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1. Introduction. This paper deals with the homotopy classification of the

continuous maps of a space X into a nonsimple space F. This problem has

been previously discussed by Olum [3], but his approach differs considerably

from the one to be presented. Essentially, we first reduce the question to

one of classifying certain types of maps into simple spaces, and then use the

known apparatus; it is felt that considerable simplification in treatment is

achieved.

The procedure used here is the following: Replace A" by a suitable covering

space X and F by its universal covering space F. For each homomorphism h

of the group W of deck-transformations of X into that of F, take W as oper-

ators on X and, through h, on f; split the continuous maps of X into F

equivariant with respect to these operators into equivariant homotopy

classes. The set of classes so obtained, for all h, bear a definite relation to the

homotopy classes of the base spaces, so that the problem is reduced to the

classification of equivariant maps into a space simple in all dimensions. The

classification scheme and theorem of Eilenberg [2 ] are shown to go over com-

pletely for the equivariant maps considered (even with proofs formally un-

altered) whenever X is a polytope. It follows from this that Eilenberg's

technique for simple Y has a purely mechanical generalization for maps into

nonsimple spaces, the only additional requirement being that the set of

homomorphisms 7Ti(A")—>iri(F) induced by continuous maps of X into Y be

known. In similar fashion, the generalization by Olum [3] of the Eilenberg

scheme for maps of arbitrary X, when given for simple F formally generalizes

to apply to the nonsimple case.

The paper is divided in three parts. Part I deals with covering spaces, and

with the existence, homotopy, and extension properties of equivariant maps;

an important role is played by a condition under which a covering space of a

subset A GX can be embedded into a covering space of X in such a way that

the image still covers A. In Part II, the relation between the equivariant

homotopy classes of maps of suitable covering spaces and the homotopy

classes of the base spaces (both the relative and free homotopy cases) are

given. Part III shows the Eilenberg procedure and theorem formally valid

for the equivariant maps arising in Part II. Two simple applications, for

illustrative purposes, are given in this paper.
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I. Covering spaces

2. Notation and preliminaries. All spaces considered here will be Haus-

dorff, arc-connected, locally O-connected, and semi-locally 1-connected (')•

Paths are denoted by small Greek letters; a * ft is the path

a,.        (<*(2t) 0^(^ 1/2,
a*p(t) =   <

1/3(2/ - 1) 1/2 £ t g 1

and a_1(t) =a(l —t). The element of the fundamental group tti(F, y0) repre-

sented by a is written(2) [a]. If 7 is a path fromy0toyi, y+:iri(Y,yi)—>iri(Y, yo)

is the isomorphism (onto) 7+[a] = [y*a*y-1]. The homomorphism iri(X, x0)

—♦xi(F, yo) induced by a (continuous)(3) map/: (X, x0)—>(F, y0) is written/4-.

Let yo£F be fixed. F(G3) denotes the covering space of F corresponding

to the subgroup 03Cti(F, y0) and £r: F(03)—>F the projection.

2.1. In all future considerations, base point for the fundamental group of

F(03) will be a point yoEp~1(yo) such that py maps 7Ti(F(03), y0) isomorphi-

cally onto 03.

The following implications of the covering homotopy theorem [6, p. 54]

are frequently used:

2.2. Given yEY((R) projecting to a point on ctEY there is exactly one

path dC F((B) projecting onto a and going through y.

2.3. If the paths a, ft in Y are equivalent (written: a~/?) any two coinitial

covering paths are coterminal and equivalent. For a starting at yo, y(oi) de-

notes the endpoint of that covering path in F(03) starting at the yo chosen in

2.1.

An /: X(a)^>?(<$>) is said to cover an /: X^Y if fpx = prf- As a trivial

consequence of 2.2:

2.4. If/,/': X(a)-*Y((S,) both cover/: X^Y, and iff(x) =/'(x) for some
x, then /' =/.

N((S>) will denote the normalizer(4) of (BCti(F, y0). The group of deck-

transformations^) of F((B) is isomorphic to N((S>)/($>. The deck-transforma-

tion 7><j corresponding to dEN((S>)/($> will always be taken to be the map

Dd(y) =y(8 * Pyv) where [5] is a representative of d and ij a path from yo to y.

Note that 7W(y) =Dd(Dd.(y)).

3. Equivariant covering maps. Let <20i(X x0), (BOi(F, y0) be fixed

subgroups, and fix base points x0, yo in X(Qi), F((B) according to 2.1.

(') Each point has a nbd V such that any closed path in V is homotopic to a constant in X,

keeping the endpoints fixed.

(2) The (multiplicative) group operation in xi is also denoted by " * ".

(3) All maps are continuous unless explicitly stated otherwise.

(4) A^ffi) is the largest subgroup containing <B in which 03 is normal.

(') Also called "covering transformations," "deckbewegungen."
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Let h: N(&)/(1—*N(<&)/(& be a homomorphism. By associating with each

dGN(a)/a the deck-transformation Dd of X(a) and Du of Y((&), N(a)/a

will be regarded as a group of operators(6) acting on both X(Q.) and F((B).

7V(a)/Cl operates effectively and fixed-point-free on ^(a), but is not neces-

sarily transitive on the fibers.

An /: A(a)->F((B) equivariant(7) under the action of N(Q,)/Q, on X(d)

and, through a specified h: A7(a)/a—>A7X<B)/(B on F((B), is called h-equi-

variant. In at least one case, an Zt-equivariant map is always a covering map:

3.1. If a is normal, any /s-equivariant/: X(Q,)—+¥(($>) covers an/: X—>F.

For in this case, N(Qi) =iri(Ar, x0), so the operators are transitive on each

fiber; the formula f(x) = pyf(x), xGpx1(x) therefore defines/(x) uniquely,

and its continuity is immediate.

A necessary condition for the existence of A-equivariant covering maps is

3.2. Theorem. Let h: 7V(a)/a—>A7((B)/(B be given, and let the h-equivariant

f: (X(a), *„)-»(?(<B), y(a)) cover anf: (X,x0)-+(Y,y). Then <*+/+: (N(a), a)
—»(7V((B), (&) and h = h(a+f+), where h(a+f+) is the homomorphism N(Q)/<±

—>N(($>)/($> induced by a+f+.

Proof. Let [&]EN(a) represent dGN(a)/QL and [n]GN(&) represent

h(d). Since Ddx0 can be joined to x0 by a path covering 5, it follows from 2.2

that fDdxo = y(a*fb). By equivariance, y(a*fd)=Dhdf(x0)=y(a*a) so

a*fd*a~1*n~1 represents an element of 03. Both conclusions follow immedi-

ately.

The condition given in 3.2 is also sufficient:

3.3. Theorem. Letf:(X, x0)—*(Y, y) be given. For each path a from y0 to y

such that a+f+: (N(Qi), Qi)-^>(N(<S>), ($>) there is a unique h(a+f+)-equivariant

/„: (X(Q), xo)—>(F((B), y(a))  covering f.  Furthermore, fa=f» if and only if

[a*fi-l]G<&-

Proof. Existence of / is well-known: the covering map is defined by

f(x) = y(a *fpxk) where | is a path in X(Q) from x0 to x, independence of the f

used coming from a+/+aC®; continuity results from that of/, px and the

local homeomorphism property of pr- To prove equivariance, let [S] repre-

sent dGN(Q,)/Q, and let | run from x0 to x; then fDdx = y(a*f8 *fpx£). Since

[a] = [a */5 * a-1] represents h(a+f+) (d) and since a *f8 *fpx\~p * ct *fpx\,

2.3 shows fDdx = y(fi*a*fpxk) =Dhdf(x) establishing equivariance. The final

conclusion results from 2.4 and the observation that [a * [S~l] £(B is equivalent

to y(a), y(/3) coterminal.

3.4. Remark. Notice that a+/+aC<B alone suffices to prove existence of

(6) A multiplicative group W operates on a space Z if for each w G W there is given a

w: Z—>Z such that w2wi(z) =w2(wiz) and lz=z for every wt, w2G W, zG Z. If each w^\ has

no fixed point, Wacts fixed-point-free; if wz=z for every z implies w = 1, Woperates effectively;

if for each pair z0, Zi G Z there is a w with a>(z0) =zi, W acts transitively.

(7) If W operates on X and F, an /: X-^Y is equivariant if /(to) =wf(x) for all x G X,

wG w.
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the covering map. Note further that «+/+: (N((2), a)—>(N(($>), 03) follows

from the condition a+/+aC03 whenever either (1): 03 is normal, or (2):

a+j'+« = 03. This will be used later.

4. Equivariant covering homotopies. Let aOi(-X\ x0) be given, and iden-

tify X with the subspace XXOCXXI. Since the injection i+:wi(ZXO,

zoXO)—*wi(ZXl, ZoXO) is an isomorphism onto for any arc-connected Z,

it follows that the covering space of XXI corresponding to i+d can be taken

as X(Qi) XI, with projection pxy.i(x, t) = (px(x), t). The covering space X(d)

can therefore be identified with the subset X(Gi) XO. As for base points, note

that pt(iri(X(a), x0)) = « implies piXI(iri(X(a)Xl, X0XO))=i+a so the

point xoXO satisfies 2.1 for both X(O) XO and X(a) XI, whenever x0EX(Qi)

does; it will be used as base point. Since i+ induces an isomorphism N(Qi)/Q,

&N(i+Qi)/i+(x, N(Gi)/(L can be regarded as the group of deck-transformations

of X(Qi) XI, the transformation corresponding to dEN(Q,)/d being 77,-+<j(x, t)

= (Dd(x),t).

4.1. Theorem. Leth: N (&)/a->N ((&)/(& be given, and let f: (X,Xo)-*(Y,y)

be covered by an h-equivariant f: (X(Qi), x0)—>(F(03), y(ot)). Then:

4.11. Any homotopy cp off can be covered by an h-equivariant homotopy cp off.

4.12. Ifcpisa homotopy rel A, then <j> is rel px1(A).

4.13. If p. is the path p(t) = (xfat) in XXI, then <£(x0Xl) = y(a*cpp).

Proof. Since cp+i+=f+ and N(i+a)=i+N(a), it follows that a+cp+(i+a)

= a+/+Ct, and a+cp+(N(i+(x)) =a+f+N((x). Using the identifications mentioned,

and applying 3.2, 3.3, cp is covered by an h(a+cp+)-equivariant cp: X(Qi)Xl

->F(03). For dEN(a)/a,h(a+cp+)(i+d)=h(ct+f+)(d)=h(d) according to 3.2,

so the A(a+<£+)-equivariance of cf> yields d>(Dtix, t) =^7>i+d(x, t)=Dhdc}(x, t)

showing 4> is A-equivariant. Finally, <£| x(a) XO=/, since ^(x0, 0) =/(x0) by

choice of base point and construction, and 2.4 applies. 4.12, 4.13 are immedi-

ate.

4.2. Remark. If d in 4.1 is normal, 4.11 has the converse: any A-equi-

variant homotopy rel pxx(A) of/ projects to a homotopy rel A in F. This is

immediate from 3.1.

The path traced by the image of x0 during the homotopy cp in 4.1 deter-

mines 4>(x0, 1). In case X is a polytope(8) it will be shown that the given /

can be deformed in such a way that d>(x0, 1) is a specified point in prlcp(x0, 1).

Stated fully,

4.3. Corollary. Let X be a polytope, h: N(Q,)/a^>N(&)/($, a homomor-

phism, andf: (X, x0)—>( Y, y) covered by an h-equivariant f: (X((J), Xo)—>(F(03),

y(oi)). Then there is a g: (X, x0)—>(F, y0) homotopic to f and an h-equivariant

g: (X(Oi), xo)—»(F(A3), yi) covering g such that a homotopy of f to g is covered

by an h-equivariant homotopy of f to g.

(8) By a polytope is meant an arbitrary simplicial CR7complex; cf. [7, p. 223].
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Proof. Define <f>: X X OWx0 X /-> F by

4(x, 0) = /(*),

<p(x0, t) = «(1 - t).

Since A"XOUx0X/ is a retract of X XI [2, p. 234], <f> extends over XX I. Set

g(x) =4>(x, 1). By 4.1, the homotopy d> is covered by an A-equivariant homo-

topy 4> oi f. Since 0(xo, 1) = y(a * <t>pt) =y(a*or1)=y0, |(x) = 4>(x, 1) is the de-

sired map.

5. Embedding of covering spaces and equivariant covering extensions.

Throughout this section, AGX will denote an arc-connected locally 0-con-

nected and semi-locally 1-connected subset of X. The question considered is

that of embedding a covering space of A into a covering space of X in such a

way that the image will project(9) onto A. Base point for the fundamental

groups of A and X will be at an a0GA.

5.1. Theorem. Let AGX and let i: (A, a0)-*(X, a0) be the injection. Let

Q,G>ti(A, aa) and <S>GiTi(X, a0) be subgroups with Oi = i+~ (GJ). Then there is

a unique homeomorphism(w) i: (.4(a), &o)—*(X((&), do) covering i. If AGX

is closed, so also is iA(Qi) in X((S>).

Proof. The existence of l covering i is immediate(") from 3.4. That

lA(Oi) is closed in X(($i) whenever A is closed in A7" is a consequence of the

existence of 1: to show x(£L4(a) has a nbd not intersecting iA(&) it suffices

to consider only the case pxx = aGA because A is closed. Select a nbd tJ(x)

of x on which px is a homeomorphism, and let U = pxU. Since A is locally

0-connected(12) there is a nbd V in X with aGVr\AGU(~\A and any two

points in V(~\A can be joined by a path in VT\A. The set C7(x)n^i1(L/nF)
is open, contains x, and is easily seen to contain no point of iA(Qi). To prove

i is a homeomorphism, it is sufficient to show i is 1 — 1; the bicontinuity will

follow because i is a local homeomorphism. Let 5i^a2; since i is 1—1 and*

covers i, only the casep^ai = pxa2 need be considered. Let paths £„ run from a0 to

an, ra = 1, 2; the path p^?i * Pa\%x is closed at a0 and since it is not covered by

a path closed at a0, from 2.1, 2.3 follows that it can not represent an element

of a. Because a = i+_'(03), ipA%i * ipA^i does not represent an element of (B, so

when lifted to 5q will not be closed. Thus 1(a) =y(ipA<\i) ^y(ipA%i) —1(8*) and

the theorem is proved.

(9) The embedding of §4 is a^special case of this more general result.

(10) 50, o„ are base points in A(Q), X(B) fixed in accordance with 2.1.

(u) The hypothesis a C »+_1((B) clearly suffices to give existence of a covering i. However,

because a may be "too small," i need not be a homeomorphism. Example: A =Sl G E' = X and

a, 03 = 1.
(") Recall that the following two formulations of local O-connectedness are equivalent:

For each x and nbdCO * there is a nbd VG U of x such that any two points in V can be joined

by a path in (1): V, (2): V.
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The case that 03 is precisely the image of ft is of importance because there

is also an isomorphic embedding of the group of deck-transformations of

A(a) into that of ^(03). Precisely,

5.2. Theorem. Let ACX be closed and i: (A, ao)—*(X, a0) the injection.

Assume Q,Eti(A, a0) is such that i+~\i+Q) = ft. Then

5.21. A((X) can be embedded as a closed subset in X(i+Qi) which projects

onto A by px;

5.22. 7Y(ft)/a can be embedded as a subgroup in N(i+0L)/i+Q, hence can be

regarded as a group of operators acting effectively as deck-transformations in

X(i+a);
5.23. A(a)CX(i+a) is stable(iz) under the operators A7(ft)/ft in X(i+a).

Proof. Ad 5.21: See 5.1.
Ad 5.22: Since i+_1(i+ft) = ft, »+: (iV(ft), GL)-*(N(i+a), i+Q) follows from

3.4, and that the induced h(i+): N(GL)/(i,-+N(i+Ct)/i+Cl is an isomorphism

into from the Noether isomorphism theorem. Identifying 7V(ft)/ft with

h(i+)[N(Q)/Q], the deck-transformation of X(i+Q.) which corresponds to

dEN(a)/a is Dhifyd
Ad 5.23: By 5.22 and 3.2,1 is h(i+)-equivariant.

The identification of 5.2 leads to an extension theorem:

5.3. Theorem. Let AEX be closed, i: (A, a0)^>(X, ao) the injection, and

aETi(A, aa) such that a = i+~\i+a). Let 03Oi(F, y0) and h:N(G)/a
—>7V(03)/03 be given. Assume f: (A, a0)—>(Y, y) is covered by an h-equivariant

f: (^4(ft), do)—>(F(03), y(a)) and let F be an extension off over X. Then:

5.31. / has an extension F covering F.

5.32. If i+ is onto, then h(i+): N(Q)/'ft«N(i+a)/i+Q, and P is h-equivari-

ant^4).

5.33. If 03 is normal, h is extendable to an h: N(i+Q,)/i+&—»Ar(03)/A3 and
F is h-equivariant.

5.34. If i+ft is normal, and h fixed, any two h-equivariant extensions of f

coincide on px1(A).

Proof. Ad 5.31: Since a+/+ftC03 by 3.2, and a+F+i+GL = a+f+a, the existence

of a covering F results from 3.4; 2.4 applied at x0 shows F an extension of/.

Ad 5.32: Because *+ is onto and maps ft onto i+ft, it also maps N(CL) onto

N(i+a), hence h(i+): N(a)/a~N(i+a)/i+a. Froma+F+N(i+a) =a+F+i+N(a)
= a+/+7V(ft), F is ^(a+F+j-equivariant. Recalling that dEN(a)/a has been

identified with h(i+)d and observing that h(a+F+)h(i+)d = h(a+f+)d = h(d),

the A(a+/T+)-equivariance of F shows FDk^)d = DndF, proving F is in fact h-

equivariant.

(13) If X has operators W, A E X is stable if wA C A for every wE W.

(") Note that 4.1 appears as a consequence. Since somewhat less was involved in 4.1, its

proof was given separately.
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Ad 5.33: By normality of 03, N((S>)=in(Y, y0) so that the condition

a+F+: (N(i+a), i+d)-+(N((&), 03) is trivially satisfied. Taking h = h(a+F+),

3.3 shows F is A-equivariant; that h is an extension of h follows as in 5.32.

Ad 5.34: The deck-transformations are transitive on each fiber in X(i+Q),

so any point in pit1 (A) is the image of a point in A((x); equivariance gives the

desired equality.

5.4. Remark. It is not difficult to see that 5.31 has the following im-

mediate consequence: If A is a retract of X (recall that i+ is then an iso-

morphism into) then for any aOi(4> a0), A (a) is a retract of X(i+Q), the

retraction being equivariant under N(&)/(& acting on A(Q) and X(i+Q).

This slightly generalizes [5].

II. Reduction of the enumeration problem

Let A be a subset of X and F: X—>Y a fixed map. Let YX(A, F) be the

set of all (continuous) maps/: X—* Y satisfying /| A =F\A and(16) divide this

set into homotopy classes rel A, two maps being in the same class if and only

if they are homotopic rel A. The enumeration of these classes will be shown

reducible to an enumeration of equivariant homotopy classes of maps of a

suitable space into one which is simple [6, p. 87] in all dimensions.

6. Classification in F*(xo, yo) rel x0. Let X, Y be the universal covering

spaces of X and Y, and let Xo, xo, yo, yo be fixed base points in these spaces

For each homomorphism h: iri(X, x0)—*iri(Y, y0), denote by 3(h) the set of

all A-equivariant maps/: (X, x0)—>(Y, y0); it is possible that some of these

sets are empty.

6.1. Theorem. Let S denote the set of all distinct pairs (h, C) where h is a

homomorphism ni(X, Xo)—>7Ti( Y, y0) and C an h-equivariant homotopy class(ie)

rel x0 in ff(A). The homotopy classes rel x0 in Yx(xa, yo) are in 1-1 correspond-

ence^) with the elements of S. For fixed h, the subset (h, C) is in 1-1 correspond-

ence with the homotopy classes rel x0 of [fG Yx(x0, yo)\f+ = h\.

Proof. Observe that any two /, gG Yx(xa, yo) with f+7*g+ can not be

homotopic, since two maps homotopic rel x0 induce identical homomorphisms

iri(X, Xo)—^7Ti(F, y0). The theorem therefore reduces to determining, for each

given h, the homotopy classes rel x0 in M= {fG Yx(x0, yo)\f+ = h\. By 3.3,

each fGM is covered by a unique fG$(h) and conversely, from 3.2, 3.1, each

fG$(h) covers an fGM. According to 4.1, 4.2, /~g rel x0 if and only if / is

^-equivariantly homotopic to g rel Xo. The theorem follows at once.

7. Classification in YX(A, F) rel A, A^0. A is assumed arc-connected,

(ls) A may be the null set, 0. Yx(0, F) is written simply Yx; if A consists of a single point

Xo, the symbol Yx(xa, yi) is used.

(16) And hence rel pK (xi) according to 5.34, 4.1.

(17) A definite correspondence is constructed in the course of the proof.
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locally O-connected, and semi-locally 1-connected. Base points for the funda-

mental groups in A, X and F are at aQEA and yoEF(a0)E Y.

Let X be the kernel of (F\A)+: iti(A, <z0)—^(F, y0), let e be the center

of wi(X, ao), and let i+: iri(A, ao)—>iri(X, a0) be the injection. The group

£ = 3C H i+~\C)

clearly depends only on X, Y, A, and F.

7.1. Lemma. i+£ is a central normal subgroup of iri(X, a0), i+~\i+£) = £

and £ is a normal subgroup of iri(A, a0).

Proof. The first statement is obvious, and the last an immediate conse-

quence of the second. Since £0+ (*+£)> only the converse inclusion need

be proved. Let aEi+~\i+£); then i+a = i+b for some bEX^i+~l(&)- Since

bEK, (F\A)+a = F+i+a = F+i+b = (F\A)+b = l shows aEX; from bEi+~\e)
follows i+aE&, hence a£i+_1(e) also.

As permitted by 5.2, ^4(£) will be regarded as a closed subset of X(i+£)

and iri(^4, ai)/£ as a subgroup of iri(X, a0)/i+£. Base point in A(£), X(i+£)

is a0Epxl(ao).

Let F be the universal covering space of Y, yoEpY1(yo) a definite base

point, and h: iri(A, aa)/£-*iti( Y, y0) the homomorphism induced by (F\A)+.

The map/=F|.4 is covered by a unique A-equivariant/: (^4(£), do)—>(¥, yi),

(3.3).
For each extension h oi h over iri(X, a0)/i+£, let 3(h) be the set of all

A-equivariant maps X(i+£)—> F coinciding with f on A (£); some of these sets

may be empty.

7.2. Theorem. Let S be the set of all distinct pairs (h, C) where h is an ex-

tension of h over wi(X, ao)/i+£, and C is an h-equivariant homotopy class

rel A(£) in S(h). The homotopy classes rel A in YX(A, F) are in 1-1 cor-

respondence with(17) the elements of S.

Proof. For each gEYx(A, F) there is a corresponding (5.33) couple

(h(g+), |) where h(g+): iri(X, aa)/i+£—*tti(Y, yi) is an extension of h and g

is an &(g+)-equivariant covering map for g. By 3.3, 3.1, this corresondence

is 1-1. Note that if g^g' rel^4(£) equivariantly in any manner (operators

in(X, a0)/i+£) then (5.34) |~|' equivariantly rel px\A) so (4.12) g~g'

rel A and, as in 6.1, h(g+) =h(g'+); couples with distinct h(g+) therefore can-

not be equivariantly homotopic. If h(g+) is fixed, the equivalence of g^g'

rel A and £^g' rel A(£) /((g+)-equivariantly follows from 4.2, 4.1. The theo-

rem is proved.

Observe that if A =x0, this reduces to 6.1.

8. Classification in Yp, free homotopies. Throughout this section, P is a

polytope, P, Y are the universal covering spaces, and po, po, Jo, ya base points
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in the spaces involved, fixed throughout the discussion. The following lemma

plays a central role:

8.1. Lemma. Let h:iri(P, po)—*iri(Y, yo) be a given homomorphism, and

f, g- (P, po)—*(Y, >*o) h-equivariant maps covering f, g: (P, p0)—>(Y, y0) respec-

tively.

8.11. For any c belonging to the centralizer(li) Z(h) of h(iri(P, p0)) in

7Ti(F, y0), Dcf is h-equivariant.

8.12. /~g if and only if f is h-equivariantly homotopic to Dcj> for some

cGZ(h).

Proof. Ad 8.11: From c* h(d) = h(d) * c for every dGiti(P, po) follows

DcDhd = DhdDc. Since fDd — DMf one finds DJDd — DhdDj.

Ad 8.12: An A-equivariant homotopy of / to Dcg covers (3.1) a homotopy

of/ to g. Conversely, any <£:/~g is covered (4.1) by an Zt-equivariant homo-

topy of/, and (4.13) 4>(po, 1) =y(a) where a = <j>u. Since 4>\ PXl covers g and

sends po to DMy0, and since 7?[a]g does the same, 2.4 shows 4>\ PXl = Dm%-

Finally, from /j-equivariance of f and D[a]g 3.2 gives g+ = h and a+g+ = h,

showing [a]GZ(h).

Denote by [d] the set of classes of conjugate homomorphisms 7Ti(P, po)

—»tti(F, yo) and in each conjugacy class 8 select a definite homomorphism he.

Let 5(he) be the set of all fo-equivariant /: P—>F (some of these sets may be

empty) and let  {C(h$)}  be the set of As-equivariant homotopy classes in

JF(A#).
For each fixed he, Z(ht) is taken as a group of operators on {C(he)} by

setting

("Element of {C(hi)} represented by DJ
z(C) = < .

(.where z G Z(h>) and / represents C.

The operation is legitimate because of 8.11, and because z(C) is independent

of the representative/ selected in C. Let \R(hi) ] be a system of representa-

tives for this operation: every element of [C(hi)\ is the Z(/^)-image of

exactly one RG \R(h«) ] under possibly many z.

8.2. Theorem. Let S be the set of all distinct pairs (he, R) where R is an

element of [R(he)\. The free homotopy classes of maps in Yp are in 1-1 cor-

respondence^1) with the elements of S.

Proof. For each couple (he, R) there is, by 4.3, a representative fo-equi-

variant/^: (P, po)-*(Y, y0); let (3.1) fRh) be the map it covers, (a): No two

distinct fRhe are homotopic. This is certainly true if the he are different, since

(3.2) fRhe = he and homotopic maps induce conjugate homomorphisms. As-

suming the he the same, fRhe~fR,h$ gives (8.12) fRhe—DcfR'he for some cGZ(he)

(18) The centralizer Z((X) of the subgroup a in y is the set of all g£ "y satisfying ag=ga

for every a G a. Z(Ct) is a normal subgroup of N{&).



1957] CONTINUOUS MAPPINGS INTO NONSIMPLE SPACES 265

contradicting that the {/«*»} are a system of representatives, (b): Each

/: P-* Y is homotopic to some fRh>. By 4.3 one can assume /: (P, po)—*( Y, y0).

Let he be the representative chosen in the conjugacy class of/+; from 3.2 there

is an h»-equivariant fE5 (hi) covering/; the homotopy class of/ being repre-

sented by DcfRty for some c, R, one has/~/«;,,. The theorem is proved.

8.3. Remark. By using 4.3, observe that instead of operating on the

classes {C(he)} one can operate only on the A»-equivariant classes rel po of

A»-equivariant maps/: (P, p0)—*(V, yo); details are omitted.

III. Classes of equivariant maps

In II, the classification problem for YX(A, F) was reduced to one of equi-

variant maps of regular(19) covering spaces. A classification theorem analo-

gous to that of Eilenberg [2, p. 243] will be obtained for such maps. It will be

seen that his procedure carries over rather mechanically to the relative

homotopy case; knowledge of his paper, or of [6, §§32-34] is assumed.

9. Classification theorems. In this section, P is a polytope, and QCP a

fixed subpolytope. P = P(Qi) is a regular covering space, Q = p~1(Q), and F

is the universal covering space of F. Base points in P, P are fixed at a definite

qoEQ and §0 E P~l(qi), and in F, F at y0, y0 E 7J£1(y0). The group W

= 7Ti(P, <?o)/ft is the group of deck-transformations of P acting also as deck-

transformations in F; observe that the operators W in P consist only of

simplicial maps. By a system of representatives for the re-simplexes of P is

meant a collection {Sn} of re-simplexes of P such that every re-simplex of P

is the IF-image of exactly one Sn under exactly one wEW; since P is regular,

distinct Sn project to distinct simplexes in P and the union of the projections

of the closures is the re-skeleton Pn of P.

9.1. Lemma. Let f: Q—>Y be equivariant(20). Then f has an equivariant ex-

tension over Q\J P2. Consequently for any two equivariant F, G: P—+Y satisfying

F\Q = G\Q, FlQUP1 is equivariantly homotopic rel 0 to G^^JP1.

Proof. For each p0 of a system of representative O-simplexes for P that is

not in Q define f(pi) arbitrarily, and extend over Q\J Po by equivariance.

Since Y is arc-connected, define an extension over each representative 1-

simplex not in Q and extend by equivariance. Because 7Ti(F) =0 the map on

the boundary of each of a system of representative 2-simplexes extends over

the 2-simplex, hence there is an equivariant extension /' over Q\J P2. The

second part is an immediate consequence (see §4).

Since F is simple in all dimensions, the operators W also act on the rath

homotopy group tt„(Y) of F( = 7r„(F) for ra^2) by setting w[f] = [w/] for

[/]€».(?);

(") X((i) is called regular if ft is normal.

(ao) Since the operators Ware fixed in this discussion, the qualifying "W" in IF-equivariant

is omitted when no confusion arises.
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Now let /: QVJPn^>Y be equivariant; the obstruction cocycle cn+1(J) is

defined [2, p. 237] and

9.2. c"+1(/) is an equivariant(21) (ra + 1, 7r»(f))-cocycle in P-Q (in P if

@ = ffo), and cn+1(f) =0 if and only if / extends equivariantly over QUPn+1.

The equivariance of cn+1(f) follows from

we"+I(/)(ff"+1) = w[f\ a»+l] = [wf\ an+l] = [/| wan+1] = cn+1(f)(wfn+1).

The "if" in the second statement is trivial, and "only if follows by using

representative (ra + l)-simplexes as in 9.1.

For two equivariant/, g:()UPn—>P satisfying f\Q<UPn-l = j>\QyjPn-1,

the difference cochain dn(f, g) [2, p. 237] is defined and

9.3. dn(f, |) is an equivariant (ra, 7r„(F))-cochain in P — Q (in P if Q = qo).

In working with the difference cochain, strong use is made of the following

general result [2, p. 234]: If/, g: Q\JPn^>Yand f\ QUP"-1~g| Q\JP»~l rel Q,
then there is an /': QVJP"-+ Y with /'~/ rel Q and /' | QKJP"-1 = g \ Q\JPn~K
The analog of this for equivariant maps is

9.4. Lemma. Let ra^2 ara^ Q^0. Let f, f: Q\J Pn—*Y be equivariant, with

f\ QVJPn~1 equivariantly homotopic rel Q to g\ QKJPn_1. Then there is an equi-

variant f':Q\JPn—*Y  equivariantly   homotopic  rel Q  to f and f'\QKJPn~l

= g\Q\JP"-K

Proof. Since raSi 2, observe that the injection i+: iri(QKJPn, qo) «iri(P, q0);

the covering space of (X-7P" corresponding to i+ (a) can therefore be taken

as QU P", and the operators IF are precisely the deck-transformations re-

stricted to Q\J Pn. This being a regular covering,/, jj cover some/, g: QVJP"—>Y

by 3.1, and f\Q\JPn~1^g\QUP"-1 rel Q. By the general result mentioned

above, there is a homotopy rel Q of / to an /': QKJPn-*Y with f'\ QKJP"~l
= s\ Q^JPn~l, and (4.1) this is covered by an equivariant homotopy rel Q of

/to some/': Q\jPn-*Y_. Since Q^0 and, by 4.13,/'(5o)j=g(?o), using^the_arc-

connectedness of QVJPn~l it follows, as in 2.4, that f'\ Q*UP"~l = g\~QKJP"'1.

The procedure in [2] can now be followed, verbatim, leading to the follow-

ing result:

Let F: P—>Y be a fixed equivariant map, and Y^(Q, F) the set of all

equivariant maps of P into F which coincide with F on Q. For each fixed

integer rajSO, divide Y,(Q, F) into equivalence classes, two maps/, g belonging

to the same class if and only if/| Q\JPn is equivariantly homotopic rel Q to

g\Q\JPn; each class is called an w-homotopy class. The set of ra-homotopy

classes is denoted by S(n; Q).

9.5. Theorem. Let Q^0. Then

9.51. If n^2 and Hl+l(P,Q; Ti(Y); W)=0 for all i^n + i the elements of

(21) Operators: Won P, Y and irn(Y). The definitions in [l, p. 383] are used.



1957] CONTINUOUS MAPPINGS INTO NONSIMPLE SPACES 267

S(n; Q) are in 1-1 correspondence^2) with those of the cartesian product

S(n - 1, Q) X He(P, Q; irn(Y); IF).

9.52. 7/ra^2 and H'e(P,Q; iTi(Y); W)=0 for all i^n + 1 the n-homotopy
classes coincide with the homotopy classes.

9.53. 5(1; Q) consists of a single element (see 9.1).

If Q = q0, a single element, lTe(P, Q; ttj(Y) ; W) is replaced by 77, (i5; 7ry(F);

W) throughout. Observe, also, that if F is simple in dimension ra, then W

operates simply on irn(Y) and by [l, p. 412] ITe(P; irn(Y); W) =77"(P, irn( Y)),

n = 2.

10. Applications. Two simple applications of the results in II and III to

the classification of maps into nonsimple spaces are given. The purpose is

purely illustrative, and only the relative homotopy cases will be considered

here.

The first is to show that the Hurewicz theorem on aspherical spaces is a

result of the theory, essentially because the process "kills" the fundamental

group.

10.1 (Hurewicz). Let P be a polytope, and let iri( F) =0 for all i~= 2. The

homotopy classes rel po in Yp(po, yo) are in 1-1 correspondence with the set

of all homomorphisms h:iri(P, po)—*iri(Y, y0), two maps being homotopic

rel Po if and only if they induce the same homomorphism.

In fact, by 9.5, 3(h) (see 6.1) consists of a single element for each h; it is

classical that, in this case, each homomorphism can be induced by a suitable

choice of /.

The second application gives essentially the same formulation as Olum

[3, p. 46] in the case of homotopies rel po, but differs somewhat for the

homotopies rel Q.

10.2. Let P be a polytope, and let 7r,(F)=0 for all i^l, ra. Denote by

P, Y the universal covering spaces. The homotopy classes rel po in Yp(po, yi)

are in 1-1 correspondence with the elements of the direct sum

zZnne(P,irn(Y);h)
h

taken over all homomorphisms h:iri(P, po)^>iri(Y, yi) induced by maps of

Pinto F. Two maps/, g are homotopic rel poii and only if f+ = g+ and d"(f, |)~0

/+-equivariantly where /, g are the /+-equivariant covering maps of / and g

(see 3.3). Similarly, the homotopy classes in YP(Q, F) rel Q are in 1-1 cor-

respondence with the elements of

(") A correspondence is determined as follows: in each (n — l)-homotopy class s, select a

definite/.; then for each d E Hi(P, Q\ ^n( Y); W) the rc-homotopy class (s, d) is represented by

a map/agreeing with /, on Q\JP"~l and with d"(f, /,) in the cohomology class d.H', (• ;G;W)

represents the rath equivariant cohomology group of • with coefficients G and operators W.
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ZZ Hn.(P(i+£), p~\Q); irn(Y); It)
h

taken over all extensions k of h[(F\Q)+]:in(Q, qo)/£—nri(Y, y0) over

•Ti(P, po)/i+£ induced by continuous maps.

This results from 9.5 with 6.1 and 7.2. The question of which homomor-

phisms of the fundamental groups are induced by maps of P into F, so well

as that of expressing the homotopy condition directly in terms of / and g,

both involve the Eilenberg-MacLane invariant kn+1.

Note, further, that for ra ̂  2, the ra-homotopy classes of equivariant cover-

ing maps, and the ra-homotopy classes of maps of the base spaces are related

similarly as in §§6—8.
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