DISSIPATIVE HYPERBOLIC SYSTEMS

BY
R. S. PHILLIPS(?)

1. Introduction. This paper is concerned with the solution of the Cauchy
problem for dissipative hyperbolic systems of linear partial differential equa-
tions for the case of one spatial variable and time-invariant coefficients. Here
we use the term dissipative to mean that the associated physical model has
no internal energy sources; if, in addition, the boundary conditions are such
that no energy enters the model through the boundary, then the solution is
called dissipative. By employing the theory of semigroups of linear bounded
operators, we are able to obtain all possible dissipative semi-group solutions
without further restricting the behavior of the differential system near the
boundary. In order that our considerations include all of the dissipative
boundary conditions commonly associated with hyperbolic systems, we have
also treated the above differential system coupled at the end points to dis-
sipative systems having finite degrees of freedom.

The semi-group method is in essence an abstract analogue of the classical
Laplace-transform treatment of the Cauchy problem. From this point of
view the present paper can be thought of as an extension of a time honored
development going back to the works of M. Plancherel [14], G. Doetsch [2],
and W. Michler [9], to mention a few of the early publications on the wave
equation. The above papers deal with the regular case; that is, finite domains
and sufficiently smooth coefficients. More recently, G. Hellwig [6] and K.
Yosida [16; 17] have treated the Cauchy problem for the wave equation al-
lowing certain kinds of singular behavior at the boundary. Because of the
difference in settings, the Hellwig and Yosida developments cannot readily
be compared with the present work; however, neither of these papers con-
siders boundary behavior or boundary conditions as general as those treated
here.

With regard to method, perhaps the feature which best sets the present
study off from those mentioned above, is the central role played by the
energy integral. The use of the energy integral in dealing with the wave equa-
tion is, of course, not new. In fact, as early as 1900, J. Hadamard [5] em-
ployed the energy integral to establish uniqueness for the solution of the
mixed problem. Later, K. O. Friedrichs and H. Lewy [4] discovered another
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pertinent property of the energy integral. They noted that the solution of the
wave equation with two or more spatial variables did not always continue the
smoothness properties of the initial data; for example, it is possible for the
solution to have a caustic surface even when the initial data does not. Never-
theless, Friedrichs and Lewy were able to show that the finiteness of the
energy integral is continuable in the above sense. For the one spatial variable
case considered in the present paper, this property of the energy integral
turns out to be a simple consequence of the semi-group property of the solu-
tion. Finally it should be pointed out that inequalities derived from the energy
integral are the basis of most existence theorems for the solution of linear,
and even nonlinear, hyperbolic partial differential equations. In this connec-
tion, we mention the recent paper by K. O. Friedrichs [3], where further
references may be found.

We return now to the problem at hand, that is, the consideration of dis-
sipative hyperbolic linear partial differential systems in one spacial variable
of the form

(1.1) Ey, = (Ay). + By, —w=2e<2s<bsE 0,01

Here y= (', 7% - - -, 1*) is a k-dimensional vector-valued function of x and
t; E, A, B are kXk matrix-valued functions of x alone, E being hermitian
positive definite, 4 hermitian and of constant rank 7, and B satisfying the
condition(?)

(D) B+ B*+ 4,50, a<x<b,

where B* is the adjoint matrix to B under the assumed inner product

k
(1.2) (3 2) = Lot with |y| = [(3 9]
g==1
In addition it is assumed that the elements of E and A4 are absolutely con-
tinuous(?) on each compact subinterval of (a, ), and that the elements of
E., A,, and B are square integrable in each compact subinterval of (g, 5).
Parenthetically, we note that the telegraphist equation

(1’3) qUu + U, = (Puz)z — SU

can be brought into the form (1.1); here we suppose that p>0, ¢>0, r=0,
and s>0 for all xE(a, b). In fact, setting u=1!, u.=%2% and »,=1%%, the solu-
tion of (1.3) is readily seen to satisfy (1.1) with

(2) Condition (D) could be replaced by (D) B+B*+4:<2vE, a<x <b, for some real con-
stant v. However the transformation y—y’e"* brings (D’) back into the form (D) so that we may

use (D) without loss of generality.
(3) Hereafter we use the expression “absolutely continuous” to mean that the function is

absolutely continuous on each compact subinterval of (g, b).
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l{s 00 [0 0 OI 0 0 s
(1.4) E=10 p 0/, A=1]0 0 p|, B= 0 0 —p,.
'{0 0 ¢ [0 P OJl —-s 0 —r
In this case
0O 0 0
(1.5) B4+ B*+A4,=10 0 0] =0.
0 O —ZrJ

Conversely, suppose y= (7', 7% %% is a solution of the system (1.1) with
coefficient matrices (1.4) and suppose that the initial data has been chosen
so that #%(x, 0) =n!(x, 0).. Since 77 =53 =n}, it follows that 9%(x, t) =9'(x, £).
for all >0 and hence that such a solution of the system satisfies (1.3) (the
smoothness properties of solutions to the differential system which are re-
quired for this argument are established at the close of §7).

The energy integral for system (1.1) is

1 b
(1.6) Energy = ?f (Ey, y)dx.

Since we shall restrict our considerations to solutions of (1.1) for which the
energy is nonincreasing in time, a natural setting for the problem is the
hilbert space II = L.(a, b; E) with

b
(1.7) inner product (y, z) = f (Ey, 5)dx and norm ||y]| = [(=, y)]'2
From (1.1) we obtain, at least formally, the relation
b
(1.8) ()= [(43,9)° = Ay, »°] +f ((B+ B* + A.)y, y)dx.

The integral on the right is the rate at which energy enters the system from
interior sources, whereas the expression [(4y, ¥)*—(4y, y)¢] is the rate at
which energy enters the system through the boundary. Thus the condition
that there be no interior energy sources is precisely (D) and, with (D) as-
sumed, the energy will be nonincreasing in time if we impose boundary con-
ditions on y such that

(1.9) (dy, y)b — Ay, )" = 0;

boundary conditions of this kind will be called dissipative.
The Cauchy problem for the system (1.1) can now be formulated in terms
of semi-groups of operators. We require of the operator

Ly = E'[(4y). + By],
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with a domain ©(L) suitably restricted by dissipative boundary conditions,
that it generate a strongly continuous semi-group of linear bounded operators,
say [S(t); t=0]. In this case the initial value is assumed in the mean square
sense, that is,

(1.10) lim S(H)yo = 9o, ¥ € H,
=0+

in norm; and the differential equation is satisfied in the sense that
(1.11) dS(1)yo/dt = L[S(t)yo], 5% €ED(L), £ > 0,

the derivative being taken in the norm topology of H. Employing these re-
sults it is possible to go somewhat beyond the theory of semi-groups and show
for each yo €D (L?) that there is a representation of y(-, t) = S()yo which satis-
fies (1.1) even in the classical sense (see the end of §7). It follows from the
relation (1.8) that condition (D) together with the requirement that L have
dissipative boundary conditions forces the operators S(¢) to be contraction
operators, that is, operators of norm less than or equal to one.

With this semi-group setting the Cauchy problem for (1.1) can be given
an exceedingly precise expression. To this end we let

(1.12) D=E— (B+ B*+ 4,

and denote by Ls(a, b; D) the class of all vector-valued measurable functions
for which

(1.13) fb(Dy, y)dx < oo,

We further define
Liy = E7'|(4y)= + By,
(1.14) D(L1) = [y; yELs:(a, b; D), Ay absolutely continuous, and
E-'[(49): + By] € La(a, b; E)].

If, in the definition of ©(L,), the condition y& Ly(a, b; D) were replaced by
yE&Lsy(a, b; E) then it would be clear that the domain contains all vector func-
tions in ©(L), assuming L to be defined in a reasonable way(*). However, for
y'intthe so extended D(L;) the limits

(4y, »)* = lim (43, 3)* and (4y, 3)* = lim (4y, y)*
z—et z—b—
exist if and only if y & Ly(a, b; D); and, since we insist on imposing dissipative
boundary conditions, there is no loss in generality in requiring L to be a re-

(%) It can be shown that L, is a closed operator both for D(L,) defined as in (1.14) and for
the modified D(L:) defined as in (5.7); see Lemma 5.2.
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striction of L;, defined as in (1.14). The problem, then, is to find all possible
dissipative restrictions of Ly, which generate strongly continuous semigroups of
operators(®).

According to the Hille-Yosida theorem (see E. Hille and R. S. Phillips
[7, Theorem 12.3.1]) a closed linear operator L with dense domain generates
a strongly-continuous semi-group of linear bounded contraction operators if
and only if the resolvent of L, namely R(\; L), satisfies the condition

(1.15) MRM D =1

for all sufficiently large real X\. In order to verify (1.15) we shall construct
an explicit representation for the resolvent out of the solutions of the homo-
geneous system

(1.16) Ny — E-'[(4y). + By] = 0, a<x<b
and its formal adjoint

(1.17) )\z—E—‘[—(Az),+(B*+A,)z]=0, a<x<b

both of which are studied in §3. The domain of a dissipative restriction of L,
can then be defined by means of 7 suitably chosen linearly independent pairs
of solutions to (1.17), say [2a.s, 2.:], as

(1.18) D) = [y; y ED(Ly), (Ay, 25.5)® — (A9, 2.,)* = 0for i = 1,2, - - -, r];

this is the end result of §4.
It is desirable to free the definition of D(L) of its dependence on A. To
this end we introduce the dual of L;, namely

Mz = E-1[—(42). + (B* + 4.)z].
(1.19) D(M,) = [2;2 € Ly(a, b; D), Az absolutely continuous, and
E-'[—(42). + (B* + 4.)z] € La(o, b; B)],
which is again dissipative since
(B*+ 4.) + (B*+ A)* + (—4). =B+ B*+ 4. 6.
Following K. Kodaira [8], we then consider D(L;) modulo
(1.20) D(Ly) = [y; y EDLY), (4y, 2)* = 0 for all s ED(M)].

This quotient space is finite dimensional and preserves all of the relevant
behavior of yED(L,) at the boundary b; in other words (41, ¥2)* depends
only on the cosets V3,1, Vs, containing y; and y,, respectively. We use this
limit to define (4 Y31, Ys.2). Treating D(M;) in the same fashion, we find that
the quotient spaces D(L1)/D(Ls) and D(M1)/D(M,) are of the same dimen-

(5) It should be noted that we actually do not obtain the most general semi-group solution

with noncreasing energy since we require that both terms in the right member of (1.8) be non-
positive whereas the energy is nonincreasing if merely the sum is nonpositive.
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sion, having bases U1, Uss, + * -, Us,ay and Vi1, Vi, -+ -, Vg, respec-
tively, such that for Y= > y; Us.s and Z= 2_3; Vs, we have

(/1 Yo, Yb) = E ’Y:’)-’i#ii,
(1.21) (AY+,Zs) = 20 &,

(AZy, Z3) = D 8 wii
where (u:;) = (vi;)~! is nonsingular and hermitian with 7, negative and p,
positive eigenvalues. Analogous results hold at the a end. Now let R, be a
linear subspace of D(L1)/D(La) X D(L1)/D(Ls) of dimension p,+n; such that

—(AY,, Y)+(AYs, V3) =0 for all [Va, ¥3]ERas and let Pas be the Agy-
orthogonal complement of Ns,s in D(M1)/D(Ma) X D(M1)/D(My), that is,

gBa,b = [[Za;Zb]; —(AYav Za) + (AYby Zb) = 0 for all [Ym Yb] C ma.b]-

Then P..,, will be of dimension n,+ps and — (42, Z.)+ (42, Z,) 20 for all

[Zs, Zy] EBas. The most general dissipative restrictions of L; and M; which

generate semi-groups are of the form

D) = [y; y €D, 3 3] = Na],

DM) = [z 2 € D(MY), [3, 2] = Barls

and, conversely, any such L and M are dissipative generators. Incidentally,

L and Jf as so defined are adjoints to each other. We note that ©(L) can

be defined equivalently by a representative set of functions {[za.s, Z.¢];

i=1, 2, -+, nat+pp) CD(M) XD(M,) which map into cosets spanning

Pa.p, in which case

VL) = [y ¥y ED(L1), —(A4Y, 20,)* + (4, @6,)> = 0
fori=1,2,--+,n.+ ps).

(1.22)

(1.23)

This solves the problem which we set above.

Thus far the development still does not furnish us with a solution to the
simple vibrating string with elastic end conditions (i.e. #+Bu,=0 at x=5).
However, by making use of these quotient spaces we can also define suitable
couplings at each end of the differential system to simple finite degree of
freedom systems so as to obtain the analogues of the elastic end conditions;
this is done in §7.

A system will be called conservative if energy neither enters nor leaves.
Thus the operator L will be conservative if equality holds in (D) and the
boundary conditions are such that equality holds in (1.9) for all yED(L);
similar remarks apply to operators for the coupled systems. It follows from
(1.8) that the semi-group generated by a conservative operator will consist
of isometries, that is, norm preserving operators. Of particular interest is the
case where these operators are actually unitary operators for then L generates
a group and the process is reversible in time. Necessary and sufficient condi-
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tions on the differential system for L to generate a group of unitary operators
are obtained in §8. It is interesting to note that the solution to the conserva-
tive wave equation (1.3) with conservative boundary conditions is always re-
versible in the above sense.

Finally in §9 we extend the previous development to coupled systems for
which there is a direct coupling between the interior of the differential system
and the finite degree of freedom end systems. This is accomplished by means
of a perturbation technique (see R. S. Phillips [12]).

2. Transformation theory. It will be convenient to bring the differential
system (1.1) into a normal form and to this end we now develop a suitable
transformation theory. We note first of all that corresponding coefficient
matrices of L; and M; satisfy the same smoothness assumptions and that
condition (D) makes both systems dissipative.

As we have previously stated, the natural setting for our problem is the
hilbert space Ly(a, b; E). We now consider a unitary mapping: y=1V%' of a
second hilbert space L:(a, b; E’) onto Ly(a, b; E), the map V being of the
form

(2.1) y(2) = V(=) [y'()], a<x<b,

where V(x) is a kX% nonsingular matrix for each x&(a, b) with elements
which are absolutely continuous and possess square integrable derivatives in
each compact subinterval of (@, b). Since V is in particular an isometry, we
must have

b b
f (Ey, y)dx =f (E'y', ¥")dx

for all ¥ ELy(a, b; E’) and this together with the continuity of the matrices
involved implies

(2.2) E'(x) = [V(x)[*E(x)V(x), a < x<b.

The nonsingular character of the matrices V(x) suffices to show that the map-
ping V is indeed one-to-one and onto. We note that E’(x) as defined in (2.2)
is again hermitian, positive definite, and absolutely continuous with deriva-
tives which are square integrable in each compact subset of (a, b).

Suppose now that L and M are restrictions of L, and M;, respectively,
~ with domains

DL) = [yiy EDWLy), (Ay, 22.)* — (Ay, 10> = 0,5 =1,- -+, g],
D(M) = [5;2 € D(MY), (43, yo.)* — (Az, 300> = 0,i=1,- -, q],
where the [y,.:, ¥5.¢] and the [za.:, 2.:] are function pairs in D(L;) X D(Ly)

and D(M,) X D(M,) respectively. Then the transformed operators are given
by

(2.3)
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2.4 L' = VL, DL = VD)),
‘ M'=VMY, D) =V [DM)]
A straightforward calculation shows that

L'y = E-{'y). + By,

(2.5)

Mlyl = E"‘[—(A’z'),+ (B/* +Az')2’],
where
2.6) A'(x) = V(2)*A(x)V(x) and

B'(2) = V(2)*B(x)V(x) — [V(2)*.A(2)V(2).

We see that 4’(x) and B’(x) have the same smoothness properties as 4 (x)
and B(x), respectively. Further

2.7 B + B* + A! = V¥(B+ B* + A,)V

so that the transformed system satisfies the condition (D) if and only if this
is the case for the original system and even the condition B+B*+4,=0
remains invariant.

As to the domains of the transformed operators, we note that Ay and 4’y’
are absolutely continuous together and that

b b
(2.8) [ @y yiz= [ 0y, =

As a consequence
DY) = VD)) = [y'; ¥’ € La(a, b; D), Ay’ absolutely continuous,
and E-1[(4'y"). + B'y'] € Ly(a, b; E')].

Similarly ©D(M{) has the same form as D(M;). Finally for y="Vy' and
z= V3" we have

(2.10) (Ay, 2) = (AVy', Vd') = (4'y', &), e <x<b,

(2.9)

and this shows that D(L’) and D(L) also have the same form if we replace
the restricting functions [2a,i, 2.s] in D(L) by their transforms. Likewise
D(M’) has the same form as D(M).

The adjoint relation between L; and M; can now be made somewhat more
precise. We note that if Ay and Az are absolutely continuous then so are 4’y
and A’z’ and we have for almost all x&(a, b)

(Ay, 2): + (A2y, 2) — (49)z 2) — (y, (42)2)

= Ay, 8+ 41y, 3) — (4"Y)52) — (¥, (47F)2).
As we shall see (Equation (2.19)), when the transformed system is in normal
form the right hand side of (2.11) vanishes so that

(2.11)
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(2.12) 4y, 2): = (49)z 2) + (3, (42)2) — (42y, 2)

almost everywhere. From this we see that L; and M, are essentially adjoints;
in fact, for y&D(L,) and zED(M,) we obtain

(2.13) (L1y, 2) — (3, M1z) = (4y, 2)* — (4y, 2)*

By applying two successive transformations of the above type we bring
the operator L, into a normal form. First we write

(2.14) V(x) = [E(x) ]2 = 2ni)? AL2R(\; E(x))d\;

rz

here I'(x) is a simple closed rectifiable path lying in the right half-plane and
containing in its interior the spectrum of E(x), namely ¢ [E(x) ], and the prin-
cipal determination of A=V/2 is used. Now for a fixed x,E (a, b), the path I'(x)
will contain ¢[E(x)] for |x—xo| < 8(x) and since the elements of R(\; E(x))
are absolutely continuous with square integrable derivatives for AET (x,)
and | x —xo| <8(xo), it follows from the above representation that this will also
be true for [E(x)]~'/2. Hence the so defined V(x) is a suitable transforming
matrix function. Finally with V(x) = [E(x)]~"? we see that E'(x)=1.

The second transformation which we use to bring the operator L; into
normal form is a unitary transformation of Li(a, b; I) onto itself, which
separates out the null eigenspaces of 4 (x), a <x<b, from the non-null eigen-
spaces. We put the formal argument in the form of a lemma.

LEMMA 2.1. Let A(x), a<x<b, be hermitian, of constant rank r, and sup-
pose the elements of A (x) are absolutely continuous with square integrable deriva-
tives on each compact subinterval of (a, b). Then there exists a family of unitary
matrices [U(x); a <x <b), with elements absolutely continuous and having square
integrable derivatives in each compact subinterval of (a, b), such that

0 0
2.15 U(x)*A(x)U(x) = ( )
(2.15) @ADUE = (o o )
where the upper left element is the zero (k—r) X (k—r) matrix and the A7 (x) is
a nonsingular r Xr matrix for each x<(a, b).

REMARK. In general it is not possible to diagonalize 4 (x) by a matrix-
valued function with the required smoothness properties.

Proof. It is clear that the columns of U(x) consist of mutually orthogonal
vectors, the first £—7 of which span the null eigenspace of 4 (x) and the last »
of which span the non-null eigenspace of 4(x). The only other condition on
U(x) is that its elements be sufficiently smooth.

Now 4 (x) is continuous on (g, b) and of constant rank. Consequently for
each compact subinterval [a’, '] of (a, b), we can find a circle I with the
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origin as center which excludes the nonzero part of the spectrum of 4 (x) for
all x&€ [a’, b’]. In this case

(2.16) P(x) = (Zri)“fr R(\; A(x))dA

projects the space onto the (k—r)-dimensional null eigenspace of A (x),
a’ <x<b'. As before the elements of P(x) will be absolutely continuous with
square integrable derivatives in [a’, b’]. Hence there is a finite subdivision
xo=a'<x;< -+ - <x,=0b" such that in each subinterval

max [| P(z) — P(x)| ; % £ % S 2] < 1/2.

Suppose next that U(x) has been defined for a’ x <x; and let u;(x;) be
the jth column vector in U(x;). Then for j<k—r, the vector u;(x;) will lie
in the range of P(x;). Setting v;(x) = P(x)u;(x:), jSk—r, we see that

k—r

k—r k—r
Z ypi(x) — E v 4 §(%5)

k—r
> oywi@) | =2 |2 vwi(x) | —
j=1 je=1 =1 1
k—r k—r
|2 viusted | - j[P(x) — P(a)] 2 vius(es
=1 =1
1 k—r
= Py > ymix) ], % S % S g1
j==1

Since the [u;(x;); jSk—r] are linearly independent, the same is true of the
[v;(x); j<k—r] for each x, x;<x=<x:11. If we now make use of the orthog-
onalization process, we obtain the orthogonal set of vectors [u;(x); j<k—r],
having the properties (i) #;(x;) =v;(x;), and (ii) the u;(x) are absolutely con-
tinuous with square integrable derivatives in [x:, %:11]. Proceeding in the
same fashion with respect to I — P(x), which projects onto the non-null eigen-
space of A(x), we fill out the rest of the columns of U(x) over the range
x;<x=x:. Thus a finite number of steps suffices to define U(x) over the
interval [a’, b'] and it is clear that we can proceed in a denumerable number
of steps to define U(x) over all of (g, b) to have the desired properties. This
concludes the proof.

Starting with a system with E(x)=1I, we now apply the transformation
given by the lemma, namely

Vi y(x) = U(2)y'(2).

According to our general theory, E'(x) = U(x)*IU(x) =1 and by the above
construction

, _ Boo(x) Bou(x)
B (=) ’(Bio(x) B’u(x))’
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where the upper left block is (¢ —r) X (¢ —7) and the lower right block is r X7,
A}, (x) being hermetian and nonsingular. This is the desired normal form. We
note that the same series of transformations also brings the adjoint operator
into normal form. It is convenient when dealing with such an operator in
normal form to introduce the notation

(2.18) =0, -, n*7) and y'= (kLo 0k);

we then have (4'y’, ') = (419"}, 2’1). Moreover if 4’y’ is absolutely continu-

ous, then so is 47,y'!, and since A7, is nonsingular and absolutely continuous,

9’1 will also be absolutely continuous. It now follows for 4’y’ and A’z both
absolutely continuous in x, that almost everywhere

(A'y', 2, = (A'uy’l, 2,
(2.19) = ((AyMx 5N + (01 (A1) — (A", 5
= ((A"y)z &) + (¥, (4'7)2) — (42y'%),
which is the relation used in deriving (2.12).

We shall also have occasion to consider the unitary transformation result-
ing from a change in the independent variable. Suppose

(2.20) = [ @) )de,  Ha)=a and ED) =,

where p(x) is absolutely continuous and greater than zero on (@, ). In this
case the inverse function, namely x(£), is well defined and twice continuously
differentiable. We set E’(£) =E[x(£)] and p’(§) =p[x(£)]. Since we wish the
map to be unitary, we define

V: y(%) € La(a, b; E) = y'(¢) = [0'®) Iy[2(8) | € La(, B8; E').

A straightforward calculation shows that L'=VLV~' and M'=VMV-! are
of the form

(2.21) L'y = E-[(A'y)e+ B'Y'],
M’z' — E/_l[—(A,Z')g-}- (BI*+ AEI)Zl]
where
A’ = [P ®1P4al=@) ],
(2.22)

B'(¥) = Blz(®)] — % {dlp'®) I2/ae} A x(®) ]

Again it is clear that the smoothness properties of the matrices are preserved,
that

B’ + B* + A! = B[x(®)] + B[»@®) [* + 4.[x(®)],
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and that (4y, 2)*® =(4’y’, 2’)t. As before, D(L’) has the same form as D(L);
however, we omit the details.
From this point on we shall assume that our system is in normal form.
3. Solutions of the homogeneous equations. We proceed to solve the
ordinary differential equation systems

(3.1) Ay — (Ady): — By = 6, a<x<b,
and
(3.2) N+ (Az), — (B*+ A.)z =9, a<x<b,

for A\>0; here 4 and B satisfy the assumptions stated in §1 and 4 is given in
normal form(%).

Thus 4 and B split into blocks as indicated in (2.17), the » Xr matrix
Au(x) being hermitian and nonsingular for each xE€ (a, b). Since A1 (x) is also
assumed to be continuous on (a, b), its spectrum varies continuously with x
and is consequently bounded away from zero on each compact subinterval of
(a, b). It follows that A1 (x) (and hence 4 (x)) is of constant signature through-
out (a, b). We shall denote by »n the number of negative and by p the number
of positive eigenvalues for 4(x); » and p are independent of x and n+p=r.

We write the normalized (3.1) in the form

Ny — Booy® — Bay! =0,
Ayt = (Auy). — Buy' — Buy® =9,
for almost all xE(a, b). Condition (D) implies that Boo+Bgo < 0.
LEMMA 3.1. If Boo+By <0, then for A\>0
(3.4) Roo(\) = (\I — Bgp)™!
exists and N\| Ro(\)| 1.
Proof. Set f®=Ay°— Byy°. Then

(3.3

2\ (»°% ¥°) — ((Boo + B:o)y°. ) = (% ¥ + (3° [,

and making use of the fact that Boy+ By <0, we see that A(y°, y°) [ r, y°)|
<|f°||9°|. Consequently \|y°| <|f°| which shows that (\] —Byo) is one-to-
one and has an inverse of norm =1/A.

With the aid of the above lemma we can now solve the first equation in
(3.3) for ¥° in the form

3.5) % = Roo(N) Bory'.

(®) If A is in normal form, the restrictions on 4 and B can be somewhat relaxed to the ex-
tent that the elements of (4n): and By need merely be integrable (not necessarily square
integrable) on each compact subinterval of (g, b).
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We note that for A>0, the elements of the matrix Roo(\) are measurable and
bounded (by 1/X) in x. Substituting this for ¥° in the second equation in (3.3)
we obtain

(3.6) Ayt — (Auy") s — Buy' — BuRoo(N)Bay' = 6.

Since the elements of Bjo and By, are square integrable in each compact sub-
interval of (@, b), we see that the elements of both By and ByoRgo(N)Ba are
integrable in each compact subinterval of (g, b). Finally setting »' = A5y, the
system (3.6) goes into the form

3.7 ul, - Cuul = 0, almost everywhere on (g, b),

where the elements of Cy; are integrable on each compact subinterval of (a, b).
Appealing to the standard existence theorem for systems of ordinary differen-
tial equations (see, for instance, E. A. Coddington and N. Levinson [1, prob-
lem 1, p. 97]), we see that there exist » absolutely continuous vector-valued
solutions {#}, u}, - - -, u}} which are linearly independent for each xE (a, b)
and further each absolutely continuous solution of (3.7) is linearly dependent
on these 7 solutions. Since Au(x) is absolutely continuous and nonsingular,
the vector-valued functions y; =Ap;'4, i=1, 2, - - -, r, will be absolutely
continuous and together form a complete set of linearly independent solutions
to (3.6). Moreover, setting 3¢ =Rg(\)Bay;, the so-defined components of y;
will be square integrable on each compact subinterval of (a, b). The vector-
valued functions y;= (37, ;) now form a complete set of linearly independent
solutions to (3.3).
We summarize these results as follows:

THEOREM 3.1. There exist r linearly independent vector-valued solutions of
3.1), {y;(x)} with y; square integrable on each compact subinterval of (a, b) and
with Ay; absolutely continuous. Any solution of (3.1) with these properties can
be represented as a linear combination of these r functions. The components
{y,‘; 1=1,---, r} are linearly independent for each x< (a, b). A similar asser-
tion holds for the solutions of (3.2).

Hereafter we consider only solutions of (3.1) (and (3.2)) such that Ay
is absolutely continuous; for such solutions y(x) will be square integrable on
each compact subinterval of (a, b).

THEOREM 3.2. If y(x) is a nontrivial solution of (3.1), then (Ay, y) is an
increasing function of x on (a, b). If, in addition, z(x) is a solution of (3.2), then
(Az, 2) is a decreasing function of x and (Ay, z) is constant on (a, b).

Proof. Combining (2.12) with y=z and (3.1) we readily obtain
(3.8) Ay, )= = 2My, 3) — (B + B* + A)y, y)
for almost all x&(a, b). According to the previous theorem (y, ¥) >0 for all
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x&(a, b) if y is a nontrivial solution of (3.1) and this together with condition
(D) shows that (4y, y) is actually increasing in x. The corresponding result
for (Az, z) follows in a similar fashion. Finally combining (2.12) with (3.1)
and (3.2) gives (4y, 2).=0 almost everywhere so that (4, z) is independent of
x on (a, b).

COROLLARY. If y is a solution of (3.1), then (Ay, ¥)* [(Ay, y)°] exists if
and only if yELy(c, b; D) [yE Lsy(a, ¢; D)), where a <c<b.

Proof. The lim,_,_(4y, ¥)* will exist if and only if (4y, ¥). is integrable on
(¢, b). On the other hand each of the terms on the right-side of (3.8) is non-
negative and hence each must be integrable if (4y, y), is integrable. Conse-
quently (4y, ¥)® exists if and only if y&Ls(c, b; D). The assertion about
(Ay, y)¢ follows in a similar way.

We shall also require the following simple geometric result.

LEMMA 3.2. Suppose A is an rXr nonsingular hermitian matrix with n
negative and p positive eigenvalues; r=n-+p. Let N be an n dimensional linear
subspace of the complex euclidean r-space such that (Ay, y) <0 (=0) for all
nonzero yE N. Finally let P denote the A-orthogonal complemenent of N, that is

P = [2;(4y,2) = 0 forall y € N].

Then P is p dimensional, (Ay, z) >0 (2 0) for all nonzero zEP, and N 1is again
the A-orthogonal complement to P.

Proof. Since A4 is nonsingular, the map of NV under 4, namely AN, is again
an n-dimensional subspace. The subspace P, being the ordinary complement
of AN, is consequently p=r—n dimensional. Suppose 2,EP, 2,0, and
(420, 20) £0 (<0). If 2, also belonged to N then (AN, P)=0 implies that
(42, 20) =0. However this is impossible since in the first case (420, 20) <0 for
20€& N and in the second case (i.e. where (4y, ¥) =0 for all y& N) we are sup-
posing that (Azo, 20) <0; thus in both cases zo& N. Setting N, equal to the
linear extension of N\Uz,, we see that N; is 41 dimensional. A generic ele-
ment of N; can be written in the form y;=y+az,, yEN, and in view of the
fact that (4y, 20) =0 we will have

(Ayy, y1) = (4y, 3) + a4z, y) + &4y, 20) + | a|*(420, 20)
= (Ay, y) + l alz(AZo, Zo) =<0.

However, this implies that 4 has n+1 nonpositive eigenvalues, contrary to
our hypothesis. Thus, no such nonzero zy&P exists, which proves the first
assertion of the lemma. Finally it is clear that N is contained in the 4-orthog-
onal complement to P and, since this complement must be of dimension
n=r—p, we see that N coincides with it.

Suppose we think of the y and z spaces as distinct with a connecting inner
product
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(3.9) {y, 3} = 22 naviifs

‘ i im=1
where the matrix I'=(v,;) is hermitian and nonsingular. This replaces the
inner product (4y, 2’) of the previous lemma and, in effect, replaces 3’ by
z2=I"147". Accordingly (42, ') =(T'4-'T'z,z) so that Lemma 3.2 translates
into the

COROLLARY. Let A be an r Xr nonsingular hermitian matrix with n negative
and p positive eigenvalues. Suppose we are given two r-dimensional complex
euclidean spaces Y and Z connected by the inner product (3.9). Let N be an
n-dimensional subspace of Y with (Ay, y) <0 (£0) for all nonzero y& N and
let P be the T-orthogonal complement of N in Z, that is, P= [z; {y, z} =0 for
all yENY). Then P is p-dimensional and (TA—T'z, 2) >0 (Z0) for all nonzero
2EP. Finally N is again the T'-orthogonal complement to P in Y.

We come now to the principal result of this section.

THEOREM 3.3. Let Fy[F.] be the set of all solutions of (3.1) with (4y, ¥)°
< o [(Ay, y)*> — ] or, equivalently, which belong to La(c, b; D) [La(a, ¢; D) ],
a<c<b, and let Cy[C.] be the subset of Fy[Fa] for which (Ay, y)*<0 [(4y, ¥)°
20]. Then F; is a linear subspace of dimension by2n[la2p] and, in fact, even
Cs[C.] contains an n-dimensional [p-dimensional] linear subset.

Proof. We have already (Corollary to Theorem 3.2) established for solu-
tions of the homogeneous system the equivalence between (4y, y)®< ® and
y belonging to Li(c, b; D). It follows from the latter condition that F, is a
linear subspace. Let {yl, Yoyttt y,} form a basis for the solutions of (3.1)
(Theorem 3.1) and set y= > ;_; v::. Then

s _ L - 1 1Lz
(3.10) Ay, )7 = 2 vd¥idyi y)*= 22 vF¥ilduys 33) -
§.=1 i.i=1
If welet Yi=(3}, 95, - - -, 1) denote the r X7 matrix with jth column vector
y}, then Y1, will be nonsingular for each x by Theorem 3.1. The matrix of the
form in (3.10) is the nonsingular hermitian matrix Yu(x)*4nu(x) Yu(x), which
again has p positive and # negative eigenvalues. Thus if we define

C.= [y; (4y, »)= = 0],

then in terms of the (y1, ¥z, + - -, v-) coordinates each C; is a closed cone
containing certain z-dimensional linear subspaces. According to Theorem 3.2,
we will have C,,DC., if x,>x, and hence

(3.11) Cyv= N C..

z<b

Now the n-dimensional linear subspaces are compact (in a suitable topology)
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and therefore C, contains at least one n-dimensional linear subspace and a
fortiori Iy = n. The results for the a end are proved in a similar way.

An analogous assertion holds for the solutions of the adjoint homogeneous
equation (3.2) since the two equations are of the same type. However, since
A has been replaced by —A, there will be the following differences. The set
G»[Ga] of solutions of (3.2) with (42, 2)*> — = [(43, 3)*< » ] or, equivalently,
which belong to La(c, b; D) [Ls(a, ¢; D)] will be of dimension my=p [m.2n]
and even the set for which (4z, 2)*20 [(43, 2)*<0] will contain a p-dimen-
sional (n-dimensional) linear subset.

We are now in a position to construct the Green’s function for dissipative
operators. This we proceed to do, leaving until later the proof that such an
operator actually defines the resolvent for the most general dissipative re-
striction of L; which generates a semi-group.

We first consider solution pairs [y,, 5] of (3.1) from which we choose an
r-dimensional subspace N, such that

(312) “(Ayay ya)a + (Aybv yb)b =0

for all [ys, y5]E Nas. At least one such r-dimensional subspace N, exists
since, according to Theorem 3.3, there is a p-dimensional subspace N, of C,
and an n-dimensional subspace N, of Cy, whose product set N, X N, defines
an r-dimensional subspace of the type N,.s. It is clear from Theorem 3.2 that
(4y, y)*> — « and (4y, ¥)*< = for any solution of (3.1) so that condition
(3.12) requires that both (4ys, y)® and (Ays, y.)® be finite; consequently
N, is a linear subspace of F, 3= F.X Fp.

We next define the A4, -orthogonal complement to N3, namely the set
of all solution pairs [zs, 2] of (3.2) such that

(3.13) _(Aya; za)a - (Aybr zb)b =0

for all [ya, 5] € Na s, and we denote this set by P, . It follows from Theorem
3.2 that (4y, z)* is independent of x for all solutions y of (3.1) and z of (3.2).
As a consequence the condition (3.13) is equivalent with —(4y,, z,)%
+ (4 s, 2,)=2=0 for some (and hence for all) x;, x.E (a, b).

THEOREM 3.4. The set Pap forms an r-dimensional linear subspace of solu-
tion pairs [za, 2] of (3.2) which is contained in Gap=Ga X Gy and has the prop-
erty that

(3. 14) _(Azay za)a + (AZb, zb)b g 0

for all (24, 2] E Pay. Moreover Nuy can be defined dually as the A, p-orthogonal
complement of Pap.

Proof. We see by Theorem 3.2 that for x;, x,E (a, b)
(3.15)  —(Aya, ya)2 4+ (Ays, y5)™ < — (4ya, ¥2)* + (4dys, 32)* < 0
for each nonzero [ya, ¥»] &€ Nas. Fixing x1, x:E (a, b) for the present, this in-
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equality shows that the y' components [y3(x1), ¥3(x2) ] of the solution pairs
[¥a» ¥5] lying in Na5 span an r-dimensional linear subspace of the 2r-dimen-
sional euclidean space; we denote this subspace by N'(x;, x2). Obviously

—(Ana(21) ymr ¥2) + (Ana(22) s, 33) < O

for each nonzero vector pair [y}, y;]E N'(x;, %;). We now apply Lemma 3.2 to
the 27 X 27 hermitian nonsingular matrix

—A (%) 0 ) ’

An(z, %2) = < 0 An(z)

having r positive and r negative eigenvalues. Let P(xy, x,) be the Au(x1, x2)-
orthogonal complement to N!(xi, x;). Then, according to the lemma,

_(All(xl)ziy Zi) + (Au(xz)Z;, Zi) >0

for each nonzero vector pair [z}, 2] EP'(x1, x2). Now Theorem 3.1 applied
to the adjoint homogeneous system (3.2) asserts that the components
[23(x1), 23(x2) ], where 2z, and 2, range over the solution pairs of (3.2), span the
2r-dimensional euclidean space. Hence if P(xi, x,) denotes the set of solution
pairs [z, 2] whose 2! components [z}(x1), 23(x2) ] lie in P!(x1, %), then P(x, x2)
is an r-dimensional linear subspace whose nonzero elements satisfy

(3.16) —(Az4, 7)™ + (Azs, 25)™ < 0.

It is clear from our earlier remarks that P(xi;, x;) is actually the set Pq,s
and that (3.16) is valid for all x;, x,& (a, b). Passing to the limit as x;—a and
x,—b, we obtain (3.14). Moreover, it is readily seen that if we had started
with P, and proceeded as above, then we would have obtained N!(x1, x.) as
the 41;(x1, x;)-orthogonal complement to P!(xi, x2) by Lemma 3.2, and hence
N, as the A, p-orthogonal complement to P,;. Finally the argument based
on the relation (3.12) applied now to (3.14) shows that P4 CGa,s.
If [ya, 5] is a nonzero element of Ny, then as in (3.15)

—(Aya, ya)* + (Ays, y5)* <0
for each xE(a, b). As a consequence the r-dimensional subspace
N'(x) = [[yu(2), 7(®]; [0 y5] € Na]
has only the zero element in common with
N(x) = [[ya(#), ys(0)]; [yer 3] € Na,),

and hence N(x) and N’(x) together span the 2r-dimensional euclidean space
for each x& (a, b). The same statement holds for

P(x) = [[Z,,(x), Zb(“)]: [zar zb] S Pa.b]

and
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P'(x) = [[25(2), 2a(2) ]; 20, 28] € Pass].

Choosing r linearly independent solutions [ya, ¥s.¢] in N, and 7 linearly
independent solutions [zs:, 2s.:] in Pay, it follows that the 27 X2r matrices
with column vectors

1

1 1 1
Ya,1° " Ya,ry Yb,1 Y,
¥(X) = < 1 1 " 1 1 '),
(3.17) :f" Yor Yau ya.er
b1 " " 2o, TZ%a,1 """ —Z2ar
Z(X) = < 1 . 1 1 )
za.l PN za’r' —zb,l PO _zb.r

are nonsingular for each xE(a, b). Furthermore
Q =Z(x)*4u(x, )Y ()

isnonsingular and by Theorem 3.2 independent of x. Since N(x) and N’(x) are
Au(x, x)-orthogonal to P(x) and P’(x) respectively, we see that Q is of the

form
- (5 o)

where each block is 7 Xr. We now set
V(x) = Z(2)[Q*]*

from which we see that the first » column vectors in V(x) come from P’(x)
and the last » come from P(x). In fact, V(x) is composed precisely like Z(x)
from a single set of r linearly independent solution pairs spanning P,s. To
conserve on notation, we shall simply suppose that our original choice of
solution pairs [za.:, %.:] are those to be found in V(x). In this case we have

(3.18) Z(x)*Au(x, )Y (x) = I = Au(x, )Y (2)Z(x)*.

By employing the above choice of solution pairs, we now write down two
forms of the solution to the equation

(3.19) Ny —(4y).— By=f
for functions f& Ly(a, b; I) which vanish outside of (a’, '), a <a’ <b’' <b.
y=RNf =3+

_ (Roo()\)f0> =3 i [ s+ mie

(3.20) 0 =1

- yb.if (f, Za,s + 2,0)d¢

fe=1

and
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y=RMNf =3+

A ‘ ’
= (R"O( )fo) = 2 Gas+ 35 | (s 2.0)dE

0 =1

(3.21)
- i (Yai + yb..')fz(f. 2a,:)dE.

In both of these expressions Roo(A) = (NI —Bgo)~!. Since f(x) vanishes outside
of (a’, b’) it is clear in each case that all of the terms are well defined and that
Ay=Ay, is absolutely continuous.

We proceed to verify that (3.20) solves (3.19). Making use of the fact
that the y,'s and 's are solutions of (3.1), we have

A" = By — Boy = (\[ — Bo)RaoN)f' + (Ay2 — Booys — Borys)
0 0 0
=/ +6=7
and

1 1 1 0
)\}’ - (Auy )z - Buy - Bloy

(] 1 1 1 0

- onRoo()\)f + {)\yz - (Auyz)z - Buyz - Bloy2}

- BmRoo()\)fo - Auy:.;(f, Za,i + 2.5)

=1

+ 3 Auyeilf, 2as + 2.9

=1

for almost all x. If 2z is a solution to the adjoint homogeneous system (3.2),
the z-relation corresponding to (3.5) gives

(f,5) = (f*% 2% + (Y, 3) = (f°, Roo(N)' Buas") + (11, 2Y)
= (B1RaoN)f® + /1, 3.

Further, one obtains the following identities directly from (3.18):

(3.22)

i 1,1 1 z 1,1 1
— 2 Auyailf, 20 + 2 Auyedf, 2a) = fly
=1 i1

(3.23) . ,
- Auy;.;(fl, Zc‘c,i) + 2 Auy;,.‘(fl, Z:)..') =0,

il i
Making use of (3.22) and (3.23) it is readily seen that
Ay — (AnyY) s — Buy' — Buy® = — BuRo(Nf® + [BuReW/f° + f1] = f*

for almost all xE (a, b). The verification for (3.21) is essentially the same and
is omitted.
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Before closing, a few remarks are in order on our choice of solution pairs
[Vair ¥5.:] ENap and [2a,i, 25.i] € Pas employed in (3.20) and (3.21). As de-
scribed above, we kept our original set of [ya,i, ¥5.:]’s and made use of Q to
obtain a suitable linear combination of the [za.:, 2s.:]’s. It is clear that we
could just as well have fixed the [za: 2.:]'s and used Q to select a linear
combination of the [ya,:, 1,:]’s so as to satisfy (3.18), namely U(x) = Y (x)Q~".

To pursue this matter a bit further, suppose Nap=N,X N, where N, is
a p-dimensional subspace of C, and N, an n-dimensional subspace of Ci. For
a fixed xE(a, b) set

N:.(x) = [yl(x); y € N,] and N;(x) = [yl(x); y € N

We then obtain P.(x) and P;(x) as the A (x)-orthogonal complements to
Nl(x) and Nj(x), respectively. According to Lemma 3.2, Pi(x) will be =-
dimensional, P;(x) will be p-dimensional, and

(A11(%)24y 20) < 0 and (A11(x)3zs, 25) > C

for all nonzero vectors 2,& Pi(x) and 2,E Py(x). As in the proof of Theorem
3.4, the n-dimensional set of solutions of (3.2) whose z!(x) components span
P}(x) is independent of x; we denote this set by P.. The corresponding set of
solutions whose z!(x) components span P,(x) will be called P,. We then have

(Aym ya)a 2 0: (Ayaza)a = Oy (Azaza)a = 0,
(Aybr yb)b é Or (A}’b, Zb)b = 01 (AZ;, zb)b 2 01
for all y,E N,, 2,E Ps, ysE Ny, and 2,E Py Moreover, since P, X Py is r-dimen-
sional, it follows that this set is the 4, -orthogonal complement of Na s, that
is, Pap =Py X Pp.
We now choose bases for these various sets of solutions:
Nat [yasi=1,---,p], Ny [yosii=p+1,---,r]
P,: [z,,,.-;i=p+1,-~,r], Py: [zb_;;i=1,~-,p],
where the numeration is chosen so as to conform with the notation of (3.17)

if we simply set all of the unlisted functions equal to the identically zero vec-
tor function. Defining the 2r X 2r matrix Q as before, we find that

Qu 0
Qu ( 0 Qfl)
where Q! is p Xp and Q% is n Xn. As a consequence V(x) =Z(x) [Q*]~ is com-
posed like Z(x) with its first p column vectors in Py X6 and the next z column
vectors in X P,. On the other hand if we prefer to keep the original P, and
P, basis vectors we may replace Y(x) by U(x) = Y(x)Q~* which is again com-
posed like Y(x) in the sense that the first p column vectors lie in Vo X6 and
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the next # lie in 8 X Ny, Finally, if we factor Q as

0n 0 0 0 I 0 0 0

0o I 0 0 0 c On 0 0

Q=00 Q=1 0L o’ < 0o o I o
2

0 0 0 I [0 0 0 On

and set U(x) = Y(x)Q;"' and V(x) =Z(x)[Qf], then (3.18) will be satisfied
with Y(x) replaced by U(x) and Z(x) replaced by V(x). In this case we keep
to our original choice of bases for N, and P, but modify the bases for Ny and
P,. In a similar fashion we can keep our original choice of bases for Ny and
P, and modify only the bases for N, and P,. In all of these cases of separated
end conditions (3.20) and (3.21) coincide and are of the form

y=RNf=y1+ 5
Ruo 0 P b
_ ( M7 ) =Y you [ (s

0 ] z

(3.24)

= % o [ Gomadae
1=p+1 a

4. The operators L, and M;. We now establish several basic properties of

the operators L, and M, assuming, as before, that these operators are in

normal form.
It is convenient at this point to introduce the extended operators L, and

M, defined on the class of vector-valued functions

4.1) D(Lo) = D(M,) = [y; Ay absolutely continuous ]
as

(4‘2) L.y = (Ay)z + By,

(43) Moz = — (AZ),-}- (B* + Az)z~

The following relations, obtained directly from (2.12), hold amost every-

where in (a, b) for y, 2ED(L,) =D(M,):

(4.4) (Loyn ¥2) + (31, Loy2) = (Ayy, y2) = + ((B+ B* + 4.)y1, 32),

(4‘5) (Lﬂoy) Z) - (}’, me) = (Ayx z)zr

(4.6) (M 21, 22) + (21, Mu22) = — (424, 22) . + (B + B* 4 A.)z, 22).
With the help of these relations we now establish certain limit theorems.

It will be recalled that H=L(a, b; I) and we shall write H*=H X H. Also

since D=1 it is clear that Ly(a, b; D) CH CLs(a, b; D), that ||y|| <||y|/o for
yEHNLy(a, b; D), that ||y||2||y|lp~t for yEHNLy(a, b; D), and that
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[ (v, 2)| <5l |2l o=t for yE Ls(a, b; D) and 2ELy(a, b; D). These various
spaces play an essential role in what follows and call attention to an impor-
tant difference between the symmetric and the non-symmetric problem

Lemma 4.1, If [yi, Loyi] and [2:, M 2:|€Ly(a, b; D)X Ly(a, b; DY),
1=1, 2, then

(Ayy, 32)% (Ayy, 32)°, (Azy, 22)°, (Azy, 20)°

exist and are finite. Likewise if both [y, L,y| and [z, M 2] H? or Ly(a, b; D)
X Ly(a, b; DY), then

Ay, 2)* and (4y, 2)*
exist and are finite.

Proof. Suppose first that [y:, L.y:]€ Ls(a, b; D) X Ly(a, b; D~1). Making
use of the relation (4.4) we obtain

Ay 3207 = (Ays, y2)° + f [(Layss y2) + (3 Luye) Jd&
(4.7) ¢

~ [T+ B+ e s<ow<h

and since both integrands belong to Li(a, b) the required limits evidently exist
and are finite. The remaining assertions are proved in a similar fashion, the
dual limits from (4.6) and the mixed limits from (4.5).

We note that if it is merely assumed that [y, L,y]EH?, then the inte-
grand in the first integral of (4.7) again belongs to L(a, b). However the
integrand in the second integral need not be summable, but since it is meas-
urable and nonpositive we see that y belongs to L.(c, b; D) if and only if
(Ay, y)® exists and is finite whereas y belongs to L.(a, ¢; D) if and only if
(4y, y)° exists and is finite. As was mentioned in the introduction, this is the
reason for restricting ©(L;) (and D(M,)) to functions in Ls(a, b; D).

LEMMA 4.2. Suppose B(x) is a real-valued function of class C) on (a, b)
such that 0=B(x) <1, B(x)=0 for all x<a', and B(x) =1 for all x2¥’, a<a’

<b' <b. If {ya;n=0,1,2, - } CD(L.) with
[ym Loya] = [0, Loyo] in H? [or in La(a, b; D) X La(a, b; DY) ],
then {u,.=By,.; n=0,1,2,--- }CSD(L“,) and

[#n, Lotéa] — [0, Lotio] in H? [or in Ly(a, b; D) X La(a, b; D7) |
Similar results hold for a(x) =1—pB(x) and for sequence {z,.} COD(M).

Proof. Since Au,=fBAy, is absolutely continuous with Ay,, it is clear
that {u,.} CD(L,). One also sees immediately that



1957] DISSIPATIVE HYPERBOLIC SYSTEMS 131

(4.8) fb(Eu, u)dx = fbﬁz(Ey, y)dx < fb(Ey, y)dzx, E = I [or D].

On the other hand
Lw“ = ﬁLmy + ﬁsz

b 1/2 b 1/2
{ f (E-'Los, L.ou)dx} < { f (E-'Loy, Lny)dx}

b 1/2
+ 4 1pbl B0l ey pas)

E =TI [or D!].

so that
4.9

Since B, vanishes outside of [a’, '] there exists a constant M such that
b b
@10) [ gl B | AlEy, iz s o [ (B, s
The inequalities (4.8), (4.9), and (4.10) together show that [u,, L.u.]

—[uo, Lotto] in H? [or in Ly(a, b; D) X Ly(a, b; D-1)].

LeMMA 4.3. Suppose {y,.;n=0, 1,2, .- }CfD(Lw), {z,,;n=0, 1,2, }
CO(M,), and that

[¥7 Loyn] = [y0, Luyo] and [2a, Mo2a] — [20, Ma2o]
in H? or in Ly(a, b; D) X Ly(a, b; DY), Then
lim (Ayn 22)* = (A yo, 20) for x = a, b.

n—ow
Proof. We make use of the previous lemma, setting
%, = By, and v, = Bz..

Since the new sequences have the same convergence properties as the original
sequences, we have by (4.5)

b
(A, 50> = (At 0)* = [ (Lt ) — (s, Mot )

—»fb[(quo, 0) — (%0, Mov0) |dx = (Auo, v0)® = (Ayo, 50)"

A similar proof applies at x=a if we replace f(x) by a(x) =1—p(x).
LEMMA 4.4. Suppose {ya;n=0,1,2, - - - } CD(L)) and
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[yn. Llyn] hd [yo, Llyo] in H2

Then

lim inf (A yn, ya)® = (4yo, ¥0)®,
4.11) T

lim sup (Aya, ¥4)* < (Ay0, ¥0)°

n—co

The corresponding results hold for M.

REMARK. As we shall see in Lemma 5.3, the left members in (4.11) actually
converge to the right members.
Proof. Again making use of Lemma 4.2 and setting u, =8y, we have by

b
(A3, 30)* = (i, 1) = [ (Tt 1)+ (0, L)Y
(4.12) . b
— [ B+ B+ Ay, wara

Since [un, Litta]— [uo, Liuto] in H?, we see that
b b
f [(Llum un) + (uny Llun) ]dx "‘)f [(L1u0| uo) + (uOy Lluo) ]dx'

Further it follows from Fatou’s lemma that

n—x

b b
— f ((B 4+ B* 4+ A.)uo, #o)dx < lim inf — f (B + B* + A ) tn, #s)dx.

Combining these two observations with the expression (4.12), we obtain the
first inequality in (4.11) and the second is proved in a similar fashion

We note that Lemmas 4.3 and 4.4 also apply to functions which behave
in the prescribed manner in some neighborhood of the point x=5 [or a] at
which the limit is taken. It suffices in the proof to choose 8(x) [or a(x)] so
that it vanishes outside of this neighborhood.

The estimates established in the next lemma are basic.

LEMMA 4.5. Suppose yED(L,,) 1s square integrable on each compact sub-
interval of (a, b), that —(Ay, y)°+(Ay, y)*=0, and for some N>0 that the
Sfunction f=Ny—LoyEH. Then yED(Ly),

(4.13) Nl = Al

and

@12 sl 5 ) { f 0y, y)dx} "e { f o, f)dx} P,
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where c(N\) =min (N, 1/2). On the other hand, if yED(L.,) belongs to Ly(a’, b'; D)
for all a<a’ <b’'<b, if —(Ay, y)°+(Ay, ¥)*<0, and if fELy(a, b; D), then
y& Ly(a, b; D) and the first two inequalities in (4.14) remain valid.

Proof. It follows directly from (4.4) that

Ay ) — (9 — (0 f) = Ay, 9+ (B+ B*+ 42)y, 3)
for almost all x. This relation represents ((B+B*+A4.)y, y) as a sum of terms
each summable over (a’, b’) and therefore ((B+B*-+A4.)y, y)ELi(a’, V).
Making use of condition (D) and the Schwarz inequality, we obtain

b b b

N (ydx =23 | (y, y)dx — ((B+ B*+ A.)y, y)dx

a’

”
, [(f, ) + (3, Hdz + [(Ay, »)¥ — 4y, »*]

o{ [0 past " [Touman”

+ [y, 9)¥ = 4y, 9 ].

If we now divide the first and last members of this series of inequalities by
{f"{:(y, y)dx}1/? and pass to the limit as a’—a and b'—b, we get (4.13). This
shows that y& H and, as a consequence, L,y =Ay—f& H. In addition, (4.15)
now holds with (a’, ¥’) replaced by (e, b), and it follows from this that
y&Ly(a, b; D) so that y&ED(L,). Finally we note that the extreme inequalities
in (4.14) are simple consequences of

D=I—-(B+B+A4,) 21 and D' =1,

(4.15)

IIA

whereas (4.15) implies

b b
«® [ @y yizs [ @y, Dy | ax

= { [ @.nis} "2{ f ‘@, i} "

from which the middle inequality in (4.14) follows.
To prove the second assertion of the lemma, we make use of (4.15) to
obtain

“w :(Dy’ 9% é{ :(D—‘f, f)d"} ”2{]: (Dy, y)dx} :

+ [y, ¥ = (4y, 9)].
Dividing now by {/%(Dy, y)dx} 1% and passing to the limit, we obtain the
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middle inequality in (4.14) from which it follows that y & Ls(a, b; D). The first
inequality in (4.14) is obtained just as before.

COROLLARY. There are no nontrivial dissipative solutions of Ny—L,y=0
(1n D(Ly)) for A>0.

This is an immediate consequence of (4.13).

We are now in a position to show that (3.20) and (3.21) are both repre-
sentations of the resolvent R(\; L) of a suitably chosen restriction L of L.
We have

THEOREM 4.1. For fixed \>0, let Pa 3 be any r-dimensional subspace of solu-
tion pairs [za, 2] of (3.2) such that

(4.16) —(Aza 20) + (A2, 2) 2 0, [z, 23] € Pa,s.
Further define L to be the restriction of L, with domain
(4.17) D) = [y; y E D(L1), —(Ay,20)° + (Ay, 25)> = 0 for all [24, 5] E Pas)-

Then L is a dissipative operator with dense domain, having a resolvent at \
which can be represented by both (3.20) and (3.21); here the solution pairs
(204, 25.:] span Pay and the [ya.:, yu.:] are solution pairs of (3.1) spanning the
Agp-orthogonal complement to P, namely,

Nas = [[Yar ¥5]; Yar Yo solutions of (3.1) such that
—(Aya 2a)* + (Ays, 20)° = O for all [z, 2] € Pas);

these bases are chosen so as to satisfy the relation (3.18). In addition, )\HR \; L)“
<1

(4.18)

Proof. As we have seen in §3, for f€H and vanishing outside of (a’, b’),
a<a'<b <b, the operators Ri(\) and R,(\) are well defined and solve the
equation (3.19). For y =R, (A\)f =31+,

Roo(N)f°
yx=(00()f), a<x<hb,
[’}
(4.19) > YiVarir x < a,
y2 — 1j1
t D YiVeir x> b
=1

where v;= — f2(f, 2a,i+2,:)dx. Now y1EH but does not enter in the computa-
tion of either (4y, ¥) or (4y, 2) since its y' component vanishes. On the other
hand it is evident that y, is square integrable on each compact subinterval
of (a, b) and it is seen from (4.19) that [yz(x1), y2(x) ] coincides with a solution
pair in N, for x;<a’ and x,>b’'. Consequently
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(4.20) —(4y, 9+ (4y, »* =0
and
(4.21) —(A4y, 20)° + (4y, 25)® = 0 for all [z,, 25] € Pa.

The hypothesis of Lemma 4.5 is therefore satisfied. Hence y&®(L,) and this
together with (4.21) shows that yE9D(L), defined as in (4.17). The lemma also
implies that A||R:(\)f|| <|7]| for such f.

Similarly for y=Ry(\)f =314y, fEH and vanishing outside of (a’, '),

we have
Roo(N)f°
)’1=<°°§)f), a < x<b,
4.22 r b
( ) -2 (Yari + yb.i)f (f, 2v.0)dx, x < d,
t=1 a
Y2 = . 5
-2 (Yari + ¥b.9) (f, 2a,5)dx, x> 0.
=] a

Thus for x;<a’ and x> b’

r b
—(A4y, 20, )"+ Ay, 26.)7 = 25 [(AYari, 20.)™ + (Ayrs, zmi)z’]f (fy zv.0)dx
=1 a

r b
= 3 [(Ayus 5097+ (rns20)=) [ 50
i==1 a
According to (3.22), (f, 2.) = (k! %) and (f, z) = (h!, 2;), where we have set
h'=Bi1yRos(\)f*+f1. On the other hand (4y, )7 is independent of x if y is a
solution of (3.1) and z a solution of (3.2). We can therefore bring the above
expressions of this sort under the integral sign, replacing x; and x, by the vari-
able of integration, x. Making use of these facts together with the second
identity in (3.23) we get

r b b r
> (Aysi 20 f (f, 2.)dx = f (EAuyi,xh‘, 2., zl.,-)dx

1=1 t=1

b r
= f (Z Anyai(h, 24,9, zla.i)dx

=1
r b
= 3 Uyes i [ i
=1 a
and likewise

r b r b
Aya,i, 25,7)% ) %a,0)dx = Ays.i 25,5)7 ) %b,i)3%.
> (e ) [ 0 itz = £ tyini [ Gmias

=1
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Consequently
—(A4y, 2a,)" + (4y, 26,

r b
= D> [(Ayasis 20,)™ — (Ays. Zb.i)”]f (f, Zayi + 25,5)d%

fe=1

which vanishes since [ya.:, ¥5.i] is Aas-orthogonal to [z..; 2.;]. It follows
from this that [yz(x1), y2(x2) | coincides with a solution pair in N, for x;<a’
and x;>b'. Arguing as above we see that yED(L) and that )\”Rz()\)f“ _S_”f”
We note that u=R;(\)f— R:(\)f satisfies the homogeneous Equation (3.1)
and that [u(x1), u(x:)] coincides with a solution pair in N, for x;<a’ and
x:>b’. As a consequence u is a dissipative solution of A« — Lz =6 and by the
corollary to Lemma 4.5, #=0; in other words Ri(\)f = R,(\)f if f vanishes near
a and b.

From this point on the proof is the same for both operators. Let f, be
an arbitrary element of H and choose the sequence { f,.} CH to consist of
vector-valued functions vanishing near ¢ and b and such that f,—f, in H. It
is clear from the boundedness of R;(\) that the sequence {y,=R;(\)f.} con-
verges in H to a function, say y,, which is given explicitly by (3.21) as v,
= Ry(\)fo. (We note that the expression (3.20) corresponding to R;(\)fo need
not be well defined.) Thus 4y, is absolutely continuous and L.yo =Xy —foEH.
It is clear that the extended operators, R;(\), have the same bound as before.
Moreover the inequality (4.14) shows that y,—y, even in Ly(a, b; D) so that
yoE Lo(a, b; D). It follows that yo&D(Ly). Finally Ly, =Ny.—fa—Ayo—fo
=Ly, in H and applying Lemmas 4.3 and 4.4 we see that (4.20) and (4.21)
continue to hold for y,. This proves that y,&®(L) and hence that R;(\) is a
right inverse for NI — L. It remains to show that the range of Ri(\) actually
fills out D(L). To this end let y be an arbitrary element of D(L) and set
f=My—Ly and yo=R;(\)f. Then u=y—y,&D(L) is a solution of the homo-
geneous Equation (3.1) and by (4.17) [«, u] is Aas-orthogonal to Pap. It
follows from Theorem 3.4 that [u, #]& N, and hence that « itself is a dis-
sipative solution. The corollary to Lemma 4.5 now asserts that «=6and this
shows that y=R;(\)f lies in the range of R;(A). Thus R;(\) is also a left in-
verse for A\] —L and is therefore the resolvent of L at X\. As we have seen,
(4.20) holds for each element in the range of R;(\) and hence for each ele-
ment in ©(L) so that L is a dissipative operator. Finally it is clear that D(L)
contains the class of continuously differentiable functions vanishing near a
and b, and since these functions are dense in H the same is true of ©(L). This
concludes the proof of Theorem 4.1.

It is convenient to bring the operators R;(A\) and R.(\) into a somewhat
more tractable form. This can be accomplished by a suitable choice of bases
for Na» and Pa,s; as we have already remarked at the close of §3, there is con-
siderable latitude in the choice of these bases.
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In the case of Ry(\) we proceed as follows: Let N; be the subspace of
N, for which both of the solutions in [y.,, yb] lie in Ly(a, b: D), let N, be the
subspace of N, for which the y, solution lies in Ly(a, b; D), and let N; be the
subspace of N, ; for which the y, solution lies in Ly(a, b; D). It is clear that
N;= N,N\N;. We now choose a first set of s; linearly independent solution pairs
[a.5, ¥5.:] to span Ny, a second set of s, solution pairs which together with the
first set form a basis for N,, a third set of s; solution pairs which together
with the first set form a basis for NV, and a last set of sy, solution pairs which
complete the basis for N, ;. We then choose a basis of solution pairs [z, 25,:]
for P, as before so as to satisfy (3.18). Suppose next that f& H vanishes out-
side of [a’, '] C(a, b). It was shown in Theorem 4.1 that y=R,(\)fED(L)
and a fortior: that y& Ly(a, b; D). In particular

r b
¥ = = 3 [yaut®) + 10u®)] [ (G ma < d,
i=1 a
lies in Ly(a, a’; D). Now the solutions [ya:+¥s,; =1, - - -, 7] are linearly
independent. Otherwise there would be constants {v:} not all zero such that
Z, + YilVai + w.:] = 0 almost everywhere, and setting yo = D ¥YVa.s

¥i¥s.: we see that [yo, ¥0] € Nap. Consequently — (A yo, ¥0) ¢+ (Ao, ¥o)?
SO Wthh can happen, according to Theorem 3.2, only if y, is the trivial solu-
tion of (3.1). Thus X_v:[¥a.i;, ¥5.:] = [0, 6] almost everywhere, contrary to the
[Va.4» ¥5,:] forming a basis. Thus the terms in the above expression for y(x)
are linearly independent and, since y& Lsy(a, a’; D), the sum can extend only
over s1\Us,. In view of the fact that our choice of f’s is dense in Li(a’, b’; I),
this implies that 2, ;=0 for 1€ s;\Us,. A similar argument for the b-end shows
that 2,,;=0 for i€ s,\Us;. Since the [z, 2.:] are linearly independent, both
2s,: and 2;,; can not be zero solutions of (3.2) and hence the set s; must be
empty. Thus R;(\) takes the form

Roo(\)f°
Rz()\)f=( 2”)— 3 (yes + yb,>f (f, 50.)dE
(4.23) iGe e .
- 2 Yai t+ yb.c')f (f, 2a.1)dE.
"Gnluaa a

For the case of Ry(\) we consider the solution pairs [z, 2| C Pa.s, splitting
P, into parts Py, P,, P;, and P; which are defined as the analogues of
N1, N, N; and Ny respectively. We then choose a basis for P, so that the
first set of #; forms a basis for P, etc.; after which a basis for N, is chosen
so as to satisfy (3.18). For functions f, g&H which vanish near a¢ and b, we
have

(& RiNf) = (RiN)*g, f)

from which we read off that
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ROO x * r b
Ri(N)*g = ( (0) £ - > (3ai + Zb.i)f (g, ys.0)dE

tm=1

-2 (ai + Zb.i)f (8 ya.9)dE.
te=1 a

According to Theorem 4.1, Ri(A\)*=R(\; M) where M is a dissipative restric-
tion of M, with

(4.24)  D(M) = [53 € D), (43, y)* + (43, y)* = 0
for all [ya, 5] € Nap).

Since the operator R;(\)* is of the same form as Ry(\), the previous argument
applies and we see that y,,,=0 for i&t,\Uts, y.,:=0 for ¢&t,\Jt;, and that 4
is empty. Consequently with this choice of bases for P,;, the expression for
Ri(N\) given in (3.20) is well defined for all fEH.

We also have

THEOREM 4.2. Let LC Ly and M C M, be defined by (4.17) and (4.24) respec-
tively. Then L*=M and M*=1L.

Proof. Since Ri(\) is a representation for R(\; L) by Theorem 4.1, the
above argument shows that R(\; L)*=R(\; M). On the other hand it is
known (see R. S. Phillips [13]) that R(\; L)*=R(\; L*) and from this it
follows that L*= M. A similar argument shows that M*=L.

5. Boundary behavior. In the previous section we started with a fixed
A>0 and proceeded to define certain dissipative restrictions of L; (and M;)
whose resolvents exist and satisfy an inequality of the Hille-Yosida type for
the given A. It should be noted that the domains of these restrictions are de-
fined in terms of solutions to the adjoint homogeneous equation (3.2) which
again depends on the given N\. Now, in order to satisfy the Hille-Yosida con-
dition it will be necessary for a given dissipative restriction to be defined in
this way for all sufficiently large X(?). This provides the motivation for the

(") One can show that the Hille-Yosida condition is satisfied by a dissipative operator L
defined as in (4.17) by means of the following direct argument. We suppose, then, that D(L) is
defined as the A,.s-orthogonal complement in D(L:) of the solution pairs Pg,» to the homo-
geneous adjoint equation (3.2) for a given A=X\o and to emphasize this dependence on A\, we
shall denote this set by Pas (Ao). Let A>0 be such that ])\—)\o| <\ and set fi(x) =9ya.:(x),
a<x<c, fi(x) =y.i(x), c<x<b,fori=1,2, - - -, r. As in the proof of Theorem 5.1, the integral
equation # —(No—\)R(No; L)u =f; will have a solution, say u;, and the solutions w1, us, - - -, 4,
will be linearly independent. Moreover these functions u; satisfy (3.1) almost everywhere and
Au; is absolutely continuous except perhaps at the point x =c. Consequently each of the func-
tions ua.i(x) =ui(x), a <x<c, up.i(x) =ui(x), c<x<b, can be extended to the entire interval
(a, b) so as to be a solution in the accepted sense of (3.1) on (a, b). Now the resulting solution
pairs [#a.i, #s.s] will be linearly independent; in fact, if O v:[#a.i, #s.:]=1[6, 8] almost every-
where, then D_ y,ui(x) =6 almost everywhere and this is impossible. We see that the integral
equation expresses % as the sum of a function in D(L) plus ya.: for a <x <c and plus m.: for
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present section whose end result is a complete characterization of the
pertinant boundary behavior of the functions in D(L;) (and D(Mh)).
It will be recalled that the boundary conditions on D(L) are of the form

—(Ay, z5)*+ (Ay, z5)* =0

for a set of solution pairs [z, 2] CG. It is clear that only the behavior of z,
near a and of 2, near b effects the boundary condition and we note that each
of these solutions coincides with a function in © (M) near its associated bound-
ary point. This suggests that we consider D(L:) modulo

(5.1) D(La) = [y; ¥y ED(LY), (49, ) = 0 for all 3 ED(M,)]

in order to determine what is basic in the behavior of yE®(L,) at x=a and
that we consider D(L,) modulo

(5.2) D(Ly) = [y; y € D(Ly), (4y, 2)* = 0 for all 2 € D(My)]

in order to determine the basic behavior of y&ED(L,) at x=5. It turns out
that (4y, ¥)¢ is the same for all y belonging to a coset of D(L,)/D(L,) and
(4y, ¥)? is the same for all y belong to a coset of D(L,)/D(Ly).

We shall show that the quotient space 9»=D(L1)/D(Ls) [respectively
Ve =D(L1)/D(L.)] is completely characterized by the solutions of (3.1)
which lie in Ly(c, b; D) [Ls(a, ¢; D)], that is, by the functions in F3[F,]. In
fact, suppose for some A >0 that J[l,] denotes the dimensionality of F;[F,]
and that ms[m.] denotes the dimensionality of Gy[G.], that is, the set of
solutions of (3.2) which lie in Ly(, ¢; D) [Ls(a, ¢; D)]. Then D(L1)/D(Ls)
will be of dimension dy=1,+m,—r and, in fact, if we take into account only
the behavior near b of the functions in F:, the corresponding cosets will span
D(L1)/D(Ls), with an r —m; dimensional subspace of F, mapping into the
zero coset. An analogous assertion holds at the a end.

We begin by proving

THEOREM 5.1. l,, Iy, m,, and my are independent of N> 0.

c<x<b. Hence —(Aua.i, 25)*+(Aupi, 2)°=0 for all [zs, %] E Pas(ro). By joining #s.: on
a<x <c and u,; on ¢ <x <b smoothly near x =¢, it is easily seen that the resulting function lies
in D(L) and it follows from this that —(Au,, %a.)®+(Aus, u)* <0 for all linear combinations
[u., uz,] of the [u,.,;, uyi];4=1, 2, - - -, r. Thus these solution pairs for (3.1) define an r-dimen-
sional subspace N,5(\) of the type considered in Theorem 4.1 and we can obtain a dissipative
operator Ly as before from the A,5(A\)-orthogonal complement Pg.(X). Proceeding as in the
proof of Theorem 4.1, we see that the range of R(\; L)) is the closure in the graph topology of
functions each of which behaves like %, near x =a and like % near x =b where [us, %] € N.s(\).
Lemma 4.3 asserts that — (4w, 2.)°+(A4u, 2)° =0 for all « € D(L)) and all 2., 2] € Pas(No).
Thus Ly C L. Now starting with Ly we could just as well obtain a restriction L, C Lx. However
both Ly, and L have resolvents at A=\, and since Ly, C L they must in fact be equal. Conse-
quently Ly,=Ly=L. Finally it is clear that any A>0 can be reached from any X¢>0 in a finite
number of steps of the above kind and this proves that L has a resolvent satisfying the Hille-
Yosida condition for all A>0.
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Proof. Let ls(\) denote the dimension of Fy(\) for each A>0 and suppose
X\, \¢ are such that [)\—)\o| <No. In this proof it will be convenient to restrict
our attention to a fixed interval (c, b) where a <c<b. It is clear that this will
have no effect on the set F,(A\). Now, let L be some dissipative restriction of
L, defined as in Theorem 4.1 with the difference that the range of the inde-
pendent variable is now (¢, b). Since ”R()\o, L)“ <X\, the integral equation

(5.3) u — (Ao — N)R(No; L)u = f, f E Li(e, b; I),

has a unique solution which can be expressed, for instance, by a Neumann
series. In particular, for f=y& F,(\o) (defined on (¢, b)), we obtain a solution
u with Au absolutely continuous and satisfying

Mo — (Au), — Bu =90

for almost all x& (¢, b). Since the integral equation (5.3) expresses u as the
sum of an element in ©(L) plus y, we see that uE Ly(c, b; D). Clearly u can
be extended to be a solution of (3.1) on (a, b) and the so extended function
belongs to F»(\). The uniqueness of the solution to (5.3) implies that any
linearly independent set of y’s in Fy(\o) corresponds in this way to a linearly
independent set of #'s in Fy(A). Consequently l,(A) =/(No). Now starting with
a given Ao we can reach any A>0 in a finite number of steps of the kind de-
scribed above. It follows that ,(A) =2/4(N\o) for all A>0. This relation being
symmetric, we see that I,(\) is in fact independent of X for A>0. A similar
argument proves the analogous assertions for l,, ma, and m.

In a different direction we require the following lemma, due in essence to
F. Rellich [15].

LEMMA 5.1. Given the vector-valued functions [w;; i <t] defined on (a, b) but
such that for each compact subinterval [a’, b'] of (a, b) they define linearly inde-
pendent elements of Ly(a’, b'; I). Assume further that the first s of these belong to
H=Ly(a, b; I). Finally let S denote the set of all bounded measurable vector-
valued functions f vanishing near a and b, and such that

b
(5.4) f (f, wi)dx =0 forall i < .

Then S is contained in and is dense in the orthogonal complement J of [wi; i<s]
in H if and only if [wi; i Ss] spans the largest subspace of the linear extension of
[ws; i <t) which is contained in H, that is, if and only if D i, vaw: € H implies
that v;=0 for all 1>s.

Proof. Suppose first that S is contained in and dense in J, and that
w= 2ﬁ=1 yaw;EH. Since w is orthogonal to S by (5.4), we conclude that it
has a representation of the form w= Y i, y/w:. On the other hand, the w;
are assumed to be linearly independent on [a’, b']<(a, b) so that y;=%/ for
i1<sand v;=0 for :>s.
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Conversely, suppose that [w;; 1<s] spans the largest subspace in the
linear extension of [w;; i=<¢] which is contained in H. Since S is obviously
contained in J, it remains to show only that .S is dense in J. If this were not
the case there would exist a nonzero w& J orthogonal to S. For each compact
subinterval [a’, b'] C(a, b), the functions of S which vanish outside of (a’, 4’)
are dense in the orthogonal complement of [w;; i<¢] relative to Ly(a’, b’; I)
and hence w lies in the linear extension of the functions [w;; i <t] restricted
to (a, b'). Thus w= D ._, v/ w; almost everywhere in (a’, 4’). Now the same
argument applies to the interval (¢, "), a<a’”’ <a’<b’ <b" <b, and gives
w= Y ¢, v}’ w; almost everywhere in (a”, ’"). The linear independence of
the w, on (a/, b’) implies that v/ =/’ and it follows that w= Y ;_, y{w; al-
most everywhere on (a, b). Since wE H, we see that v/ =0 for 1> s so that w
lies in the orthogonal complement to J, contrary to our choice of w; we must
therefore conclude that S is actually dense in J.

We return once more to the question of limit theorems and prove

LemMaA 5.2. If {ya;n=1,2, - - } CD(L) and
(SS) [ynv Llyn] 4 [yo, ho] n H?,
then yo&D(L1), Li(yo) =ho, and in fact y,—yo in Le(a, b; D).

Proof. Given A>0, let L be a dissipative restriction of L; defined as in
Theorem 4.1 so that the resolvent R(\; L) exists. Further let [ug; igl] form
a basis for the solutions of Au — Liu =8, that is, for the solutions of (3.1) which
lie in Ly(a, b; D). Then for any yED(L,), f=Ny— Ly, we can write the solu-
tion of this equation, namely y, as a particular solution in ©(L)C Le(a, b; D)
is a solution of the homogeneous equation lying in Ly(a, b; D); thus

(5.6) y = RO\ L)+ 20 vi(9)us.
=1

We note that this representation is unique. Now if (5.5) holds, then f,
=Ayn— Liyn—Nyo—ho=f, in H and hence by Lemma 4.5 R(\; L)f,—R(\: L)f,
in Ly(e, b; D). As a consequence Z‘y,-(y,.)u,- converges to a limit, at least in H.
But this implies that each of the sequences {‘y.-(y,.); n=1,2, .. } converges
to a limit(®), say 7:, so that D yi(ya)ui— D v also in Ly(a, b; D). This
proves that y,—y, in L.(a, b; D). Incidentally, we have shown that y, has
the form (5.6), from which it follows that y,&D(L,) and that Liyo=Ay,—fo
=ho.

COROLLARY. Let Qap be a given set of function pairs [z., 2] belonging to
D(M,) and let L be a restriction of L, with domain
D) = [y; y EDLY), —(Ay, 25)* + (Ay, 25)* = 0 for all [z4, 3] € Qa.s).

(8) Since the u;'s are linearly independent, there exist vector-valued functions { w;; i§l}
C H such that {(u:, w;)= d;;. Corsequently v;(ya) = (Z.- vi(¥a)ui, w;) converges to a limit.
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Then L 1s a closed linear operator.

Proof. This follows directly from Lemmas 4.3 and 5.2.
We remark that the same type of argument as that used in the proof of
Lemma 5.2 will show that LY CL, with

(5.7) D(L!) =ly; y ED(L.), y and Loy € H]

is also a closed operator. In this case we choose the u,’s to form a basis for
the solutions of Ay — L.,y =0 which lie in H rather than for those in Ly(a, b; D)
as above.

We next prove the previously mentioned stronger form of Lemma 4.4.

LEMMA 5.3. Suppose {yin.; n=0, 1, 2, -} CD(Lo)N\Ls(a, b; D),
i=1, 2, and that for each 1

[¥im LaYin] = [5i.0, Layino] in H? or in Ly(a, b; D) X La(a, b; D).
Then
lim (Ay1,n, ¥2.0)* = (Ay1,0, ¥2,0)% for x = a, b.

n—o
Proof. We proceed as in the proof of Lemma 4.4. By Lemma 4.2, the
sequences {u;,,.Eﬂy;,,.} have the same convergence properties as the original
sequences and vanish near a. Actually lim, u;.=u;0 in Ly(a, b; D) under
both sets of hypotheses, since this assertion follows from Lemma 5.2 when it
is assumed that [u; ., Lo%: .] converges in H2. Writing

b
(Ay1,m y2.,0)° = (Attsn, 22,5)® = f [(Lot1,n, t2,n) + (61,0, Lotha,n) |dx

b
—_ f (B4 B* + A.)uin, #e,n)dx,

we see that both integrals converge to their =0 counterparts. In fact, the
first integral is an inner product relative to H in the H? case and relative to
the dual hilbert spaces Li(a, b; D) and Li(a, b; D7) in the other case. On the
other hand, the second integral can also be thought of as an inner product
and as such it is majorized by the Ly(a, b; D) inner product; since the se-
quences {u; .} converge in Ly(a, b; D) in both cases, it follows that the second
integral also converges.

We have a certain amount of freedom in our choice of solution pairs
b’a.iv ¥s,:] and [2a.4, 2,¢] which span N, and P, respectively and satisfy
the relation (3.18). In fact, if we choose Nap =N, XNy and Pap=P,X Py, as
at the end of §3, we may first select an arbitrary basis of y,.:'s for N, and an
arbitrary basis of za's for P, and thereafter choose the y;.:'s and the 2,'s
from N, and P, respectively, so as to satisfy (3.18). Now the subsets N, and
N, have no nonzero solutions in common; in fact, 0 = (4Ya, ¥a)® <(4Ya, ¥a)®
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for each nonzero element of N, and 0= (4ys, ys)° for each nonzero element of
Ni. Thus N, and N, together span the r-dimensional solution space of (3.1).
Hence we can even choose the y,,.'s so that the first [, —n together with N,
span F, and likewise we can choose the z,,;'s so that the first m;, —p together
with P, span Gs. We shall call such a choice of bases a canonical selection of
solution pairs at x=a.

LEMMA 5.4. If yo&D(Ly), then there exists a sequence {y,.} CD(Ly) of func-
tions vanishing near b such that

[y Liya] = [30, Liys] in La(a, b; D) X La(a, b; D).
An analogous result holds for yo&ED(L,).

Proof. With # defined as in Lemma 4.2, we set #,=0y, and wo=(1—p8)yo
so that u, vanishes near x =a and w, vanishes near x =5. If we can approxi-
mate #%, in the required manner by say {un} CD(Ly), then the sequence
{ Yn=1u.+wo} will be a suitable approximating sequence for y,. We may
therefore assume, without loss of generality, that y, vanishes near x=a. In
this case y, belongs to the domain of every dissipative restriction of L, de-
fined as in Theorem 4.1. We shall in particular choose a restriction L defined
by a canonical selection of solution pairs at x=a. Setting fo=Ayo— Ly, we
have as in (3.24) ’

yo = R(\; L)fo = <Roo(0)\)f:> - g ya.ff:(fo, 2p,:)dE

=Y e f (o B0

i=p+1

Now for arbitrary yED(L,) we have by (4.5)
5.8) [0 = Ly, sadde = — (43, 2097 + (43, 50.0°

since Az, — M 2, =0 almost everywhere. In particular for y=y,ED(Ls) and
vanishing near x =a this becomes

b
5.9) o s0dde = = Gy 28 + (A3n 0% = 0

for p <i=<mu, that is, for the z,.'s which belong to D(M;). We now apply
Lemma 5.1 with w;=DV%, ;,,,1=1,2, - - -, n, and s=my— p. By our choice
of basis for P,, the first (m,—p)w;’s span the largest subspace of the linear
extension of [w;; i<n] which lies in H. According to (5.9), the function
D-V2f, belongs to the orthogonal complement in H of [w;; i<my—p]. The
lemma asserts that D—Y?f, can be approximated in H by a sequence of
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bounded measurable functions {4}, which vanish near @ and b, and which
are orthogonal to all of the w;'s. We note that f,=D2h, also belongs to H
since the elements of DV? are majorized by the trace of D and hence are
square integrable on a suitable carrier of k.. In addition, f,—fo in L:(a, b; DY),
the functions f, vanish near a and b, and f, is orthogonal to all of the z,,;. As
a consequence, y.=R(\; L)faED(L:) vanishes near b, and by Lemma 4.5
Ya—¥o=R(\; L)fo in Le(a, b; D). This concludes the proof.
We introduce the restriction Ly C L; with domain

D(Loo) = [y; y ED(L1), y vanishing near a and b].

Since L, is closed, the closure of Ly, which we denote by Ly, is again a restric-
tion of L;. Obviously D(Loo) CD(La)ND(Ls) and it follows from Lemma 4.3
that D(Lo) CO(Le)ND(Ls). In the other direction we have.

COROLLARY. In case B+B*+A4,=0, D(Lo) =D(La)N\D(Ls).

Proof. Suppose yED(L.)MND(Ly). Applying the previous lemma at each
end separately, we obtain two sequences {¥a,.} and {y,.} CD(L:), each of
which converges in the graph topology (here D=1I) to y; the first sequence
consisting of functions vanishing near a, and the second of functions vanish-
ing near b. Let @ and B be defined as in Lemma 4.2. Then both ay,,, and
Bys.» vanish near a and b and in addition Lemma 4.2 asserts that

AYa,n + Byb.n —ay + ﬁy =9

again in the graph topology. Obviously aya,»+B¥s,»E D (Leo) so that yED(Ly).
As a consequence D(Lo) DD(Ls)ND(Ls), which was the only inequality in
doubt.

THEOREM 5.2. Let {y;, i=1, 2, 3} CD(L:) and suppose y1—y.ED(Ly).
Then (Ayi, v3)°= (Ay., ¥3)b. A similar result holds at x=a.

Proof. Set u=7y,—v,. Then €D (L) and, applying the previous lemma,
we obtain an approximating sequence {u,.} CD(Ly) of functions vanishing
near x =b such that

[#n, Lyttn] = [u, Lyu] in Ly(a, b; D) X Ls(a, b; D7Y).
Consequently
[y2 + #a, Li(y2 + #a)] = [y1, L1y1] in La(a, b; D) X La(a, b; D7)
and by Lemma 5.3 we have
(Ay2, 33)® = (A(y2 + un), ¥3)* — (Ay1, ¥3)

This proves the assertion for the & end and the corresponding result for the

a end follows by a similar argument.
We shall denote a coset of 9p=D(L1)/D(Ls) by the symbol Y:. Given
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two such cosets Y, and Yy, it follows from Theorem 5.2 that the quantity
(41, ¥2)® is independent of our choice of &€ Y3, and y.& V4,2 and hence can
be used to define (4 Y51, ¥3,2) in a unique way. We also define (42,1, Z,2) in
a similar fashion for cosets Z1, Z,.E8s=D(M1)/D(Ms). Finally for y,,
¥ E Yy and 21, 2:E2Z, we have (Ay,, 21)'=(A4ys, 21)®=(Ay:, 2:)%, which can
therefore be used to define (4 Vs, Z3).

In order to relate the solutions of (3.1) which lie in Lj(a, b; D) with the
quotient space ), we require the

LEMMA 5.5. For a canonical selection of solution pairs at x=a and for any
yED(Ly) and 2&D(M,) we have
(Ay, Zb,;)b =0 fOf bh—-—n<i1= ?,
(Ayes, 22 =0 Jormy <i=sr.

Proof. Given y&D(L,), we set f=Ay—L;y and write y as a particular
solution of this equation in Ly(a, b; D) plus a solution of the homogeneous

equation in L.(a, b; D). For this purpose we choose a restriction L of L; de-
fined by a canonical selection of solution pairs at x =a in which case

(5.10)

l—n
(5.11) y = R()\ L)f+ E ’Y‘ya“l' E YiVb,4s
=1 1=p+1

here we have summed over a basis for the solutions of (3.1) which belong to
Ly(c, b; D). As in (3.24) the y! component of this identity can be written as

= - Z Ya, 'f (f Zb, ,)d& - Yo, tf (fy Za, i)dE
(5.12) "”“ .
+ Z 7lya % + 2 'chb i

i=1 1=p+1

and if we make use of the relation (5.8) this becomes

L4 1 z L 1 z
y = [— > yei(Ay, 250 + 2o y.i(AY, 24,0 :I

=1 t=p+1

b—n

(5.13) + '=21 {‘Y' + (Ayv 2, ) }ya i + ..,Z,H:.l { (Ay, za,.')a}y;..'

L b1
+ 2 (49, 2. Yaie
t=lp—n+1

From the matrix relation (3.18) we see that Y (x)Z(x)*4u(x, x) =TI and this
gives the identity

)4 z r z
- yl,.‘(x)(Auhl, Z:»..’) + > yal;..'(x)(Auhly Z:..') = hl(x)-

i=1 i=pt1
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We substitute this into (5.13), replacing & by y and (4y?, 2!) by (4y, 2), and
we see that the last three sums add up to 6. The linear independence of the
yi.'s and the y,,’s implies that (4y, 2,:)*=0 for bh—n<i<p. The second
half of the assertion (5.10) follows in a similar fashion; in this case we make
use of a restriction M of M, also defined by a canonical selection of solution
pairs at x=a.

The next lemma is somewhat extraneous to our present development.
However we shall need the result in §7 and, since it is similar to the previous
lemma, we include it at this point.

LEMMA 5.6. Let the solution pairs [Ya.i, ¥o.:]) and [2a.:, 2v.:] be chosen as in
the canonical form of Re(\) given in (4.23). Then for any yED(L:) we have

Ay, 24,:)% =0 or i € 53,
(5.14) (4y, 2a,9) f € 8
(Ay, z,5)* =0 for i € s..

Proof. We have already noted in connection with (4.23) that the solutions
{Yai+¥s.6; i=1, 2, - - -, r} are linearly independent and hence span the

solution space of (3.1). By construction, no nontrivial linear combination of
{ya,;; iEsz} and {yb,;; iEsa} belongs to Li(a, b; D). Hence we can express
yED(L,) as the sum of a particular solution of f=\y—L,y lying in Ly(a, b; D)
plus a linear combination of the ya,i's in 5;\Us; and the ¥ s in 5:Usz; in sym-
bols,

y = Ra(Nf + > ViVeit 2 Yo

cXU 83 81\ se

Making use of the explicit representation for Ry(\) given in (4.23) and the
relation (5.8) this becomes

yl = [" E (}’i.; + yt.;)(Ay, zb,i)z + Z (yzlu,i + y:,.-)(Ay, zu,‘)z]

8 s, $1Ys3
1 1
+ 2 ¥ yai + D 8y
aU sy 8§ s,

b1 a 1

+ Z (A9, 25,3) Yai — Z (Ay, 2a,i) Yo
8q 23

Again we see from the matrix relation ¥ (x)Z(x)*4u(x, x) =1 that the quan-

tity in the brackets is equal to y'(x) so that the last three sums in the right

member add up to 8. Any such solution of (3.1) must be the trivial solution.

We have therefore expressed

> (Ay, 25.)%yai — 2 (A, 2a,) Yo
s 23

as a linear combination of solutions in Ls(a, b; D) and this is possible only if
(5.14) holds



1957] DISSIPATIVE HYPERBOLIC SYSTEMS 147

THEOREM 5.3. 9 and B are both of dimension dp=1ly+my—r.

Proof. We begin by choosing a canonical selection of solution pairs at
x=a. Let 8 be defined as in .Lemma 4.2 and set

Yai = BYa.ir Uy, = BYb.ii

Ya,i = BZa,i Vo,i = — B2p,:

(5.15)

Then the u,,;, 1<l —n, and the u,,;, p+1=1=r, belong to D(L,) and the
Va,i, P+ 151 my, and the v,,;, 2= p, belong to D(M,). Moreover we have by
(3.18)

(Ata,i, v5,7)® = 855 = (Ats,s, va,7)%

(5.16)
(Atai, ¥a,5)® = 0 = (Aus,, v5,5)°.

Since only the #’s and »’s in D(L;) and D(M,), respectively, are relevant to
our present considerations, the top relations in (5.16) establish only the linear
independence modulo D(Ls) of the #,,;, 1<l —n, and the uy,;, p+1=ZiZm.
Thus there are at least (l,—n)+ (ms— p) =l +ms—r functions » which are
linearly independent modulo D(L;). Now as Lemma 5.5 shows, the u;,; for
my<i=r lie in D(L;) so that the u,;'s and u; ;'s in D(L;) provide exactly
ly+mp—r linearly independent functions modulo D(Ls).

On the other hand an arbitrary y&®(L,) can be written in the form (5.11).
Approximating f=Ay—L,y in H by a sequence of functions {f,.} vanishing
near x =) and setting

lp—n r
yn = RO D) fa+ 2 ¥YiYai + 2 Vidooie
=1 1=p+1

We see that [y, L1y, ]— [y, Liy] in H2 According to the representation (5.12)
the yM's behave like linear combinations of the [y, i<l —n] and the
[yi; p+1=i=r] for x near b. Now for any yED(L,) and zED(M;) the
quantity (4y, z)® depends only on the behavior of y* near b. Hence, modulo
D(Ls), the y,'s lie in the (l+m, —r)-dimensional subspace determined by the
[#a,5; i<lh—n] and the [uss; p+1=i<ms]; in other words y, is equivalent
modulo D(Ls) to

Un = lbi” Yn,i¥a,s + i Yn,ilhb, s
=1 f=p+1
It follows from (5.16) that
Yai = (Athn, 15,5)® = (Ayn, 03,5)% 1sislh—mn
Y = (Athn, ¥6,5)® = (Ayn, Va,5)%, p+1<ism

Lemma 4.3 asserts that (4ya, v)*—(4y, v)® so that for
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lb—n mb

(5.17) w= 2 (A9, v5,)%a:+ 2 (Ay, va,) s,

[ ) 1=p+1
we have [u,, Liu,]— [4, Liu] in H% Again applying Lemma 4.3, we obtain

(5.18) (4y, 2)® = lim (A yn, 2)® = lim (du., 2)* = (4w, 2)* for each z € D(M,),
n— o n—w
and therefore y is equivalent to # modulo D(L;). Thus each yED(L,) lies
modulo D(Ls) in the dy-dimensional subspace spanned by the [u,,;;1 i<l —n]
and the [us; p+1=<i<ms]. A similar argument shows that 3, is also of
dimension d.
We have, incidentally, established the

COROLLARY. Let the [Ya,i, yb.] and the [24 i, 2.5 be a canonical selection of
solution pairs at x=a and define the [uai, us:| and the [vay, vy,:] by (5.15).
Then the cosets determined by the [ua,i; i<lb—n] and the [uy,:; p+1<i<my]
are linearly independent and span 9s; likewise the cosets determined by the
[va,5; p+1=<i<my] and the [vs,:; i<l —n] are linearly independent and span
Bb. Moreover [uy,; my<i<r]CD(Ls) and [vp,s; h—n<i<p] CO(Mp).

We can summarize the preceding development as follows. Let A>0 be
fixed and choose [#a.s, #s,:] and [va,s, v5,:] as in (5.15) from a canonical selec-
tion of solution pairs at x =a. For notational convenience we set

Ui = Ua,iy Vi = Ub,iy for ¢ = lb - ",

(5.19)

Ui = Ub,r—tyris Vi = Vg, i forly — n < i = ds.

Then (Au;, v;)*=248;,; and for each yED(L,) and 2&D (M) we have

db
y = E (Ay, v;)"u; modulo @(Lb),
=]

(5.20) o
2= 2 (4z, u;)%; modulo D(M,);

i=1
in fact, the first assertion follows directly from (5.17) and (5.18) above and
the second assertion is the dual of the first. Moreover, Theorem 5.2 shows
that for arbitrary y1, ¥2ED(L,) and 21, 22ED(M;) we have

db _
Ay, y2)b = 2 (Ayy, v)*[(Aye, v)P] (Aus, u))?,

§,i=1

dy _
(5.21) (Ayy, 2)® = 2 (Ay, v)2[(Az, :)?]

=1
dp

(Azy, 22)® = 2 (Azy, w)*[(Aza, u3)%] (Avi, v))%

§,j=1
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In essence we have reduced the study of the boundary behavior to an
algebraic problem involving certain finite dimensional quotient spaces. Ac-
cording to (5.21) the spaces ¥, and 3, are dual to one another and the matrix
A(b) has the representation ((Au;, #;)®) in one space and ((A4v;, v;)®) in the
other. In order to again formulate our boundary conditions as dual relations
we require the connection between these two representations of 4 (b).

THEOREM S5.4. ((Aui, u;)®)((Av,, v;)%) =1.

Proof. For an arbitrary z&®D (1) it is clear that :ED(L,)N\Ly(a, b; D)
and

Lyz= — Miz+ (B+ B*+ A,)z.

Since the first term on the right belongs to H and the second (®) to Ls(a, b; DY),
it follows that Lz& Ly(a, b; D~'). Consequently f=Nz— L. 2&E Lsy(a, b; D).
Choosing a canonical selection of solution pairs at x=a we set w=R(\)f,
where R(N) is of the form (3.24). Here all of the terms are well defined since
the z,'s belong to L:(a, c; D) and the 2’s belong to L:(c, b; D) and, in fact, we
see that wEP(L,). We now show that w also belongs to L.(a, b; D). In the
first place f'=(A2°—B03°) —Bnz! so that Re(N\)f°=2°—Ro(N\)Bnsz!, and, 2!
being absolutely continuous, we see that Busz! belongs to L.(a’, b'; Ig) for
each compact [a/, b'] C(a, b). Now

({2)\100 — (Boo + B:o)}Roo()\)Ble, Roo(N) Boiz?)
= (Bmzl, Roo()\)Ble) + (Roo(x)Bley Bo1zl)~

Recalling that )\[ Roo()\)l =<1, it is clear that the displayed expression is sum-
mable on (@', &’) and it follows that Rgo(N\)f° belongs to Ls(a’, b’; Dgo). Since
the rest of the terms in (3.24) obviously belong to L.(a’, b’; D), the same is
true of w. Further A\w — L, w=f& Ly(a, b; D~1). Now if f vanishes neara and b,
then by the usual argument — (Aw, w)*+ (4w, w)*<0 (see proof of Theorem
4.1) and hence w belongs to L.(a, b; D) by Lemma 4.5. If f does not vanish
near ¢ and b, we approximate fin L.(a, b; D~!) by a sequence {f,.} of bounded
measurable vector-valued functions which do vanish near ¢ and b. Applying
Lemma 4.5, we see that the corresponding w,’s converge in Ls(a, b; D) to w
and hence w& Ly(a, b; D). Thus w is a particular solution of A\u —L,w=f in
Ly(a, b; D) and therefore z itself can be expressed as

lb—n r

2=w+ 2 YiYait D, YiVoui

i=1 i=p+1
for some choice of v.’s; here each of the three expressions on the right lies in

(%) By definition B+B*+A4,=1—D so that (D-}(B+B*+4,)z, (B+B*+4,)z) =(D"'z,3)
—2(z, 2) +(Dz, z); since all of the terms in the right member are integrable on (g, b), it follows
that (B+B*+A4.)s E La(a, b; DY),
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Ly(a, b; D). Setting

lo—n r

Zn = Wa + Z Yi¥a,i + Z YVi¥b.i

=1 t=p+1

we see that [2., Lo2.]— [2, Lo2z] in Ly(a, b; D) X Ly(a, b: D). By construction
f»E€H so that z,ED(L,), and making use of the first relation in (5.21) we can
write

dp
(Azn, ur)® = E (Azn, v))%(Auj, ur)d.

1

Passing to the limit as n— «, we obtain

db
(5.22) (Az, un)® = D (Az, v;)(Auj, u)®, 2 C D(MY),

i=1

the limit procedures being justified by Lemma 5.3 for the left member and by
Lemma 4.3 for the right member. Finally setting z=v; we have

dy
dir = (Avs, wi)® = D, (Av;, v))2(Au;, ur)?,

i=1
which was to be proved.

THEOREM 5.5. Each of the hermetian matrices ((Aui, u;)®) and ((Avi, v;)*)
has ly—n positive eigenvalues and m, —p negative eigenvalues.

Proof. It is clear that the matrices are hermitian since 4 (x) has this prop-
erty for each x. Further, if y, is nontrivial element of N, and x>a, then
0= (AYa, ¥4)®*<(AYs, vs)*. Consequently we will have (4du,, #.)*>0 for any
nontrivial linear combination %, of the u,,’s in L.(a, b; D). The u,;’s in
Ly(a, b; D) constitute the first J,—# of the u,'s and hence there are at least
I,—n positive eigenvalues for ((Au;, u;)?). Next, if ys& Ny then (Ays, ¥5)° <0
and thus for any linear combination u, of the us,;'s we have (Au,, u)*=<0.
Since the last m, — p of the u,’s are taken from the us,;’s, the matrix ((Au;, u;)%)
has at least m,—p nonpositive eigenvalues. On the other hand this matrix is
nonsingular, according to Theorem 5.4, so that there can be no zero eigen-
values, and this, together with the fact that dy= (ly—n)+ (ms—p), shows
that there are precisely l,—n positive and m,—p negative eigenvalues. The
same assertion obviously holds for the inverse matrix ((4v;, v;)®).

We have already defined the quantities (4 V5,1, Y3.2), (4 Y3, Z3), (AZy 1, Zs,2)
for the cosets Y3;E9s and Z,E 8. Suppose, now that we choose as a basis for
s the set [Us.s; 1<ds] determined by the u,'s of (5.19) and as a basis for 3s
the set [Vs.i; 1<ds] determined by the v,’s of (5.19). Then (5.20) and (5.21)
can be paraphrased as
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db
Vo= 2, (AV4, V3.)Uss,

=1

(5.23) .
Zy = Z (AZy, U )V s4,
and =
(AY b1, Vo) = dZ (AY b, Vo) (AT b2, Vi) (AUss, Uy,
t.'z:l
(5.24) (AY 4, Zy) = 2 (AVs, Vo) (AZs, Us.y)

=1

s
(AZy 1, Z2) = 2, (AZo1, Us)(AZy, Us,)) (AVys, Vi),
ii=1

The matrices ((A Us,;, Us,;)) and ((A Vs, Vs,;)) are each representations of
the hermitian operator A4 (b) relative to the respective bases, and by Theorem
5.4 there are inverses of one another. According to Theorem 5.5, A(d) has
Iy —n positive and m;, — p negative eigenvalues. We recall that the above choice
of bases depended on a particular canonical selection of solution pairs, with
given A>0, at x=a. A different choice of canonical selection of solution pairs
at x=a and/or a different A>0 would result in a coordinate transformation
leaving the form of the relations (5.24) invariant.

Before leaving this subject we shall make the following convention. We
shall speak of a function y(x) as mapping into a coset of ), even in case y does
not belong to (L,) provided y behaves like some function in D(L;) near
x=b. In this case u =By will belong to ©(L;) for an appropriate 8 of the type
described in Lemma 4.2, and we map y into the coset determined by u. This
coset is clearly independent of the choice of 8. Moreover since the limit be-
havior of ¥ at the b end depends only on how it is defined near x =5, this in-
formation will again be given by the image coset of y.

It is clear that the boundary behavior at the a end can be treated in a
similar fashion. The quotient spaces 9, = D(L1) /D (Ls) and B. = D(My) /D(M.,)
will each be a dimension d,=I,+m,—r, we can construct bases for these
spaces from a canonical selection of solution pairs at x =5 in terms of which
analogues of (5.23) and (5.24) are valid, the representations ((4 U,,:, Us,,;))
and ((AVa,i Va.j)) of A(a) are again inverses of one another, and 4 (a) will
have m,—n positive and /,— p negative eigenvalues.

6. The general dissipative generator. We return now to the problem of
constructing the most general dissipative restriction L of L, generating a
strongly continuous semi-group of linear bounded operators.

Our first objective is to formulate the boundary conditions on L in a way
which does not depend on \. To this end we introduce the d =d,+d, dimen-
sional product spaces
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wa.b = 94 X 2)».
Sﬂ,b = :841 X .8[7

with elements V3= [Ya, 13] and Z, = [Za4, Zs], respectively; and we define
the operator %, by

MavYabity Yapo) = — (AVay, Yao) + (AY 40, Ve,9),
(6.1) a6V a,0. Zap) = — (AV o, Za) 4+ (AYs, Zy),
NasZapry Zawie) = —(AZayy, Zan) + (AZ11, Zo.2).

Relative to the canonical bases for $,, and 3., obtained in §5, the operator
Aa.» has the representations

—((AUay, Ua,i) 0 .
Lo = ( 0 (AU, Ub,j))) in e
ot [~ ((AVas Vai) 0 .
Pl = < 0 ((AVs,q Vb.i))> in Bes

where
(%o 1)
I‘ =
0o I
is a representation of the connective inner product between the bases given
by (NatYap, Zas). According to Theorems 5.4 and 5.5, the matrix U is
nonsingular and hermitian, having (la—p)+4(lh—n)=1I1,4+I—r positive and

(Mo —n) + (my— p) =ma+my—r negative eigenvalues.
We now select an (mq—+m—r)-dimensional subspace Na,b of 94,5 such that

(6.2) Ua,0¥ap, Yap) =0 forall Vo € Nus
and let PB..» denote the ¥, -orthogonal complement of Na,y in Bas, that is,
(6.3) Bas = [Zars; NasVar Zap) = 0forall Vo © N

According to the corollary to I.emma 3.2, Pa s will be (lo+1—r) dimensional,
(6.4) We,Zaby Zap) 2 0 for all Z..s € Pa,s,
and Na,s is the A, s-orthogonal complement of Payp in Pa .

THEOREM 6.1. Suppose Nup and Bay are Wop-orthogonal complements in
Dab and Ba s, respectively, satisfying the conditions (6.2) and (6.4). Let L and
M be restrictions of Ly and M, respectively, with domains

@(L) = [y; y c Q(Ll)’ [yv )’] - S)}ﬂ-b]v
DM) = [3;2 € DM, [z, 2] > Ba.s).

Then L and M are dissipative operators satisfying the Hille- Yosida criterion for

(6.5)
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all \>0. Morcover I.= M* and M = L*.

REMARK. For a given yED(L1) we have [y, y]—N.s if and only if
—(4y, z)*+(4y, 2)*=0 for all [z,, 2] ED(IM,) X D(M,) which map into
Ra.s. Hence (6.5) is equivalent with

D(L) = [y;y ED(L1), — (A%, 2,)% + (4dy, 25) = 0forall [z,,25] = Bas),
(6.6)
DM) = [2;2 ED(M)), —(Aya,2)* + (Ays, 2)® = Oforall [y, y5] = Nat].

Proof. Suppose A>0 is fixed. Let N, denote the solution pairs of (3.1)
which map into RNa., and let P, denote the solution pairs of (3.2) which
map into Pa,p. Taking into account the fact that r —m, linearly independent
solutions of (3.1) map into ©(L,) and r—m, map into D(L;), we see that
Nap is (ma+my—r)+4(r —m,)+(r —m) =7 dimensional. Similarly P, is 7
dimensional. Since the boundary behavior of these solution pairs is given by
the cosets determined by them, the sets N, and P, will have all of the
properties of the corresponding sets defined in Theorem 4.1. Thus P, is
r-dimensional and satisfies (4.16); N, is r-dimensional and 4, s-orthogonal to
P, 4, and since there is only one r-dimensional subspace of solution pairs with
this property, N, must indeed be equal to the set defined by (4.18). Accord-
ing to the corollary to Theorem 5.3, the solutions of (3.2) which belong to
Ly(c, b; D) (respectively Lsy(a, ¢; D)) span D(M,)/D(M,;) (respectively
D(My)/D(M.,)). It follows that the solution pairs of (3.2) span 3., and this
implies that the domain defined by (4.17) is the same as that defined for L
by (6.6) and hence by (6.5). Likewise D (M) is equivalently defined by (4.24)
and (6.5). The assertions of the theorem are now immediate consequences of
Theorems 4.1 and 4.2.

We also have a converse statement.

THEOREM 6.2. Every dissipative restriction of Ly (or of M,) which generates
a strongly continuous semi-group of linear bounded operators is of the type de-
scribed in Theorem 6.1.

Proof. Suppose L° is a dissipative restriction of L; which generates a
semi-group. Then for each y&T(L?) we have —(4y, y)*+(4y, ¥)*<0. Thus
[ly, ¥]; yED(LY)] maps onto a certain linear subspace N, of Pas. Now
N9, cannot be more than (m,+m;, —r) dimensional since no subspace of larger
dimension has the dissipative property. On the other hand there always exists
an (mq~+my—r)-dimensional subspace Na,s of Ya,» containing NY,, with prop-
erty (6.2), and the operator L defined as in Theorem 6.1 from N, 5 is clearly a
dissipative extension of L°. Now both L° and L generate semi-groups and
hence both have resolvents for N sufficiently large. Thus for some \ the oper-
ators A\ —L and NI —L° map their respective domains onto all of H in a 1-1
manner and this can only happen if ©(L) =T(L?). Thus L° coincides with L
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and is therefore of the type described in Theorem 6.1.

7. Coupled systems. In order to treat dissipative systems with boundary
conditions of the “elastic” type, it is necessary to couple the previously con-
sidered system at the ends a and b with simple mechanical systems. The
development which we are about to present for the coupled system parallels
that which we have given for the uncoupled systems. In particular, we shall
again take as the basic entity the energy of the system.

We consider vector functions y=(p!, 1, y?) and 3= (3", 3°, 3% where y!, 3!
lie in a k;-dimensional euclidean space 9= 3;; 1°, 3°€ L(a, b; €y), and y?, 32
lie in a k.-dimensional euclidean space ). = 3.. In addition to the differential
system (1.1) (with E, 4, B replaced by o, oo, Boo respectively) which
governs 1° we now have mechanical end systems which satisfy(1?)

@ul)t = §Bul)l + %101)0(0).
@nl)zz = 55221)2 + 532090(1));
here the §;; are positive definite,

(7.2) B+ B = O, i=1,2

(7.1)

and Biy, Bao are coupling operators defined as linear transformations on 9,
to P and on 9 to 9., respectively. The energy integral for the coupled system
is

1 b
Energy = 7[(@111)1, Y +f (Coop®, °)dx + (Ca2y?, Dz)] .

As before it is convenient to transform the hilbert space associated with
the energy quadratic fork into the hilbert space  with norm

b 1/2
1.3 vl = [, n’)]”2=[(n”, v+ [ yde+ o w)] ;

this is accomplished by the unitary mapping
Y -y =Gy, i=01,2
In terms of the transformed vectors, the equations (7.1) take the form

1 r 11 1 10

D't =By + By (a),
2 ' 12 r 10

ne = B2y + Bay (b),

(1*) Suppose the equations of motion fqr the uncoupled mechanical system at the 7 end are
in canonical form, that is, ¢:i=0H/dp:, pi=—0H/dq:i—D/dg;, where H=(2_..;tiipip;)/2
+ (2. v:ijqig;)/2 and the dissipative function D=(X_:; dijq:q;)/2; the matrices T'=(t;;) and
V= (v;;) are positive definite, D = (d;;) is Hermitian, and ¢;= i tijp;. To write this in the form
(7.1) we set Exi=(}2) Bii=(_y _rpr)- The condition Bii+B;=(; _yrpr) SO requires merely
that D26©.

(7.4)
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where B/, =G;?8::6;'"? and B =E;"?B: (the quotient spaces P. and Y,
can be thought of as invariant under this mapping). The condition (7.2)
becomes

(7.5) B+ Bl = G (B + BREx <O, i=1,2

equality holding in (7.5) if and only if it holds in (7.2). The effect of the map-
ping on the central system has already been described in §2. Hereafter we
work in the space $ and omit the primes.

The effect of the coupling on the end systems is given in (7.4). We have
indicated that y°(a) €9, and 1°(b) €9s, but we have not said explicitly how
y°(a) and y°(b) are to be obtained from Y. Nor have we indicated the nature of
the back-coupling effect of the end systems on the central system. Our choice
of coupling mechanism will be based on the following heuristic considerations.
We image the central system as extending past the points ¢ and b and deter-
mine the coupling matrix By, say, so that the energy flow into the extended
part of the central system at b less the energy flow from the interior (i.e.
a<x<b) at b is just equal to the energy cross-product term, namely
(Baoh?(d), 12) + (92, Baoh?(d)). The effect of the mechanism at b is to introduce
a discontinuity in y°(x) at b and we will take as our value of y°(b) in (7.4) the
mean of the limits y°(b—) and y°(b+). The jump in y°(x) will of course vary
linearly with y% Thus

(7.6) (B200°(0), ¥ + (9%, B2a)°(8)) = ooy, 1°)*+ — Wood®, 1°)*,
and

1
(7.7 y() = Py [e(d+) + v°6—)],  Coa? = y°(0+) — p°(b—).

It is readily seen that this implies B9 =Co2*No0(d).

So far we have proceeded formally, our use of the quantities y°(b), o0(d),
etc., being certainly open to question. However, if we make use of the quotient
space Y, it is actually a simple matter to assign a precise meaning to the
above considerations. We set 1°(b—) equal to the image of 1° under the natu-
ral map of D(L,) onto Ps. For any given linear transformation o on 9. to
s, the relations (7.7) uniquely determine y°(b) and y°(b+) (elements of 9s)
in terms of y°(b—) and y2. In dealing with the adjoint operator, the element
3°(b—) will likewise be defined as the image of ;€D (3y) in B, and given a
coupling transformation €, on 3, to 3, the elements 3°(b) and 3°(b+) of B,
will be defined by the analogues of (7.7). The coupling operators Bz and B3
on P, to 9, and on B, to B., respectively, are defined by the relations

(7.8) (), Bot'(5) = QoGoy, 1)’ and (', Baos () = oozt 3) -

Go2 and G, become adjoint coupling transformations if
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(7.9) (0, Bas (0) = AoeGoa 3)" and (> Baod () = WAooz’ y")"

It is, of course, required to show that the two relations in (7.9) are consistent.
To this end, suppose { Ub,{} and { V;,,;} are a canonical pair of bases for 9,
and By, respectively; and let Cof =D cisUss and €3 = D cisVss, where
17 =42 are both ks,-tuples with sth coordinate one and all other coordinates
zero. Then the first relation in (7.9) is equivalent with c;j= 2 _c(ooVs.5, V5.5)
and the second is equivalent with ¢§;= > ¢cis(¥ooUs s, Us;); and the consist-
ency of these two equations is assured by Theorem 5.4. The two relations in
(7.9) combine to give BYEY, = (B2Co2)*. Similar considerations naturally
apply at the a end. -

We now write down a complete description of the augmented operator
&, and its formal adjoint 9;, both of which are taken to be normalized so that
the €;;=1.

[Qll)]o = oo®) = + Booy®,
(7.10) [Ri9]' = By + Bron*(a),
(819]2 = Baah)? + B2oy°(d)

where

1
va) = — [v°(a+) +v%a=)], o' = »°(a+) — y°(a—),

1
(7.11)  v°(b) = 5 °6+) +v°6—)],  Cuay? = y°(b+) — v°(b—),

(0, Bi(a)) = HooCory*, v°)°, (9% B2y®(8)) = HocCo20? 1°)°,
D) = [1); o E@(Ll)];

and
[M13]0 = — @oot®)z + Boo + Aoo) )3,
(7.12) [9)313]1 = 53,;131 — 58010&0(‘1)'
[2:3]2 = Braze — Baos (B),
where
1
3(a) = 5 a+) +3'@=)],  Gop =3 (a+) — 3 (a=),
0 1 0 0 0 2 0 0
» = — [ b=)],  Gomp =3 (b+) — 3 (b=),
(7.13) 3 (b) 2[3(+)+3( )] 023 3 (b+) —3(b—)

G B (@) = ooGoiz 3" G Baag 8) = AooGoss 3) s
D) = 330 € DM ];
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here G, €, and Gy, €3, are each assumed to be pairs of adjoint coupling
transformations. If we now set

Bu O 0 0 0 o
% = 0 %oo 0 and ?I = [0 2[00 0
0 0 B O 0 O

then a straightforward calculation shows that

(@1, 02) + 1 2Y2) = (B + B* + A)y1, v2) — ook, Bo)

+ ooy, 1), 91 h2 € D(Ry);
g D= O R = — s )T+ @',
y E D), § € D(D);
Mg, 32) + (o Miga) = (B + B* + A, 32) + Qoo 39)*
— Qoo 1) b 32 € D).
In view of these relations, the obvious dissipative condition is
(7.15) B+8*+%. =9,

which hereafter will be assumed. For the same reason, we say that a function
NED () satisfies a dissipative boundary condition if

(7.16) — (ooy®, 19 + ooy®, ¥°)* = 0,
and, similarly, a function ;&D(IM,) satisfies dissipative boundary conditions
if
(7.17) (Aoag? 3% — Aoag’ 37 = 0.

With these preliminaries out of the way, we now proceed to find all dis-
sipative restrictions of £, and I, which generate strongly continuous semi-

groups of operators. The argument follows the same pattern as before and we
begin by investigating the solutions of the homogeneous systems of equations

() Np°® — (Aoo)®) = — Booh® = 6,
(7.18) (b) Ap! — Buy! — Bioy(a) = 9,

(€) Np? — Baah® — Bah(d) = 6,
and

@) M+ oig) s — B0 + Qoo)s)s” = 6,
(7.19) ) N — Bhs + B (a) = 6,
© M — B + B (b) = 6.
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By the convention mentioned at the close of §5 a meaning can be assigned
to Bih®(a) if Y E F, and to Baoh?(d) if Y E Fy; however if Y°E F, but not to F,
then (7.18b) will be meaningless and we will be content with simply the
(y°, y2) components of the solution. Similar remarks apply at the ¢ end and
for the system (7.19).

To pursue this matter a bit further, let y° be a solution of (7.18a) which
lies in F, and hence maps into y°(b—) EY,. We now choose )2 so that (7.18¢)
is satisfied for y°(d) defined as in (7.7). In fact, substituting for y°(b) in terms
of Y°(b—) and y?, we obtain

(7.20) Ap? — Bagy? — BeoCo2l)2/2 = Bao)°(b—).
If \ is not a characteristic value of the matrix
(7.21b) Baz + B20C€o2/2,

then (7.20) will have a unique solution y? for each y°(b—) and, in particular,
for y°(b—) =60 we have y?=0 and y°(b+) =9°(b —) +Cy%=0. Moreover for the
so obtained solution Y= (—, ¥° y?) of (7.18a) and (7.18c), we will have

(7.22b)  2A(1% p?) = ((B3z + Ba2)y?, 12) + ook, YO+ — Aoy, 1),
and as a consequence
2M(y% 9% = ooy ¥ — Aooy®, 1)

On the other hand, by substituting in (7.18c) for y°(b) in terms of y°(b+) and
2, we see that y? also satisfies

(7.23) Y2 — Baah)? + B2oCo2y?/2 = Baoh(b+).
Thus if X is not a characteristic value of
(7.24b) Baz — B2oCo2/2

then y°(b+) =0 implies that y2=0 and hence that y°(b—) =1°(b+) ~Cpy2=6.
Thus, dimensionwise, the linear space spanned by the y°(b+) is at least as
large as that spanned by the y°(b—). Now according to the corollary to
Theorem 5.3, as 1)° ranges over F,, the corresponding y°(b—) span ¥, and it
follows from the above that the same is true of the y°(b+).

A similar situation prevails at the a end for 1°€ F,. In this case a unique
solution Y, = (y!, y°, —) exists for (7.18a) and (7.18b) with

(7.222) A1, v = (B + BIW, 1) + ©oon” %) — ooy’ 1°)°
providing X is not a characteristic value of the matrix
(7.21a) B — B1:€or/2;

and again the y°(e —) span 9. as Y° ranges over F, when X is not a character-
istic value of
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(7.24a) B + B10€o1/2.

Applying the same reasoning to the adjoint homogeneous system, we ob-
tain for 3°E€G; [or G,] a unique solution g =(—, 3°, 3?) [or 3= (3, 3%, —)] with

(7.25b) 0@ 3) = (B + B 37) — ont®, 3% + Hoas?, 39>
[or
(7.252)  2AGL3Y) = (B + Bt 3) — oot 3 + Hooz®, 3],

providing X is not a characteristic value of

(1.26) B2 — B2Gor/2 [or B + B16Sa/2].

Likewise the 3°(5+) [3°(a—)] span 85 [or 8a] as 3° ranges over G;[G.] when
\ is not a characteristic value of

(1.27) B + BouBoa/2 [or By — BrCor/2].

We note that the matrices (7.26) and (7.27) are the adjoints of (7.24) and
(7.21), respectively.

Finally suppose that §,=(—, 3°, ?) and 3 =(—, 3°, 3?) are solutions in the
above sense of (7.18a, c) and (7.19a, c) respectively. According to Theorem
3.2, (Mooy?, 3% is constant on (a, b). Moreover, making use of (7.18c) and
(7.19¢c) we obtain (92, B3;°(d)) + (B20h°(d), 32) =0, which together with (7.9)
gives (YooCozm2, 39)°+(1°, AooC%32)®=0. Applying (7.11) and (7.13) we see
that

(7.286)  (ooy®, 3% = Aooy® 2 = ooy’ 2°)* for all x € (a, b).

Likewise for y.=(y', v°, —) and 3,=(3!, 3°, —) solutions of (7.18a, b) and
(7.19a, b) respectively, we have

(7.28a) Wooy®, 392 = (Aooy?, 30 = Hooy®, 3% for all x € (a, b).

We note that y°& F,N\F, can be continued at both ends to define a solu-
tion y=(y', y° y2) of (7.18a, b, c¢), and the analogous assertion holds for
3°EGsMGs. In this connection we have the following lemma which is required
for §8. :

LeEMMA 7.1. Suppose N is not a characteristic value of (7.21a, b) and let Y,
and W be solutions in the above sense of (7.18a, b) and (7.18a, c), respectively.
If 9o(x) =15(x) for some x&(a, b) and if — (Uoota, Ya)*~+ (oo, ¥5)** <O, then
DanEDb-

Proof. Since ¥0 and yJ are both solutions of (7.18a) it follows by the

uniqueness theorem that y(x)=p3(x) for all x&(a, b). Thus u’=yl=yj,
ul=yl, u?=y? is a solution of (7.18a, b, ¢) and u=(u!, u°, u?) clearly belongs
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to (). Obviously u®(a—) =1(a—) and u(b+)=y5(b+) so that
—(2[00110, u%es- 4 (?Ioollo, u°)"+ =< 0.

Hence (7.14) implies that ||u]| =0, which proves the lemma.

In constructing the required restrictions of £; and I, we again make use
of the product spaces Yas.» and 3, s, the operator Na b, and the A, s-orthogonal
complements N, , and Pa,b, defined at the beginning of §6. We now have

THEOREM 7.1. Suppose Nap and Pa» are s p-orthogonal complements satis-
fying the conditions (6.2) and (6.4). Let & and M be restrictions of {1 and My,
respectively, with domains

DO = ;9 EDERY, [v°(a—), v°+)] - Na,s),
DI = [3; 5 EDDM), [1°e—), 1°0+)] - Ba.sl,

1 hen ® and M are dissipative operators satisfying the Hille- Yosida criterion for
all A\>0. Moreover,  =M* and M =L*.

Proof. Suppose first that A>0 is larger than any of the characteristic
values of the matrices (7.21) and (7.24). We can then construct solution pairs
[9a, 1] and [3a, 3] of the homogeneous systems (7.18) and (7.19) respectively,
at least in the sense considered above. Let N, be the set of solution pairs
[9, 1] which map into R, ., that is, for which [y2(a—), ¥3b+)]ERus, and
let P, be the set of all solution pairs [34, 3] which map into P,s. It is clear
that N, actually maps onto N, and that P, maps onto P, 3. In order to
determine the dimensionality of N, 3 and Pa. we proceed as in the proof of
Theorem 6.1. Now r —m, linearly independent solutions of (7.18a) map into
D(L,) and r—m, linearly independent solutions map into D(L:). Since
1°(a+) =0 if and only if y°(a—) =0 and y°(b—) =0 if and only if y°(b+) =4,
we see that for (2r —m,—ms) linearly independent solution pairs the cor-
responding [y°(a—), y°(b+)] coincides with the zero element of $,,. On the
other hand the y°(a —) span ), as ° ranges over F, and the 1°(6+) span 9 as
y° ranges over Fy. It follows that N, is of dimension

(7.29)

(mg +mpy — 1) — (2r —mg —my) =7

and, similarly, Pa.s is also of dimension r. Further for any solution pair
[9a, 15] € Na s the relations (6.2) and (7.22) imply that

—(?Iool)ay Dg)a+ + (Qlool):, I)g)b_ = - (?Ioot)gy Dg)a_ + (?Iool)(l)n 1)(1);) - =0,
whereas for any [3a, 3] € Pas (6.4) and (7.25) imply that

a- — a—= 12
— ook 3™+ Qosger 30)7 = — Aok 30" + oo, 30T 2 0.
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Finally we see from (7.28) that the sets N, and P, are 4, -orthogonal and,
because of their dimension, actually A,;-orthogonal complements. Hence
these sets are of the type employed in Theorem 4.1.

Before writing down a form of the green’s function for the inhomogeneous
system, we first choose a set of 7 linearly independent solution pairs [a,:, 9s.:]
spanning N, in the manner discussed at the end of §4 in connection with the
representation of Ry(\) as given in (4.23). The r linearly independent solution
pairs [3a.: 3.¢] spanning P, are then selected so as to satisfy (3.18). As we
have seen, this will result in 3,=0 for ¢€s, and 3,=60 for iEs;. Denoting
the so defined R:(A\) by Roo(N), we now show that the resolvent for the oper-
ator ¢ can be represented as

[ROF]" = RoaWF — T Wi + 1o [(F 300 + (309,

i€s)

BT = 0 = T Gest i) [ duode

1€8\J 8y

= Y e+ 90 [ 300 + (3.0,

ics)

(7.30) \
ISR T N CRER TN (T
6601U33 a
= T Gei A 00 [ 300 + () 359
where
1 = — On 108€01/2 _1,
(7.31) Ru(N) = [N — B + B1Cor/2]

Raa(N\) = [N — Bae — B2oCo0/2]

In order to verify that R(\) really defines the resolvent R(\; &) we note
first of all that for yED (1), — (Wooy?, 1°)>~+ (Aeoy?, ¥°)2+ <0, and f=Ay—&yy,
the first relation in (7.14) implies that

(1.32) Noll = Il

In particular this holds for all y&T(®).

Suppose now that f!=0={2 and that {°G©Ls(a, b; I) vanishes outside of
a<a’'<x<b <b. Then all of the terms in .(7.30) are well defined and it is
clear that y=R(\)f belongs to D(R:). Moreover one sees directly from (4.23)
that y° behaves like

b
(7.33) D SRR f () e

81 22

for x <a’ and like
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0 0 b 0 0
(7.34) - 3 Ol [ atos
31U 83 a

for x>b'. The only nonvanishing terms in (7.30) for y! are those which to-
gether with (7.33) satisfy the homogeneous system (7.18a, b), whereas the only
nonvanishing terms for y? are those which together with (7.34) satisfy
(7.18a, c). Thus R(N)f is a particular solution of Ay — £,y ={. Furthermore, for
x1<a’ and x,> b’ we have just as in the proof of Theorem 4.1

—@IoonO, &:.i) "t (%oonoy éi.i) ® =0, i1=1,2,---,1,

and because of (7.28) this continues to hold for x; replaced by ¢ — and x,
replaced by b-+. As a consequence [y°(a—), y°(b+)] is ¥, s-orthogonal to
PBa.» and therefore lies in N, 5. Thus Y& D(R) and hence (7.32) is satisfied.
More generally, suppose f!=60=f? and that {° is an arbitrary element of
Ly(a, b; I). Then we can approximate f in § by a sequence f, of the above
type. Setting y,=R(\)f., we see that n,ED(®) and N[y, —yu|| <||fa—fal|. In
particular the sequence, {t)g} converges to a limit, say y°, in Hand, apply-
ing Lemma 5.2, we see that y*&D(L;) and Ay’ —Ly°=f°. On the other hand
it is clear from the representation (4.23) that y°=[RN)f]°% In case [RA)f]!
and [Rf]? are well defined as given in (7.30), then y'=lim, v, and y?
=lim, yb. In the contrary case the Banach-Steinhaus Theorem asserts that
we can define y! and y? by these limits. According to Lemma 4.3 we have
Wa+)—y(a+) and na(b—)—y°(b—). It now follows from (7.11) that
¥o(a—)—y(a—) and ya(b+)—y°(b+) and it is clear from this that nED(L).
It remains to consider the case {°=6 with arbitrary f! and {2 In this case
all of the terms in (7.30) are well defined and it is clear that j = R(N)fED(Ly).
We shall verify that y is a particular solution of A\y—®y=f and that the
boundary conditions are satisfied. Now y differs from the function u defined as

ut = E}?,u()\)fl, u® = 0 for x E (a, b), 112 = mn()\)fz

by a solution of the homogeneous system which belongs to D(£;). On the other
hand if we set u%(a—) = —Cou! and u°(b+) =Cpu?, we see that

M — Bt — Biu%(a) = [N — By + B1oCor/2]ut =
and
A2 — Boou? — Boou®(d) = [)\I — B — %20@02/2]112 = f2

Consequently Ap—€yp=Au—2u=f. In order to verify that the boundary
conditions are satisfied by Y, we set

Yi = (flr Blll.i) + (f2v &:,i)y i e S1.
Then
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y'(a—) = 1'(a+) — Coy

-2 ‘Yi[l).?.i(a—) + t):,i(a_)] - @olmu()\)fl,

' (0+) = 9'(b—) + Coy

= 3 ilei(6+) + 1asdH)] + CoxRa(VF -

For j&s; we have

— oo 30.)" + Qoo 30,
0 _a— 0 0 b+
(7.35) =2, ’Y-'[(Q[oo(l)g.e + 17?7.:’), o) — (?Ioo(l):.-', + D)y 30.0) )
+ AoBoRuMF, 30.)” — QooCoaRasNT, 35.0) -
Now (3.18) and (7.28) combined give
ooa.sr 30.3) — Qoo 3, = 0, for all i, j;
(?Ioog)b.-', 3g,i)a_ - (Q(oot):,n 3:.i)b+ = &, forall 4, j € s

Hence for jEs; the first sum in the right member of (7.35) is equal to simply
v;. The second and third terms in the right member of (7.35) are handled
differently. According to (7.9)

(7.36)

@Codtez Nl 30,0 " = R, Baaks, (6+)).
The analogue of (7.23) for a solution  of (7.19a, c) is

)\&: - %:23: bl %020@3221/2 = — 58203‘;(174')-
so that 32 = — Ra(\)*Bs0(b+). Consequently

(ﬂoo@ozmn()\)fz, 3(::.:’)H- = - (fz, ﬁi.i)

Similarly one shows that

(?Ioo@mmn()\)fl: 3?:.:‘)“— = - (flv 3«11.:‘)

and it follows that

(7.37) —(2[00‘)0, &g,i)a_ + @Ioonoy 32.1') - 0

for all jE€s:. Now for jEs; we have already noted that 3 ,=0 so that 3, ;=0
and 2,(a—) = ,(a-+) — 63!, 6. By Lemma 5.6, 33,(b—) =0 so that 33,=6
and 3 ,(b+)=35,(b—)+Ch3s5,=0. Similarly for jEs; we have 3,(b+)=0
and 3 ,(a—)=0. Consequently the condition (7.37) is trivially satisfied for
jEs:\Uss. It therefore follows that h= RA)fED(Q).

Combining the above two cases, we see that for any fE$ we can define
p=NA)f in a suitable way so that ED(R) and A\y—Ly=f. Moreover since
nED(R) the condition (7.32) will be satisfied. Actually (7.32) holds for any
PED(R) so that A\y—Ly=f has a unique solution and it follows from this by
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the usual argument that the range of R(A) fills out D(L). Together these facts
show that ®#\) =RN; 9). -

Next we prove that D(L) is dense in . Let fE D be given and choose any
pair [V, ¥3]ENas. Setting

(a+) = Yo+ Cuf' and p°(b—) = Vi — Coof?,

it suffices to approximate f° in § by an element y° of D(L,) with the above
values of y°(a+) and y°(b—), in which case (f!, y°, {2) will provide the required
approximation in D(R). Let a’, b’ be selected so that a <a’ <’ <b and

al’ b
[ i+ [l <e
a b’

and then approximate f° on [a’, '] in the mean to within e by a smooth
vector-valued function, say 13 which vanishes outside of [a’, »’]. Further since
F. spans 9. and F, spans 9 there is a W)€ F, with y)(a+)=1%a-+) and a
1WE F, with p3(b—) =y°(b—). Choose functions & and 8 as in Lemma 4.2 so
that they both vanish on [a’, '] and

b b
f | ava|'dt + f | By "t < <.

Then y°=an+y)+4By) approximates f° in Ly(a, b; I) to within Se. It follows
that D(R) is dense in .

Thus all parts of the Hille-Yosida criterion have been verified for the
operator € when X is sufficiently large. This being so, the Hille-Yosida theorem
asserts that the criterion is actually satisfied for all A>0.

A similar development, of course, holds for M. Further, it is easy to
see that M CL*; in fact for YED(R) and ;ED(M) we have by (7.14)

@, 5 — @ M) = — ooy, 3°° + oo, 3%+ = 0.

On the other hand both R(\; ) *=RA; *) and R\; M) exist for A>0 so
that both AT —8* and A\ —IR map their respective domains in a one-to-one
fashion onto 9. This requires D(L*) =D(IM), that is, &* =M. The analogous
argument shows that I *=Q. This concludes the proof of Theorem 7.1.
Using the representation (7.30) it is easy to compute R(\; M) = R(\; L*)
directly as R(\; &) *. We have, in fact
[N M)g)” = Ras(W)*’ — z Bo.i(8 > Qs + 15.9)
1Y eg
0 2 2 2
= 22 3ai(8 ) (9aii + 120,

31U 83

7. 1 1 1
T-38) o Ma)' = Ru's' — 3 a0slar Wos + 1),

(RO W]’ = Foue*s’ — T 35,668 Wani + 92.0)

&
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where (1)

Roo(N)* [ﬁo ]0

13
ROO()\)*80=< 0 )— > i [76 @t e

L a2 )

(7.39) . .
- ¥ A f @) (0 + o)t

The sense in which 3te0(\) *g° is to be taken has already been made clear in
Theorem 4.1. The other terms appearing in this expression for ®(\; M) are
all well defined.

As a converse to Theorem 7.1, we have

THEOREM 7.2. Every dissipative restriction of & (or of My) which generates
a strongly continuous semi-group of linear bounded operators is of the type de-
scribed in Theorem 7.1.

The proof of this assertion paraphrases that of Theorem 6.2 and is
omitted.

It is of interest at this point to consider the connection between a semi-
group solution to the initial value problem and a solution in the classical sense.
Let f€D(R2). Then f, can be expressed as fo=RN\; Qfi for some f;ED(Y)
and fixed A\>0. As a consequence, if  generates the semi-group [S(¢); t=0],
then

9(1) =B(Dfo = SORMN; Y1 = RO\ VSO 1.

We now avail ourselves of the representation (7.30) for R(\; ), Roo(N; Q)
being given by (4.23), and by means of this we can write y°(¢) explicitly as a
vector function of x'_for each ¢, namely,

(7.40) Pt %) = [RO; OSOfH](=).

Actually this only determines [y°(#)]! explicitly as a function of x and ¢,
since for each ¢, [1°(£) ]° is determined by this expression only to within a set of
measure zero(!!). However [y()]° is in any case two times strongly continu-
ously differentiable (fe&€D(82)) so we can appeal to a theorem in Hille and
Phillips [7, Theorem 3.4.2] which asserts that there exists a pointwise repre-
sentation of [y°(¢)]° which is continuously differentiable in ¢ for each x and
measurable in the (x, ¢) space. We denote this representation of [y°(¢)]° by
[y°(#, x)]° and this together with the above defined [y°(¢, x) ]! now determines
1°(¢) as a function of x and ¢. Making use of the strong differentiability of
&(t)fy, it is readily seen that the 1-component of 1°(¢, x) is continuously differ-
entiable in ¢ for each x; in fact,

(11) The outer superscript 0 or 1 refers to the notation introduced in (2.18).
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3y°(t. x) _ [9?0\: 9 IOIR
t dt

= (8RO OBOR](x) = [B(®)]°(#).

The only advantage in using the resolvent to define [y°(¢, x) ]! over the above
mentioned Hille-Phillips theorem is that the resolvent furnishes a realization
which is absolutely continuous in x for each ¢; thus y°(¢, x) is actually in D(L,)
and not simply equal to a function in D(L;) almost everywhere.

8. Conservative systems. We shall speak of an operator & as being con-
servative if no energy is dissipated internally, that is, if

(8.1) B+B*+ A =0, a<x<b

](x) = [0y LSO 1)

We note that in this case ©40=1I. An operator £ will be called a conservative
restriction of ; if no energy is lost through the boundary, that is, if

(8.2) — (Moo®, 19~ + Wooh?, H°)> =0
for all yED(R).

THEOREM 8.1. If ® is a conservative restriction of the conservative operator ¢
satisfying the Hille- Yosida criterion, then { generates a semi-group of isometries.

Proof. Let [S(f); t=0] be the semi-group of operators generated by &
and suppose that )ED(2). Then S(t)yED(Y) for all 120 and

d
Z Sy, &ty = €Sy, B8(1)Y) + (S, LS()y), t20.

It follows from (7.14) together with (8.1) and (8.2) that d/dt(&(t)y, S(¢)y) =0
for all t20 so that ||&(#)y|| =||y||, =0. The domain D(R) being dense in &,
we see that this holds for all )€ $ and therefore ©(¢) is an isometry.

The above result is not surprising. One might even expect such a conserva-
tive restriction of &, to generate a group so that the resulting process is rever-
sible in time. However this is not the case as the following simple example
shows: Let H = L,y(a, b) with a=0, b= », and define

Liy = — y. withD(L,) = [y; y absolutely continuous, y and y. € H].
Then
Mz = z, withD(M,) = [z; z absolutely continuous, z and 2. & H].

It is readily verified that n=1, p=0,7r=1, lo=1=m,, =1, and my=0. Thus
d,=1 and dy=0. Consequently for y&ED(L,),

—(dy, N+ Ay, )t = — (Ay, * = | 3(O) |3,

and the only dissipative boundary condition is y(0) =0, which is also a con-
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servative boundary condition. The corresponding restriction L generates the
semi-group of operators

[SWOfI(=) = f(x — o).

It is clear that the range of S(¢) fills out L,(f, «) but not Ly(0, «) for ¢>0.
Consequently S(¢) does not have an inverse and L does not generate a group.

Evidently, then, further conditions are required on a conservative restric-
tion in order that it generate a group of operators. We note that the condi-
tion (8.1) suffices to make ¥, = — M, so that &, is formally symmetric. This
suggests the following result.

THEOREM 8.2. A conservative restriction { of a conservative operator &, gen-
erates a group if and only if 18 if self-adjoint. In this case the group generated
by R consists of unitary operators.

Proof. If ® is a conservative restriction and generates a group of operators
[S(t); — © <t< =], then S(¢)~'=S(—1) exists and by the previous theorem
&(¢) is an isometry for ¢>0. It follows from these two facts that &(¢) is uni-
tary for all £. The rest of the assertion of the theorem is well known (see J.
von Neumann [11]); however, for the sake of completeness, we shall include
an independent proof. Suppose first that { generates a group of unitary oper-
ators. Then for all )ED(!) we have d@(t)t)/dt| t=0=2Y. Since (&S(t)y, u)
= (y, S*(t)u) = (v, &(—#)u), it follows on differentiating that (¥y, u) = — (y, Lu)
for all y, uED(R); thus 78 is symmetric. On the other hand f generates a
group of unitary operators and this implies (see Hille and Phillips [7, Theo-
rem 1.2.3.2]) that (\; ®) exists for A=+ 1. Thus the deficiency indices are
zero and as a consequence 8 is self-adjoint. Conversely, if <€ is self-adjoint,
then one can show directly that [[AQt(\; ®)|| <1 for all real A>0. The above
quoted Hille-Phillips theorem now implies that ¢ generates a group.

We next determine necessary and sufficient conditions for a conservative
operator ; that i@, have a self-adjoint restriction. For this purpose it is con-
venient to introduce the restriction %y C ¢ defined by

(8.3) DER) = My ED®R),  v(a—) =6 =n0+)]
For yED () and u&P () we have by (7.14)
(8’4) (80‘17 u> + <U, 81“) = - (?1[001)07 uo)a— + (9[0001)0‘ uo)b+ = 01

from which it follows that 7€, is symmetric. Actually (8.4) implies more,
namely that 1®, C (1&)* and as a consequence any self adjoint restriction of
1€, necessarily contains 7%,. This suggests that we consider the self-adjoint
extensions of 7%y rather than the self-adjoint restrictions of ¢¢;; it will turn
out that we obtain the same class of self-adjoint operators in either case. Now
according to the Cayley transform theory (see J. von Neumann [10]), the
operator 18, has a self-adjoint extension if and only if its deficiency indices
are equal. If we define M, CM, by
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(8.5) DMo) = [3:3 EDMY), 3°(a—) = 0 = 2°(b+)],

then clearly IMMy= —%, and the above criterion for 72, to have a self-adjoint
extension is simply the assertion that the subspaces

$ © [range of \ — &] and 9 © [range of NI — M)

be of equal dimension for some A>0. The following theorem, which gives a
method for determining the dimension of the range of NI — IR, does not re-
quire that the operator &, be conservative.

THEOREM 8.3. Let
(8.6) o= [1;9 ED®@), My — &y = 0].
If \ is not a characteristic value of the matrices (7.21) and (7.24), then
= 9 O [range of \I — Dy).

Proof. It is easy to see that ,C 9O [range of )\I—EUZO]. In fact for
&€, and ;ED(Mo) we have by (7.14)

(, (N — Map)) = Ay — 24), 3) — ooy, 39°~ + looy®, 3°)°* = 0.

To establish the inequality in the other direction we suppose that U,
does not fill out $& [range of N\I—I,]. Then there exists a nontrivial
g EHO [range of \I—IM,] which isorthogonal to Uy. Now it is clear from (8.5)
that any dissipative restriction I C I, of the type considered in Theorem 7.1
will contain M,. Since the range of NI —IN coincides with 9, there is a
FEDIM) with A\z—M3=g; obviously 3ED(Mo). Thus 3=RN\; M)g and
g€ HOU\. We now show that these two conditions imply that ;ED(M,),
contrary to our choice of 3. It suffices to show that

(8.7) 3'(a+) = Cop and 3 (b—) = — oz,

since it follows from this and (7.13) that 3°(a—) =0 and 3°(b+) =6 and hence
that ;ED(Mo). We shall use the representation (7.38) for R(\; M) to estab-
lish (8.7).

It will be recalled that the solution pairs [t)f,’,,, »2,,] in (7.38) were chosen
to be linearly independent. We now show that the solutions [(y3,+15,);
i=1,2, - - -, r] are also linearly independent. In fact, if there did exist con-
stants »;, not all zero, such that Y vi(y2,4v5,) =6 for some x,E (a, ), then
writing

Do = Z v¥a; and Y = Z — ViYb,i
we have y3(xo) =5(x0) and — (Yooh2, ¥2)°~+ (Loobs, ¥5)*+<0; and Lemma 7.1
implies that y2=1). Thus D> v:[9a, ¥s.:]=[6, 8], which is impossible. Since

there are just r linearly independent solutions of (3.1) by Theorem 3.1, it fol-
lows that the solutions [(y2,+15.); ¢=1, 2, - - -, 7] span the solution space.
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Further by our selection of the bases, the [(Ya,:+1s.:); i€s1] span W, the
[(99:+19.); E5:1\Us:] span Fa, and the [(43,415,); iE5\Us;] span F.

Returning now to the above ;ED(M) we see that (g, (Ya,i+Ms,:)) =0 for
1Es; and hence by the representation (7.38) we have

(8.8) 3 = Ru(N*g! and 32 = Ra(N)*g?

Also it is clear from (7.38) that if g° vanishes near b and if y, is a solution of
(7.18a, ¢) with y)E F;, then

(?Ioo&oy D?:)b— = — Z ‘Y?(%oo&:.i, \J:) - Z 'Y:(%[oo&:,s, tﬁ)b’

81

8.9 _
(8.9 — 3 i ockes 1),

81Uss

where
b
- f (g,°(n3..~+ nﬁ,.-))dx'

vi= () Wi+ 1)) = (@ Mo+ 100);

the first two sums in the right member of (8.9) extend only over s; because of
Lemma 5.6. For the above ;ED(IM) with g= )\3—9)23, we can approximate
gin by a sequence {gn} such that each of the ¢%'s vanishes near b. We see
that vf,—v} as n—» for {€s, when k=0, for i€s,\Us, when k=1, and for
1 & 51\Us; when B = 2. Further applying Lemma 4.3 to the sequence
{s0=[RO\; M)g.]°} we see that (Aooz), 13)*=—(Ao0s®, 13)>~. As a consequence
(8.9) holds for the 3&D(I) which we are considering. Recalling that 3),=0
for 1Es;, we see that (8.9) can be written as

(2[0030, t)?,)b— = — Z ‘Y:@[oo&b i t)b)

+ Z ‘Y:[@[oo&b i Db) (9[003:.6. D?a)b_]

81V s3

(8.10)

where v:=9{+vI +7v2 = (g, (0a.i+Ms.:)). As we noted above, for our choice of
3 we have v;=0 for ¢Es;. Hence replacing 1 in (8.10) by (9,,;4M.;), 1€ s1\Uss,
and making use of the identities (7.36) which hold for all 7, j if we replace
a— and b+ by b— (as can be seen directly from (3.18)), we finally obtain

(8.11) @oos > (i + 15.)" = = 75 i€sUss

Now for ¥; a solution of (7.18a, c) we can make use of (7.31) to write

@' 1) = Rax(N*8", Ny — Baahs — BaoGoatin/2))
and with the aid of (7.20), (8.8) and (7.9) this becomes
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(@2, 99) = (3%, Baha(b—)) = HooCot , Ho)~.
Thus (8.11) gives

ooz'» ari 4+ 18.0) " = — ooCosa» (s + M5.1)) "

for all jEs,Uss. In view of the fact that the [(2,(6—)+v5,(6—)); TEs1\Uss]
span 9, this implies 3°(b —) = —§g,32. The first relation in (8.7) is proved simi-
larly. As a consequence 3& T(Moy) and hence our original assumption, namely
that U, does not fill out $& [range of NI — D], was false.

To complete this discussion we next prove

THEOREM 8.4. If &, is a conservative operator and the deficiency indices of
iQ are equal, then 1%, has self-adjoint extensions, all such extensions are con-
servative restrictions of 1%, and, conversely, each conservative restriction of i%;
which generates a semi-group is a self-adjoint extension of 1i%,.

Proof. If the deficiency indices of %, are equal, then there exist self-adjoint
extensions. In fact, according to the Cayley transform theory all such exten-
sions are obtained in the following fashion: For fixed (sufficiently large)
A>0 let Uy be the solution space of Au—&u=60 and let By be the solution
space of Av+&0=\v— I v=0. The previous theorem asserts that

= $ O [range of \I — My] and By = H © [range of A\ — &,],

and since the deficiency indices are equal the subspaces Uy and B, will be of
equal dimension. Finally let 8 be an arbitrary isometry with domain DBy
and range 11,. Then each self-adjoint extension 78 of 7 &, is defined by such an
isometry as

DO = 159 =01+ 92,9 ED(R0), 92 = v + Wo withv € B, ],
) = Loy1 + MBY — v).

Now &= —I; so that ILWJIBCD(R); consequently D(L)CD(Y). Finally
since 1€ is a self-adjoint restriction of 7¢; we have by (7.14)

0= (2, 9+ (M M) = — (Woeh?, Y0~ + (Aooh®, y°)>+,

which proves that € is a conservative restriction of 8. Conversely, suppose
that € is a conservative restriction of £, generating a semi-group of operators
so that D(Q) is of the type (7.29). It then follows from (8.3) that 2,C& Thus
i¢ is a symmetric extension of the operator i®, which has finite and equal
deficiency indices and the only such extensions are self-adjoint.

REMARK. For a conservative restriction { of a conservative operator i,
the operator 1€ is always self-adjoint in the two extreme cases, namely when
the system is so regular that all solutions of (7.18) and (7.19) lie in § or when

(8.12)
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the system is so singular that none of the solutions of (7.18) and (7.19) lie
in . In the latter case the deficiency indices are both zero and the operator
18, is itself self-adjoint; in fact this case is so degenerate that & =2,('?).
Before concluding this section, we return to the telegraphist equation
(1.3). We see by (1.5) that the corresponding system operator is conservative
if and only if 7(x) =0. In this case ¢ enters in (1.3) only as a second derivative
so that if u(¢, x) is a solution then so is #(—¢, x). Moreover, since the boundary
conditions are homogeneous of degree one in %,, the boundary conditions will
also be satisfied by u(—¢, x) if they are satisfied by (¢, x). Basically this is
what is required of a system to be reversible. It is somewhat surprising, there-
fore, that our criteria for a conservative operator to generate a group cannot
be verified by inspection for the corresponding system defined by the matrices
(1.4). We shall now bring this system into a form in which the group property
becomes evident. This will be accomplished by means of three successive
transformations, the first of which, taking E into E'=1, is defined by

sr0 0
0 Uz 0 j :
Lo o0 g

V(x) = [E(x)]2 =

We then make a change of independent variable (see (2.20))
62 = [ o) Vo, p(a) = @]

and this is followed by another transformation of the type (2.1) with
1 0 0

O 2—1/2 2—1/2

tO _2—1/2 2—1/2

Vix) =

The result of these three transformations is to bring the system into the form

0 0 O 0 —¢/212  ¢/21I2)
E=1, A=10 —o OJ, B = | ¢/2'2 we/2 —w/2|,
0 0 w —¢/212  wy/2 —wg/2

where ¢ =(s/¢)V/? and w=(pg) 2. It is now easy to verify that L;y can be

(12) If the deficiency indices are both zero than l,=p=m; and ly=n=m,; hence ds=0=ds
and both 9), and ) consist only of the zero vector. In fact suppose % >#. Then in the notation
introduced at the end of §3, there exist subspaces N, and N, of the solution space to (3.1) such
that N, C F, is of dimension p, Ny C F, is of dimension 7, and together N, and N span the
solution space. If F; is of dimension >, there is a nontrivial solution y=ys+m, ¥ & N,
& Ny, belonging to F; but not to N,. Consequently y,& F,NF; and this is impossible if the
deficiency indices are zero.
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obtained from M,z by the simple transformation n'= {1, n2={3, »®={2 From
this it follows that Ay —&y=60 and Ay — M3 =6 have the same number of lin-
early independent solutions. Thus the deficiency indices of £, will be equal
by Theorem 8.3 and hence according to Theorem 8.4 each conservative restric-
tion of £, generates a group of unitary operators.

9. Perturbation theory. With the aid of a perturbation theory for semi-
groups of operators (see R. S. Phillips [12]), we now treat a somewhat more
elaborately coupled system than that considered in §7. The perturbation
theory applies, in particular, to operators 8+ P, where 2 is a dissipative oper-
ator defined as in Theorem 7.1 and P is given by

(91) ‘B = (sBl'i)v i’j = lv 01 2;

here the elements of P are taken to be bounded measurable functions on
(a, b), the elements of Pyo and Poe are taken to be functions of L,(a, b), the
elements of Por and Pjo are taken to be integral operators of the form

b
Bio.xy° =f Paox(E)9°(E) dE, i=0,1,

where .o, E La(a, b), and the Pij, 4, j=1, 2, are matrix transformations on
the 9 space to the i space. It isclear that P isa bounded linear transforma-
tion on 9 to itself. We further impose a dissipative condition on P, namely,

(9.2) By, + @B =0 forally € 9.

According to the above cited perturbation theory, the operator 8+ P gen-
erates a strongly continuous semi-group of linear bounded operators. Actually
this is true even when P does not satisfy the condition (9.2). However if this
condition is met, then we have

THEOREM 9.1. If R is a disstpative restriction of 4 defined as in Theorem
7.1 and if B satisfies (9.1), then L+ P with D(R+-P) = D(R) generates a strongly

continuous semi-group of contraction operators.

Proof. For A> ||| one can prove that A\Ep(2+P) (see [12, Lemma 3.1]).
Thus given an arbitrary &9, we can set y=R(; €4 P)f, in which case
NED(Q) and

Ay — & — Py = f.

The first relation in (7.14) implies that

b+
2)\@: D) - (SBD, ‘)) - <n1 %D) = <Dv f) + (fv l’) + (%001)0. t’o) ’

and making use of (9.2) together with the fact that y&D(®) satisfies a dissi-
pative boundary condition, we obtain N|y||<[|f|. In other words

MRM; 2+ =1
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for all sufficiently large X\. Thus the Hille-Yosida criterion is satisfied by
4P and it follows that this operator generates a strongly continuous semi-
group of contraction operators.

We note that if R is self-adjoint and 7% is a bounded symmetric operator,
then #(% + P) is again self-adjoint so that + P generates a group of unitary
operators. On the other hand, if € is merely a conservative restriction of a
conservative operator which generates a semi-group and if ¢ is a symmetric
bounded operator, then £+ P generates a semi-group of isometries. The proof
of the latter assertion is essentially the same as that of Theorem 8.1 and is
omitted.
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