CONTINUOUS MAPPINGS INTO NONSIMPLE SPACES

BY
J. DUGUNDJI

1. Introduction. This paper deals with the homotopy classification of the
continuous maps of a space X into a nonsimple space Y. This problem has
been previously discussed by Olum [3], but his approach differs considerably
from the one to be presented. Essentially, we first reduce the question to
one of classifying certain types of maps into simple spaces, and then use the
known apparatus; it is felt that considerable simplification in treatment is
achieved.

The procedure used here is the following: Replace X by a suitable covering
space X and Y by its universal covering space ¥. For each homomorphism &
of the group W of deck-transformations of X into that of ¥, take W as oper-
ators on X and, through %, on ¥; split the continuous maps of X into ¥
equivariant with respect to these operators into equivariant homotopy
classes. The set of classes so obtained, for all &, bear a definite relation to the
homotopy classes of the base spaces, so that the problem is reduced to the
classification of equivariant maps into a space simple in all dimensions. The
classification scheme and theorem of Eilenberg [2] are shown to go over com-
pletely for the equivariant maps considered (even with proofs formally un-
altered) whenever X is a polytope. It follows from this that Eilenberg’s
technique for simple ¥ has a purely mechanical generalization for maps into
nonsimple spaces, the only additional requirement being that the set of
homomorphisms m1(X)—m(Y) induced by continuous maps of X into Y be
known. In similar fashion, the generalization by Olum [3] of the Eilenberg
scheme for maps of arbitrary X, when given for simple ¥ formally generalizes
to apply to the nonsimple case.

The paper is divided in three parts. Part I deals with covering spaces, and
with the existence, homotopy, and extension properties of equivariant maps;
an important role is played by a condition under which a covering space of a
subset A CX can be embedded into a covering space of X in such a way that
the image still covers 4. In Part II, the relation between the equivariant
homotopy classes of maps of suitable covering spaces and the homotopy
classes of the base spaces (both the relative and free homotopy cases) are
given. Part III shows the Eilenberg procedure and theorem formally valid
for the equivariant maps arising in Part II. Two simple applications, for
illustrative purposes, are given in this paper.
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I. COVERING SPACES

2. Notation and preliminaries. All spaces considered here will be Haus-
dorff, arc-connected, locally 0-connected, and semi-locally 1-connected().
Paths are denoted by small Greek letters; a + 3 is the path

a(21) 0=t=1/2,

=+P0 {B(Zt -1 1251
and o~ 1(¢f) =a(1 —t). The element of the fundamental group mi (Y, ¥,) repre-
sented by ais written(2) [a]. If ¥ is a path from yoto y1, ¥+: m1( ¥, y1) =71 Y, y0)
is the isomorphism (onto) ¥*[a]= [y *a*y~!]. The homomorphism m (X, x)
—m1(Y, yo) induced by a (continuous) (}) map f: (X, xo)— (Y, y,) is written f*.

Let yo&€ Y be fixed. ¥(®) denotes the covering space of ¥ corresponding
to the subgroup @ Cmi (Y, y0) and py: ¥(®)— Y the projection.

2.1. In all future considerations, base point for the fundamental group of
¥(®) will be a point 5,&p~(yo) such that p§ maps (¥ (®), ¥,) isomorphi-
cally onto ®.

The following implications of the covering homotopy theorem [6, p. 54]
are frequently used:

2.2. Given §& ¥(®) projecting to a point on aC Y there is exactly one
path @aC ¥(®) projecting onto « and going through #.

2.3. If the paths o, 8 in Y are equivalent (written: a~f3) any two coinitial
covering paths are coterminal and equivalent. For « starting at y,, #(a) de-
notes the endpoint of that covering path in ¥(®) starting at the #, chosen in
2.1,

An f: X(@)— V(®) is said to cover an f: X—Y if fpx=prf. As a trivial
consequence of 2.2:

24. If f, f': X(@)— ¥ (®) both cover f: X— VY, and if f(z) =f'(z) for some
%, then f' =f.

N(®) will denote the normalizer(*) of ® Cmi(Y, v0). The group of deck-
transformations(®) of ¥(®) is isomorphic to N(®)/®. The deck-transforma-
tion Dy corresponding to dE N(®)/® will always be taken to be the map
Dy(5) =5(8 » pr#) where [8] is a representative of d and 7 a path from , to 7.
Note that Dd*d'(y) =D4(Ddl(}~’))

3. Equivariant covering maps. Let @ Cmi(X, x0), BCmi(Y, vo) be fixed
subgroups, and fix base points %, 7, in X(@), ¥(®) according to 2.1.

(*) Each point has a nbd ¥V such that any closed path in V is homotopic to a constant in X,
keeping the endpoints fixed.

(®) The (multiplicative) group operation in m is also denoted by “* ”.

(®) All maps are continuous unless explicitly stated otherwise.

(*) N(®) is the largest subgroup containing ® in which ® is normal.

(%) Also called “covering transformations,” “deckbewegungen.”
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Let £: N(@)/@—N(®)/® be a homomorphism. By associating with each
dEN(@)/G the deck-transformation D4 of X(@) and Dss of ¥(®), N(Q)/@
will be regarded as a group of operators(®) acting on both X(@) and ¥(®).
N(@)/@ operates effectively and fixed-point-free on X(@), but is not neces-
sarily transitive on the fibers.

An f: X(@)— ¥ (®) equivariant(?) under the action of N(@)/@ on X(@)
and, through a specified k: N(@)/@—N(®)/® on Y(®), is called h-equi-
variant. In at least one case, an k-equivariant map is always a covering map:

3.1. If @ is normal, any h-equivariant f: X(@)— ¥(®) covers an f: X— Y.
For in this case, N(@)=m(X, x,), so the operators are transitive on each
fiber; the formula f(x)=pyf(%), £€px'(x) therefore defines f(x) uniquely,
and its continuity is immediate.

A necessary condition for the existence of k-equivariant covering maps is

3.2. THEOREM. Let h: N(Q)/Q@— N(®)/® be given, and let the h-equivariant
f: (X(@), %0)—= (Y (®), 5()) cover an f: (X, x0)—(Y,y). Then otft: (N(@), Q)
—(N(®), ®) and h=h(a*ft), where h(atf*) is the homomorphism N(G)/Q
—N(®)/® induced by ot f*.

Proof. Let [6]EN(@) represent dEN(Q@)/@ and [u] EN(®) represent
h(d). Since Dg4%, can be joined to %, by a path covering 8, it follows from 2.2
that fDa%o=45(a+f8). By equivariance, #(af8)=Dssf(%0)=5(u+*a) so
a*fd+a~ '+ ! represents an element of ®. Both conclusions follow immedi-
ately.

The condition given in 3.2 is also sufficient:

3.3. THEOREM. Let f:(X, x0)—(Y, y) be given. For each path o from yo to y
such that atf*+: (N(@), @)—(N(®), ®) there is a unigue h(atft)-equivariant
fa: (X(@), %0)—(Y(®), F(a)) covering f. Furthermore, fa=fs if and only +f
[axp]E®.

Proof. Existence of f is well-known: the covering map is defined by
F(%) = §(a + fpxE) where F is a path in X(@) from %, to %, independence of the {
used coming from atf*@C®; continuity results from that of f, px and the
local homeomorphism property of py. To prove equ1var1ance, let [6] repre-
sent dEN(®)/@ and let £ run from &, to &; then fDs%=j(« *f& «fpxE). Since
[u]=[a+fé+a~!] represents h(atft)(d) and since o+ f3 «fpxE~uxasfpxt,
2.3 shows fDa% = §(u * & * fpxE) = Daaf (%) establishing equivariance. The final
conclusion results from 2.4 and the observation that [a+ 8] E® is equivalent
to y(a), ¥(B) coterminal.

3.4. ReEMARK. Notice that a*ft@C® alone suffices to prove existence of

(% A multiplicative group W operates on a space Z if for each w& W there is given a
w: Z—Z such that wyw,(z) =ws(wy2) and 1z=z for every wy, w2 & W, z& Z. If each w1 has
no fixed point, W acts fixed-point-free; if wz =z for every zimpliesw =1, W operates effectively;
if for each pair 2o, 21 € Z there is a w with w(2o) =21, W acts transitively.

(") If W operates on X and Y, an f: X—Y is equivariant if f(wx) =wf(x) for all x € X,
wE W.
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the covering map. Note further that atft: (N(@), @)—(N(®), ®) follows
from the condition a*f+@C® whenever either (1): ® is normal, or (2):
atft@=@®. This will be used later.

4. Equivariant covering homotopies. Let @ Cmi(X, x0) be given, and iden-
tify X with the subspace X XOCX XI. Since the injection i+:m(ZXO,
20X 0)—>m(ZXI, 20X0) is an isomorphism onto for any arc-connected Z,
it follows that the covering space of X X I corresponding to 4@ can be taken
as X(@) X I, with projection pxx1(Z, t) = (px(%), t). The covering space X(@)
can therefore be identified with the subset X(@) XO. As for base points, note
that p¥(m(X(@), %)) =@ implies pF,;(m(X(@)XI, %XO0))=1+*@ so the
point %, X O satisfies 2.1 for both X(@) X0 and X(@) X I, whenever % & X (@)
does; it will be used as base point. Since i+ induces an isomorphism N(®)/G
~N(1+@)/i*@, N(@)/Q can be regarded as the group of deck-transformations
of X(@) X I, the transformation corresponding to dE N(@®)/@ being D;+a(&, t)
= (Da(%), t).

4.1. THEOREM. Let h: N(Q)/Q@—N(®)/® be given, and let f: (X, xo)— (Y, ¥)
be covered by an h-equivariant f: (X(Q), %))—(¥(®), j(a)). Then:

4.11. Any homotopy ¢ of f can be covered by an h-equivariant homotopy ¢ of 1.

4.12. If ¢ is a homotopy rel A, then & is rel px'(A4).

4.13. If p is the path u(t) = (xfet) in X X1, then §(29X1) = F(ot ).

Proof. Since ¢+it=f*+ and N(it@)=:*N(@), it follows that at¢+(i+@)
=atft@, and at¢pt(N(i*@)) =atf+N(@). Using the identifications mentioned,
and applying 3.2, 3.3, ¢ is covered by an h(a*¢+)-equivariant ¢: X(@)xI
—P(®). For dEN(Q)/Q, h(ate™) (t+d) =h(a*f*)(d) = h(d) according to 3.2,
so the h(a+¢+) -equivariance of ¢ yields ¢(Duz, t) =¢D; +d(x, t) = Diatp(%, 1)
showing ¢ is k-equivariant. Finally, é| #(@) X0 =7, since (&, 0) =f(#) by
choice of base point and construction, and 2.4 applies. 4.12, 4.13 are immedi-
ate.

4.2. REMARK. If @ in 4.1 is normal, 4.11 has the converse: any h-equi-
variant homotopy rel px'(4) of f projects to a homotopy rel 4 in Y. This is
immediate from 3.1.

The path traced by the image of x, during the homotopy ¢ in 4.1 deter-
mines ¢(%, 1). In case X is a polytope(®) it will be shown that the given f
can be deformed in such a way that ¢ (&, 1) is a specified point in Py 'd(x0, 1).
Stated fully,

4.3. COROLLARY. Let X be a polytope, h: N(@)/@—N(®)/® a homomor-
phism, and f: (X, x0)—(Y, y) covered by an h-equivariant f: (X(@Q), %) —(¥(®),
J(a)). Then there is a g: (X, x0)—(Y, o) homotopic to f and an h- equwanant
g: (X(@), %)= (Y (®), Fo) covering g such that a homotopy of f to g is covered
by an h-equivariant homotopy of f to g.

(®) By a polytope is meant an arbitrary simplicial CW complex; cf. [7, p. 223].
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Proof. Define ¢: X XOUx¢XI—Y by

¢(x, 0) = f(=),
o(x0,8) = a(l — ).

Since X X O0\Ux,X I is a retract of X XTI [2, p. 234], ¢ extends over X X I. Set

g(x) ¢(x 1). By 4.1, the homotopy ¢ is covered by an k- equlvarlant homo-
topy & of 7. Since @ (%o, 1) = F(ow » p) = F(a + @) = Fo, (%) = (%, 1) is the de-
sired map.

5. Embedding of covering spaces and equivariant covering extensions.
Throughout this section, 4 CX will denote an arc-connected locally 0-con-
nected and semi-locally 1-connected subset of X. The question considered is
that of embedding a covering space of 4 into a covering space of X in such a
way that the image will project(®) onto 4. Base point for the fundamental
groups of 4 and X will be at an ¢€EA4.

5.1. THEOREM. Let ACX and let i: (4, ao)—(X, ao) be the injection. Let
ACT(4, ao) and ®Cmi(X, ao) be subgroups with G=1i+""(®). Then there is
a unique homeomorphism(?®) i: (A(@), do)—(X(®), ad) covering 1. If ACX
is closed, so also is TA(Q) in X(®).

Proof. The existence of 7 covering ¢ is immediate(!!) from 3.4. That
74(@) is closed in X(®) whenever 4 is closed in X is a consequence of the
existence of 7: to show &34 (@) has a nbd not intersecting 74 (@) it suffices
to consider only the case px&=aEA because 4 is closed. Select a nbd U (%)
of # on which px is a homeomorphism, and let U=pxU. Since 4 is locally
0-connected(1?) there is a nbd V in X with a€VNACUNA and any two
pomts in VN4 can be joined by a path in VNA. The set U(2)N\px'(UNV)
is open, contains %, and is easily seen to contain no point of iA(@). To prove
7 is a homeomorphism, it is sufficient to show 7 is 1 —1; the bicontinuity will
follow because ¢ is a local homeomorphism. Let &, a,; since ¢is 1—1 and?
covers i,only the case p4@ = pad; need be considered. Let paths £, run from, to
@n, n=1, 2; the path p41« paf; ' isclosed at a, and since it is not covered by
a path closed at &, from 2.1, 2.3 follows that it can not represent an element
of @. Because G =1+""(®), ip41+* ipafs does not represent an element of ®, so
when lifted to @, will not be closed. Thus #(a;) = §(ipf1) = J(ipats) =1(ds) and
the theorem is proved.

(®) The embeddmg of §4 is a special case of this more general result.

(19) @, ao are base points in A4 (@), X (B) fixed in accordance with 2.1.

(11) The hypothesis @ C +(®) clearly suffices to give existence of a covering . However,
because @ may be “too small,” 7 need not be a homeomorphism. Example: 4 =5!C E*=X and
G, ®=1.

(12) Recall that the following two formulations of local O-connectedness are equivalent:
For each x and nbd U D) x there is a nbd V' C U of x such that any two points in V can be joined
by a path in (1): U, (2): V.
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The case that ® is precisely the image of @ is of importance because there
is also an 1somorph1c embedding of the group of deck- transformatlons of
A(@) into that of X(®). Precisely,

5.2. THEOREM. Let ACX be closed and i: (4, ag)— (X, ao) the injection.
Assume @Cmi(A, ao) is such that i+ (+@) = Q. Then

5.21. A(Q@) can be embedded as a closed subset in X(i*Q) which projects
onto A by px;

5.22. N(@)/@ can be embedded as a subgroup in N(1*@)/ita hence can be
regarded as a group of operators acting effectively as deck-transformations in
X(@+@);

5.23. A(@)CX(i+Q@) is stable(*®) under the operators N(@)/@ in X(i*@).

Proof. Ad 5.21: See 5.1.

Ad 5.22: Since i+ 7'(i+@) = @, i*: (N(@), @)—(N(+@), i+@) follows from
3.4, and that the induced k(:t): N(@)/@—N(it@)/i*@ is an isomorphism
into from the Noether isomorphism theorem. Identifying N(®@)/@ with
h(#H)[N(@)/@), the deck-transformation of X(s*@) which corresponds to
dEN(Q)/Q is Duiihya

Ad 5.23: By 5.22 and 3.2, 7 is h(st)-equivariant.

The identification of 5.2 leads to an extension theorem:

5.3. THEOREM. Let A CX be closed, i: (4, ao)—(X, ao) the injection, and
ACm(A, ao) such that G=14+"'(i+@). Let ®Cmi(Y, y,) and h: N(@)/Q
—N(®)/® be given. Assume f: (A, ao)—(Y, y) is covered by an h-equivariant
f: (A(@R), 8o)—(¥(®), 5(c)) and let F be an extension of f over X. Then:

5.31. f has an extension F covering F.

5.32. If it is onto, then h(i*): N(Q)/@~N@i+@)/i*@ and F is h-equivari-
ant(*).

5.33. If ® is normal, k is extendable to an h: N(i*@)/it@G—N(®)/® and
F is h-equivariant.

5.34. If i*@ is normal, and h fixed, any two h-equivariant extensions of f
coincide on px'(A4).

Proof. Ad 5.31: Since atft@C® by 3.2, and at F+i+@ =a*f* @, the existence
of a covering F results from 3.4; 2.4 applied at %, shows F an extension of f.

Ad 5.32: Because ¢t is onto and maps @ onto ¢t @, it also maps N(@Q) onto
N(i*@), hence £(it): N(@)/@ = N(i*@)/i+@. From atF+N(itQ@) =atFtit N(Q)
=atftN(@Q), F is h(a*Ft*)-equivariant. Recalling that dEN(@®@)/@ has been
identified with A(st)d and observmg that h(atFH)h(it)d= h(a+f+)d k(d),
the h(a*F*)-equivariance of F shows FDj+a=DsF, proving F is in fact k-
equivariant.

(1) If X has operators W, 4 C X is stable if wA C A for every w & W.
() Note that 4.1 appears as a consequence. Since somewhat less was involved in 4.1, its
proof was given separately.
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Ad 5.33: By normality of ®, N(®)=m(Y, y,) so that the condition
atF+: (N(it@), 1tQ)—(N(®), ®) is trivially satisfied. Taking k=h(atF*),
3.3 shows F is k-equivariant; that % is an extension of % follows as in 5.32.

Ad 5.34: The deck-transformations are transitive on each fiber in X(i*@),
so any point in px'(4) is the image of a point in 4(@); equivariance gives the
desired equality. '

5.4. REMARK. It is not difficult to see that 5.31 has the following im-
mediate consequence: If 4 is a retract of X (recall that ¢+ is then an iso-
morphism into) then for any @Cmi(4, ao), A(®) is a retract of X(s+@), the
retraction being equivariant under N(Q)/@ acting on A(@) and X(i*@).
This slightly generalizes [5].

II. REDUCTION OF THE ENUMERATION PROBLEM

Let A be a subset of X and F: X—Y a fixed map. Let YX(4, F) be the
set of all (continuous) maps f: X— ¥ satisfying f‘ A= FI A and(*®) divide this
set into homotopy classes rel 4, two maps being in the same class if and only
if they are homotopic rel A. The enumeration of these classes will be shown
reducible to an enumeration of equivariant homotopy classes of maps of a
suitable space into one which is simple [6, p. 87] in all dimensions.

6. Classification in YX(x,, yo) rel xo. Let X, ¥ be the universal covering
spaces of X and Y, and let x, o, ¥0, o be fixed base points in these spaces
For each homomorphism k: (X, x,)—m (Y, y0), denote by F(k) the set of
all h-equivariant maps f: (X, %)— (¥, ); it is possible that some of these
sets are empty.

6.1. THEOREM. Let S denote the set of all distinct pairs (h, C) where h is a
homomorphism (X, xo)—m (Y, yo) and C an h-equivariant homotopy class(*®)
rel %o in F(h). The homotopy classes rel xo in YX(xo, yo) are in 1-1 correspond-
ence(V) with the elements of S. For fixed h, the subset (k, C) is in 1-1 correspond-
ence with the homotopy classes rel xo of {fE YX(xo, yo)|f+="1}.

Proof. Observe that any two f, g&€ YX(xy, yo) with f+sg+ can not be
homotopic, since two maps homotopic rel x, induce identical homomorphisms
m1(X, x0)—mi(Y, ¥0). The theorem therefore reduces to determining, for each
given %, the homotopy classes rel xo in M = {fE ¥X(x,, yo)|f+ k}. By 3.3,
each fE M is covered by a unique fE5 (k) and conversely, from 3.2, 3.1, each
fEF(h) covers an fEM. According to 4.1, 4.2, f~~g rel x, if and only if fis
h-equivariantly homotopic to g rel &,. The theorem follows at once.

7. Classification in YX(4, F) rel 4, A#J. A is assumed arc-connected,

(%) A may be the null set, &. YX(, F) is written simply Y¥X; if A consists of a single point
%o, the symbol YX(xo, ¥0) is used.

(1) And hence rel py (xo) according to 5.34, 4.1.

(17) A definite correspondence is constructed in the course of the proof.
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locally 0-connected, and semi-locally 1-connected. Base points for the funda-
mental groups in 4, X and Y are at o€ 4 and y,S F(a,) €Y.

Let X be the kernel of (FIA)+: m(d4, ao)—m(Y, ¥o), let € be the center
of m(X, a0), and let 7+: m(4, ao)—>m1(X, ao) be the injection. The group

L=%xNit"(C)
clearly depends only on X, ¥, 4, and F.

7.1. LEMMA. ©+& is a central normal subgroup of m(X, ao), i+ '(i+€) = £
and £ is a normal subgroup of m(4, a.).

Proof. The first statement is obvious, and the last an immediate conse-
quence of the second. Since £Ci* '(i+£), only the converse inclusion need
be proved. Let a©i+7'(4+£); then i*a=1+b for some b€ XM+ (€). Since
bEX, (F|A)*a=F+ita=F+itb=(F| A)*b=1 shows a€X; from bCi*+™'(€)
follows ita €@, hence a Ei+7'(€) also.

As permitted by 5.2, A(£) will be regarded as a closed subset of X(i+£)
and m(4, a,)/ £ as a subgroup of m (X, ao)/i*£. Base point in A(£), X(i+£)
iS doep}l(ao).

Let ¥ be the universal covering space of ¥, 5,Epy'(yo) a definite base
point, and k: m(4, ao)/£—m(Y, yo) the homomorphism induced by (F ]A)*'.
The map f=F ] A is covered by a unique h-equivariant f: (4(£), do)— (7, 7),
(3.3). -

For each extension % of & over m(X, ao)/i*£, let F(k) be the set of all
k-equivariant maps X (i+£)— ¥ coinciding with f on 4(£); some of these sets
may be empty.

7.2. THEOREM. Let S be the set of all distinct pairs (k, C) where h is an ex-
tension of h over m(X, a,)/itL, and C is an h-equivariant homotopy class
rel A(£) in F(k). The homotopy classes rel A in YX(4, F) are in 1-1 cor-
respondence with(") the elements of S.

Proof. For each g&YX(4, F) there is a corresponding (5.33) couple
(k(g?), ) where h(g*): mi(X, ao)/itL—m(Y, yo) is an extension of & and §
is an k(gt)-equivariant covering map for g. By 3.3, 3.1, this corresondence
is 1-1. Note that if g~g' rel A(£) equivariantly in any manner (operators
m(X, ao)/it£) then (5.34) g~g' equivariantly rel px'(4) so (4.12) g~g’
rel 4 and, as in 6.1, k(gt) =h(g't); couples with distinct k(g*) therefore can-
not be equivariantly homotopic. If A(g*) is fixed, the equivalence of g~g’
rel 4 and g~g’ rel A(£) h(g*)-equivariantly follows from 4.2, 4.1. The theo-
rem is proved.

Observe that if 4 =x,, this reduces to 6.1.

8. Classification in Y7, free homotopies. Throughout this section, P is a
polytope, P, ¥ are the universal covering spaces, and po, po, ¥o, 7o base points
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in the spaces involved, fixed throughout the discussion. The following lemma
plays a central role:

_ 81, LEMMA.~ Let h:m(P, po)—mi(Y, vo) be a given homomorphism, and
1, &: (P, po)— (Y, Fo) h-equivariant maps covering f, g: (P, po)—(Y, yo) respec-
tively.

8.11. For any c belonging to the centralizer(*®) Z(h) of h(mi(P, po)) in
(Y, o), D.f is h-equivariant.

8.12. f~g if and only if f is h-equivariantly homotopic to D.§ for some
cEZ(h).

Proof. Ad 8.11: From c+k(d)=h(d) +c for every d&m (P, po) follows
D,DM=D;.¢D¢. Since fDd=thf one ﬁﬂdS DJD4=DMDJ.

Ad 8.12: An h-equivariant homotopy of f to D.g covers (3.1) a homotopy
of f to g. Conversely, any ¢: fo~g is covered (4.1) by an k-equivariant homo-
topy of f, and (4.13) &(Bo, 1) =5(c) where a=gp. Since ¢| P X1 covers g and
sends $o to D%, and since Dy does the same, 2.4 shows $| BPx1=Dz.
Finally, from h-equivariance of § and Dqg 3.2 gives gt =h and atgt=h,
showing [a]EZ(h).

Denote by {8} the set of classes of conjugate homomorphisms m:(P, po)
—mi(Y, yo) and in each conjugacy class 0 select a definite homomorphism .
Let F(hs) be the set of all hg-equivariant f: P—¥ (some of these sets may be
empty) and let {C(hs)} be the set of hs-equivariant homotopy classes in
F(hg).

For each fixed kg, Z(hs) is taken as a group of operators on {C(h,)} by
setting

©) = {Element of {C(he)} represented by D.f
T where z & Z(kq) and f represents C.

The operation is legitimate because of 8.11, and because z(() is independent
of the representative f selected in C. Let {R(ha)} be a system of representa-
tives for this operation: every element of {C(hs)} is the Z(hs)-image of
exactly one R& {R(hg)} under possibly many z.

8.2. THEOREM. Let S be the set of all distinct pairs (hs, R) where R is an
element of {R(ha)}. The free homotopy classes of maps in YF are in 1-1 cor-
respondence(V) with the elements of S.

Proof. For each couple (ks, R) there is, by 4.3, a representative hg-equi-
variant fie: (P, po)— (¥, 50); let (3.1) fru, be the map it covers. (a): No two
distinct frs, are homotopic. This is certainly true if the kg are different, since
(3.2) fie=he and homotopic maps induce conjugate homomorphisms. As-
suming the ks the same, frap™2fr's, gives (8.12) frag=D fr:1, for some ¢S Z (ks)

(18) The centralizer Z(@®) of the subgroup @ in Y is the set of all g& Y satisfying ag=ga
for every a € Q. Z(Q) is a normal subgroup of N(Q@).
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contradicting that the {fzs,} are a system of representatives. (b): Each
f: P—Y is homotopic to some fri,. By 4.3 one can assume f: (P, po)—(Y, yo).
Let kg be the representative chosen in the conjugacy class of f+; from 3.2 there
is an hs-equivariant fEF (hs) covering f; the homotopy class of f being repre-
sented by D.frs, for some ¢, R, one has f~ fgs,. The theorem is proved.

8.3. REMARK. By using 4.3, observe that instead of operating on the
classes {C (k) } one can operate only on the hs-equivariant classes rel §, of
he-equivariant maps f: (P, po)—(¥, %o); details are omitted.

III. CLASSES OF EQUIVARIANT MAPS

In II, the classification problem for YX(4, F) was reduced to one of equi-
variant maps of regular(!?) covering spaces. A classification theorem analo-
gous to that of Eilenberg [2, p. 243] will be obtained for such maps. It will be
seen that his procedure carries over rather mechanically to the relative
homotopy case; knowledge of his paper, or of [6, §§32-34] is assumed.

9. Classification theorems. In this section, P is a polytope, and QCP a
fixed subpolytope. P= P(Q@) is a regular covermg space, Q #71(Q), and ¥
is the universal covering space of Y. Base points in P, P are fixed at a definite
g0 € Q and §o € p7Y(qu), and in ¥, ¥ at y,, o € P, (y0). The group W
=mi(P, go)/ @ is the group of deck-transformations of ? acting also as deck-
transformations in ¥; observe that the operators W in P consist only of
simplicial maps. By a system of representatives for the n-simplexes of P is
meant a collection {3»} of n-simplexes of P such that every n-simplex of P
is the W-image of exactly one S* under exactly one w& W; since P is regular,
distinct S* project to distinct simplexes in P and the union of the projections
of the closures is the n-skeleton P* of P.

9.1. LEMMA. Let f: 0— ¥ be equivariant(*®). Then f has an equivariant ex-
temsion over QU P2, Consequently for any two equwarumt F,G: P—-7Y satisfying
F|Q=G|Q, F|QUP! is equivariantly homotopic rel Q to G| Q\JP.

Proof. For each Po of a system of representative 0- sxmplexes for P that is
not in Q define f($o) arbitrarily, and extend over Q\UP, by equivariance.
Since ¥ is arc- -connected, define an extension over each representative 1-
simplex not in () and extend by equivariance. Because m;(Y) =0 the map on
the boundary of each of a system of representative 2-simplexes extends over
the 2-simplex, hence there is an equivariant extension f' over Q\/P2. The
second part is an immediate consequence (see §4).

Since ¥ is simple in all dimensions, the operators W also act on the nth
homotopy group m,(¥) of ¥(=w,.(Y) for n22) by setting w[f]= [wf] for
[fl€m.(7).

(1% X(@) is called regular if @ is normal.

(%) Since the operators W are fixed in this discussion, the qualifying “W” in W-equivariant
is omitted when no confusion arises.
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Now let f: Q\UP»—7¥ be equivariant; the obstruction cocycle ¢**+(f) is
defined [2, p. 237] and

9.2. ¢*+(f) is an equivariant(?!) (n+1, m.(¥))-cocycle in P— Q (in P if
Q=gqo), and c"“(f) 0 if and only if f extends equivariantly over QUP""’l

The equivariance of ¢**+!(f) follows from

wert 1)) = wlf| 6] = [wf] &7 = [7] wem] = om(f)(uans).

The “if” in the second statement is trivial, and “only if” follows by using
representative (n+1)-simplexes as in 9.1.

For two equivariant f, g: QU P*— P satisfying j|Q\UP»—1=3| QU P,
the difference cochain d*(f, g) [2, p. 237] is defined and

9.3. d~(f, ) is an equivariant (n, w.(¥))-cochain in P—Q (in P if Q =qu).

In working with the difference cochain, strong use is made of the following
general result [2, p. 234]: If f, g: QUP*— ¥ and f| QU Pr~1~~g| QUP"1 rel Q,
then there is an f': Q\UP»— Y with f’~f rel Q and f’l QUP"“‘—gI QU P,
The analog of this for equivariant maps is

9.4. LEMMA. Let n22 and Q= . Let f g QU Pr—Y be equivariant, with
flouU P equivariantly homotopic rel 0 to g| 0\ P"“1 Then there is an equi-
variant f': QP — TV equivariantly homotopic rel Q to f and f' ] QLU P!
=g QU P

Proof. Since n= 2, observe that the injection +: w1 (Q\UP*", go) =m1(P, qo);
the covering space of Q\UP* corresponding to i+ (@) can therefore be taken
as Q\JP~, and the operators W are precisely the deck-transformations re-
stricted to Q\U P~. This being a regular covering, f, g cover somef, g: QUP»— Y
by 3.1, and f| QUP"“"’g’QUP"‘1 rel Q. By the general result mentioned
above, there is a homotopy rel Q of f to an f': Q\UP*—Y with f’] QUP"—
~g| Q\.}P"‘l and (4.1) this is covered by an equivariant homotopy rel Q of
fto some J': Q\U P»— Y. Since Q# & and, by 4.13, /(o) = g(J0), using the arc-
connectedness of Q\U P! it follows, as in 2.4, that F|QUP—1=g| QU P

The procedure in [2] can now be followed, verbatim, leading to the follow-
ing result:

Let F: P—Y be a fixed equivariant map, and I7P(Q _F) the set of all
equivariant maps of P into ¥ which coincide with F on Q For each fixed
integer >0, divide Y7 (Q, F) into equ1valence classes, two maps f, § belongmg
to the same class if and only if f|Q\UP" is equivariantly homotopic rel 0 to
g| QUP" each class is called an n-homotopy class. The set of n-homotopy
classes is denoted by S(n; Q).

9.5. THEOREM. Let Q7= &. Then
9.51. If n22 and H' (P, Q; 7(¥); W) =0 for all iZn+1 the elements of

(21) Operators: Won P, ¥ and m,( 7). The definitions in [1, p- 383] are used.
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S(n; 6) are in 1-1 correspondence(®*) with those of the cartesian product
S(n —1,0) X HAP, Q; ma(0); W).

9.52. If n=2 and HY(P, Q; m:(¥); W) =0 for all i2n+1 the n-homotopy
classes coincide_:vwith the homotopy classes.
9.53. S(1; Q) consists of a single element (see 9.1).

If Q=qo, a single element, HX(P, Q; w;(¥); W) is replaced by H}(P; m;(¥);
W) throughout. Observe, also, that if Y is simple in dimension #, then W
operates simply on 7,(¥) and by [1, p. 412] H}(P; m.(¥); W) = H*(P, 7. (Y)),
n=2.

10. Applications. Two simple applications of the results in II and III to
the classification of maps into nonsimple spaces are given. The purpose is
purely illustrative, and only the relative homotopy cases will be considered
here.

The first is to show that the Hurewicz theorem on aspherical spaces is a
result of the theory, essentially because the process “kills” the fundamental
group.

10.1 (Hurewicz). Let P be a polytope, and let w;(¥) =0 for all 2=2. The
homotopy classes rel po in Y?(po, o) are in 1-1 correspondence with the set
of all homomorphisms k: m (P, po)—mi(Y, yo), two maps being homotopic
rel po if and only if they induce the same homomorphism.

In fact, by 9.5, F(k) (see 6.1) consists of a single element for each %; it is
classical that, in this case, each homomorphism can be induced by a suitable
choice of f.

The second application gives essentially the same formulation as Olum
[3, p. 46] in the case of homotopies rel po, but differs somewhat for the
homotopies rel Q.

10.2. Let P be a polytope, and let m;(Y) =0 for all 21, n. Denote by
P, ¥ the universal covering spaces. The homotopy classes rel p, in Y7 (po, ¥0)
are in 1-1 correspondence with the elements of the direct sum

2 HUP, wu(T); I)

taken over all homomorphisms k: (P, po)—mi (Y, ¥o) induced by maps of
Pinto Y. Two mapsf, gare homotopicrel p,if and only if f+ = g+ and d»(f, §) ~0
f+-equivariantly where f, g are the ft-equivariant covering maps of f and g
(see 3.3). Similarly, the homotopy classes in Y?(Q, F) rel Q are in 1-1 cor-
respondence with the elements of

(22) A correspondence is determined as follows: in each (z—1)-homotopy class s, select a
definite f,; then for each d € H,'(P, 0; ma(7); W) the n-homotopy class (s, d) is represented by
a map f agreeing with f, on QUP»! and with d~(f, J.) in the cohomology class d. H (-;GW)
represents the nth equivariant cohomology group of - with coefficients G and operators W.
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z HUPG*E), 7 (Q); wa(D); B)

taken over all extensions % of h[(FI O)*+]: m(Q, go)/L&—m(Y, y,) over
m1(P, po)/1* £ induced by continuous maps.

This results from 9.5 with 6.1 and 7.2. The question of which homomor-
phisms of the fundamental groups are induced by maps of P into Y, so well
as that of expressing the homotopy condition directly in terms of f and g,
both involve the Eilenberg-MacLane invariant knt1,

Note, further, that for n= 2, the n-homotopy classes of equivariant cover-
ing maps, and the n-homotopy classes of maps of the base spaces are related
similarly as in §§6-8.
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