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1. Introduction. This paper is concerned with the solution of the Cauchy

problem for dissipative hyperbolic systems of linear partial differential equa-

tions for the case of one spatial variable and time-invariant coefficients. Here

we use the term dissipative to mean that the associated physical model has

no internal energy sources; if, in addition, the boundary conditions are such

that no energy enters the model through the boundary, then the solution is

called dissipative. By employing the theory of semigroups of linear bounded

operators, we are able to obtain all possible dissipative semi-group solutions

without further restricting the behavior of the differential system near the

boundary. In order that our considerations include all of the dissipative

boundary conditions commonly associated with hyperbolic systems, we have

also treated the above differential system coupled at the end points to dis-

sipative systems having finite degrees of freedom.

The semi-group method is in essence an abstract analogue of the classical

Laplace-transform treatment of the Cauchy problem. From this point of

view the present paper can be thought of as an extension of a time honored

development going back to the works of M. Plancherel [14], G. Doetsch [2],

and W. Machler [9], to mention a few of the early publications on the wave

equation. The above papers deal with the regular case; that is, finite domains

and sufficiently smooth coefficients. More recently, G. Hellwig [6] and K.

Yosida [16; 17] have treated the Cauchy problem for the wave equation al-

lowing certain kinds of singular behavior at the boundary. Because of the

difference in settings, the Hellwig and Yosida developments cannot readily

be compared with the present work; however, neither of these papers con-

siders boundary behavior or boundary conditions as general as those treated

here.

With regard to method, perhaps the feature which best sets the present

study off from those mentioned above, is the central role played by the

energy integral. The use of the energy integral in dealing with the wave equa-

tion is, of course, not new. In fact, as early as 1900, J. Hadamard [5] em-

ployed the energy integral to establish uniqueness for the solution of the

mixed problem. Later, K. O. Friedrichs and H. Lewy [4] discovered another
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pertinent property of the energy integral. They noted that the solution of the

wave equation with two or more spatial variables did not always continue the

smoothness properties of the initial data; for example, it is possible for the

solution to have a caustic surface even when the initial data does not. Never-

theless, Friedrichs and Lewy were able to show that the finiteness of the

energy integral is continuable in the above sense. For the one spatial variable

case considered in the present paper, this property of the energy integral

turns out to be a simple consequence of the semi-group property of the solu-

tion. Finally it should be pointed out that inequalities derived from the energy

integral are the basis of most existence theorems for the solution of linear,

and even nonlinear, hyperbolic partial differential equations. In this connec-

tion, we mention the recent paper by K. O. Friedrichs [3], where further

references may be found.

We return now to the problem at hand, that is, the consideration of dis-

sipative hyperbolic linear partial differential systems in one spacial variable

of the form

(1.1) Eyt = (Ay)x+ By, -°°ga<s<6g°o,0<<.

Here y = (r]1, »/*, • • • , ijk) is a ^-dimensional vector-valued function of x and

t; E, A, B are kXk matrix-valued functions of x alone, E being hermitian

positive definite, A hermitian and of constant rank r, and B satisfying the

condition (2)

(D) B+ B* + Ax£®, a<x<b,

where B* is the adjoint matrix to B under the assumed inner product

(1.2) (y, z) - E nV with   | y \   = [(y, y)]1'2.

In addition it is assumed that the elements of E and A are absolutely con-

tinuous^) on each compact subinterval of (a, b), and that the elements of

Ex, A,, and B are square integrable in each compact subinterval of (a, b).

Parenthetically, we note that the telegraphist equation

(1.3) quit + rut = (pux)x — su

can be brought into the form (1.1); here we suppose that p>0, q>0, r^O,

and 5>0 for all x£(a, b). In fact, setting u = r\l, ux = -n2, and u, = r]%, the solu-

tion of (1.3) is readily seen to satisfy (1.1) with

(s) Condition (D) could be replaced by (D') B +B*+AZ ^2yE, a <x<b, for some real con-

stant y. However the transformation y^>y'ey' brings (D') back into the form (D) so that we may

use (D) without loss of generality.

(3) Hereafter we use the expression "absolutely continuous" to mean that the function is

absolutely continuous on each compact subinterval of (a, b).
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J    0    01 [0    0    01 t    0    0      5

(1.4) E =   0   p    0  ,     A =   0   0   p  ,     B =       00 -px .

.0    0    qi [Op    0J [-5    0 -r ,

In this case

0     0     0 '

(1.5) B+B* + Ax=   0     0     0^0.

.0     0 -2r.

Conversely, suppose y = (v1, V2, V3) ls a solution of the system (1.1) with

coefficient matrices (1.4) and suppose that the initial data has been chosen

so that if(x, 0) =r]l(x, 0)x. Since rft=vl = Vtx, it follows that r)2(x, t) =-nl(x, t)x

for all OO and hence that such a solution of the system satisfies (1.3) (the

smoothness properties of solutions to the differential system which are re-

quired for this argument are established at the close of §7).

The energy integral for system (1.1) is

1 rb
(1.6) Energy = — I    (Ey, y)dx.

2 J a

Since we shall restrict our considerations to solutions of (1.1) for which the

energy is nonincreasing in time, a natural setting for the problem is the

hilbert space 77=72(a, b; E) with

(1.7) inner product (y, z) =  I    (Ey, z)dx and norm ||y|| = \(x, y)]xl2.
" a

From (1.1) we obtain, at least formally, the relation

(1.8) {y,y),= [(Ay,yy-(Ay,yy]+  f ((B + B* + Ax)y, y)dx.
" a

The integral on the right is the rate at which energy enters the system from

interior sources, whereas the expression [(Ay, y)b — (Ay, y)a] is the rate at

which energy enters the system through the boundary. Thus the condition

that there be no interior energy sources is precisely (D) and, with (D) as-

sumed, the energy will be nonincreasing in time if we impose boundary con-

ditions on y such that

(1.9) (Ay, y)» - (Ay, y)» £ 0;

boundary conditions of this kind will be called dissipative.

The Cauchy problem for the system (1.1) can now be formulated in terms

of semi-groups of operators. We require of the operator

Ly= E~i[(Ay)x+ By],
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with a domain 35(7.) suitably restricted by dissipative boundary conditions,

that it generate a strongly continuous semi-group of linear bounded operators,

say [S(t); t^O]. In this case the initial value is assumed in the mean square

sense, that is,

(1.10) lim S(t)y0= y0, yo G 77,

in norm; and the differential equation is satisfied in the sense that

(1.11) dS(t)y0/dt = L[S(t)yo], yo ££>(7A, t > 0,

the derivative being taken in the norm topology of H. Employing these re-

sults it is possible to go somewhat beyond the theory of semi-groups and show

for each y0£2)(7_,2) that there is a representation of y(-, t) =S(t)yo which satis-

fies (1.1) even in the classical sense (see the end of §7). It follows from the

relation (1.8) that condition (D) together with the requirement that L have

dissipative boundary conditions forces the operators S(t) to be contraction

operators, that is, operators of norm less than or equal to one.

With this semi-group setting the Cauchy problem for (1.1) can be given

an exceedingly precise expression. To this end we let

(1.12) D = E- (B+ B* + Ax)

and denote by Li(a, b; D) the class of all vector-valued measurable functions

for which

(1.13) f  (Dy, y)dx < oo.
J a

We further define

Liy = E->[(Ay)x+ By],

(1.14) 3)(Li) = [y; yGL%(a, b; D), Ay absolutely continuous, and

E~>[(Ay)x+ By]GLi(a, b; E)].

If, in the definition of S)(£i), the condition yGL2(a, b; D) were replaced by

yGLi(a, b; E) then it would be clear that the domain contains all vector func-

tions in $)(/,), assuming L to be defined in a reasonable way(4). However, for

y in the so extended SD(Li) the limits

(Ay, y)a =   lim  (Ay, y)x   and    (Ay, y)b =   lim  (Ay, y)z
x-*a+ x-*b—

exist if and only if yGL2(a, b; D); and, since we insist on imposing dissipative

boundary conditions, there is no loss in generality in requiring I to be a re-

(4) It can be shown that Li is a closed operator both for D(Li) defined as in (1.14) and for

the modified £>(£,) defined as in (5.7); see Lemma 5.2.
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striction of 7i, defined as in (1.14). The problem, then, is to find all possible

dissipative restrictions of 7i which generate strongly continuous semigroups of

operators^).

According to the Hille-Yosida theorem (see E. Hille and R. S. Phillips

[7, Theorem 12.3.1]) a closed linear operator L with dense domain generates

a strongly-continuous semi-group of linear bounded contraction operators if

and only if the resolvent of L, namely 7?(X; L), satisfies the condition

(1.15) \\\R(\; L)\\ :£ 1

for all sufficiently large real X. In order to verify (1.15) we shall construct

an explicit representation for the resolvent out of the solutions of the homo-

geneous system

(1.16) \y- E-1[(Ay)x+ By] = 0, a < x < b,

and its formal adjoint

(1.17) Xz - Fr1[-(Az)z + (B* + Ax)z] = 0, a < x < b,

both of which are studied in §3. The domain of a dissipative restriction of Li

can then be defined by means of r suitably chosen linearly independent pairs

of solutions to (1.17), say [z0,,-, Zb,t], as

(1.18) ®(L) = [y; y E®(Li), (Ay, zM)6 - (Ay, za.i)a = 0 for i = 1, 2, ■ ■ ■, r];

this is the end result of §4.

It is desirable to free the definition of 3)(7) of its dependence on X. To

this end we introduce the dual of Lu namely

Miz = E-1[-(Az)x + (B* + Ax)z].

(1.19) S(Mi) = [z; z E Li(a, b; D), Az absolutely continuous, and

E~l[-(Az)x+ (B* + Ax)z] E Li(a, b; E)],

which is again dissipative since

(B* + Ax) + (B* + A .)* + (-A)x = B + B* + A . < 0.

Following K. Kodaira [8], we then consider T>(Li) modulo

(1.20) 1)(Lh) = [y; y G©(Z,i), (Ay, z)b = 0 for all z E^(Mi)].

This quotient space is finite dimensional and preserves all of the relevant

behavior of yE®(Li) at the boundary b; in other words (Ayi, yi)h depends

only on the cosets Yb.i, Yb.t containing yi and y2, respectively. We use this

limit to define (A Yb.i, Yb.i). Treating 35(Afi) in the same fashion, we find that

the quotient spaces 2)(Li)/!£)(7&) and T>(Mi)/1)(Mb) are of the same dimen-

(6) It should be noted that we actually do not obtain the most general semi-group solution

with noncreasing energy since we require that both terms in the right member of (1.8) be non-

positive whereas the energy is nonincreasing if merely the sum is nonpositive.
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sion, having bases Ub.i, Ub.i, • ■ • , Ub,*b and Vb.i, Vb.i, • • • , Vb,dh, respec-

tively, such that for Y= X/y. Ub.i and Z= J]5,- P"M we have

(AF», Yb) = Z7,7,fti,

(1.21) (/!F(lZ») = L^

(AZh,Zb) = X M,^,,

where (p,y) = (vyy)_I is nonsingular and hermitian with nb negative and pb

positive eigenvalues. Analogous results hold at the a end. Now let yia,b be a

linear subspace of 3)(Z,i)/£)(/<,) X®(7.i)/3)(Lb) of dimension />„+«& such that

-(A Ya, Ya) + (AYb, F6)g0 for all [F„, Yb]Gyi*.b and let %.h be the Aa,b-

orthogonal complement of 9i0,6 in S)(Mi)/'£)(Ma)X$)(Mi)/'£)(Mb), that is,

<P„,» = [\Za,Zb]; -(AY.,Za) + (AYb,Zb) = 0 for all [F„ F„] C 3t.,»].

Then $„,;, will be of dimension na+pb and — (AZ„, Za) + (AZb, Zi) ^0 for all

[Za, Z^Gtya.b- The most general dissipative restrictions of Li and Mi which

generate semi-groups are of the form

»(£) = b'. y e ©(£0. [* y] - 9i..»].
S5(3f) = [z; z G S>(JO), [*. z] -♦¥..»];

and, conversely, any such L and M are dissipative generators. Incidentally,

L and M as so defined are adjoints to each other. We note that 3D(Z.) can

be defined equivalently by a representative set of functions j [z„,,-, z&,«];

* = 1, 2, • • ■ , 77„+£(>} C3)(Afi)X3)(il7i) which map into cosets spanning

tya.b, in which case

(1 23) ®(L) = [yl y G2)(/:i)' ~(^' Zo'i)0 + (i4y' a*"')* = °

for i — 1, 2, • • • , n„ + />&]•

This solves the problem which we set above.

Thus far the development still does not furnish us with a solution to the

simple vibrating string with elastic end conditions (i.e. u-\-0ux — O at x = b).

However, by making use of these quotient spaces we can also define suitable

couplings at each end of the differential system to simple finite degree of

freedom systems so as to obtain the analogues of the elastic end conditions;

this is done in §7.

A system will be called conservative if energy neither enters nor leaves.

Thus the operator L will be conservative if equality holds in (D) and the

boundary conditions are such that equality holds in (1.9) for all yG^)(L);

similar remarks apply to operators for the coupled systems. It follows from

(1.8) that the semi-group generated by a conservative operator will consist

of isometries, that is, norm preserving operators. Of particular interest is the

case where these operators are actually unitary operators for then L generates

a group and the process is reversible in time. Necessary and sufficient condi-
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tions on the differential system for L to generate a group of unitary operators

are obtained in §8. It is interesting to note that the solution to the conserva-

tive wave equation (1.3) with conservative boundary conditions is always re-

versible in the above sense.

Finally in §9 we extend the previous development to coupled systems for

which there is a direct coupling between the interior of the differential system

and the finite degree of freedom end systems. This is accomplished by means

of a perturbation technique (see R. S. Phillips [12]).

2. Transformation theory. It will be convenient to bring the differential

system (1.1) into a normal form and to this end we now develop a suitable

transformation theory. We note first of all that corresponding coefficient

matrices of Li and Mi satisfy the same smoothness assumptions and that

condition (D) makes both systems dissipative.

As we have previously stated, the natural setting for our problem is the

hilbert space L2(a, b; E). We now consider a unitary mapping: y= Vy' of a

second hilbert space Lt(a, b; E') onto Lx(a, b; E), the map V being of the

form

(2.1) y(x) = V(x)[y'(x)], a < x < b,

where V(x) is a kXk nonsingular matrix for each xE(a, b) with elements

which are absolutely continuous and possess square integrable derivatives in

each compact subinterval of (a, b). Since V is in particular an isometry, we

must have

j (Ey, y)dx = J (Ey, y')dx

for all y'ELi(a, b;E') and this together with the continuity of the matrices

involved implies

(2.2) E'(x) = [V(x)]*E(x)V(x), a < x < b.

The nonsingular character of the matrices V(x) suffices to show that the map-

ping V is indeed one-to-one and onto. We note thatE'(x) as defined in (2.2)

is again hermitian, positive definite, and absolutely continuous with deriva-

tives which are square integrable in each compact subset of (a, b).

Suppose now that L and M are restrictions of Li and Mi, respectively,

with domains

S)(L) = [y;yE ®(ii). (Ay, z0.,)a - (Ay, zb.i)b - 0, * - 1, • • • , q],

a)(Jf) = [z;zE ®(M0, (Az, ya.i)a - (Az, yb,i)b = 0, i - 1, • • • , q],

where the \ya,i, yb.i] and the [z„,,-, Z&,,] are function pairs in 3)(7i) X©(7i)

and %)(Mi)XT>(Mi) respectively. Then the transformed operators are given

by
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L' = V-*LV, ©(£') = V-i[®(L)],

M' = V-'MV,       Ti(M') = V~l[®(M)].

A straightforward calculation shows that

L'y' = E'-i[(A'y')x+B>y>],

M'y' = £'-»[- (A'z')x + (B'* + AL)«'],

where

4'(x) = F(*)*4(x)F(x) and
(2.6)

£'(*) = F(*)*B(*)F(«) - [V(x)*]IA(x)V(x).

We see that A'(x) and 7?'(x) have the same smoothness properties as A(x)

and 7J(x), respectively. Further

(2.7) B' + B'* + A^ = V*(B + B* + AX)V

so that the transformed system satisfies the condition (D) if and only if this

is the case for the original system and even the condition B+B*-\-Ax = ®

remains invariant.

As to the domains of the transformed operators, we note that Ay and A'y'

are absolutely continuous together and that

(2.8) J* (Dy, y)dx = j  (D'y', y')dx.

As a consequence

2)(Li) = V~l[l)(Li)] = [y'; y'GLi(a, b; D'),A'y' absolutely continuous,

and E'-l[(A'y')x + B'y'] G I,(a, b; £')]•

Similarly ^>(Ml) has the same form as l£)(Mi). Finally for y=Vy' and

z = Vz' we have

(2.10) (Ay, z) = (AVy', Vz') = (A'y', z'), a < x < b,

and this shows that 3) (77) and 3) (7,) also have the same form if we replace

the restricting functions [z„,<, Sb,t] in 35(7,) by their transforms. Likewise

3)(Af') has the same form as 3)(Af).

The adjoint relation between Li and Mi can now be made somewhat more

precise. We note that if Ay and^4z are absolutely continuous then so are A'y'

and A'z' and we have for almost all xG(a, b)

(Ay, z)x+ (Axy, z) - ((Ay)x, z) - (y, (Az),)

= (A'y', z')x+(Aly', z') - ((A'y')x,z') - (/, (A'z')x).

As we shall see (Equation (2.19)), when the transformed system is in normal

form the right hand side of (2.11) vanishes so that
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(2.12) (Ay, z)x = ((Ay)x, z) + (y, (Az),) - (Azy, z)

almost everywhere. From this we see that Li and Mi are essentially adjoints;

in fact, for y££>(7i) and z(E35(A7i) we obtain

(2.13) (Liy, z) - (y, Ma) = (Ay, z)b - (Ay, z)a.

By applying two successive transformations of the above type we bring

the operator Li into a normal form. First we write

(2.14) V(x) =  [£(*)]->'* = (2wi)~l f     X-"2i?(X; E(x))d\;
J r(*>

here T(x) is a simple closed rectifiable path lying in the right half-plane and

containing in its interior the spectrum of E(x), namely <r [£(*)], and the prin-

cipal determination of X~1/2 is used. Now for a fixed XoE(a, b), the path T(xi)

will contain <r[E(x)] for \x — x0\ <8(x0) and since the elements of i?(X; E(x))

are absolutely continuous with square integrable derivatives for X£r(x0)

and | x — Xo\ <5(x0), it follows from the above representation that this will also

be true for [£(x)]~1/2. Hence the so defined V(x) is a suitable transforming

matrix function. Finally with V(x) = \E(x)]~112 we see that E'(x)=I.

The second transformation which we use to bring the operator 7i into

normal form is a unitary transformation of L2(a, b; I) onto itself, which

separates out the null eigenspaces of A(x), a<x<b, from the non-null eigen-

spaces. We put the formal argument in the form of a lemma.

Lemma 2.1. Let A(x), a<x<b, be hermitian, of constant rank r, and sup'

pose the elements of A (x) are absolutely continuous with square integrable deriva-

tives on each compact subinterval of (a, b). Then there exists a family of unitary

matrices [ U(x); a <x <b], with elements absolutely continuous and having square

integrable derivatives in each compact subinterval of (a, b), such that

(2.15) U(x)*A(x)U(x) = (°        °    Y

where the upper left element is the zero (k-r)X(k — r) matrix and the A£'(x) is

a nonsingular rXr matrix for each xE(a, b).

Remark. In general it is not possible to diagonalize A(x) by a matrix-

valued function with the required smoothness properties.

Proof. It is clear that the columns of U(x) consist of mutually orthogonal

vectors, the first k — r of which span the null eigenspace of A(x) and the last r

of which span the non-null eigenspace of A(x). The only other condition on

U(x) is that its elements be sufficiently smooth.

Now A(x) is continuous on (a, b) and of constant rank. Consequently for

each compact subinterval [a', b'] of (a, b), we can find a circle I" with the
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origin as center which excludes the nonzero part of the spectrum of A(x) for

all xG [a', b']. In this case

(2.16) P(x) = (2xt)-1 f  R(\;A(x))dX

projects the space onto the (k — r)-dimensional null eigenspace of A(x),

a'<x<V. As before the elements of P(x) will be absolutely continuous with

square integrable derivatives in [a', b']. Hence there is a finite subdivision

x0 = a' <xi< ■ ■ ■ <xq = b' such that in each subinterval

max [ | P(xi) - P(x) | ; x{ g * g xi+i] < 1/2.

Suppose next that U(x) has been defined for a'gxgxj and let «y(x,) be

the jth column vector in U(xi). Then for 7g& — r, the vector My(x.) will lie

in the range of P(xi). Setting Vj(x) = P(x)wy(x,), j^k — r, we see that

k—r k—r k—r k—r

ZZ  y,Vj(x)     ̂      X) 7)W|(*i)     -     iZ JiVi(x)  -  lZ 7j«j(*<)
1-1 j-1 j-1 j-1

-    E7i»W   -   [P(x)-P(xi)]Y1yiUj(xi)
j-i j-i

J       k—r

^ —  zZ T jMj(x<)  . Xi g a; g *,+1.
2     y_i

Since the [«y(x,-); jgfe —r] are linearly independent, the same is true of the

[vj(x); jgife — r] for each x, x,-gxgx,+i. If we now make use of the orthog-

onalization process, we obtain the orthogonal set of vectors [«y(x); j^k — r],

having the properties (i) My(x,) =fy(x,), and (ii) the My(x) are absolutely con-

tinuous with square integrable derivatives in [xit xi+i]. Proceeding in the

same fashion with respect to I—P(x), which projects onto the non-null eigen-

space of A(x), we fill out the rest of the columns of U(x) over the range

Xjgxgxi+i. Thus a finite number of steps suffices to define U(x) over the

interval [a', b'] and it is clear that we can proceed in a denumerable number

of steps to define U(x) over all of (a, b) to have the desired properties. This

concludes the proof.

Starting with a system with E(x)=I, we now apply the transformation

given by the lemma, namely

F: y(x) = U(x)y'(x).

According to our general theory, E'(x) = U(x)*IU(x)=I and by the above

construction

„ N      /0        0    \ ,/s      /B'oo(x)    Boi(x)\

(2.17) A'(*   =( ,       ),        7J'(*)=( ),
\0   Au(x)/ \Bio(x)    Bu(x)/
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where the upper left block is (k-r)X(k-r) and the lower right block is rXr,

A'n(x) being hermetian and nonsingular. This is the desired normal form. We

note that the same series of transformations also brings the adjoint operator

into normal form. It is convenient when dealing with such an operator in

normal form to introduce the notation

(2.18) y" - (ij\ • • • , ij*-r)    and    y1 = (>j*-r+1, • • • , if*);

we then have (A'y', z') = (A'uyn, zn). Moreover if A'y' is absolutely continu-

ous, then so is A'uy'1, and since A'n is nonsingular and absolutely continuous,

y'1 will also be absolutely continuous. It now follows for A'y' and A'z' both

absolutely continuous in x, that almost everywhere

(A'y, z')z = (A'uy1, z'l)x

(2.19) = ((Any1),, z'1) + (y'\ (AI*'1).) - ((A'u)xy'\ z'1)

= ((A'y')z,z') + (y',(A'z')z)-(Aiy'z'),

which is the relation used in deriving (2.12).

We shall also have occasion to consider the unitary transformation result-

ing from a change in the independent variable. Suppose

(2.20) £(*) = jX[p(o)Ydo-,        f(fl) = a    and    «&) = P,

where p(x) is absolutely continuous and greater than zero on (a, b). In this

case the inverse function, namely x(£), is well defined and twice continuously

differentiable. We set £'(£) =£[x(^)] and p'(£) =p [*(£)]• Since we wish the

map to be unitary, we define

V: y(x) E U(a, b; E) -> /(£) = [P'(k)Yly[*({)] E !.(«, P\ E'). ,

A straightforward calculation shows that U = VLV~l and M'= VMV~l are

of the form

L'y'= E'-*[(A'y')%+B>y'],

MV = E'-l[-(A'z')t + (B'* + A()z']

where

A'(Q- [p'(Z)]2A[x(D],

(2 22) 1
B'(& = B[x(0] - — {d[P'(£)]2/di}A [x(Q].

Again it is clear that the smoothness properties of the matrices are preserved,

that

B' + B'* + A i = B [*(© ] + B [*($) ]* + Ax [*(© ],
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and that (Ay, z)*«> = (A'y', z'){. As before, 35(7,') has the same form as £>(L);

however, we omit the details.

From this point on we shall assume that our system is in normal form.

3. Solutions of the homogeneous equations. We proceed to solve the

ordinary differential equation systems

(3.1) \y - (Ay)x- By = 6, a < x < b,

and

(3.2) Xz+ (Az)x - (B* + Ax)z = 6, a < x < b,

for X>0; here A and B satisfy the assumptions stated in §1 and A is given in

normal form(6).

Thus A and B split into blocks as indicated in (2.17), the rXr matrix

Au(x) being hermitian and nonsingular for each xG(a, b). Since An(x) is also

assumed to be continuous on (a, b), its spectrum varies continuously with x

and is consequently bounded away from zero on each compact subinterval of

(a, b). It follows that A u(x) (and hence A (x)) is of constant signature through-

out (a, b). We shall denote by n the number of negative and by p the number

of positive eigenvalues for A(x); n and p are independent of x and n-\-p = r.

We write the normalized (3.1) in the form

Xy° - £„0y° - Boiy1 = 6,

Xy1- (Any1)*- Buy1 - Buy" = 0,

for almost all xG(a, b). Condition (D) implies that 7Joo+7J*0g©.

Lemma 3.1. If B00+B*o^@, then for X>0

(3.4) Roo(\) = (\I - Boo)'1

exists and X| 7?0o(X) | g 1.

Proof. Set/0 = Xy0-73ooy°. Then

2X(y°, y°) - ((TJoo + B*o)y\ y°) = (/", y°) + (y°, /°),

and making use of the fact that Boo+B^ g@, we see that X(y°, y°) g | (f, y°) |

g |/°| |y°|. Consequently X|y°| g \f\ which shows that (XI — Boo) is one-to-

one and has an inverse of norm g 1/X.

With the aid of the above lemma we can now solve the first equation in

(3.3) for y° in the form

(3.5) y° = Roo(X)Boiyl.

(6) If A is in normal form, the restrictions on A and B can be somewhat relaxed to the ex-

tent that the elements of (Au)x and Bu need merely be integrable (not necessarily square

integrable) on each compact subinterval of (a, b).
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We note that for X>0, the elements of the matrix i?oo(X) are measurable and

bounded (by 1/X) in x. Substituting this for y° in the second equation in (3.3)

we obtain

(3.6) Xy1 - (Auyl)z - Buy1 - Bi0RooWB0iyl = B.

Since the elements of Bw and Boi are square integrable in each compact sub-

interval of (a, b), we see that the elements of both Bn and 5107?oo(X)50i are

integrable in each compact subinterval of (a, b). Finally setting u1 = Auyl, the

system (3.6) goes into the form

(3.7) uz — Cuu  = 6, almost everywhere on (a, b),

where the elements of Cn are integrable on each compact subinterval of (a, b).

Appealing to the standard existence theorem for systems of ordinary differen-

tial equations (see, for instance, E. A. Coddington and N. Levinson [l, prob-

lem 1, p. 97]), we see that there exist r absolutely continuous vector-valued

solutions \u\, u\, ■ ■ ■ , u)\ which are linearly independent for each xE(a, b)

and further each absolutely continuous solution of (3.7) is linearly dependent

on these r solutions. Since An(x) is absolutely continuous and nonsingular,

the vector-valued functions y\=Aiiu\, i=l, 2, • • • , r, will be absolutely

continuous and together form a complete set of linearly independent solutions

to (3.6). Moreover, setting y? = i?oo(X)-B0iy4l, the so-defined components of y°

will be square integrable on each compact subinterval of (a, b). The vector-

valued functions y,- = (yi, y\) now form a complete set of linearly independent

solutions to (3.3).

We summarize these results as follows:

Theorem 3.1. There exist r linearly independent vector-valued solutions of

(3.1), \yi(x) \ with yi square integrable on each compact subinterval of (a, b) and

with Ayi absolutely continuous. Any solution of (3.1) with these properties can

be represented as a linear combination of these r functions. The components

{y\; t = l, • • • , r\ are linearly independent for each xE(a, b). A similar asser-

tion holds for the solutions of (3.2).

Hereafter we consider only solutions of (3.1) (and (3.2)) such that Ay

is absolutely continuous; for such solutions y(x) will be square integrable on

each compact subinterval of (a, b).

Theorem 3.2. If y(x) is a nontrivial solution of (3.1), then (Ay, y) is an

increasing function of x on (a, b). If, in addition, z(x) is a solution of (3.2), then

(Az, z) is a decreasing function of x and (Ay, z) is constant on (a, b).

Proof. Combining (2.12) with y = z and (3.1) we readily obtain

(3.8) (Ay, y)z = 2X(y, y) - ((B + B* + A)y, y)

tor almost all xE(a, b). According to the previous theorem (y, y)>0 for all
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xG(a, b) if y is a nontrivial solution of (3.1) and this together with condition

(D) shows that (Ay, y) is actually increasing in x. The corresponding result

for (Az, z) follows in a similar fashion. Finally combining (2.12) with (3.1)

and (3.2) gives (Ay, z)x = 0 almost everywhere so that (Ay, z) is independent of

x on (a, b).

Corollary. If y is a solution of (3.1), then (Ay, y)h [(Ay, y)a] exists if

and only if yGLi(c, b; D)[yGLi(a, c; D)], where a<c<b.

Proof. The lim^-^y, y)x will exist if and only if (Ay, y)z is integrable on

(c, b). On the other hand each of the terms on the right side of (3.8) is non-

negative and hence each must be integrable if (Ay, y)x is integrable. Conse-

quently (Ay, y)b exists if and only if yGLi(c, b; D). The assertion about

(Ay, y)a follows in a similar way.

We shall also require the following simple geometric result.

Lemma 3.2. Suppose A is an rXr nonsingular hermitian matrix with n

negative and p positive eigenvalues; r = n-\-p. Let N be an n dimensional linear

subspace of the complex euclidean r-space such that (Ay, y) <0 (gO) for all

nonzero yGN. Finally let P denote the A-orthogonal complemenent of N, that is

P = [z; (Ay, z) = 0 for all y G N].

Then P is p dimensional, (Ay, z) > 0 (^ 0) for all nonzero zGP, and N is again

the A -orthogonal complement to P.

Proof. Since A is nonsingular, the map of TV under A, namely AN, is again

an w-dimensional subspace. The subspace P, being the ordinary complement

of AN, is consequently p = r — n dimensional. Suppose z0GP, Zot*9, and

(Az0, z0)g0 (<0). If zo also belonged to TV then (AN, P)=0 implies that

(Azo, Zo) =0. However this is impossible since in the first case (^4zo, zo) <0 for

zoGN and in the second case (i.e. where (Ay, y) gO for all yGN) we are sup-

posing that (Azo, Zo)<0; thus in both cases ZoGTV. Setting TVi equal to the

linear extension of TVWzo, we see that TVi is « + l dimensional. A generic ele-

ment of TVi can be written in the form yi=y+azo, yGN, and in view of the

fact that (Ay, zo) =0 we will have

(Ayi, yi) = (Ay, y) + a(Az0, y) + a(Ay, z0) +  \a \2(Az0, z0)

= (Ay, y) + \ a\2(Azo, zo) g 0.

However, this implies that A has « + l nonpositive eigenvalues, contrary to

our hypothesis. Thus, no such nonzero ZoGP exists, which proves the first

assertion of the lemma. Finally it is clear that TV is contained in the A-orthog-

onal complement to P and, since this complement must be of dimension

n = r — p, we see that TV coincides with it.

Suppose we think of the y and z spaces as distinct with a connecting inner

product
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r

(3.9) {y,z\ =   JZ ICH&t,
i.J-l

where the matrix Y = (7,7) is hermitian and nonsingular. This replaces the

inner product (Ay, z') of the previous lemma and, in effect, replaces 2' by

z=r-1Az'. Accordingly (Az', z') = (YA~lYz,z) so that Lemma 3.2 translates

into the

Corollary. Let A be anrXr nonsingular hermitian matrix with n negative

and p positive eigenvalues. Suppose we are given two r-dimensional complex

euclidean spaces Y and Z connected by the inner product (3.9). Let N be an

n-dimensional subspace of Y with (Ay, y) <0 (^0) for all nonzero yEN and

let P be the Y-orthogonal complement of N in Z, that is, P = [z; \y, z) =0 for

all yEN]. Then P is p-dimensional and (rA_irz, z) >0 (^0) for all nonzero

zEP- Finally N is again the Y-orthogonal complement to P in Y.

We come now to the principal result of this section.

Theorem 3.3. Let Ft[Fa] be the set of all solutions of (3.1) with (Ay, y)h

< 00 [(Ay, y)"> — 00 ] or, equivalently, which belong to Li(c, b; D) [Li(a, c; D)],

a<c<b, and let Cb[Ca] be the subset of Fh[Fa] for which (Ay, y)b^0 [(Ay, y)a

^0]. Then Fb is a linear subspace of dimension h^n[la^p] and, in fact, even

Ci,[C0] contains an n-dimensional [p-dimensional] linear subset.

Proof. We have already (Corollary to Theorem 3.2) established for solu-

tions of the homogeneous system the equivalence between (Ay, y)b< °° and

y belonging to Li(c, b; D). It follows from the latter condition that Fa is a

linear subspace. Let [yi, y2, • ■ ■ , yr] form a basis for the solutions of (3.1)

(Theorem 3.1) and set y = zZt-i 7C>- Then

r r

(3.10) (Ay, y)x =   \Z 7<f AAyt, yi)' =   zZ yrfiUuyi, yd .

If we let Yu— (y\, y\, • • • , y\) denote the rXr matrix with jth column vector

y), then Yu will be nonsingular for each x by Theorem 3.1. The matrix of the

form in (3.10) is the nonsingular hermitian matrix Yu(x)*Au(x) Yu(x), which

again has p positive and n negative eigenvalues. Thus if we define

C, = [y; (Ay, y)- ^ 0],

then in terms of the (yit 72, ■ • • , yi) coordinates each Cx is a closed cone

containing certain w-dimensional linear subspaces. According to Theorem 3.2,

we will have CXlZ)CZi if Xi>x2 and hence

(3.11) C„=   D C,.

Now the w-dimensional linear subspaces are compact (in a suitable topology)
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and therefore Cb contains at least one w-dimensional linear subspace and a

fortiori lb ̂  n. The results for the a end are proved in a similar way.

An analogous assertion holds for the solutions of the adjoint homogeneous

equation (3.2) since the two equations are of the same type. However, since

A has been replaced by —A, there will be the following differences. The set

G&[Ga] °f solutions of (3.2) with (Az, z)b> — » [(Az, z)"< oo ] or, equivalently,

which belong to La(c, b; D) [Li(a, c; D)] will be of dimension mb\\p [ma^n]

and even the set for which (Az, z)6^0 [(Az, z)"gO] will contain a ^-dimen-

sional (w-dimensional) linear subset.

We are now in a position to construct the Green's function for dissipative

operators. This we proceed to do, leaving until later the proof that such an

operator actually defines the resolvent for the most general dissipative re-

striction of 7,i which generates a semi-group.

We first consider solution pairs [y„, yb] of (3.1) from which we choose an

r-dimensional subspace TV0,& such that

(3.12) -(Aya, ya)* + (Ayb, y6)» g 0

for all [ya, y&]GTV0,!,. At least one such r-dimensional subspace N„.b exists

since, according to Theorem 3.3, there is a p-dimensional subspace Na oi Ca

and an w-dimensional subspace 7V» of Cb whose product set NaXNb defines

an r-dimensional subspace of the typeTV,,!,. It is clear from Theorem 3.2 that

(Ay, y)b> — °° and (Ay, y)"< °° for any solution of (3.1) so that condition

(3.12) requires that both (Ayb, yb)b and (Aya, ya)a be finite; consequently

Na,b is a linear subspace of Ftt,b = FaXFb.

We next define the ^.(.-orthogonal complement to Na,b, namely the set

of all solution pairs [za, zb] of (3.2) such that

(3.13) -(Aya,za)a-(Ayb,zb)b = 0

for all [ya, yb]GNa.b, and we denote this set by Pa,b. It follows from Theorem

3.2 that (Ay, z)x is independent of x for all solutions y of (3.1) and z of (3.2).

As a consequence the condition (3.13) is equivalent with — (Aya, za)xi

+ (Ayb, Z(,)x2 = 0 for some (and hence for all) xu x2G(a, b).

Theorem 3.4. The set Pa.b forms an r-dimensional linear subspace of solu-

tion pairs [za, zb] of (3.2) which is contained in Ga,b = GaXGb and has the prop-

erty that

(3.14) -(Aza, za)a+ (Azb, Zb)bl% 0

for all [za, Zb]GPa,b- Moreover Na,b can be defined dually as the Aa.b-orthogonal

complement of P„,b.

Proof. We see by Theorem 3.2 that for Xi, x2G(a, b)

(3.15) -(Ay., ya)* + (Ayb, >»)*» < - (Aya, ya)a + (Ayb, yi)b g 0

for each nonzero [y„, yb]GNa.b. Fixing xi, x2G(a, b) for the present, this in-
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equality shows that the y1 components £y„(xi), yj(x2)] of the solution pairs

[ya, yb] lying in Na,k span an r-dimensional linear subspace of the 2r-dimen-

sional euclidean space; we denote this subspace by Nl(xi, xi). Obviously

— Uii(*i)y„, y„) + (An(xi)yb, yi) < 0

for each nonzero vector pair [y], yl]EN1(xi, xi). We now apply Lemma 3.2 to

the 2rX2r hermitian nonsingular matrix

/-An(xi)        0    \

A»^**~\      0 Au(xi))'

having r positive and r negative eigenvalues. Let P1(xi, xi) be the Au(xi, xi)-

orthogonal complement to A/^Xi, xi). Then, according to the lemma,

— (Au(xi)za, za) + (Au(xi)zb, zb) > 0

for each nonzero vector pair [z\, z\]EPl(xi, xi). Now Theorem 3.1 applied

to the adjoint homogeneous system (3.2) asserts that the components

[z„(xi), zj(x2)], where z„ and zb range over the solution pairs of (3.2), span the

2r-dimensional euclidean space. Hence if P(xi, xi) denotes the set of solution

pairs [za, Zi>] whose z1 components [z^Xi), zj(x2)] lie in P1(xi, xi), then P(xi, xi)

is an r-dimensional linear subspace whose nonzero elements satisfy

(3.16) -(Aza, za)xl + (Azb, zi)xl < 0.

It is clear from our earlier remarks that P(xi, xi) is actually the set Pa.b

and that (3.16) is valid for all xi, XiE(a, b). Passing to the limit as Xi—>a and

x2—>&, we obtain (3.14). Moreover, it is readily seen that if we had started

with Pa%b and proceeded as above, then we would have obtained N'(xi, x2) as

the Au(xi, x2)-orthogonal complement to P1(xi, xi) by Lemma 3.2, and hence

Na,b as the A<,,&-orthogonal complement to Pa,b- Finally the argument based

on the relation (3.12) applied now to (3.14) shows that Pa,bEGa,b.

Ii [ya, yb] is a nonzero element of Na,b, then as in (3.15)

-(Aya, yi)x + (Ayh, yi)' < 0

for each xE(a, b). As a consequence the r-dimensional subspace

N'(x) = [[yb(x), ya(x)]; [ya, yb] E N.,b]

has only the zero element in common with

N(x) = [[ya(x), yb(x)]; [ya, yb] E Na,b],

and hence A^(x) and N'(x) together span the 2/--dimensional euclidean space

for each xE(a, b). The same statement holds for

P(X)   m   [[*„(*), Zb(X)];   [za, Zb]  E Pa.b]

and
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P'(x) = [[zb(x), za(x)]; [z„, zb] G P«.b].

Choosing r linearly independent solutions [yo.,, yb,i] in Na,b and r linearly

independent solutions [za,,-, zb,i] in Pa.b, it follows that the 2rX2r matrices

with column vectors

v(x) = (yV •' • yr yV"" • y\\
,, ,,, \y».i- ■ ■ y».r,   y«,i • • • y.,r/

(j-i*) 11 i i

z(x) = (r ■ • • zi-» ~zr''' ~zr)
\Za.l ■   •   •  Zo.r,        — Z&,1 •  ■  •   — Zb,r/

are nonsingular for each xG(a, b). Furthermore

Q = Z(x)*An(x, x)Y(x)

is nonsingular and by Theorem 3.2 independent of x. Since 7V(x) and TV'(x) are

An(x, x)-orthogonal to P(x) and P'(x) respectively, we see that Q is of the

form

e.(«" °)
\ 0     Qj

where each block is rXr. We now set

V(x) = Z(x)[Q*]-*

from which we see that the first r column vectors in V(x) come from P'(x)

and the last r come from P(x). In fact, V(x) is composed precisely like Z(x)

from a single set of r linearly independent solution pairs spanning /*„,&. To

conserve on notation, we shall simply suppose that our original choice of

solution pairs [za.i, Zb.i] are those to be found in F(x). In this case we have

(3.18) Z(x)*An(x, x)Y(x) = I = An(x, x)Y(x)Z(x)*.

By employing the above choice of solution pairs, we now write down two

forms of the solution to the equation

(3.19) \y-(Ay)x- By = f

for functions fGLz(a, b; I) which vanish outside of (a', b'), a<a' <b' <b.

y = 7?i(X)/ = yx + y2

/7?M(X)/o\        ' rb

(3.20) =(      •     )-£^,CA *M + *M)*

- zZ y*.i I  (/. z".t + zm)#
•-1 J a

and
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y = Rt(\)f = yi+ yi

- X) (y.,< + y».«) I  (/- z«.i)dl

In both of these expressions i?oo(X) = (X7 — Boo)~l- Since/(x) vanishes outside

of (a1, b') it is clear in each case that all of the terms are well defined and that

Ay=Ayz is absolutely continuous.

We proceed to verify that (3.20) solves (3.19). Making use of the fact

that the y„'s and yb's are solutions of (3.1), we have

Xy   = B0oy  — Boiy  = (XJ — 7i0o)7?oo(X)/ + (Xy2 — Booyz — Boiyi)
a        o       ,o

= / +6  =/

and

Xy   — (Any )x — Buy   — Bioy

= — BioRoo(\)f + {Xy2 — (Anyi)z — Bnyt — £i0y2}

r

= — BioRoo(K)f — zZ Anya,i(f, za.i + zb,i)

r

+   ZZ Auyt.i(f, Za,i + Zb,i)
1=1

for almost all x. If z is a solution to the adjoint homogeneous system (3.2).

the z-relation corresponding to (3.5) gives

(3 22) (/' 2) = (/°' Z°} + (/I' Zl) = (/°' i?oo(X)*B*o3l) + (/I> 2l)

= (BnRooWf + P, z1).

Further, one obtains the following identities directly from (3.18):

- zZ Anya,i(f , Zb.i) + zZ Aiiyb,i(f , za,i) = / ,

(3.23)

— 2-, Aiiya.Af , za,i) + Z^ Anyb,i(f , zb,i) = 6 .
i=i «-]

Making use of (3.22) and (3.23) it is readily seen that

Xy1 - (Any')z - Buy1 - £10y° = - BioRoo(\)f° + [BioRooWf + f1] = P

tor almost all xE(a, b). The verification for (3.21) is essentially the same and

is omitted.
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Before closing, a few remarks are in order on our choice of solution pairs

[yo.i. yb,i]GNa,b and [z„,,-, Zb,i]GPa.b employed in (3.20) and (3.21). As de-

scribed above, we kept our original set of [y„,i, y»,i]'s and made use of Q to

obtain a suitable linear combination of the [za,i, zi,,,]'s. It is clear that we

could just as well have fixed the [za,i, z&.J's and used Q to select a linear

combination of the [ya.i, yi,<]'s so as to satisfy (3.18), namely U(x) = Y(x)Q~1.

To pursue this matter a bit further, suppose Na,b = NaXNb, where TV„ is

a ^-dimensional subspace of Ca and Nb an w-dimensional subspace of Cb. For

a fixed xG(a, b) set

N\(x) m [y\x); y G Na]    and    n\(x) = [y\x); y G TV*].

We then obtain P\(x) and P\(x) as the ^4n(x)-orthogonal complements to

N].(x) and N\(x), respectively. According to Lemma 3.2, P'a(x) will be w-

dimensional, P[(x) will be /(-dimensional, and

(An(x)za, z0) < 0    and    (An(x)zb, zb) > 0

for all nonzero vectors zaGP\(x) and zbGP\(x). As in the proof of Theorem

3.4, the w-dimensional set of solutions of (3.2) whose z[(x) components span

Pla(x) is independent of x; we denote this set by Pa. The corresponding set of

solutions whose zl(x) components span P\(x) will be called Pb. We then have

(Aya, ya)a ^ 0, (Ay*.)' = 0, (Azaza)a g 0,

(Ayb, yb)b g 0,        (Ayb, zb)» = 0,        (Azb, zb)» ^ 0,

for all yaGNa, z„GPa, ybGNb, and zbGPb- Moreover, since PaXPb is r-dimen-

sional, it follows that this set is the ^40,(,-orthogonal complement of TV0,i,, that

is, Pa.b = Pa XPb.

We now choose bases for these various sets of solutions:

Na: [yaX, i = 1, • • • , p], Nb: [yb.t; i = p + 1, ■ ■ ■ , r],

TV- [za,i\ i = p + 1, • • • , r],        Pb: [zt.,-; t = 1, • • • , p],

where the numeration is chosen so as to conform with the notation of (3.17)

if we simply set all of the unlisted functions equal to the identically zero vec-

tor function. Defining the 2rX2r matrix Q as before, we find that

e„-(e:'  °.)
V 0     Qj

where Q\i is pXp and Q2n is wXw. As a consequence V(x) =Z(x) [Q*]"1 is com-

posed like Z(x) with its first p column vectors in PbXd and the next w column

vectors in 6XPa. On the other hand if we prefer to keep the original Pa and

Pb basis vectors we may replace F(x) by U(x) = Y(x)Q^1 which is again com-

posed like F(x) in the sense that the first p column vectors lie in NaXd and
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the next n lie in dXNb. Finally, if we factor Q as

Qn    0       0       0] (I       0       0       0

0       7       0       0 0       Qn    0       0
Q - Q1Q2,    Qi= i ,    Qj =

0       0       Qn    0 0       0       I       0

0        0        0        I) (0        0        0       Qn

and set U(x) = Y(x)Q2~l and V(x) =Z(x) [Q?]~\ then (3.18) will be satisfied

with Y(x) replaced by U(x) and Z(x) replaced by F(x). In this case we keep

to our original choice of bases for Na and Pa but modify the bases for Nb and

P;,. In a similar fashion we can keep our original choice of bases for Nb and

Pb and modify only the bases for Na and Pa. In all of these cases of separated

end conditions (3.20) and (3.21) coincide and are of the form

y = R(X)f = yi + y2

/*„„(x)A    a      r\.
(3.24) -\    e    j-g^J//--.^

r /» x

-     IZ    Vb.i   I      (/, Za,i)d$.
i=p+l J a

4. The operators Lx and M\, We now establish several basic properties of

the operators Li and Mi, assuming, as before, that these operators are in

normal form.

It is convenient at this point to introduce the extended operators Lx and

M„ defined on the class of vector-valued functions

(4.1) 3)(7») = S(M«) = [y; Ay absolutely continuous]

as

(4.2) L„y = (Ay)x+By,

(4.3) M„z = - (Az)x+ (B* + Az)z.

The following relations, obtained directly from (2.12), hold amost every-

where in (a, b) tor y, zG®(700) =S)(Af00):

(4.4) (L«,yi, yi) + (yi, L„y2) = (Aylt yi)x+ ((B + B* + Ax)yu yi),

(4.5) (LKy, z) - (y, M„x) = (Ay, z)z,

(4.6) (M„z,, zi) + (zi, M„Zi) = - (Azi, zi)x + ((B + B* + Ax)zu zi).

With the help of these relations we now establish certain limit theorems.

It will be recalled that H = L2(a, b; I) and we shall write H2 = HXH. Also

since D^7 it is clear that L2 (a, b; D)EHEL2(a, b; D~l), that ||y|| ^\\y\\D for

yEHr\L2(a, b; D), that ||y|| ̂ Hyllz)-1 for yEHC\Li(a, b; D~l), and  that
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I (y, z)| ^HyllDllzIlD-1 for yGLi(a, b\ D) and sE72(a, b; D'1). These various
spaces play an essential role in what follows and call attention to an impor-

tant difference between the symmetric and the non-symmetric problem

Lemma 4.1. If [y„ L„yi] and [z„ Maozi]GL2(a, b; D)XL2(a, b; D~l),
t = l, 2, then

04yi- yj)°,        (Ayi, yi)b,        (Azu z2)°,        (Azlt z2)6

exist and are finite. Likewise if both [y, L„y] and [z, M„z]GH2 or L2(a, b; D)

XLi(a, b; D~l), then

(Ay, z)a    and    (Ay, z)b

exist and are finite.

Proof. Suppose first that [y„ 7_„y,]G/2(a, b; D)XL2(a, b; D~l). Making

use of the relation (4.4) we obtain

(.4yi, yi)* = (Ayh yi)c + J    [(L«yi, yi) + (yi, T,„y2)]</£

(4.7)

- J  ((B + B* + A)yi, yi)dl a < c, x < b,

and since both integrands belong to 7,i(a, b) the required limits evidently exist

and are finite. The remaining assertions are proved in a similar fashion, the

dual limits from (4.6) and the mixed limits from (4.5).

We note that if it is merely assumed that [y, L„y]GH2, then the inte-

grand in the first integral of (4.7) again belongs to Li(a, b). However the

integrand in the second integral need not be summable, but since it is meas-

urable and nonpositive we see that y belongs to L2(c, b; D) if and only if

(Ay, y)b exists and is finite whereas y belongs to Li(a, c; D) if and only if

(Ay, y)a exists and is finite. As was mentioned in the introduction, this is the

reason for restricting 3)(7,i) (and 3)(ATi)) to functions in L2(a, b; D).

Lemma 4.2. Suppose 0(x) is a real-valued function of class Cw on (a, b)

such that 0g/3(x)gl, 0(x)=O for all x£a', and 0(x) = l for all x^b', a<a'

<b'<b. If {y„; w = 0, 1, 2, • • • } C35(L„) with

[yn, L„yn] —> [y0, L„y0] in 772 [or in L2(a, b; D) X 7-2(a, b; Z)-1)].

then {un = 0yn; w = 0, 1, 2, • • • } C3)(Z,„) and

[«„, L„un] —> [m0, 7.«,«0] in H2 [or in L%(a, b; D) X Li(a, b; D~1)]

Similar results hold for a(x) = 1 —0(x) and for sequence {zn} C3)(A7„)-

Proof. Since Aun=0Ayn is absolutely continuous with Ayn, it is clear

that {«„} C3)(L„). One also sees immediately that
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/► b /• 6 /» 6
(Eu, u)dx =   I   jS2(£y, y)dx <   I    (Ey, y)dx,        E = / [or D].

a J a J a

On the other hand

L„m = j3L„y + PrAy

so that

Ub \   1/2 /    /.6 -,   i/s
(E-'L.n.Z.w)^!      g IJ    (£->L-y,Lxy)(J*|

(4.9) (  /•» } >/J

+ {J     l/S.M^-1!  \A\2(Ey,y)dxj     ,

E = I [orD1].

Since px vanishes outside of [a', b'] there exists a constant M such that

| pz |21 £-• | | A \2(Ey, y)dx ^ M I    (Ey, y)dx.
a J a

The inequalities  (4.8),   (4.9),  and   (4.10)  together show that   [«„, Lxu„]

—>[«0, L„u0] in 772 [or in L2(a, b; D)XL2(a, b; D~1)].

Lemma 4.3. Suppose {yn;w = 0, 1,2, • • • } C35(7»), {zn;w = 0, 1, 2, • • • }

E^>(M„), and that

[y„, L„y„] —♦ [yo, L„y0]    and    [zn, M„z„] —» [z0, AfMz0]

*m 772 or in L2(a, b; D) XL2(a, b; D~x). Then

lim (Ay„ zn)x = (Ay0, zi)x for x = a, b.
n—*«

Proof. We make use of the previous lemma, setting

«» = Pyn    and    vn = Pzn.

Since the new sequences have the same convergence properties as the original

sequences, we have by (4.5)

(Ay„, zn)b = (Aun, vn)b =   I    [(i»M», vn) — («», M„vn)]dx
J a

—►  I     [(Lxu0, »o) - («o, M„»o)]dx =  (.4Mo, »o)6 =  (^yo, 2o)*-
•7 o

A similar proof applies at x = a if we replace P(x) by a(x) = 1 — P(x).

Lemma 4.4. Suppose {y„; w = 0, 1, 2, • • • } C£>(7i) and



132 R. S. PHILLIPS [September

[yn, Liyn] —> [y0, 7,iy0] in 772.

Then

lim inf (Ayn, yn)b ^ (Ay0, y0)6,
n—»w

(4.11)
hm sup (4 y„, y„)° g (4y0, yo)a.

n—.oo

The corresponding results hold for Mi.

Remark. As we shall see in Lemma 5.3, the left members in (4.11) actually

converge to the right members.

Proof. Again making use of Lemma 4.2 and setting un=0yn, we have by

(4.4)

(Ayn, yn)b = (Au„, un)b =  I    [(Liu„, u„) + («„, Liun)]dx

(4.12)

-  f ((B + B* + Ax)un,u„)dx.

Since [un, LiMn]—»[m0, LiUo] in 772, we see that

/ib r% b
[(Z,i«„, u„) + (w», LiUn)]dx—> I    [(LiUo, uo) + (uo, LiU0)]dx.

a J a

Further it follows from Fatou's lemma that

((B + B* + A x)uo, Uo)dx g lim inf -   I    ((B + B* + A x)un, un)dx.

Combining these two observations with the expression (4.12), we obtain the

first inequality in (4.11) and the second is proved in a similar fashion

We note that Lemmas 4.3 and 4.4 also apply to functions which behave

in the prescribed manner in some neighborhood of the point x = b [or a] at

which the limit is taken. It suffices in the proof to choose /3(x) [or a(x) ] so

that it vanishes outside of this neighborhood.

The estimates established in the next lemma are basic.

Lemma 4.5. Suppose yG 3) (/,«,) is square integrable on each compact sub-

interval of (a, b), that — (^4y, y)" + (Ay, y)6g0, and for some X>0 that the

function /=Xy — L„yG77. Then yGTi(Li),

(4.13) X||y|| g 11/11,

and

(4.14) c(X)||y||gC(X)|J (Dy,y)dx}      g  |J (D^f,f)dx^      g ||/||,
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where c(\) = min (X, 1/2). On the other hand, «/yG3D(7„) belongs to L2(a', b';D)

for alla<a'<b'<b, if -(Ay, y)" + (Ay, y)b^0, and if fEL2(a, b; D~l), then
yEL2(a, b; D) and the first two inequalities in (4.14) remain valid.

Proof. It follows directly from (4.4) that

2X(y, y) - (/, y) - (y, /) = (Ay, y)z+ ((B + B* + Az)y, y)

for almost all x. This relation represents ((B+B*+Ax)y, y) as a sum of terms

each summable over (a', V) and therefore ((B +B*+ Ax)y, y)ELi(a', b').

Making use of condition (D) and the Schwarz inequality, we obtain

/» 6' /» 6' /» b'
(y, y)dx ^ 2X |     (y, y)dx -   I     ((B + B* + Az)y, y)dx

a' J a' J a'

=   f    [(/, y) + (y, f)]dx + [(Ay, y)»' - (Ay, y)"]

(4.15)
I    nb' \   1/2  /     nb' \   1/2

^2|J(/, f)dxj     IJ    (y,y)dxj

+ [(Ay, y)"' - (Ay, y)"].

If we now divide the first and last members of this series of inequalities by

{fa'(y, y)dx\ "2 and pass to the limit as a'—*a and 6'—>6, we get (4.13). This

shows that yEH and, as a consequence, Lxy — \y—fEH. In addition, (4.15)

now holds with (a', b') replaced by (a, b), and it follows from this that

yEL2(a, b; D) so that yES)(Li). Finally we note that the extreme inequalities

in (4.14) are simple consequences of

D = I - (B + B + A z) ^ I    and   D~l ^ I,

whereas (4.15) implies

/» 6 /* 6(Dy, y)dx g   I    | (D-l'2f, Dl'2y) \ dx
a J a

Ub \   1/2   /    p b -J   1/2
(D-y.fldxj     | J    (Dy,y)dxj     ,

from which the middle inequality in (4.14) follows.

To prove the second assertion of the lemma, we make use of (4.15) to

obtain

/»' /    f V \   112  r    nb \   1/2

(Dy, y)dx ̂ \J     (D->f, f)dxj     j J     (Dy, y)dx\

+ [(Ay, y)b' - (Ay, y)"].

Dividing now by \fha'(Dy, y)dx]112 and passing to the limit, we obtain the
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middle inequality in (4.14) from which it follows that yGL2(a, b;D). The first

inequality in (4.14) is obtained just as before.

Corollary. There are no nontrivial dissipative solutions of \y—Liy=6

(in 3)(Li))/orX>0.

This is an immediate consequence of (4.13).

We are now in a position to show that (3.20) and (3.21) are both repre-

sentations of the resolvent 7t(A; L) of a suitably chosen restriction L of L\.

We have

Theorem 4.1. For fixed\>0, let Pa,b be any r-dimensional subspace of solu-

tion pairs [za, zb] of (3.2) such that

(4.16) - {Az., z.) + (Azb, zh)b g; 0,        [z„, zb] G P»,b.

Further define L to be the restriction of Li with domain

(4.17) 3)(7A = [y;yG 3)(£i), -(Ay, z.)a + (Ay, zb)b = 0 for all [z., zb] GPa.b].

Then L is a dissipative operator with dense domain, having a resolvent at X

which can be represented by both (3.20) and (3.21); here the solution pairs

[za.i, Zb.i] span Pa.h and the [y..i, yi.i] are solution pairs of (3.1) spanning the

A..b-orthogonal complement to P.,b, namely,

Na.b = [[yOI y»]; y., yb solutions of (3.1) such that
(4.18) r

-(Ay., z.Y + (Ayb, zh)b = 0 for all [z., zb] G Pa.b];

these bases are chosen so as to satisfy the relation (3.18). 7w addition, X||T? (X; L)||

gl.

Proof. As we have seen in §3, for/G77 and vanishing outside of (a', b'),

a<a'<b'<b, the operators 7?i(X) and 7?2(X) are well defined and solve the

equation (3.19). For y = 7?i(X)/=yi+y2,

/i?oo(X)/°\

yi = \      e      )' a < x <b,

r

(4.19) HyiJa.i, x<a',
.■=i

y2 = {

H 7iy*.i, x> b'
1=1

where y;= —f.(f, z.,i+Zb,i)dx. Now yiGH but does not enter in the computa-

tion of either (^4y, y) or (Ay, z) since its y1 component vanishes. On the other

hand it is evident that y2 is square integrable on each compact subinterval

of (a, b) and it is seen from (4.19) that [y2(xi), y2(x2) ] coincides with a solution

pair in TV0.i, for Xi<a' and x2>b'. Consequently
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(4.20) -(Ay, y)" + (Ay, y)» ^ 0

and

(4.21) -(Ay, za)a+ (Ay, zb)» = 0 for all [za, z„] E Pa.b-

The hypothesis of Lemma 4.5 is therefore satisfied. Hence y£3)(7,i) and this

together with (4.21) shows thaty(E£)(7), defined as in (4.17). The lemma also

implies that X||Pi(X)/|| g||/|j for such/.

Similarly for y = R2(\)f=yi+yi, fEH and vanishing outside of (a', b'),

we have

/*oo(X)/°\
yi = l I, a < x < b,

(4.22) [A rb
— 2-, (ya.i + yb.i)  I    (/, zb.i)dx, x < a',

i-1 J a

r p b

- ZZ (Va.i + yb.i)  I    (/, Za.i)dx, x > b'.
i-1 J a

Thus for Xi<a' and x2>6'

r nb

-(Ay,za.i)'l+ (Ay, zb,j)x* = zZ [(Aya.i,Sa,i)Xl+ (Ayi.i.Za.i)"] I   (f,zb.i)dx
t-l J a

r n b

~  1Z [(Aya.i, Zb,j)x*+ (Ayb,i,Zb.j)xt]   I    (/, za.i)dx.
i-1 ^ a

According to (3.22), (/, za) = (hl, z\) and (f, zb) = (hl, z\), where we have set

A1 = 5ioPoo(X)/°+/1. On the other hand (Ay, z)x is independent of x if y is a

solution of (3.1) and z a solution of (3.2). We can therefore bring the above

expressions of this sort under the integral sign, replacing Xi and x2 by the vari-

able of integration, x. Making use of these facts together with the second

identity in (3.23) we get

ZZ (Ayb.i, Za.i)"1 I   (/, Zb.i)dx =   J   (  zZ Anyb,i(h , zM), z0,,- jdx
i«l J a J a   \ i=l /

=  I   ( zZ Anya,i(h , za.i), Za.jjdx

=   1Z (Aya.i, Za.i)'1    I      (f,Za.i)dx,
•=1 J o

and likewise

r nb r /» 6

zZ (Aya.i, Zb.i)xt I   (/, Za,i)dx = zZ (Ayb.i, zh,i)n I   (/, zh.i)dx.
t—1 J a i—1 J a



136 R. S. PHILLIPS [September

Consequently

-(Ay, z..,)*l+ (Ay, zM)*'

= 23 [(^yo.i, z0,y)" - (AyM, z6,j)12] I    (/, Zo,< + zb,i)dx
i-l J a

which vanishes since [y.,i, yb.t] is ^40,(,-orthogonal to [z„,y, zj,,y]. It follows

from this that [y2(xi), y2(x2)] coincides with a solution pair in N.,b for Xi<a'

and x2>b'. Arguing as above we see that yG35(7,) and that X||T?2(X)/|| g||/||.

We note that u = Ri(X)f—T?2(X)/ satisfies the homogeneous Equation (3.1)

and that [«(xi), w(x2)] coincides with a solution pair in TV0,j, for Xi<a' and

x2>b'. As a consequence u is a dissipative solution of \u — Liu=d and by the

corollary to Lemma 4.5, m=0; in other words Ri(\)f=R2(\)f if /vanishes near

a and b.

From this point on the proof is the same for both operators. Let /0 be

an arbitrary element of 77 and choose the sequence {/„} CZZ to consist of

vector-valued functions vanishing near a and b and such that /„—>/0 in 77. It

is clear from the boundedness of 7?,(X) that the sequence {yn = 7?;(X)/n} con-

verges in 77 to a function, say y0, which is given explicitly by (3.21) as y0

= T?2(X)/0. (We note that the expression (3.20) corresponding to 7?i(X)/o need

not be well defined.) Thus Ay0 is absolutely continuous and Lxy0—\yo—foGH.

It is clear that the extended operators, 7?,(X), have the same bound as before.

Moreover the inequality (4.14) shows that yn—>yo even in L2(a, b; D) so that

yoG7-2(a, b; D). It follows that y0G35(/-i). Finally Liy„=Xy„— /„—>Xy0 — /o
= Liy0 in 77 and applying Lemmas 4.3 and 4.4 we see that (4.20) and (4.21)

continue to hold for y0. This proves that yoG3)(7,) and hence that 7?,(X) is a

right inverse for X7 — L. It remains to show that the range of 7?,(X) actually

fills out 3)(7,). To this end let y be an arbitrary element of 3)(7,) and set

f=\y — Ly and yo = 7?,(X)/. Then w=y— yoG3)(L) is a solution of the homo-

geneous Equation (3.1) and by (4.17) [u, u] is ^4<,,t-orthogonal to Pa,b- It

follows from Theorem 3.4 that [u, w]G7Va,& and hence that u itself is a dis-

sipative solution. The corollary to Lemma 4.5 now asserts that M = 0and this

shows that y =T?;(X)/ lies in the range of 7?,(X). Thus 7?,(X) is also a left in-

verse for \I — L and is therefore the resolvent of L at X. As we have seen,

(4.20) holds for each element in the range of 7?,(X) and hence for each ele-

ment in 3)(7,) so that L is a dissipative operator. Finally it is clear that 3)(7.)

contains the class of continuously differentiable functions vanishing near a

and b, and since these functions are dense in 77 the same is true of 35(7,). This

concludes the proof of Theorem 4.1.

It is convenient to bring the operators 7?i(X) and 7?2(X) into a somewhat

more tractable form. This can be accomplished by a suitable choice of bases

for 7V0l(, and P.y, as we have already remarked at the close of §3, there is con-

siderable latitude in the choice of these bases.
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In the case of P2(X) we proceed as follows: Let Ni be the subspace of

Na,b for which both of the solutions in [ya, yb] lie in L2(a, b\ D), let N2 be the

subspace of Na,b for which the yb solution lies in L2(a, b; D), and let N3 be the

subspace of Na,b for which the ya solution lies in L2(a, b; D). It is clear that

Ni = N2C\Ni. We now choose a first set of 5i linearly independent solution pairs

bv»> yb.i] to span TYi, a second set of 52 solution pairs which together with the

first set form a basis for Ni, a third set of s3 solution pairs which together

with the first set form a basis for N3, and a last set of 54, solution pairs which

complete the basis for Na,b. We then choose a basis of solution pairs [za,i, zb,i]

for Pa.b as before so as to satisfy (3.18). Suppose next that f EH vanishes out-

side of [a', b']E(a, b). It was shown in Theorem 4.1 that y = P2(X)/E£)(7)

and a fortiori that yEL2(a, b; D). In particular

r n b

y(x) = - zZ ha.i(x) + yb,i(x)] I   (/, zb,i)dx, x < a',
1=1 J a

lies in L2(a, a'; D). Now the solutions [ya,i+yb,i; i—l, ■ ■ ■ , r] are linearly

independent. Otherwise there would be constants {7,} not all zero such that

zZ'-i 7i[y<>.i + Vb.i] == & almost everywhere, and setting y0 = zZyC/a.i

= — zZy iVi.i we see that [yo,yo]ENa,b. Consequently —(Ay0, y0)a + (Ay0,yo)b

^0 which can happen, according to Theorem 3.2, only if y0 is the trivial solu-

tion of (3.1). Thus zZyi[y«,i, Vb.i] = \P, Q\ almost everywhere, contrary to the

[ya.i, Vb.i] forming a basis. Thus the terms in the above expression for y(x)

are linearly independent and, since yEL2(a, a'; D), the sum can extend only

over Si^Js2. In view of the fact that our choice of/'s is dense in L2(a', V; I),

this implies that z&,,-=0 for iEsAJs2. A similar argument for the 6-end shows

that za,i=6 for iE^i^Jsz. Since the [z„,,, z&,,] are linearly independent, both

za,i and zb,i can not be zero solutions of (3.2) and hence the set 54 must be

empty. Thus R2(\) takes the form

/Roo(\)f\        ^ rb
R*Wf = (       '   ) -   Z   (ya.i + yb.i)      (/, zk,t)dt

(4.23) V      °     )      -U- J\
-   E  (ya.i + yb.i) f (/, *„.<)#•

For the case of Pi(X) we consider the solution pairs [za, zb] EPa.b, splitting

Pa,b into parts Pi, P2, P3, and P4 which are defined as the analogues of

•/Vi, A^2, A^3 and A^4 respectively. We then choose a basis for Pa,b so that the

first set of h forms a basis for Pi, etc.; after which a basis for N„,b is chosen

so as to satisfy (3.18). For functions/, gEH which vanish near a and b, we

have

(g,Ri(\)f) = (Ri(\)*g,f)

from which we read off that
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(7?nn(X)*f°\ r Cb

y   J-S(«.,* +«m)J  (g,y>.i)dt
r ~x

- 23 (*•.« + *».<) I   (g- y«,0<#-
«-l •/ o

According to Theorem 4.1, 7?i(X)* =7?(X; M) where M is a dissipative restric-

tion of Mi with

(4.24) ®(M) = [z; z G D(Afi), -(A*, y»)a + U«, y*)6 = 0

for all [y., yb] G N.,b].

Since the operator 7?i(X)* is of the same form as T?2(X), the previous argument

applies and we see that yb,i=8 for iGh^k, y.,i=6 for iGh^Jh, and that U

is empty. Consequently with this choice of bases for P..b, the expression for

7?i(X) given in (3.20) is well defined for all fGH.
We also have

Theorem 4.2. Let L QLX and MGMi be defined by (4.17) and (4.24) respec-
tively. Then L* = M and M* = L.

Proof. Since 7?i(X) is a representation for 7?(X; L) by Theorem 4.1, the

above argument shows that 7?(X; Z.)* = 7?(X; M). On the other hand it is

known (see R. S. Phillips [13]) that 7?(X; L)* = R(X; L*) and from this it

follows that L* = M. A similar argument shows that M* = L.

5. Boundary behavior. In the previous section we started with a fixed

X>0 and proceeded to define certain dissipative restrictions of 7_i (and Mi)

whose resolvents exist and satisfy an inequality of the Hille-Yosida type for

the given X. It should be noted that the domains of these restrictions are de-

fined in terms of solutions to the adjoint homogeneous equation (3.2) which

again depends on the given X. Now, in order to satisfy the Hille-Yosida con-

dition it will be necessary for a given dissipative restriction to be defined in

this way for all sufficiently large X(7). This provides the motivation for the

(7) One can show that the Hille-Yosida condition is satisfied by a dissipative operator L

defined as in (4.17) by means of the following direct argument. We suppose, then, that $)(L) is

defined as the >40,i.-orthogonal complement in 35(Li) of the solution pairs P.,b to the homo-

geneous adjoint equation (3.2) for a given X = Xo and to emphasize this dependence on Xo we

shall denote this set by Pa.h (Xo). Let X>0 be such that |x—Xo| <X0 and set /,•(*) =y,.,-(*),

a<x<c,fi(x)=yb,i(x), c<x<b, for i-l, 2, ■ ■ ■ , r. As in the proof of Theorem 5.1, the integral

equation « — (X0 —X)i?(Xo; L)u=fi will have a solution, say «,-, and the solutions u,, «»,•••,«,

will be linearly independent. Moreover these functions !<; satisfy (3.1) almost everywhere and

Aui is absolutely continuous except perhaps at the point x = c. Consequently each of the func-

tions ua,i{x) =Ui{x), a<x<c, Ub.i(x)=Ui(jx), c<x<b, can be extended to the entire interval

(a, b) so as to be a solution in the accepted sense of (3.1) on (a, b). Now the resulting solution

pairs [«„,,-, Ub.i] will be linearly independent; in fact, if 2~Zti[»«•«> «<>.•] = K #] almost every-

where, then 2~ly,'u>(x) —8 almost everywhere and this is impossible. We see that the integral

equation expresses «,• as the sum of a function in 3)(L) plus ?„.,• for a<x<c and plus y*.,- for



1957] DISSIPATIVE HYPERBOLIC SYSTEMS 139

present section whose end result is a complete characterization of the

pertinant boundary behavior of the functions in 1)(Li) (and £>(Afi)).

It will be recalled that the boundary conditions on 5D(7) are of the form

-(Ay,zay+(Ay,zby = 0

for a set of solution pairs [z„, zb] EG. It is clear that only the behavior of z„

near a and of zb near b effects the boundary condition and we note that each

of these solutions coincides with a function in J)(Afi) near its associated bound-

ary point. This suggests that we consider £)(7i) modulo

(5.1) S)(L„) 3 [y;y GD(7i), (Ay, z)'^ 0 for all zE®(Mi)]

in order to determine what is basic in the behavior of y€E 35(7i) at x = a and

that we consider S)(7i) modulo

(5.2) 35(LS) ■ [y;yE 3)(£i), (Ay, z)» = 0 for all z E ®(Mi)]

in order to determine the basic behavior of y(EJ)(7i) at x = b. It turns out

that (Ay, y)° is the same for all y belonging to a coset of 3)(Li)/35(7o) and

(Ay, y)b is the same for all y belong to a coset of 3)(7i)/2)(7i,).

We shall show that the quotient space $)b = £)(7i)/£)(£&) [respectively

§)„ = jD(7i)/2)(7<i)] is completely characterized by the solutions of (3.1)

which lie in 72(c, b; D) [L2(a, c; D)], that is, by the functions in Fb[Fa]. In

fact, suppose for some X>0 that lb[la] denotes the dimensionality of 7&[Pa]

and that mb[ma] denotes the dimensionality of G(,[Ct0], that is, the set of

solutions of (3.2) which lie in L2(b, c; D) [L2(a, c; D)]. Then ®(Li)/S)(Lb)

will be of dimension db = lb+mb — r and, in fact, if we take into account only

the behavior near b of the functions in Fb, the corresponding cosets will span

©(Li)/S)(7i)), with an r — mb dimensional subspace of Fb mapping into the

zero coset. An analogous assertion holds at the a end.

We begin by proving

Theorem 5.1. /„, lb, ma, and mb are independent o/X>0.

c<x<b. Hence — (Aua,i, z„)a + (Aub,i, zb)b=0 for all [z„, zb]E Pa.bO^o). By joining «„.,- on

a<x<c and Ub.i on c<x<b smoothly nearx = e, it is easily seen that the resulting function lies

in 35(L) and it follows from this that — (Aua, «„)" + (.Aub, «s)kgO for all linear combinations

[m0, «t] of the [«<,,,-, Ub.i]; * = 1, 2, • • • , r. Thus these solution pairs for (3.1) define an r-dimen-

sional subspace Na.b(\) of the type considered in Theorem 4.1 and we can obtain a dissipative

operator L\ as before from the vlo,i,(X)-orthogonal complement P0.t(X). Proceeding as in the

proof of Theorem 4.1, we see that the range of i?(X; L\) is the closure in the graph topology of

functions each of which behaves like«0 near x=aand likeut near x — b where [w„, «*&]£ Na,b(\).

Lemma 4.3 asserts that —(Au, za)aJr{Au, Z6)b = 0 for all uE D(L\) and all [z„, zt]E Pa.bO-o).

Thus L\ E L. Now starting with L\ we could just as well obtain a restriction L\t E L\. However

both Lx0 and L have resolvents at X = Xo and since £\0C! L they must in fact be equal. Conse-

quently L\t=L\=L. Finally it is clear that any X>0 can be reached from any Xo>0 in a finite

number of steps of the above kind and this proves that L has a resolvent satisfying the Hille-

Yosida condition for all X>0.
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Proof. Let k(X) denote the dimension of Fb(\) for each X>0 and suppose

X, Xo are such that |X—Xo| <X0. In this proof it will be convenient to restrict

our attention to a fixed interval (c, b) where a<c<b. It is clear that this will

have no effect on the set Fb(X). Now, let L be some dissipative restriction of

Li defined as in Theorem 4.1 with the difference that the range of the inde-

pendent variable is now (c, b). Since ||7?(Xo, 7-.)|| gXo~\ the integral equation

(5.3) u - (Xo - X)i?(X„; L)u - /, f G L2(c, b; I),

has a unique solution which can be expressed, for instance, by a Neumann

series. In particular, for f=yGFb(\o) (defined on (c, b)), we obtain a solution

u with Au absolutely continuous and satisfying

Xm — (Au)x — Bu «= 6

for almost all xG(c, b). Since the integral equation (5.3) expresses u as the

sum of an element in 3)(T,) plus y, we see that uGL2(c, b; D). Clearly Mean

be extended to be a solution of (3.1) on (a, b) and the so extended function

belongs to Fb(\). The uniqueness of the solution to (5.3) implies that any

linearly independent set of y's in Fb(\o) corresponds in this way to a linearly

independent set of m's in Fb(\). Consequently lb(\) ^4(Xo). Now starting with

a given Xo we can reach any X>0 in a finite number of steps of the kind de-

scribed above. It follows that lb(K)^lb(\0) for all X>0. This relation being

symmetric, we see that 4(X) is in fact independent of X for X>0. A similar

argument proves the analogous assertions for I., m., and mb.

In a different direction we require the following lemma, due in essence to

F. Rellich [15].

Lemma 5.1. Given the vector-valued functions [w,-; iSt] defined on (a, b) but

such that for each compact subinterval [a', b'] of (a, b) they define linearly inde-

pendent elements of L2(a', b'; I). Assume further that the first s of these belong to

H — L2(a, b; I). Finally let S denote the set of all bounded measurable vector-

valued functions f vanishing near a and b, and such that

(5.4) f (/, wi)dx = 0 for all i g I.
J a

Then S is contained in and is dense in the orthogonal complement J of [w,; igs]

in H if and only if [w,; zgs] spans the largest subspace of the linear extension of

{u>i\ tgf] which is contained in 77, that is, if and only if 22i-i y<w<GH implies

that yt = 0 for all i>s.

Proof. Suppose first that S is contained in and dense in /, and that

w= 22'=i 7>W>G77. Since w is orthogonal to 5 by (5.4), we conclude that it

has a representation of the form w= 22f-i 7t?a,<- On the other hand, the w,-

are assumed to be linearly independent on [a', b']<(a, b) so that y,=y,' for

igs and y< = 0 for i>s.
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Conversely, suppose that [w,; i^s] spans the largest subspace in the

linear extension of [w\; i^t] which is contained in H. Since S is obviously

contained in J, it remains to show only that 5 is dense in 7. If this were not

the case there would exist a nonzero wE J orthogonal to S. For each compact

subinterval [a1, b'] E(a, b), the functions of 5 which vanish outside of (a', b')

are dense in the orthogonal complement of [w,; i^t] relative to L2(a', b'; I)

and hence w lies in the linear extension of the functions [w,; i^t] restricted

to (a', b'). Thus w= zZt-i y'iwi almost everywhere in (a', b'). Now the same

argument applies to the interval (a", b"), a<a"<a'<b'<b"<b, and gives

w=2ZLi7i'Wi almost everywhere in (a", b"). The linear independence of

the Wi on (a', b') implies that 7/ =7/' and it follows that w= zZft-i 7/w,- al-

most everywhere on (a, b). Since wEH, we see that 7/ =0 for i>s so that w

lies in the orthogonal complement to J, contrary to our choice of w; we must

therefore conclude that 5 is actually dense in J.

We return once more to the question of limit theorems and prove

Lemma 5.2. If \yn; » = 1, 2, • • • { C®(7i) and

(5.5) [y„, Liy„] -» [y0, h] in H2,

then yoED(Li), Li(y0) =hQ, and in fact y„—*y0 in L2(a, b; D).

Proof. Given X>0, let L be a dissipative restriction of 7i defined as in

Theorem 4.1 so that the resolvent P(X; L) exists. Further let [«,-; i^l] form

a basis for the solutions of \u — Liu =6, that is, for the solutions of (3.1) which

lie in L2(a, b; D). Then for any yE^)(Li),f=\y — Liy, we can write the solu-

tion of this equation, namely y, as a particular solution in ®(7)C72(a, b;D)

is a solution of the homogeneous equation lying in L2(a, b; D); thus

(5.6) y = R(\; L)f + JZ yi(y)ui.
1=1

We note that this representation is unique. Now if (5.5) holds, then /„

= Xy„ — iiy„—>Xy0 — ho=fo in Hand hence by Lemma 4.5 P(X; L)f„—»P(X: 7)/0
in L2(a, b; D). As a consequence / ,Tj('w)m, converges to a limit, at least in H.

But this implies that each of the sequences \yi(yn); n = 1, 2, • • • } converges

to a limit(8), say y,-, so that zZyi(y«)ui~*zZyiui a'so m L2(a, b; D). This

proves that y„—»yo in L2(a, b; D). Incidentally, we have shown that y0 has

the form (5.6), from which it follows that yoET>(Lt) and that Z,iy0=Xy0— /o

= ho-

Corollary. Let Qa,b be a given set of function pairs [z„, zb] belonging to

1)(Mi) and let L be a restriction of Li with domain

®(7) = [y; y E®(Li), -(Ay, za)a + (Ay, zb)b = 0    for all [za, zb] E Qa.b].

(8) Since the Ui's are linearly independent, there exist vector-valued functions {a,,-; ig/j

EH such that («,-, vjj) = Sij. Copsequently Tj(y») = (S« 7i(y»)M«'i wi) converges to a limit.
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Then L is a closed linear operator.

Proof. This follows directly from Lemmas 4.3 and 5.2.

We remark that the same type of argument as that used in the proof of

Lemma 5.2 will show that LI QL„ with

(5.7) 5D(L/) =l[y;yG35(L.), yandL„yG77]

is also a closed operator. In this case we choose the uis to form a basis for

the solutions of Xy — L„y = 6 which lie in 77 rather than for those in L2(a, b; D)

as above.

We next prove the previously mentioned stronger form of Lemma 4.4.

Lemma 5.3. Suppose {y,-,n; w = 0, 1, 2, • • ■ } C3)(Z.M)n7,2(a, b; D),

i=\, 2, and that for each i

[yi.n, 7.„yi,„] —» [y;,o, T^y.-.o] in H2 or in L2(a, b; D) X L2(a, b; D-1).

Then

lim (-4yi,n, yi.n)' = (Ayi.o, yi.o)' for x = a, b.
n—»«>

Proof. We proceed as in the proof of Lemma 4.4. By Lemma 4.2, the

sequences {ui.n=0yi,n\ have the same convergence properties as the original

sequences and vanish near a. Actually lim„ «,-,„ = w,-,o in L2(a, b; D) under

both sets of hypotheses, since this assertion follows from Lemma 5.2 when it

is assumed that [«,-,», LxUi.n] converges in 772. Writing

(Ayi.n, y2,n)b =   (Aui.n,   U2.n)b   =    I      [(£«,«!,„, Mj,»)  +   («l,n, LxUi.n)]dx
J a

-  f ((B + B* + A ,)ui... u2.n)dx,
J a

we see that both integrals converge to their w = 0 counterparts. In fact, the

first integral is an inner product relative to 77 in the 772 case and relative to

the dual hilbert spaces L2(a, b; D) and L2(a, b; D~l) in the other case. On the

other hand, the second integral can also be thought of as an inner product

and as such it is majorized by the L2(a, b; D) inner product; since the se-

quences { m,',„} converge in L2(a, b; D) in both cases, it follows that the second

integral also converges.

We have a certain amount of freedom in our choice of solution pairs

[yo,,, yb.i] and [z.,i, zt.i] which span N..b and P.,b respectively and satisfy

the relation (3.18). In fact, if we choose N.A = N.XNb and P.,b = P.XPb, as

at the end of §3, we may first select an arbitrary basis of y0,,'s for N. and an

arbitrary basis of za.is for P. and thereafter choose the y&,i's and the zj./s

from Nb and Pb, respectively, so as to satisfy (3.18). Now the subsets N. and

Nb have no nonzero solutions in common; in fact, 0g(Ay„, y.)"<(Ay., y.)b
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for each nonzero element of N. and 0^ (^4y6, yt)' for each nonzero element of

TV;,. Thus N. and TV& together span the r-dimensional solution space of (3.1).

Hence we can even choose the ya,/s so that the first lb — n together with Nb

span Fb and likewise we can choose the za,,'s so that the first mb — p together

with Pb span Gb. We shall call such a choice of bases a canonical selection of

solution pairs at x = a.

Lemma 5.4. If y0G3) (Li), then there exists a sequence \yn\ C3)(£i) of func-

tions vanishing near b such that

LVn, 7,iy„] —> [y0, 7_iy0]  in L2(a, b; D) X L2(a, b; D~l).

An analogous result holds for yoG3)(7,0).

Proof. With 0 defined as in Lemma 4.2, we set uo = 0yo and w0 = (1 —0)yo

so that Mo vanishes near x = a and wo vanishes near x = b. If we can approxi-

mate M0 in the required manner by say {«„} C3)(7,i), then the sequence

{yn = «n+Wo} will be a suitable approximating sequence for yo. We may

therefore assume, without loss of generality, that y0 vanishes near x = a. In

this case yo belongs to the domain of every dissipative restriction of Li de-

fined as in Theorem 4.1. We shall in particular choose a restriction L defined

by a canonical selection of solution pairs at x = a. Setting f0=\yo — Lyo we

have as in (3.24)

/7?oo(X)/o\        p rb

yo = R(\; L)f0 =(      ff      ) - zZ y°.< J   (/»- «m)«

t r* x

- 22 y°.< I  (/o. za.i)d$.
i-p+l J a

Now for arbitrary yG3)(7.i) we have by (4.5)

(5.8) f  (Xy - Liy, z.,i)H = ~ (Ay, z.,i)* + (Ay, z..i)a
^ a

since \z. — Mxz. = d almost everywhere. In particular for y =yoG3)(7.i>) and

vanishing near x = a this becomes

(5.9) f (/o, za,i)d£ = - (Ayo, za.,)b + (Ayt, z0,.-)° = 0
J a

for p<i^mb, that is, for the z„,,'s which belong to 1)(Mi). We now apply

Lemma 5.1 with w,=7)1/2z0,,+p, i — 1, 2, • • ■ , w, and s = mb — p. By our choice

of basis for P., the first (mb — p)wis span the largest subspace of the linear

extension of [wt; i^n] which lies in 77. According to (5.9), the function

D~ltifo belongs to the orthogonal complement in 77 of [w;; i^mb — p]. The

lemma asserts that 7)~1/2/0 can be approximated in 77 by a sequence of
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bounded measurable functions [hm], which vanish near a and b, and which

are orthogonal to all of the wis. We note that fn = Dll2h„ also belongs to H

since the elements of DU2 are majorized by the trace of D and hence are

square integrable on a suitable carrier of kn. In addition,/,,—*/0 in L2(a, b; D^1),

the functions/„ vanish near a and b, and/„ is orthogonal to all of the z„,,-. As

a consequence, yn = R(\; 7)/„(E£)(7i) vanishes near b, and by Lemma 4.5

y„—»y0 = P(X; L)/0 in 72(a, 6; D). This concludes the proof.

We introduce the restriction 70oC7i with domain

3)(Loo) = [y; y E £>(/-i), y vanishing near a and 6].

Since Li is closed, the closure of Z,0o, which we denote by Lo, is again a restric-

tion of Li. Obviously S)(7oo) C®(7.<i)C\35(7*) and it follows from Lemma 4.3

that T>(L0)E^>(La)r\T>(Lb). In the other direction we have.

Corollary. In case B+B*+Az = &, £)(L0) = 3X7.a)C\£}(7„).

Proof. Suppose yET)(La)^T>(Lb). Applying the previous lemma at each

end separately, we obtain two sequences }y<,,„} and {yi>,„} C®(7i), each of

which converges in the graph topology (here D = I) to y; the first sequence

consisting of functions vanishing near a, and the second of functions vanish-

ing near b. Let a and P be defined as in Lemma 4.2. Then both ay0,„ and

Pyb.n vanish near a and b and in addition Lemma 4.2 asserts that

ctya,n + Pyb,n —* ay + Py = y

again in the graph topology. Obviously ay0,„+j8y6,„£3)(Z.oo) so that y(E2)(7o)-

As a consequence ®(7o)D3)(70)nS)(7j), which was the only inequality in

doubt.

Theorem 5.2. Let jy,-, t = l, 2, 3} C®(7i) and suppose yi—y2E^)(Lb).
Then (Ayu yi)b= (Ay2, y3)b. A similar result holds at x = a.

Proof. Set w=yi—y2. Then uE%)(Lb) and, applying the previous lemma,

we obtain an approximating sequence \un\ E^)(Li) of functions vanishing

near x = b such that

[«„, LiM„] —> [u, Liu] in L2(a, b; D) X L2(a, b; D~l).

Consequently

[ys + «„, 7i(y2 + «»)]-> [yi, 7iyi] in L2(a, b; D) X L2(a, b; D-1)

and by Lemma 5.3 we have

(Ay2, yi)b = (A(yt + «„), y3)b -* (Ayh y3)b.

This proves the assertion for the b end and the corresponding result for the

a end follows by a similar argument.

We shall denote a coset of g)!, = ®(7i)/5D(74) by the symbol  Yb. Given
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two such cosets Yb.i and Yb,2, it follows from Theorem 5.2 that the quantity

(Ayu y2)b is independent of our choice of yiG Yb.i and y2G Yb.i and hence can

be used to define (A Yb.i, Yb.i) in a unique way. We also define (AZb,i, Zb.i) in

a similar fashion for cosets Zb,\, Zb,2G3b = '£)(Mi)/'£)(Mb). Finally for yu

y2GYb and Zi, z2GZb we have (Ayi, Zi)6=(.4y2, zi)6 = (Ay2, zi)b, which can

therefore be used to define (A Yb, Zi).

In order to relate the solutions of (3.1) which lie in 7,2(a, b; D) with the

quotient space $)b we require the

Lemma 5.5. For a canonical selection of solution pairs at x=a and for any

yG3)(Li) awO* zG2)(Afi) we have

(Ay, Zb,i)b = 0 for lb — n < i g p,
(5.10) J

(Ayb.i, z)b = 0 for tnb < i g r.

Proof. Given yG3)(7,i), we set f=\y—Liy and write y as a particular

solution of this equation in L2(a, b; D) plus a solution of the homogeneous

equation in 7.2(a, b; D). For this purpose we choose a restriction L of L\ de-

fined by a canonical selection of solution pairs at x = a in which case

(5.11) y = R(\;L)f+ 22 7*y..* +  23 7«y»..-;
1=1 t-p+1

here we have summed over a basis for the solutions of (3.1) which belong to

L2(c, b; D). As in (3.24) the y1 component of this identity can be written as

l "     i    rb r       i    /"

y = - 22 yo..- I   (/, Zb,i)d£ - 22   y».< I   (/. *<».<)#
(5.12) "        ^ ^l ^°

+ 2-, 7.yo.< + 2- 7.yt,.-;
«-i t-p+i

and if we make use of the relation (5.8) this becomes

y1 =    — 22 y-..i(Ay, zb,i)x +   23  yb.i(Ay, z.,i)Z
L     ,-i i-p+i J

tb—n b       1 ' o       1

..  ... + 23 {7.+ (Ay, zt.i) }ya.i+   23   [yi ~ (Ay, za,i) }yM
(5.13) ,_i i-p+i

A    . ,» 1
+   2v   Uy. 2».«) y-.v

<-I6-n+l

From the matrix relation (3.18) we see that Y(x)Z(x)*Au(x, x)—I and this

gives the identity

- 23 ya.i(x)(Anh , zb,i)z +   22  yb.i(x)(Auh , z.,i)' = h (x).
.=1 i-p+i
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We substitute this into (5.13), replacing h by y and (Any1, z1) by (Ay, z), and

we see that the last three sums add up to 6. The linear independence of the

yL/s and the yL/s implies that (Ay, Zb,i)b = 0 for lb — n<i^p. The second

half of the assertion (5.10) follows in a similar fashion; in this case we make

use of a restriction M of Mi also defined by a canonical selection of solution

pairs at x = a.

The next lemma is somewhat extraneous to our present development.

However we shall need the result in §7 and, since it is similar to the previous

lemma, we include it at this point.

Lemma 5.6. Let the solution pairs [ya.i, Vb.i] and [za,t, zb,i] be chosen as in

the canonical form of R2(\) given in (4.23). Then for any y£!D(7,i) we have

(Ay,za,i)'= 0 foriEs3,
(3.14)

(Ay, zb,i)b = 0 for iE s».

Proof. We have already noted in connection with (4.23) that the solutions

{ya.i+yb.i; i = l, 2, - ■ ■ , r\ are linearly independent and hence span the

solution space of (3.1). By construction, no nontrivial linear combination of

{ya.i; t£52} and [yb,i; iEs3} belongs to L2(a, b; D). Hence we can express

yG3)(7.i) as the sum of a particular solution of/=Xy — L,y lying in L2(a, b;D)

plus a linear combination of the ya,.'s in siUs3 and the y&,,-'s in 5i^52; in sym-

bols,

y = Ri(\)f + zZ yiya.i + zZ ytyb.i-
siU«3 «l^*2

Making use of the explicit representation for R2(\) given in (4.23) and the

relation (5.8) this becomes

y =   —   zZ (ya,i+ yb.i)(Ay,zb,i)x +  zZ (y«.« + yb.i)(Ay, za,,)z

+     ZZ   yiya.i  +     ZZ   &iVb.i

+ zZ (Ay, Zb,i) ya.i - zZ (Ay, Zo.<)"y».<.

Again we see from the matrix relation Y(x)Z(x)*Au(x, x) =7 that the quan-

tity in the brackets is equal to y1(x) so that the last three sums in the right

member add up to 01. Any such solution of (3.1) must be the trivial solution.

We have therefore expressed

zZ (Ay, zh.i)bya.i - zZ (Ay, Za.i)"yb.i
'% «»

as a linear combination of solutions in L2(a, b; D) and this is possible only if

(5.14) holds
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Theorem 5.3. tyb and Sb are both of dimension db = lb+mb — r.

Proof. We begin by choosing a canonical selection of solution pairs at

x = a. Let 0 be defined as in Lemma 4.2 and set

««..- = Bya.u       ub.i = BybX,

Va.i  =   BZa.U Vb.i  =    —  0Zb,i-

Then the u.,i, ig/»—n, and the «&,;, ̂  + lgigr, belong to 3)(7,i) and the

v.,i, p + l ^i^nib, and the vb.i, ig/>, belong to 3)(Afi). Moreover we have by

(3.18)

., ,,. (Aua.i, vb.j)b = 8ij = (Aub.i, v.,i)b,

(5.16)
(Aua.i, Va,j)b =   0  =   (AUb.i, Vb.j)b.

Since only the m's and v's in 3)(Z,i) and 3)(Afi), respectively, are relevant to

our present considerations, the top relations in (5.16) establish only the linear

independence modulo 3)(Lt) of the ua,i, i^lb — n, and the mj,,,-, £ + lg*g?w&.

Thus there are at least {lb — n)-\-(mb—p)=lb-\-mb — r functions u which are

linearly independent modulo 3)(7,(,). Now as Lemma 5.5 shows, the ubii for

wi,<tgr lie in 3)(T,&) so that the u.Js and ubJs in 3)(7,i) provide exactly

lb+mb — r linearly independent functions modulo T)(Lb).

On the other hand an arbitrary y G 3) (T-i) can be written in the form (5.11).

Approximating/=Xy—7,iy in 77 by a sequence of functions {/„} vanishing

near x = b and setting

lb— n jr

y„ = R(\; L)fn + 22 7<yo,< +   23 7<yM-
i-i t-p+i

We see that [yn, 7,iyn]—>[y, Lxy] in 772. According to the representation (5.12)

the yl's behave like linear combinations of the [y.,t; iSh — n] and the

[yl.i\ £ + lg^gr] for x near b. Now for any yG3)(/i) and zE3)(Afi) the

quantity (Ay, z)b depends only on the behavior of y1 near b. Hence, modulo

3)(Li,), the y„'s lie in the (lb-\-mb — r)-dimensional subspace determined by the

[«m! i^k — n] and the [m(,,,-; p + l g»gf»»]; in other words y„ is equivalent

modulo 3)(Lb) to

lb— n w,

Un  -   22 7n.i«o,< +     23   yn.iUb.i.
»=>1 i=p+l

It follows from (5.16) that

7„,, = (Aun, vb,i)b = (Ayn, vt,.i)b, 1 g t g lb — n,

yn,i = (Au„, v.,i)b = (Ay., v..i)b, p + 1 g i g mb.

Lemma 4.3 asserts that (Ayn, v)b—>(Ay, v)b so that for



148 R. S. PHILLIPS [September

I fc— n n j h

(5.17) u = X) (Ay, Vb,i)bua,i+   zZ (Ay,Va.i)bub,i
i-l i-jM-1

we have [un, 7iM„]—>[«, 7im] in 772. Again applying Lemma 4.3, we obtain

(5.18) (Ay, z)b = lim (Ayn, z)b = lim (Aun, z)b = (Au, z)b for each z E 2)(Jf 0,
n-* » n—♦ oo

and therefore y is equivalent to u modulo D(Li). Thus each y£2)(7i) lies

modulo T)(Lb) in the (^-dimensional subspace spanned by the [w„,,-; 1 ̂ i^h — n]

and the [«&,,-; p + l^i^mb]. A similar argument shows that £b 's a'so of

dimension db.

We have, incidentally, established the

Corollary. Let the [ya.i, yb.i] and the [z„ ,-, zb,i] be a canonical selection of

solution pairs at x = a and define the [ua,i, «(,,,-] and the [va.i, vb,i] by (5.15).

Then the cosets determined by the [/<„,,•; i^lb — n] and the [ubx, p+l^i^mb]

are linearly independent and span £)&; likewise the cosets determined by the

[va.u p + l^i^mb] and the [vbj; i^lb — n] are linearly independent and span

£b. Moreover [m6,,-; mb<i^r] C2K7&) and [vbti; lb — n<i^tp]E'£>(Mb).

We can summarize the preceding development as follows. Let X>0 be

fixed and choose [«,,,-, ub,i] and [va,i, vb,i] as in (5.15) from a canonical selec-

tion of solution pairs at x = a. For notational convenience we set

m, = ua,i, Vi = !/(,,.-, for i ^ lb — n,

(5.19)
Ui =  Uh,r-lh+i, Vi  =   Va,r-lb+i for /(,—  »<*  g  db.

Then (Aut, z>y)6 = 5,-,;- and for each y£$D(7i) and zES(Afi) we have

db

y = zZ (Ay, vi)bUi modulo £>(£&),

(5.20) 7;
z = \Z (Az, ui)Hi modulo $)(Mi);

«=i

in fact, the first assertion follows directly from (5.17) and (5.18) above and

the second assertion is the dual of the first. Moreover, Theorem 5.2 shows

that for arbitrary yh y2(E£)(7i) and Zi, z2££)(Afi) we have

(Ayi, y2)6 = £ (Ayh v,)b[(Ay2, v,)b]'(Aui, u,)b,

1,1-1

db

(5.21) 04yi, zi)b = zZ (Ayu vi)b[(Az, u,)b] ,
1=1

(Azi, z2)b = zZ (Azu u,y[(Az2, ui)b]"(Avi, Vj)b.
«.)-i
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In essence we have reduced the study of the boundary behavior to an

algebraic problem involving certain finite dimensional quotient spaces. Ac-

cording to (5.21) the spaces f)i and £,b are dual to one another and the matrix

A(b) has the representation ((Aui, Uj)b) in one space and ((Avi, vi)b) in the

other. In order to again formulate our boundary conditions as dual relations

we require the connection between these two representations of A(b).

Theorem 5.4. ((Au{, Uj)b)((Avi, Vj)b)=I.

Proof. For an arbitrary zG3)(Mi) it is clear that zG3D(L„)P\L2(a, b; D)

and

Lxz = - Miz + (B + B* + Ax)z.

Since the first term on the right belongs to 77 and the second(9) to L2(a, b; D~l),

it follows that L„zGL2(a, b; D~l). Consequently f=Xz — L„zGL2(a, b; D~i).

Choosing a canonical selection of solution pairs at x = a we set w = R(X)f,

where R(X) is of the form (3.24). Here all of the terms are well defined since

the za's belong to L2(a, c\ D) and the zb's belong to L2(c, b; D) and, in fact, we

see that w»G3)(LM). We now show that w also belongs to L2(a, b; D). In the

first place /" = (Xz°-/50oZ°)-Tioiz1 so that R00(X)f = z0-R00(X)Boiz1, and, z1

being absolutely continuous, we see that BoiZ1 belongs to L2(a', b'; 70o) for

each compact [a', b'](Z(a, b). Now

({2X7„o - (730o + B*o)}Ro0(\)Boizl, R0o(X)B01zl)

= (Tioiz1, T?oo(X)7ioiZ1) + (£0o(X)7Joiz\ Tioiz1).

Recalling that X|7?0o(X)| gl, it is clear that the displayed expression is sum-

mable on (a', b') and it follows that T?0o(X)/° belongs to L2(a', b'; T30o). Since

the rest of the terms in (3.24) obviously belong to L2(a', b'; D), the same is

true of w. Further \w — L„w =fGL2(a, b;D~l). Now if/vanishes near a and b,

then by the usual argument — (Aw, w)a-\-(Aw, 7#)6g() (see proof of Theorem

4.1) and hence w belongs to L2(a, b; D) by Lemma 4.5. If/ does not vanish

near a and b, we approximate/in L2(a, b; 7?_1) by a sequence {/„} of bounded

measurable vector-valued functions which do vanish near a and b. Applying

Lemma 4.5, we see that the corresponding wn's converge in 7L2(a, b; D) to w

and hence wGL2(a, b; D). Thus w is a particular solution of Xu—L^w—f in

7,2(a, b; D) and therefore z itself can be expressed as

lb-. r

z = w + 23 7.yo,i +   23 7.-y&,«
y-i i-p+i

for some choice of y.'s; here each of the three expressions on the right lies in

(9) By definition B+B*+AX = I-D so that (D-1(B+B*+AI)z, {B+B*-\-Ax)z) = {D~lz,z)

— 2(z, z)-\-{Dz, z); since all of the terms in the right member are integrable on (a, b), it follows

that (B+B*+A,)zG L2(a, b; Z?~»).
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7,2(a, b; D). Setting

lb— n r

Zn = wn + zZ yiya.i + zZ yty*,<
i=l i-P+1

we see that [z„, 7„z„]—>[z, L^z] in 72(o, b; D) XL2(a, b: D~l). By construction

fnEH so that z„(E!D(7,i), and making use of the first relation in (5.21) we can

write

db

(Azn, Uk)b =   ZZ (AZ„, Vj)b(AUj, uk)b.

j'-i

Passing to the limit as n—>°o, we obtain

db

(5.22) (Az, ui)» = zZ (Az, Vj)b(Auit uk)b, z E S>(Jfi),
j'=i

the limit procedures being justified by Lemma 5.3 for the left member and by

Lemma 4.3 for the right member. Finally setting z = Vi we have

db

Sik = (Av(, uk)b = zZ (Ai>i, Vj)b(Auj, ui)b,
i=i

which was to be proved.

Theorem 5.5. Each of the hermetian matrices ((Am,-, Uj)b) and ((Avi, vi)b)

has lb—n positive eigenvalues and mb — p negative eigenvalues.

Proof. It is clear that the matrices are hermitian since A (x) has this prop-

erty for each x. Further, if y„ is nontrivial element of Na and x>a, then

0^(Aya, yi)"<(Aya, ya)x- Consequently we will have (Aua, ua)b>0 for any

nontrivial linear combination ua of the w„,i's in L2(a, b; D). The m„,,-'s in

Li(a, b; D) constitute the first lb — n of the m.-'s and hence there are at least

h — n positive eigenvalues for ((Aui, Uj)b). Next, if ybENb then (Ayb, yi)b^0

and thus for any linear combination ub of the ub,is we have (Aub, ub)b^0.

Since the last mb — p of the m,'s are taken from the ub,is, the matrix ((Auit Uj)b)

has at least mb — p nonpositive eigenvalues. On the other hand this matrix is

nonsingular, according to Theorem 5.4, so that there can be no zero eigen-

values, and this, together with the fact that db = (lb — n) + (mb — p), shows

that there are precisely h — n positive and mb — p negative eigenvalues. The

same assertion obviously holds for the inverse matrix ((Av^ vi)b).

We have already defined the quantities (A Yb,i, Yb.i), (A Yb,Zb), (AZb,i,Zb,i)

for the cosets YbEtyb and ZbESb- Suppose, now that we choose as a basis for

§)& the set [Ub.t; i^db] determined by the Mi's of (5.19) and as a basis for 3&

the set [Vt.i; i^db] determined by the o.-'s of (5.19). Then (5.20) and (5.21)

can be paraphrased as
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db

Yb=zZ (AYh, Vb.i)Ub.i,

(5.23) '"1
V db

Zb=zZ (AZb, Ub.i)Vb.i,
1=1

and
dh

(AYb.u Ybl2) = zZ (AYb.i, Vb,i)(AYt,i, Vb,j) (AUb.„ Ub.j),
i.i-i

db

(5.24) (AYb,Zb) = zZ (AYb, Vh.i)(AZb, Uh.i) ,
t=i

db

(AZb.i,Zb.i) = zZ (AZb.u Ub,i)(AZb,i, Ub.j) (AVb,i, Vb,,).
i.i=\

The matrices ((AUb,i, Ub,,)) and ((A Vb.i, Vb.,)) are each representations of

the hermitian operator A (b) relative to the respective bases, and by Theorem

5.4 there are inverses of one another. According to Theorem 5.5, A(b) has

lb — n positive and mb — p negative eigenvalues. We recall that the above choice

of bases depended on a particular canonical selection of solution pairs, with

given X>0, at x = a. A different choice of canonical selection of solution pairs

at x — a and/or a different X>0 would result in a coordinate transformation

leaving the form of the relations (5.24) invariant.

Before leaving this subject we shall make the following convention. We

shall speak of a function y(x) as mapping into a coset of g)f, even in case y does

not belong to T'(Li) provided y behaves like some function in 3)(7i) near

x = b. In this case u=Py will belong to T<(Li) for an appropriate P of the type

described in Lemma 4.2, and we map y into the coset determined by u. This

coset is clearly independent of the choice of p. Moreover since the limit be-

havior of y at the b end depends only on how it is defined near x = b, this in-

formation will again be given by the image coset of y.

It is clear that the boundary behavior at the a end can be treated in a

similar fashion. The quotient spaces §)„ = T)(Li)/1)(La) and £a = T)(Mi)/T>(Ma)

will each be a dimension da = la+ma — r, we can construct bases for these

spaces from a canonical selection of solution pairs at x = b in terms of which

analogues of (5.23) and (5.24) are valid, the representations ((A Ua,i, Ua,i))

and ((AVa.i, Va.j)) of A(a) are again inverses of one another, and A (a) will

have ma — n positive and la — p negative eigenvalues.

6. The general dissipative generator. We return now to the problem of

constructing the most general dissipative restriction L of Li generating a

strongly continuous semi-group of linear bounded operators.

Our first objective is to formulate the boundary conditions on 7 in a way

which does not depend on X. To this end we introduce the d = da+db dimen-

sional product spaces
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da.b  =§)oX2)(„

5«,t = iO« X ^56

with elements Y.,b = [Y., Vb] and Z.,b= [Z., Zb], respectively; and we define

the operator ?[„,(, by

Wa.bY.Mi, Ya.b,t) = - (AF.,1, Ya.i) + (AYb.h FM),

(6.1) (%..bYa.b, Z..») = - (AF„ Z.) + (ilF», Z„),

(Slo,lZ0,l,l, Z,,,;,;;.)   =   —(AZ..i,Za.2)  +  (AZh.i, Zb.2).

Relative to the canonical bases for 2)o,t and 3.,b obtained in §5, the operator

3la,6 has the representations

9r /-((AUa,,U.,)) 0 \
?lo,6 =1 ,, I     in 2)o,t,

V 0 (Ut/t,,-, Ub.j))J

I?L,&r = ( )     in s.,b
V 0 ((AFM, Vb.,))J

where

-Co?)
is a representation of the connective inner product between the bases given

by (%a,hY..b, Za.i). According to Theorems 5.4 and 5.5, the matrix §(„,(, is

nonsingular and hermitian, having (/„ — p)-\-(h — n) =l.+lb — r positive and

(ma — n)-\-(mb — p)=m.+mb — r negative eigenvalues.

We now select an (ma+mb — r)-dimensional subspace 91.,b oi 2)a,f> such that

(6.2) (%a,bYa,b, Ya.i) g 0 for all Y..b G 9to,<>

and let ^..b denote the XL.b-orthogonal complement of yi.,b in g.,*, that is,

(6.3) y.,b = [Z..»; (%a.bY.,h, Za.i) = 0 for all Y..b G 9?a.»].

According to the corollary to Lemma 3.2, P..b will be (l.-\-h — r) dimensional,

(6.4) (%a.bZa.b, Z..b)   ̂    0 for all Za.b G $0,6,

and y\.,b is the SL.i-orthogonal complement of P..b in 2)o,b-

Theorem 6.1. Suppose Sila.b and $„,!> are fla,b-orthogonal complements in

2)a,6 and Sa.b, respectively, satisfying the conditions (6.2) and (6.4). Let L and

M be restrictions of T-i and Mi, respectively, with domains

3)(L) = [y; y G 3)(Li), [y, y] -> 9l..»],

SD(JO = [*;zG®(Mi), [«,«]->$„.»].

77?ew L awd AT are dissipative operators satisfying the Hille-Yosida criterion for
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all X>0. Moreover L = M* and M = L*.

Remark. For a given yEQ(Li) we have [y, y]—>9la,b if and only if

-(Ay, za)' + (Ay, zb)b = 0 for all [za, Zb]E®(Mi)X'£>(Mi) which map into

^a.b- Hence (6.5) is equivalent with

©(£) = [y,y E?>(Li), -(Ay,z„)a + (Ay,zb) = Oiorall[za,zb]->ya,b],

(6.6)

®(M) = [z;zE®(Mi), -(Aya,z)a+(Ayb,z)b= Oforall [ya, yb] -»SR..t].

Proof. Suppose X>0 is fixed. Let A^ denote the solution pairs of (3.1)

which map into 9ta,6 and let Pa,b denote the solution pairs of (3.2) which

map into tya.b- Taking into account the fact that r — ma linearly independent

solutions of (3.1) map into jD(7<,) and r — mb map into 1)(Lb), we see that

Na.b is (ma+mb — r) + (r — ma) + (r — mi)=r dimensional. Similarly Pa,b is r

dimensional. Since the boundary behavior of these solution pairs is given by

the cosets determined by them, the sets A^,;, and Pa.b will have all of the

properties of the corresponding sets defined in Theorem 4.1. Thus Pa.b is

r-dimensional and satisfies (4.16); Na-b is r-dimensional and A„,i,-orthogonal to

Pa.i, and since there is only one r-dimensional subspace of solution pairs with

this property, N„,b must indeed be equal to the set defined by (4.18). Accord-

ing to the corollary to Theorem 5.3, the solutions of (3.2) which belong to

Li(c, b; D) (respectively L2(a, c; D)) span '^(Mi)/'S)(Mb) (respectively

<S)(Mi)/'S)(Ma))- It follows that the solution pairs of (3.2) span £a,b and this

implies that the domain defined by (4.17) is the same as that defined for 7

by (6.6) and hence by (6.5). Likewise S)(A7) is equivalently defined by (4.24)

and (6.5). The assertions of the theorem are now immediate consequences of

Theorems 4.1 and 4.2.

We also have a converse statement.

Theorem 6.2. Every dissipative restriction of Li (or of Mi) which generates

a strongly continuous semi-group of linear bounded operators is of the type de-

scribed in Theorem 6.1.

Proof. Suppose 7° is a dissipative restriction of 7i which generates a

semi-group. Then for each y£3)(7°) we have —(Ay, y)a + (Ay, y)b^0. Thus

[[y> y]; yE*£>(L0)] maps onto a certain linear subspace 9f°6 of §)„,&. Now

9c% cannot be more than (ma+mb — r) dimensional since no subspace of larger

dimension has the dissipative property. On the other hand there always exists

an (ma+mb — r)-dimensional subspace yia,b of 2)0,t containing Sf^j,, with prop-

erty (6.2), and the operator L defined as in Theorem 6.1 from 5U0,6 is clearly a

dissipative extension of 7°. Now both L" and L generate semi-groups and

hence both have resolvents for X sufficiently large. Thus for some X the oper-

ators \I — L and X7—7° map their respective domains onto all of H in a 1-1

manner and this can only happen if £)(7) = 3D(70). Thus 7° coincides with 7
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and is therefore of the type described in Theorem 6.1.

7. Coupled systems. In order to treat dissipative systems with boundary

conditions of the "elastic" type, it is necessary to couple the previously con-

sidered system at the ends a and b with simple mechanical systems. The

development which we are about to present for the coupled system parallels

that which we have given for the uncoupled systems. In particular, we shall

again take as the basic entity the energy of the system.

We consider vector functions t) = (t)1, 1)°, \)2) and j = (j1, 3°, I2) where t)1, al

lie in a &i-dimensional euclidean space 2)i = 3ii *)°> i°GL2(a, b; (§oo), and ty2, j2

lie in a ^-dimensional euclidean space ?)2 = ,32. In addition to the differential

system (1.1) (with E, A, B replaced by (S0o, 2Ioo, 93oo respectively) which

governs t)°, we now have mechanical end systems which satisfy(10)

Sn»< = SnD1 + 93iot)°(a),

<522t)2, = $W + 332op°(6);

here the @,-,- are positive definite,

(7.2) 5B., + S*-g0, * = 1, 2,

and 93io, S32o are coupling operators defined as linear transformations on 2)o

to 2)i and on 2)& to 2)2l respectively. The energy integral for the coupled system

is

Energy = — I(<£ut>\ I)1) + J (@ooD°, ^)dx + (g22r,2, I)2)] .

As before it is convenient to transform the hilbert space associated with

the energy quadratic fork into the hilbert space $ with norm

(7.3) Hull = [<u', u')]1'2 = [V,»") + / V. »"V* + OA *>'2)]"2;

this is accomplished by the unitary mapping

» /•" ^1/2   «
t) — t) = <s« n, t = o, i, 2.

In terms of the transformed vectors, the equations (7.1) take the form

ij'.1 = »iii»'1 + »W,(<0,
('•4) '2        cn>     >2   ,    m' ..'"Viat)<  = 9322t)   + S320t) (b),

(10) Suppose the equations of motion for the uncoupled mechanical system at the i end are

in canonical form, that is, qi=BH/dpi, pi= — dH/dqt-dD/dqi, where H = (2~L<-j ti,Pipj)/2

+(5Z»'.>">V9*)/2 and the dissipative function Z> —(23<,y diiqiqi)/2; the matrices T = (U,) and
K= (t'„) are positive definite, O = (</,,) is Hermitian, and j,- = 2~Li kiPi- To write this in the form

(7.1) we set Ea = QT) Bu = (°v"DT). The condition B;i-f-B,* = (J _2rcr)S9 requires merely

thatP^O.
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where 9% = <g«1/2$,-,-@l71/a and 93,'0 = @hI/22}.o (the quotient spaces % and %

can be thought of as invariant under this mapping). The condition (7.2)

becomes

(7.5) «;,- + %'* = C-1/2(93,-,- + 93*)@«1/2 §6, i - 1, 2,

equality holding in (7.5) if and only if it holds in (7.2). The effect of the map-

ping on the central system has already been described in §2. Hereafter we

work in the space § and omit the primes.

The effect of the coupling on the end systems is given in (7.4). We have

indicated that tj°(a)E'Sa and \f(b)E¥)b, but we have not said explicitly how

\)°(a) and *)"(&) are to be obtained from "q. Nor have we indicated the nature of

the back-coupling effect of the end systems on the central system. Our choice

of coupling mechanism will be based on the following heuristic considerations.

We image the central system as extending past the points a and b and deter-

mine the coupling matrix S820, say, so that the energy flow into the extended

part of the central system at b less the energy flow from the interior (i.e.

a<x<b) at b is just equal to the energy cross-product term, namely

(932ot)°(6), l)2) + (l)2, 992ol)°(6)). The effect of the mechanism at b is to introduce

a discontinuity in t)°(x) at b and we will take as our value of Vi°(b) in (7.4) the

mean of the limits *)"(& —) and ty°(&-|-). The jump in t)°(x) will of course vary

linearly with I)2. Thus

(7.6) (932ot)°(&), l)2) + (t)2, 2320t)°(&)) - (Sloot)0, W+ - (2toot)°, \)°)b~,

and

(7.7) t,«(6) = — [t,°(6+) + D»(6-)],       (M2 = \f(b+) - »•(&-).

It is readily seen that this implies 332o = &o2*2looW-

So far we have proceeded formally, our use of the quantities ~tf(b), §Ioo(&),

etc., being certainly open to question. However, if we make use of the quotient

space £)&, it is actually a simple matter to assign a precise meaning to the

above considerations. We set l)°(6 —) equal to the image of t)° under the natu-

ral map of 1)(Li) onto tyb. For any given linear transformation £02 on g)2 to

f)b, the relations (7.7) uniquely determine t,°(6) and 1,°(6 + ) (elements of tyi)

in terms of \)0(b —) and t;2. In dealing with the adjoint operator, the element

i"(b —) will likewise be defined as the image of J°G®(Afi) in £b, and given a

coupling transformation S[J2 on £2 to £b, the elements i°(b) and i°(b+) of £b

will be defined by the analogues of (7.7). The coupling operators $820 and 532o

on %, to ?)2 and on £b to ,82, respectively, are defined by the relations

(7.8) (I)2, 8mU°W) = (?WW, W   and   (1, 93°oS°W) = (HooScV, sV-

S02 and SU2 become adjoint coupling transformations ii
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(7.9)     (\)\ aloi'W) = (SIooW, sV   and    (/, WW) = QUASii', t)V-

It is, of course, required to show that the two relations in (7.9) are consistent.

To this end, suppose | Ub,i} and { Vb.i} are a canonical pair of bases for 2)»

and Sb, respectively; and let £o2t)2= 22c«0LVu and @o2ot = 22c?3^.?' where

l)2 = S? are both &2-tuples with ith coordinate one and all other coordinates

zero. Then the first relation in (7.9) is equivalent with c,y= 22cf°0(2IooF&,0, Vb.i)

and the second is equivalent with c°ij= 23c<0(21oo £/(,,£, Utj); and the consist-

ency of these two equations is assured by Theorem 5.4. The two relations in

(7.9) combine to give SBlJoStL= (S20S02) *■ Similar considerations naturally

apply at the a end.

We now write down a complete description of the augmented operator

2i and its formal adjoint 9Ki, both of which are taken to be normalized so that

the @,, = 7.

[?ii)]° = (2roo*)°)x + 93oot)°,

(7.10) [2it>]1 = Sal)1 + 8ioD°(a),

(?il)]2 = S22D2 + 332oD°(6)

where

U°(«) = — h°(a+) + D°(a-)],       Co*1 = l)°(a+) - l)V~).

(7.11) D»(6) = — [»•(&+) + t)<>(b-)],       S„2l)2 = f(b+) - »»(&-),

(l,1, Siol)°(«)) = (2IooSoil)', D°)a, (D2, S2ol)°(6)) = (2tooSo2l)2, l)0)6,

©(81) = [i);D°G2)(£i)];

and

[SKtf]0 = - (HooS°)x + («oo + (2Ioo)*)s°,

(7.12) [SW15]1 = Stiji - ®V(«).

[area]2 = 93*2*2 - 8,0oj0(6),

where

l°(o) = — U°(«+) + iV-)].        60151 = J°(<*+) - »'(«-),

(7 13)      3°W = 7 [5°(6+) + i0(6_)]'        ^ = i<>(6+) ~~ 8°(6_)'

Cj\ 93°o5°(a)) = (HooGoio1, aV.        (j* ®iVW) = (?tooSo2j°, i)\

®(SKi) = b;»*eS)(Jfi)];
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here Soi, So\ and (S02, &02 are each assumed to be pairs of adjoint coupling

transformations. If we now set

93,i      0       0 1 [0 0 0'

93 =     0     93oo     0       and   31 = 0 Hoo 0

. 0       0     93 J [0 0 0.

then a straightforward calculation shows that

(SiDi, i)2> + (t)i, Silh) = ((93 + 93* + 2Ud,, t)2> - (2I0ot)°, i)"~

+ (3lool)0i, 1,2)"+, i)i. 1)2 G 3X?i);

(7 14) ®A' J) ~ ^ TOa) = _(3rool,°' j0)°" + (2root,°' S°)b+'

DG3)(?,), »G3)(9Ki);

(TOiJi, 32) + (ji. 9«i52> = ((93 + 93* + SQh, »t> + (Slooii, 82)°"

- (2U>i!, i°)H, «i, ?2 G 3X2K0.

In view of these relations, the obvious dissipative condition is

(7.15) 93 + 93* + Six g e,

which hereafter will be assumed. For the same reason, we say that a function

l)£3X?i) satisfies a dissipative boundary condition if

(7.16) -(SIool)0, D°)°- + (SI00D0, l)0)^ g 0,

and, similarly, a function jG3)(9)?i) satisfies dissipative boundary conditions

if

(7.17) (3U°, jT- - (V, sT+ g 0.

With these preliminaries out of the way, we now proceed to find all dis-

sipative restrictions of ?i and 9J?i which generate strongly continuous semi-

groups of operators. The argument follows the same pattern as before and we

begin by investigating the solutions of the homogeneous systems of equations

(a) XI)0- (3Ioot)°)x - 33oot)° = 6,

(7.18) (b) Xt)1 - 93HI)1 - 93iot)°(a) = 6,

(c) XI,2 - 9322t)2 - 932oD°(6) = 8,

and

(a) X5° + (3IoosV - (800 + (?loo)x)s° = 0,

(7.19) (b) Xj' - 93ns1 + »!o»°(a) = B,

(c) X32 - 93*2j2 + 932Y(&) = B.
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By the convention mentioned at the close of §5 a meaning can be assigned

to 93iot)°(a) if t)<>EFa and to 9320t)°(&) if t)°eF4; however if t)°eft but not to Fa

then (7.18b) will be meaningless and we will be content with simply the

(t,0, t,2) components of the solution. Similar remarks apply at the a end and

for the system (7.19).

To pursue this matter a bit further, let 1)° be a solution of (7.18a) which

lies in Fb and hence maps into n°(6 — )(E?V We now choose I)2 so that (7.18c)

is satisfied for t)°(b) defined as in (7.7). In fact, substituting for t)°(6) in terms

of t)°(b — ) and t)2, we obtain

(7.20) XI)2 - 23221,2 - 932oeo2l>72 = 932ot)0(6-).

If X is not a characteristic value of the matrix

(7.21b) 9322 + 5320<W2,

then (7.20) will have a unique solution t,2 for each t)°(b — ) and, in particular,

for \)°(b -) = 0 we have t)2 =0 and \)°(b+) = t)°(b -) +<S.oitl2=8. Moreover for the

so obtained solution t)6 = ( —, t)°, I)2) of (7.18a) and  (7.18c), we will have

(7.22b)    2X(t)2, \)2) = (($8*2 + 9322)t)2, t)2) + (Hoot)0, D0)"" - (Hoot,0, t)0)^,

and as a consequence

2X(l,2, D2) g (H„ol)0, »0)^ - (Sloot)0, I)0)*".

On the other hand, by substituting in (7.18c) for \)°(b) in terms of \)°(b+) and

t,2, we see that t)s also satisfies

(7.23) Xn2 - 9322l)2 + 9320(M72 = 932ot)°(&+).

Thus if X is not a characteristic value of

(7.24b) 9322 - 9320<W2

then ■q°(b + ) =6 implies that \)2=6 and hence that \)°(b-)*=t)°(b+) — So2b2 = f7.

Thus, dimensionwise, the linear space spanned by the l)0(6-)-) is at least as

large as that spanned by the t)°(6 —). Now according to the corollary to

Theorem 5.3, as 1)° ranges over Fb, the corresponding t}°(b —) span 9Ji, and it

follows from the above that the same is true of the l)°(6 + ).

A similar situation prevails at the a end for tj'G^- In this case a unique

solution t)0=(t)1, l,°, -) exists for (7.18a) and (7.18b) with

(7.22a)    2\(Q\ if) = «93n + 93n)t)1, t)1) + (Hoot)0, DT+ ~ (Hoot)0, t,0)"-

providing X is not a characteristic value of the matrix

(7.21a) 93n -93io<W2;

and again the t,°(a —) span $„ as t)° ranges over Fa when X is not a character-

istic value of
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(7.24a) 93n + 93io6oi/2.

Applying the same reasoning to the adjoint homogeneous system, we ob-

tain for i"GGb [orG.] a unique solution J»=( —, a0, f) [or i. = (a1, a0, -)]with

(7.25b)   2x(a2, a2) = ((S322 + 93*2)a2, a2) - (2U°, a0)^ + (SW, a0)^

[or

(7.25a)   2x(a1. a1) = ((Sn + %*dil. a1) - (2U°, a°)°+ + (2iooa°, a0)""],

providing X is not a characteristic value of

(7.26) 93n - 932°oeo2/2 [or93n + 93ioC/2].

Likewise the i0(0+)[i°(a~)] sPan 3* [or 3a] as a0 ranges over l7(,[G„] when

X is not a characteristic value of

(7.27) 93*2 + 932°o93oJ/2 [or93*i - 93io<S°oi/2].

We note that the matrices (7.26) and (7.27) are the adjoints of (7.24) and

(7.21), respectively.

Finally suppose that t)j = (—, l)°, l;2) and ab = ( —, a0, a2) are solutions in the

above sense of (7.18a, c) and (7.19a, c) respectively. According to Theorem

3.2, (8loo^°, a0)1 is constant on (a, b). Moreover, making use of (7.18c) and

(7.19c) we obtain (y, 93^0a0(J))+(932ol)0(6), a2)=0, which together with (7.9)

gives (2I00S02I)2, a0)6 + (l)0. aooGS»a*)* = 0. Applying (7.11) and (7.13) we see

that

(7.28b) (Slool)0, a0)** = (2Iool)°, z0)6- = (2Iool)°, z°)* for all x G (a, b).

Likewise for l)a=(l)1, l)°, —) and ao=(a'. a°> —) solutions of (7.18a, b) and

(7.19a, b) respectively, we have

(7.28a) (SIool)0, j0)- = (Stool)0, 8°)°+ = (HooD0, a0)1 for all x G (a, b).

We note that ti"GFar^Fb can be continued at both ends to define a solu-

tion t) = ('q1, t}°, I)2) of (7.18a, b, c), and the analogous assertion holds for

i°GG.r\Gb. In this connection we have the following lemma which is required

for §8.

Lemma 7.1. Suppose X is not a characteristic value of (7.21a, b) awo" let l)0

and X)b be solutions in the above sense of (7.18a, b) awo" (7.18a, c), respectively.

Ifti(x)=H°b(x)for some xG(a, b) and if -(2IooDn, Do)°-+(StooD?, D?)6+g0, then

ila—d = \)b.

Proof. Since 1)° and t)J are both solutions of (7.18a) it follows by the

uniqueness theorem that t).(x)='v^(x) for all xG(a, b). Thus u° = l)a = l,»,

u1 = l)J, u2 = \)l is a solution of (7.18a, b, c) and u = (u', u°, u2) clearly belongs
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to D(gj). Obviously u°(a-) =\fa(a-) and u°(b+) = $(b + ) so that

-(Hoou0, u0)°- + (Hoou0, u°)>+ ^ 0.

Hence (7.14) implies that ||u|| =0, which proves the lemma.

In constructing the required restrictions of 2i and 9)?i we again make use

of the product spaces $)a,b and $a,b, the operator H„,!>, and the H0,o-orthogonal

complements Sfla.b and tya.b, defined at the beginning of §6. We now have

Theorem 7.1. Suppose yia,b and ^ia,b are %aib-orthogonal complements satis-

fying the conditions (6.2) and (6.4). Let 2 and W be restrictions of 8i and 9J?i,

respectively, with domains

S>(8) = fo;D€S)(8i). fo°(a-),P0(H-)]-»Sn..»],

3)(sk) = b; s esxsroo, [»•(<»-), »"(*+)]-»¥..»],

7 Aew 8 awrf 3D? are dissipative operators satisfying the Hille- Yosida criterion for

all\>0. Moreover, 2 = 9)1* and 2ft = 8*.

Proof. Suppose first that X>0 is larger than any of the characteristic

values of the matrices (7.21) and (7.24). We can then construct solution pairs

[t)o, t)0] and [j0, J&] of the homogeneous systems (7.18) and (7.19) respectively,

at least in the sense considered above. Let Na,b be the set of solution pairs

[t)», t)&] which map into IRa.b, that is, for which [t)°(a —), t)„(b + )]E'3la,b, and

let Pa,b be the set of all solution pairs [j„, j&] which map into S$a,b. It is clear

that Na,b actually maps onto 3la,b and that Pa.b maps onto tya.b- In order to

determine the dimensionality of Na,b and Pa,b we proceed as in the proof of

Theorem 6.1. Now r — ma linearly independent solutions of (7.18a) map into

35(Z,0) and r — mb linearly independent solutions map into S)(Z,t). Since

t)"(a+)=0 if and only if t)°(a-)=d and t)B(b-)=0 ii and only if t)°(b+)=0,

we see that for (2r—ma — mb) linearly independent solution pairs the cor-

responding [t)°(a —), t)°(&+)] coincides with the zero element of §)„,». On the

other hand the t)°(a —) span g)0 as t)° ranges over Fa and the t)°(b+) span ?J& as

1)° ranges over Fb. It follows that Na,b is of dimension

(ma + mb — r) — (2r — ma — mb) = r

and, similarly, Pa,b is also of dimension r.  Further for any solution pair

[t)a, *)b]ENa,b the relations (6.2) and (7.22) imply that

0        0   a+ 0        0   b— 0       0   a— 0       0   b+

~ (H00t)a,  t)„) +   (Hoot)6,  t)b) ^    -   (Hoot)a,   t,a)        +   (H00t) 6,  t) b) S  0,

whereas for any [§„, jt]£P„,i (6.4) and (7.25) imply that

-(HooSa,   ii)"* +   (HooJl,   hb)   .    ^   -   (Hooja,   So)"-  +   (Hoo36,   fo)   +  ^   0.
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Finally we see from (7.28) that the sets Na.b and Pa,b are ^.(.-orthogonal and,

because of their dimension, actually A0,&-orthogonal complements. Hence

these sets are of the type employed in Theorem 4.1.

Before writing down a form of the green's function for the inhomogeneous

system, we first choose a set of r linearly independent solution pairs [t)a,i, \)b,i]

spanning N.,b in the manner discussed at the end of §4 in connection with the

representation of R2(X) as given in (4.23). The r linearly independent solution

pairs [l.,i, ib.i] spanning P.,b are then selected so as to satisfy (3.18). As we

have seen, this will result in £.1 = 6 f°r iGs2 and il.t=6 f°r iGs* Denoting

the so defined 7?2(X) by 9ioo(X), we now show that the resolvent for the oper-

ator 2 can be represented as

[9c(x)f]° = SMx)f°- E (Ci + »»M)[(fl, u.<) + (f2. i'».-)],

[$R(X)f]X = ̂ n(X)f' -    22    (Do.i + l)L)  f V, l.iW
.'e^U,, J a

- E tot* + i»M>[(fl. iii) + (f, Jm)].

(7.30)

[$R(X)f]* = 9?22(X)f2 -    22   fo!.i + l)2,.-) f (f°, iliidZ

- 22 (i)«,.- + i)l.)Kf\ u.i) + (f, ii.,)],
.'€si

where

8cn(X) = [X7 - 93„ + fflwEoi/2]-1,

ftn(X) = [X7 - 9322 - 9320S02/2]-1.

In order to verify that 9t(X) really defines the resolvent $R(X; 2) we note

first of all that for t)G3)(Si), -(Stool)0, 1)°)°- + (Stool)0, »°)6+g0, and f = Xt)-Sit),
the first relation in (7.14) implies that

(7-32) X||»||g||f||.

In particular this holds for all t)6J)(8).

Suppose now that f'=0 = f2 and that f°<E7,2(a, b; I) vanishes outside of

a<a'<x<b'<b. Then all of the terms in (7.30) are well defined and it is

clear that t) = 9t(X)f belongs to 3)(Si). Moreover one sees directly from (4.23)

that t)° behaves like

r b

(7.33) - D (p«..- + t)°M)  J    (f°, l\,i)di
SIU,2 J a

for x<a' and like
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(7.34) - zZ (d + Dm)  fV, s"..)#
.,U.S J a

for x>b'. The only nonvanishing terms in (7.30) for t)1 are those which to-

gether with (7.33) satisfy the homogeneous system (7.18a, b), whereas the only

nonvanishing terms for t)2 are those which together with (7.34) satisfy

(7.18a, c). Thus 9i(X) f is a particular solution of Xt) — 8it) = f. Furthermore, for

Xi<a' and x2>6' we have just as in the proof of Theorem 4.1

- (Hoot)", Ci) *' + (Hoot)°, hl.i) "=0,        i = 1, 2, • • • , r,

and because of (7.28) this continues to hold for Xi replaced by a— and x2

replaced by b + . As a consequence [t)°(o —), t)°(&+)] is Ha.i-orthogonal to

tya.b and therefore lies in 'Sla.b- Thus t)G3)(8) and hence (7.32) is satisfied.

More generally, suppose f'=0=f2 and that f° is an arbitrary element of

72(a, b; I). Then we can approximate f in 1q by a sequence f„ of the above

type. Setting t)„ = 9f(X)f„, we see that t)„G®(8) and X||t)„-t)m|| g||f„-fm||. In
particular the sequence, jt)°j converges to a limit, say t)°, in 77and, apply-

ing Lemma 5.2, we see that t)°GS(7i) and Xt)°-7it)0 = f°. On the other hand

it is clear from the representation (4.23) that t)°= [9i(X)f]°. In case [9i(X)f]'

and [9i(X)f]2 are well defined as given in (7.30), then t)1 = lim„t)J and t)2

= lim„ t)°n. In the contrary case the Banach-Steinhaus Theorem asserts that

we can define t)1 and t)2 by these limits. According to Lemma 4.3 we have

t)n(a + )-*t)°(a+) and t)n(b-)^t)°(b-). It now follows from (7.11) that

*ln(a-)^°(a-) and t)°„(b+)->lf(b + ) and it is clear from this that t)£2)(8).

It remains to consider the case f°=0 with arbitrary f1 and f2. In this case

all of the terms in (7.30) are well defined and it is clear that t) = 9t(X)f ££>(8i).

We shall verify that t) is a particular solution of Xt) — 8it) = f and that the

boundary conditions are satisfied. Now X) differs from the function u defined as

u1 = 9in(X)f\        u° = B for x E (a, b),       u2 = 9?22(X)f2

by a solution of the homogeneous system which belongs to S)(8i). On the other

hand if we set u°(a —) = — GoiU1 and u°(b+) =So2it2, we see that

Xu1 - 93nu' - 93ioU°(a) = [X7 - 93„ + 9310(Soi/2]ul = f

and

Xu2 - 9322u2 - 932oU°(J) = [X7 - 9322 - 9320<W2]u2 = f2-

Consequently Xt) —8it)=Xu —8iU = f. In order to verify that the boundary

conditions are satisfied by t), we set

7,- = (f\ ii.*) + (fi Sm), « E si.

Then
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t)°(a-) - l)°(a+) - Soil)1 = - 23 7.[l)o°.i(o-) + t)°..(a-)] - <5oi$Kii(X)f\

D°(6+) = X)\b-) + S02D2 = - E T.[Do°..-(6+) + t)l,i(b+)] + So2»22(X)f2.
«1

For j G Si we have

0      0       a— 0      0       b+

-(Stool) , ao,;)     + (Stool) , hb.i)

(7.35) = 23 T.[(Stoo(i)Qo,i + i/U, a°..-)a~ - (Stood)".,-, + C).a*..-)  ]
«1

+ (StooSoi^u(X)f1, i0...-)°~ - (3too(So27?22(X)f, a°6..)6+.

Now (3.18) and (7.28) combined give

(3foot)o,i, ao,,)"- - (Slooljt.i, hb.i)     =0, for alii, j;
(7.36) 0 0       a— 0 0       6+

(Stoopfc..-, ao.,)     - (SIool)»,i, hb.i)     = Sn, for all i, j G si.

Hence for jGsi the first sum in the right member of (7.35) is equal to simply

7y. The second and third terms in the right member of (7.35) are handled

differently. According to (7.9)

(StooS02$K22(X)f2, hb.i)"+ = (9?22(X)f, 932oa°,,<&+))•

The analogue of (7.23) for a solution hi of (7.19a, c) is

xa2 - s«a! - 93020eo02zt/2 = - ®0,oj°»(*+)-

so that £= -dl22(X)*$020ti(b+). Consequently

(2tooeo2^22(X)f2, hb.i)"* = ~ (f, hl.i)

Similarly one shows that

(StooSoiftiiMf1, S°..y)°~ =  - (f\ hl.i)

and it follows that

(7.37) -(StooD°, »!./)*" + (Stool)", hb.i)"+ = 0

for all jGsi. Now for jGs2 we have already noted that £a,i—Q s° that hlj = Q

and £j(a-) = &i(a + )-<ft1£J = 9. By Lemma 5.6, fbJ(b-')=0 so that &, = «

and &j(b + )=&j(b-)+<&llj = 0. Similarly for jGs3 we have &j(b+)=8

and haj(a — )=0. Consequently the condition (7.37) is trivially satisfied for

jGs20s3. It therefore follows that t) = 9t(X)f£3XS).
Combining the above two cases, we see that for any f£Jp we can define

ty = 9?(X)f in a suitable way so that t)£3)(S) and Xl) — Sl) = f. Moreover since

t)£3XS) the condition (7.32) will be satisfied. Actually (7.32) holds for any

l)€E3XS) so that Xr) —S?r) = f has a unique solution and it follows from this by
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the usual argument that the range of 9t(X) fills out 2)(8). Together these facts

show that 9t(X) = SR(X;8).

Next we prove that 35(8) is dense in §. Let f£|) be given and choose any

pair [Ya, Yb]E^a,b- Setting

t)°(a+) = Ya+ Soif1   and   t)»(6-) = Yb - 602P,

it suffices to approximate f° in $ by an element t)° of T)(Li) with the above

values of t)0(a + ) and t)°(& —), in which case (f1, t)°, f2) will provide the required

approximation in 3)(8). Let a', b' be selected so that a<a'<b'<b and

f lf°N+ f |foN<«2,
•J a ^ b'

and then approximate f° on [a1, b'] in the mean to within e by a smooth

vector-valued function, say t)o which vanishes outside of [a', b']. Further since

Fa spans ?)<, and Fb spans %)b there is a t)°GP0 with t)°(a + ) =t)°(a+) and a

t)°>£P& with t)0(6 —) =t)°(6 —). Choose functions a and P as in Lemma 4.2 so

that they both vanish on [a', b'] and

rb,   0,2,     rb,   0,2       2

I     I at)„ I # +   I     I 0t)b I d£ < t .

Then t)° = at)"+t)S+/3t)2 approximates/0 in 72(a, 6; 7) to within 5e. It follows

that T>(2) is dense in §.

Thus all parts of the Hille-Yosida criterion have been verified for the

operator 8 when X is sufficiently large. This being so, the Hille-Yosida theorem

asserts that the criterion is actually satisfied for all X>0.

A similar development, of course, holds for 2ft. Further, it is easy to

see that 2ft C?*; in fact for t)££(8) and j€£>(2ft) we have by (7.14)

(8t), s> - (»), 2ftj) = - (Hoot)0, »•)"- + (Hoo, i")^ = 0.

On the other hand both <K(X; 8)* = 9?(X; 8*) and 5R(X; 2ft) exist for X>0 so
that both X7 —8* and X7 — 2ft map their respective domains in a one-to-one

fashion onto $. This requires 3)(8*) = 3)(2ft), that is, 8* = 377. The analogous

argument shows that 2)2* = 8. This concludes the proof of Theorem 7.1.

Using the representation (7.30) it is easy to compute 5ft(X; 2ft) = 5ft(X; 8*)

directly as 9?(X; 8)*. We have, in fact

[SR(X; 9ft)g]° = 9MX)*fl° -  E Jm(b\ (d + ljl.0)

Zo      2   . 2 2
jo,<(8 ,  V)a,i + t)t,i)),

(7 38) "U's

[SR(X; ^g]1 = 9tn(X)Y - £ 5i,,-(g, ft.., + *w)>,
«i

[9UX; 2ft)gf = 9?22(X)*g2 -  zZ il.i(g, (»«.* + »m)>
«i
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where(n)

Roo(x)*g° = ( ) - 23 }..<    (b . (Do.,- + »».<))<**
\ 0 / ..U„ *>x

(7.39)

-   23 »?.< f   (8°. (d + !)!,<))*
.,U,2       ->o

The sense in which 9?oo(X)*g° is to be taken has already been made clear in

Theorem 4.1. The other terms appearing in this expression for 9?(X; 9J?) are

all well defined.

As a converse to Theorem 7.1, we have

Theorem 7.2. Every dissipative restriction of Si (or of Stti) which generates

a strongly continuous semi-group of linear bounded operators is of the type de-

scribed in Theorem 7.1.

The proof of this assertion paraphrases that of Theorem 6.2 and is

omitted.

It is of interest at this point to consider the connection between a semi-

group solution to the initial value problem and a solution in the classical sense.

Let f0£3XS2). Then f0 can be expressed as f0 = 9t(X; S)fi for some fiG3)(S)
and fixed X>0. As a consequence, if S generates the semi-group [©(/); 2^0],

then

DM - ©(Of. = 6(0R(X; S)fi = tt(X; 8)@(0fi-

We now avail ourselves of the representation (7.30) for dt(X; 2), 9?oo(X; S)

being given by (4.23), and by means of this we can write l)°d) explicitly as a

vector function of x_for each t, namely,

(7.40) U°d, *) - [5R(X; S)@«fi]°(*).

Actually this only determines [t)0^)]1 explicitly as a function of x and t,

since for each t, [l)°(0 ]° is determined by this expression only to within a set of

measure zero(u). However [l)(/)]° is in any case two times strongly continu-

ously differentiable (fo£3XS2)) so we can appeal to a theorem in Hille and

Phillips [7, Theorem 3.4.2] which asserts that there exists a pointwise repre-

sentation of [l)°(0]° which is continuously differentiable in / for each x and

measurable in the (x, t) space. We denote this representation of [t)°(0]° by

[t)°d, x)]a and this together with the above defined [\f(t, x)]1 now determines

t)°(7) as a function of x and /. Making use of the strong differentiability of

@(/)fi, it is readily seen that the 1-component of t)°(<, x) is continuously differ-

entiable in t for each x; in fact,

(") The outer superscript 0 or 1 refers to the notation introduced in (2.18).
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dy\t. x)       r <*©(/) fiT
-^--=    SR(X; 8)  —^-   (x) = [5R(X;8)8©(/)fi]°(x)

at \_ ai

= [88l(X; 8)©(0fi]°(x) = [?D(0 ]"(*)■

The only advantage in using the resolvent to define [t)°(<, x)]1 over the above

mentioned Hille-Phillips theorem is that the resolvent furnishes a realization

which is absolutely continuous in x for each t; thus t)°(/, x) is actually in 35(7])

and not simply equal to a function in 35(Z,i) almost everywhere.

8. Conservative systems. We shall speak of an operator 8i as being con-

servative if no energy is dissipated internally, that is, if

(8.1) 93+93* + Hx = 0, a<x<b.

We note that in this case 35oo = 7. An operator 8 will be called a conservative

restriction of 8i if no energy is lost through the boundary, that is, if

(8.2) -(Hoot)0, DT- + (Hoot)0, t)0)^ = 0

for all t)E35(8).

Theorem 8.1. 7/8 is a conservative restriction of the conservative operator 8i

satisfying the Hille- Yosida criterion, then 2 generates a semi-group of isometries.

Proof. Let [©(0; ' = 0] be the semi-group of operators generated by 8

and suppose that t)G35(8). Then <S>(t)t)ET>(2) for all t^O and

4- <@(0U, ©(/)*)) = (8@(J)», ©(/)»> + <©(/)», 8©«U>, t = 0.
dt

It follows from (7.14) together with (8.1) and (8.2) that d/dt(<B(t)q, <&(t)t))=6

for all t^O so that ||©(0t)|| =[|t)||, t = 0. The domain 35(8) being dense in §,

we see that this holds for all t)£$ and therefore @(0 is an isometry.

The above result is not surprising. One might even expect such a conserva-

tive restriction of 8i to generate a group so that the resulting process is rever-

sible in time. However this is not the case as the following simple example

shows: Let H = L2(a, b) with a = 0, b= « , and define

7iy = — y* with35(ii) = [y; y absolutely continuous, y and yx E 77].

Then

Ma = zx withD(Mi) = [z; z absolutely continuous, z and zx E 77].

It is readily verified that w=l,p = 0,r = l, la = l=ma,lb = l, and mb = 0. Thus

da = l and db = 0. Consequently for y€35(7i),

-(Ay, y)° + (Ay, y)b = - (Ay, y)a =   | y(0) |2,

and the only dissipative boundary condition is y(0) =0, which is also a con-
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servative boundary condition. The corresponding restriction L generates the

semi-group of operators

[S(Df](x) = /(* - o.

It is clear that the range of S(t) fills out L2(t, <*) but not 7,2(0, <=°) for t>0.

Consequently S(t) does not have an inverse and L does not generate a group.

Evidently, then, further conditions are required on a conservative restric-

tion in order that it generate a group of operators. We note that the condi-

tion (8.1) suffices to make Si= — 99?i so that JSi is formally symmetric. This

suggests the following result.

Theorem 8.2. A conservative restriction 2 of a conservative operator Si gen-

erates a group if and only if i2 if self-adjoint. In this case the group generated

by 2 consists of unitary operators.

Proof. If S is a conservative restriction and generates a group of operators

[©(/); — °° </< °° ], then ©d)_1 = ©( —/) exists and by the previous theorem

©(/) is an isometry for t>0. It follows from these two facts that ©(/) is uni-

tary for all t. The rest of the assertion of the theorem is well known (see J.

von Neumann [ll]); however, for the sake of completeness, we shall include

an independent proof. Suppose first that S generates a group of unitary oper-

ators. Then for all I) G 33(8) we have d<£(t)t}/dt\,=0 = 2t). Since (©(0l), u)

= (tj, ©*(0u) =(t),®( — t)u), it follows on differentiating that (Si), u) = - (t), Su)

for all I), ilG33(S); thus i2 is symmetric. On the other hand 8 generates a

group of unitary operators and this implies (see Hille and Phillips [7, Theo-

rem 1.2.3.2]) that 3i(X; 8) exists for X= + 1. Thus the deficiency indices are

zero and as a consequence i2 is self-adjoint. Conversely, if i2 is self-adjoint,

then one can show directly that ||X9t(X; 8)|| gl for all real X?^0. The above

quoted Hille-Phillips theorem now implies that 8 generates a group.

We next determine necessary and sufficient conditions for a conservative

operator 8i that i2i have a self-adjoint restriction. For this purpose it is con-

venient to introduce the restriction SoCSi defined by

(8.3) 33(S0) = [D;DS 33(80,       »•(«-) = 0 = D°(&+)].

For l)G33(So) and uG33(Si) we have by (7.14)

(8.4) (Sol), u) + (D, 8,u) = - (Stool)0, uT- + (SloooD0, u°)6+ = 0,

from which it follows that i8o is symmetric. Actually (8.4) implies more,

namely that iSoCO-'Si)* and as a consequence any self adjoint restriction of

i2i necessarily contains i2o- This suggests that we consider the self-adjoint

extensions of i2a rather than the self-adjoint restrictions of i2i; it will turn

out that we obtain the same class of self-adjoint operators in either case. Now

according to the Cayley transform theory (see J. von Neumann [l0]), the

operator i2o has a self-adjoint extension if and only if its deficiency indices

are equal. If we define 2ft0C2)2i by
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(8.5) 33(2ft0) = b; a eaxaKi), »v-) = 0 = j°(*+)].

then clearly 9fto= —80 and the above criterion for *8o to have a self-adjoint

extension is simply the assertion that the subspaces

§ O [range of X7 - 80]    and   £ &■ [range of X7 - Sfflo]

be of equal dimension for some X>0. The following theorem, which gives a

method for determining the dimension of the range of X7 —2fto, does not re-

quire that the operator 81 be conservative.

Theorem 8.3. Let

(8.6) Ux = W, t) E35(80, Xt) - 8it) = 0].

7/X is not a characteristic value of the matrices (7.21) and (7.24), then

Ux = £0 [range of \I - 2ft0].

Proof. It is easy to see that UxC^O [range of XI — 2fto]- In fact for

t)<EUx and jG35(2ft0) we have by (7.14)

(t), (X5 - 2ftoi)> = ((Xt, - 8it>), j) - (Hoot,0, J0)"- + (Hoot,0,3°)^ = 0.

To establish the inequality in the other direction we suppose that Ux

does not fill out $■© [range of X7 —2fto]. Then there exists a nontrivial

g£§€> [range of X7—2fto] which is orthogonal toUx. Now it is clear from (8.5)

that any dissipative restriction 2ft C2fti of the type considered in Theorem 7.1

will contain 2fto- Since the range of X7 — 2ft coincides with §, there is a

SG35(2ft) with X3-2fts = g; obviously 3<£35(2fto). Thus j = 9i(X; 2ft)g and
g£$OUx. We now show that these two conditions imply that jG35(2fto),

contrary to our choice of 3. It suffices to show that

(8.7) l\a+) = EoiJ1    and    j°(6 —) = -6°ojj2,

since it follows from this and (7.13) that j°(a —) =0 and a°(b+) =0 and hence

that 3£35(2ft0). We shall use the representation (7.38) for $ft(X; 2ft) to estab-

lish (8.7).
It will be recalled that the solution pairs [t,°p(, t,?pi] in (7.38) were chosen

to be linearly independent. We now show that the solutions [(t)",i+t,"i);

t = l, 2, ■ ■ ■ , r] are also linearly independent. In fact, if there did exist con-

stants Vi, not all zero, such that S^ftit+A) =' f°r some x0E(a, b), then

writing

t)« = zZ *,i   and   ^)b=zZ — Mm,

we have t)°,(x„) =t,?(x0) and -(Hoot,?, t)°)<-+(Hoot)2, H°b)b+ = 0; and Lemma 7.1

implies that t)°, = t)?. Thus zZvib)°.i, *)m] = [0, 6], which is impossible. Since

there are just r linearly independent solutions of (3.1) by Theorem 3.1, it fol-

lows that the solutions [(t)°i(+\fbti); * = 1, 2, • • • , r] span the solution space.
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Further by our selection of the bases, the [(t)a,.-+!)&,>); iGsi] span llx, the

Wa,i+^lli); iGsi<Js2] span F., and the [(1)^+0; t'G^iWs3] span Fb.
Returning now to the above aG33(9)?) we see that (g, (l)„,,-r-l)b,.-)) = 0 for

iGsi and hence by the representation (7.38) we have

(8.8) 31 = ^nMV   and   a2 = 9t22(X)*fl2.

Also it is clear from (7.38) that if g° vanishes near b and if fy» is a solution of

(7.18a, c) with tfcGFb, then

™»      0       0   6- ,£->      0 0 0   6- .r-,      1 0 0N6-

(Stooa . l)b)      =  - 2-, Ti(Sloo36..-. W       - Z- 7.<9Ioo3b,i, l)b)
»I »l

(8.9) _    »       o      o b-
- 2-, 7i(stooao.i, i)b)   ,

where

/■ b
0       0 0

(8. (l)o,i + *lb,i))dx,
a

111 1 222 2

Ti = (s. (i)o,.- + t)b,.-)),     7,- = (s. d)o,i + >)m));

the first two sums in the right member of (8.9) extend only over 5i because of

Lemma 5.6. For the above aG33(9)J) with g=Xj — 99?a, we can approximate

g in § by a sequence {g„} such that each of the g°'s vanishes near b. We see

that 7?,B—>yf as w—»<» for iGsi when £=0, for iGsi^Jsi when & = 1, and for

i G Si U ss when k = 2. Further applying Lemma 4.3 to the sequence

{a° = [9t(X; 9M)g„]0} we see that (2Ioo3°, D0)6-->(Sloo3°. i)*")6" As a consequence

(8.9) holds for the aG33(50J) which we are considering. Recalling that a?,<=0

for iGs3, we see that (8.9) can be written as

„w      0      0N b- ^-» 0 0N b-

(Stooa. i)b)   = - Zj 7.-(stooab,.-, t)o)

(8-10) „      2. 0        0^6- 0 Ob-,
+     Z,    7.l(Stooab.i,  t)b) -   (Stooja.i,   t)b)       ]

.iU„

where 7. = 7?-r-7i+7< = (8. (t)o,.-+l)6,i)}. As we noted above, for our choice of

a we have y, = 0 for iGsi. Hence replacing fy, in (8.10) by d)a,y+l)6,y), jGsiWs8,

and making use of the identities (7.36) which hold for all i, j if we replace

a— and b+ by b— (as can be seen directly from (3.18)), we finally obtain

(8.11) (Sloo3°, (I)!.,- + Db.y))6" = - y), jGsiU st.

Now for 1)6 a solution of (7.18a, c) we can make use of (7.31) to write

(B2, Di) = (9?22(X)*g2, (Xt,\ - 9322D26 - 932o<M26/2))

and with the aid of (7.20), (8.8) and (7.9) this becomes
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(gt, t)l) = (32, 9320t)°(ft-)) = (Hoo6o°i2, t)l)"-.

Thus (8.11) gives

(HooJ°, (tll.i + t,0,,))6" = - (HooSmJ2, (Ci + t»°.y))&_

for all jEsiVss. In view of the fact that the [(t)°,,(&-) +t)lj(b-)); jEsi^Js3]

span $)b, this implies g°(& —) = — 5J52J2- The first relation in (8.7) is proved simi-

larly. As a consequence j£35(2fto) and hence our original assumption, namely

that Ux does not fill out .'pO [range of X7 —2fto], was false.

To complete this discussion we next prove

Theorem 8.4. If 8i is a conservative operator and the deficiency indices of

i2o are equal, then i2o has self-adjoint extensions, all such extensions are con-

servative restrictions of i2i, and, conversely, each conservative restriction of i2i

which generates a semi-group is a self-adjoint extension of i2o-

Proof. If the deficiency indices of i2o are equal, then there exist self-adjoint

extensions. In fact, according to the Cayley transform theory all such exten-

sions are obtained in the following fashion: For fixed (sufficiently large)

X>0 let Ux be the solution space of Xu —8iU = 0 and let 93x be the solution

space of Xto+8ito=Xto —2ftito = 0. The previous theorem asserts that

Ux = § O [range of X7 - 2ft0]    and    95x = § O [range of X7 - 80],

and since the deficiency indices are equal the subspaces Ux and 93x will be of

equal dimension. Finally let 93 be an arbitrary isometry with domain 93x

and range Ux. Then each self-adjoint extension i2 of i 8o is defined by such an

isometry as

35(8) = [t>;t,= th + t)2, t,i(G35(8o),t)2 = to + 9Bto with to E 93x],
(8.12)

8t, = 80t,i + X(9Bto - to).

Now 8i=-2ft, so that UxW9?xC35(8,); consequently 35(8)C35(8i). Finally
since i2 is a self-adjoint restriction of i2i we have by (7.14)

0 = (Sp, t)> + (D, 8t)> = - (Hoot)0, t,0)- + (Hoot,0, t)T+,

which proves that 8 is a conservative restriction of 8i. Conversely, suppose

that 8 is a conservative restriction of 8i generating a semi-group of operators

so that 35(8) is of the type (7.29). It then follows from (8.3) that 8oC8. Thus

i2 is a symmetric extension of the operator i2o which has finite and equal

deficiency indices and the only such extensions are self-adjoint.

Remark. For a conservative restriction 8 of a conservative operator 8i,

the operator t'8 is always self-adjoint in the two extreme cases, namely when

the system is so regular that all solutions of (7.18) and (7.19) lie in § or when
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the system is so singular that none of the solutions of (7.18) and (7.19) lie

in £>. In the latter case the deficiency indices are both zero and the operator

i2o is itself self-adjoint; in fact this case is so degenerate that Si = So(12)-

Before concluding this section, we return to the telegraphist equation

(1.3). We see by (1.5) that the corresponding system operator is conservative

if and only if r(x) =0. In this case t enters in (1.3) only as a second derivative

so that if u(t, x) is a solution then so is u( — t, x). Moreover, since the boundary

conditions are homogeneous of degree one in ut, the boundary conditions will

also be satisfied by u( — t, x) if they are satisfied by u(t, x). Basically this is

what is required of a system to be reversible. It is somewhat surprising, there-

fore, that our criteria for a conservative operator to generate a group cannot

be verified by inspection for the corresponding system defined by the matrices

(1.4). We shall now bring this system into a form in which the group property

becomes evident. This will be accomplished by means of three successive

transformations, the first of which, taking E into £' = /, is defined by

fs-"2       0 0   '

V(x) =  [E(*)]-,/2 =       0       fr1'*       0     .

[ o      o    <r1,2J

We then make a change of independent variable (see (2.20))

«(*) =  f*[P(o)]2do,       P(x) = [?(*)]•";

and this is followed by another transformation of the type (2.1) with

10 0  '

V(x) =   0     2-1'2      2"1'2

0 -2"1'2     2'1'2.

The result of these three transformations is to bring the system into the form

0     0     01 I     0 -4./21'2    <t>/21'2'

E = I,       A =   0 -a>     0,     73=     tf,/2>'2        o>f/2        -wt/2  ,

0      0     J l-tf>/21/2       o>{/2        -«e/2.

where cp = (s/q)in and co = (pq)112. It is now easy to verify that Liy can be

(1!) If the deficiency indices are both zero than l. = p = nib and lb = n = ma; hence d. = 0=db

and both g)a and §)i consist only of the zero vector. In fact suppose h>n. Then in the notation

introduced at the end of §3, there exist subspaces N. and Nb of the solution space to (3.1) such

that N. G K is of dimension p, Nb G Fb is of dimension «, and together N. and Nb span the

solution space. If Fb is of dimension >n, there is a nontrivial solution y = y.-\-yb, y.G Na,

ybG Nb, belonging to Fb but not to Nb. Consequently y.G F.DFb and this is impossible if the

deficiency indices are zero.
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obtained from Ma by the simple transformation 77' = f\ '?2 = f3> '?3 = f2- From

this it follows that Xt, —8it)=0 and Xj — 2fti} = 0 have the same number of lin-

early independent solutions. Thus the deficiency indices of 80 will be equal

by Theorem 8.3 and hence according to Theorem 8.4 each conservative restric-

tion of 81 generates a group of unitary operators.

9. Perturbation theory. With the aid of a perturbation theory for semi-

groups of operators (see R. S. Phillips [12]), we now treat a somewhat more

elaborately coupled system than that considered in §7. The perturbation

theory applies, in particular, to operators 8 + 93, where 8 is a dissipative oper-

ator defined as in Theorem 7.1 and 93 is given by

(9.1) ?=($«), i,j= 1,0,2;

here the elements of 93oo are taken to be bounded measurable functions on

(a, b), the elements of $10 and 93o2 are taken to be functions of 72(a, b), the

elements of 93oi and 932o are taken to be integral operators of the form

93,o.*t,° =  f P».*(0Uo(0#, * = 0, 1,
J a

where t)ia,jkEL2(a, b), and the 25,-,-, i, 7 = 1, 2, are matrix transformations on

the §)' space to the £)' space. It is clear that 93 is a bounded linear transforma-

tion on .£> to itself. We further impose a dissipative condition on 93, namely,

(9.2) (93», t>) + <t,, W = 0 for alllje©.

According to the above cited perturbation theory, the operator 8 + 93 gen-

erates a strongly continuous semi-group of linear bounded operators. Actually

this is true even when 93 does not satisfy the condition (9.2). However if this

condition is met, then we have

Theorem 9.1. 7/8 is a dissipative restriction of 81 defined as in Theorem

7.1 and if 93 satisfies (9.1), then 8 + 93 with 35(8 + 93) =35(8) generates a strongly
continuous semi-group of contraction operators.

Proof. For X> || 93|| one can prove that XGp(8 + 93) (see [12, Lemma 3.1]).

Thus given an arbitrary f££>, we can set t) = $ft(X; 8 + 93)f, in which case

t)G35(8) and

Xt, - 8t, - 93t, = f.

The first relation in (7.14) implies that

2X(d, d> - (93D, U) - («,, 931?) ^ <t), f) + (f, t,) + (Hoot,0, U°) I    ,
i a—

and making use of (9.2) together with the fact that 1)£35(8) satisfies a dissi-

pative  boundary  condition,   we  obtain X||t,|| ^||f||.   In  other  words

\||9i(X;8 + 93)|| = 1
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for all sufficiently large X. Thus the Hille-Yosida criterion is satisfied by

8+$ and it follows that this operator generates a strongly continuous semi-

group of contraction operators.

We note that if j'S is self-adjoint and ity is a bounded symmetric operator,

then i(8 + 93) is again self-adjoint so that 8 + 93 generates a group of unitary

operators. On the other hand, if 8 is merely a conservative restriction of a

conservative operator which generates a semi-group and if *93 is a symmetric

bounded operator, then 8 + 93 generates a semi-group of isometries. The proof

of the latter assertion is essentially the same as that of Theorem 8.1 and is

omitted.
«
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