an, jx<j2< • ■ • <jn and if no half-open interval i^a<i + l

formed by two consecutive integers contains more than one of the a,-, then

p(au   "'*")> 0.

Vi, • • •, jJ

This can be seen by expressing the determinant as a convex combination of

the 2" determinants
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/;/,•• •, <„\

Vi, • • ■ , jJ

where i'y is either i, or t',+ 1.

Suppose x= {xy} has exactly k changes of sign. Let

y(«) = Z Pai*,-
j

It is assumed that either P is elementwise bounded and Zj \x,\ < °° or

that x is a bounded sequence and Zj -f«y< °° f°r each i. The numbers x, can

be divided into groups

Xi, X2, *    ■ , xVl;        xVl+i, xVljr2, •    • , Xy2; • ;        xVft+i, xVk+2, * • •

so that the elements of the first group are, say, all ^0, the second group all

StO, the third group all SO, etc., and so that each group contains a nonzero

element.

The function y(a) can be expressed in the form

k+l

y(<x) = Z erCar
r=l

where

'r

r    =     Y    P -I x-l
j-Vr-i+1

and ei= — 1, «r= —67—1. Now if ai<a2< ■ ■ ■ <ak+i and no two of the a, are

in the same half open interval iSa<i + l, then det (Ca„r) can be expressed

as a positive linear combination of the determinants

p/ai-ak+i\

\ji ■ ■ ■ jk+J

with at least one nonzero coefficient. Hence det (C„„r)>0 and y(a) cannot

vanish for each of the values a = oa, • • • , cxk+i. On the other hand y(a) is

linear in each of the intervals iSctSi + l- Consequently the sequence y = Px

has at most k changes of sign. This proves the following.

Theorem 22. If P = (Pt,(t)) is a strictly totally positive solution then the

transformations

Ji = Z Pu(t)xj, u, = Z P,i(t)Vi
i i

of lx to lx and h to h respectively, are sign variation diminishing.

For the first of these transformations a sharper result can be established

when Z;' PijiO—l', namely, if x,=X for at most k values of j then j,=X for
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at most k values of i. These properties strongly spell out the diffusive nature

of the process. The results of this section should be compared with the cor-

responding variation diminishing properties possessed by convolution trans-

formations defined by means of Polya frequency functions ([15], see also

[16 Chap. 4]).
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