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Introduction. The Kunneth formula enables one to determine the integral

cohomology group of the product XX Y of the spaces X and Y in terms of

the integral cohomology groups H(X) and H(Y). However, this formula

does not enable one to determine the multiplicative structure of the cohomol-

ogy ring II(XXY) in terms of the integral cohomology rings(2) II(X) and

77(F). It is natural to ask the question: Is the integral cohomology ring

H(XX Y) determined by the integral cohomology rings H(X) and 77(F)?

This question is answered in the negative by the following example:

Let Xi= Yi be the union of the real projective plane and a one-sphere

(circle) with one point in common. Let ^2= F2 be a Klein bottle. It is easy

to check that the rings H(Xi) and H(X2) are isomorphic. However, the rings

H(XiX Yi) and II(X2X Yi) are not isomorphic. In particular, there is a one-

dimensional cohomology class and a three-dimensional cohomology class in

II(X2X Yi) whose product is a nonzero four-dimensional cohomology class.

On the other hand, all products of one-dimensional and three-dimensional

cohomology classes of H(Xi X Yi) are zero. Hence these two cohomology rings

cannot be isomorphic. These assertions will follow readily from the theorems

proved below.

Since the answer to the above question is negative, it is natural to inquire:

What information about the cohomology rings of X and Y is needed to deter-

mine the integral cohomology ring of XXY? Let H(X, n) denote the co-

homology ring of X with the integers modulo n as coefficients. Following

J. H. C. Whitehead [8], and Bockstein [2], we define the spectrum of coho-

mology rings of X, or simply the cohomology spectrum of X, to be the set of

cohomology rings II(X, n), w^O, together with the coefficient homomor-

phisms: II(X, «)—>II(X, m), m>0 and the Bockstein homomorphisms of

degree +1: H(X, m)-J>II(X, 0), m>0. (These homomorphisms are defined

in section (1).) Bockstein [2] stated but did not prove that the cohomology

spectra of X and Y determine the cohomology ring H(XX Y). From these

spectra he constructed a group isomorphic to the group II(XX Y), however,

he did not introduce any products in this construction; thus the question of
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the determination of the integral cohomology ring of XX Y was left open.

Bockstein also gave a construction for determining the groups H(XX Y, n),

the coefficient homomorphisms and the Bockstein homomorphisms.

In this paper, the problem of determining the cohomology ring of the

product XX Fis treated in a purely algebraic fashion. We start with a cochain

complex K, and study the cohomology spectrum of K. Various relations

which exist within this spectrum are indicated in the first chapter of this

paper. The tensor product K®L of two cochain complexes K and L cor-

responds to the cartesian product XX Y of the topological spaces X and Y.

Thus, the algebraic problem amounts to the determination of the cohomology

ring H(K®L). In the second chapter, Bockstein's construction is used to

construct a group Ro(K, L), which is isomorphic to the group H(K®L), if

the complexes K and L are finitely generated. Products are introduced in

Ro(K, L), giving a ring which is proved to be isomorphic to the cohomology

ring H(K®L). It is seen that only a finite collection of rings of the spectra of

K and L are actually needed in the determination of the ring H(K®L) when

K and L are finitely generated. Thus, this construction lends itself to com-

putation.

In Chapter III, it is shown that the cohomology ring H(K®L, n) is de-

termined by the spectra of K and L. The coefficient and Bockstein homo-

morphisms for K®L are considered in Chapter IV, and the various construc-

tions are shown to commute with direct limits. Thus the result can be ex-

tended to infinite complexes and Cech cohomology.

Chapter I. The cohomology spectrum of a cochain complex

1. Definitions and conventions. A pair (C(K), 5) is called a graded differ-

ential group if C(K) is the direct sum of subgroups Cr(K), where Cr(K)=0

for r<0, and 5 is a differential operator homogeneous of degree +1 (or —1)

i.e. 5 is an endomorphism of K with 8Cr(K) GCr+i(K) and 55 = 0. An auto-

morphism w of C(K) is said to be an involution of C(K) if co5 + 5co = 0 and

coco(x)=x for all xGC(K). Usually u> will be the involution defined by to(x)

= (-l)'xior x<G.C»(K).

A triple (C(K), 5, co) is called a graded differential ring if (C(K), 5) is a

graded differential group, w is an involution, C(K) has an identity 1 GC°(K),

x-yGC"+"(K) for xGC"(K) and yGC"(K), and 5(xy) = (8x)y+w(x)8(y).

K — (C(K), S, w) will be called a cochain complex ii (C(K), 5, co) is a graded

differential ring with 5 homogeneous of degree +1.

We let II(K, n) denote the cohomology ring of the cochain complex

K®Z. = (C(K)®Z„, h®\, «®1), i.e. 77(7:, n) = kernel (5®1) modulo image

5®1 where 1 is the identity on Z„, the integers modulo n. If » = 0, H(K, 0),

shortened to II(K), denotes the integral cohomology ring of K, i.e. kernel 5

modulo image 5. The involution w oi K induces an involution co on each

H(K, n). We let (x). denote the cohomology class in H(K, n) of a cochain
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x which is a cocycle modulo n, i.e. hx — ny for some cochain y in K.

For each pair of integers m^O, «>0, the coefficient homomorphisms

hn,m: H(K, m)-*H(K, n) are defined by the formula

A»,m(*m) = (-- x)
\(n,m)     /„

for any cochain x which is a cocycle modulo m, where (m, n) denotes the great-

est common divisor of m and n. It is easy to check that h„,m is well defined, and

is a group homomorphism which is homogeneous of degree zero.

For «>0, the Bockstein homomorphism A„: 77(A', n)-^H(K) is defined by

the formula

A„(*„) = ( — ox) .
\n     /o

It is easy to check that A„ is a well defined group homomorphism which is

homogeneous of degree +1.

2. The cohomology spectrum of a cochain complex. The cohomology

spectrum of a cochain complex is defined to be the collection of cohomology

rings II(K, n) together with the Bockstein and coefficient homomorphisms.

We shall now list some relations which exist between the Bockstein and

coefficient homomorphisms of the cohomology spectrum of the cochain com-

plex K. Their proofs are consequences of the definitions. Most of these

formulae, together with their proofs, are in J. H. C. Whitehead [8].

The following two conditions are satisfied by the Bockstein and coefficient

homomorphisms:

m(n, k)
(2 -1) **.»*... = ——- hh.n,

(tn, h)(m, n)

(2.2) &nthm,K =- A„.
(m, n)

Let zZ(K) denote the direct sum of the rings 77(7^, n) for all n}zO. A

product is introduced in zZ(K) Dv the formula

(2.3) xy = hc,m(x)hc,n(y)

where x is in 77(A', m), y is in H(K, n) and c=(w, n). This product is ex-

tended to all of zZ(K) by linearity. It is easy to check that zZ(K) ls an

associative skew commutative ring with this product.

The Bockstein and coefficient homomorphisms satisfy the following rela-

tions with respect to these products:

k(k, m, n)
(2.4) hk,m(x)hk,n(y) = ————— hk,c(xy),

(k, m)(k, n)
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(2.5) Ac,c(xy) = [Ac,chc,m(x)]y + co(x)[Ac,chc,n(y)],

where xGH(K, m), yGH(K, n), c= (m, n) and ACiC = he.oAc. If k\n and m = n,

formula (2.4) reduces to

(2.6) hk,m(x)hk,m(y) = hk,n(xy)

i.e. hk,m: H(K, m)—>H(K, k) is a ring homomorphism if k divides m.

The following two relations have some important consequences:

(2.7) A.(yh.,o(x))= An(y)-x,

(2.8) An(hn.o(x) ■ y) = co(x) • A„(y)

for xGH(K) and yGH(K, n). If in formulae (2.7) and (2.8) x=An(z) for some

z in 7/(72", n), these equations take the form

An(yAn,n(z)) = A„(y)-An(z),

A.(A„,n(z) ■ y) = co(An(z))-An(y).

These last two formulae suggest that An: H(K, «)—»77(7Q will become a ring

homomorphism if a new product * is introduced in H(K, n) by either one of

the formulae
x*y = x-An,n(y),

x*y = coA..n(x)-y

for x and y in H(K, n).

Let K and 7£' be cochain complexes and suppose F: K—*K' is an allowable

cochain map, i.e., F satisfies the following conditions:

(i) F5 = 8F,

(ii) Fco = coF.

Then F induces homomorphisms Fn: H(K, n)^>H(K', n) for each n. These

induced homomorphisms are related to the Bockstein and coefficient homo-

morphisms and the multiplication by the formulae

(a) Fnh„.m = hn,mFm,

(2.9) (b)       F0A: = AnFn,

(c) Fn(xy) = Fn(x)F.(y),

where x and y are in H(K, n).

The Bockstein  and coefficient homomorphisms preserve direct sums.

Stated precisely, we have the direct sum theorem:

Theorem 2.1. If K= zZiKi (direct sum) where each Kf is an allowable

subcomplex (i.e. oKiQKi) of the cochain complex K, then

(a) H(K, «) = XI H(Ki, n) for each n. (Direct sum.)
»
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(b) hm,n(H(Ki, «)) C H(Ki, m).

(c) An(77(7:,-, n)) C H(Ki).

Chapter II. The integral cohomology ring H(K®L)

3. The group H(K®L). Let K and L be cochain complexes. The tensor

product AT®7 of the cochain complexes K and L is defined to be the graded

differential ring (C(K) ®C(L), (8®l) + (a>®8), u®u) with multiplication de-

fined by the formula

(3.1) (x ® y)-(u ® v) = ( — l)vqxu ® yv

for yEC"(K) and uECq(L). Let S0(K, L) be the weak direct sum of the

groups H(K, n) ®H(L, n) for all non-negative integers n. Define <f>o- S0(K, L)

-^H(K®L) as follows:

cbo | 77(70 ® 77(7) = ao,

<bo | H(K, n) ® 77(7, n) = Anan

where an:H(K, n) (8)77(7, n)-^>H(K®L, n) is the homomorphism induced

by the bilinear map of H(K, n) XH(L, n)—^H(K®L, n) which carries (x„, y„)

into (x®y)n. Thus we have an(xn®yn) = (x®y)n.

Theorem 3.1. If K and L are finitely generated free cochain complexes, then

(a) cf>o is a homomorphism onto,

(b) kernel cf>o is the subgroup Qo(K, L) of So(K, L)

generated by the following relators:

(i)  hij(xj)®yi-Xj®hj,i(yi), i\j or j\i,

(ii) Ai(xi)®yo-Xi®hi,0(yo), i>0,

(iii) Xo®Ai(yi)—hito(co(xo))®yi, i>0.

Proof. A finitely generated free cochain complex is the direct sum of ele-

mentary allowable subcomplexes, an elementary complex being a complex

E of one of the following two types:

(1) E has one free generator c with 8c = 0,

(2) E has two free generators a and b with 8a = tb and 8b = 0 where / is

an integer greater than 1.

Since K and L are finitely generated free cochain complexes, they each

split into the direct sum of elementary complexes. Hence it suffices to prove

(a) and (b) for the case where K and L are elementary complexes(3) because

of the following direct sum lemma.

Lemma 3.2. If K = zZt Kt, L= zZi Li where Kt and 7,,- are allowable sub-
complexes of K and L respectively, then

(3) Some details of such a proof are given in the appendix.
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(i) S0(K, L)=JZ So(Kit Lj),

(ii) <po(S0(Ki, Lj)) C H(Ki ® Lj).

The proof of this lemma is a straightforward verification using the facts

that homology and tensor products preserve direct sums (Eilenberg and

Steenrod [5, p. 141 ]).

4. The multiplication in H(K ® L). Thus far, the ring structure of H(K ® L)

has not been considered. The multiplication in K®L is given by formula

(3.1). In this section products will be introduced in So(K, L). It is convenient

to write h'tij in place of hij®hij: H(K, j) ®H(L, j)-*H(K, i) ®H(L, i).
Since H(K, n) and 7/(7-,, n) are graded rings, H(K, n) ®H(L, n) is given a

ring structure in the standard way, i.e. for x in HP(K, n), y in Hq(L, n), u in

H(K, n) and v in H(L, n)

(4.1) (u ® y) ■ (x ® v) = (-V)vq(ux) ® (yv).

With this multiplication, 77(72, n) ®H(L, n) is an associative ring. This multi-

plication is extended to So(K, L) = 2Z„s0 H(K, n) ®H(L, n) by the formula

(4.2) x-y = h'c.i(x)-h'c,j(y)

where x is in H(K, i) ®H(L, i), y is in 77(72, j) ®H(L, j) and c=(i, j). With

this multiplication, S0(K, L) is an associative ring.

In §2, a multiplication was introduced in the direct sum of the cohomology

rings H(K, i), i^O. We list some properties of the homomorphisms a;:

H(K, j)®H(L, j)-^H(K®L, j) and the coefficient homomorphisms with

respect to these products.

(4.3) c<ihi,j = —— hi.jctj, i > 0,; ^ 0,
(i,j)

(4.4) oti(xy) = a.i(x)ai(y) for x and y in 77(72, i) ® H(L, i).

(4.5) ctih'i.j = hi.jtxj if i\j,

ac(xy) = ai(x)-ctj(y)  for x in 77(72, «) <g> H(L, i),

y in 77(72, ;) ® 77(7,, /) and c = (i, j).

Formulae (4.3) and (4.4) follow immediately from the definitions while for-

mulae (4.5) and (4.6) are consequences of (4.3) and (4.4).

However, <p0: S0(K, L)-^>H(K®L) does not preserve these products. This

can be seen just from considerations of degrees. We noted in §2 that a new

multiplication * can be introduced in 77(72, n) so that An:H(K, w)—>7/(72)

becomes a ring homomorphism. Following this lead, we introduce a cobound-

ary endomorphism D. in 77(72", n)®H(L, n) for »>0 by the formula

(4.7) D.  =  An.n ® I + CO 0 A...
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where 7 is the identity on 77(7, n) and a> is the involution of 77(A", »). An

involution «' of H(K, n) ®H(L, n) is defined by a' =w®w.

The following properties of Dn and co' are easily verified using formulae

(4.3), (4.4), (4.5) and (4.6).

(4.8) 7>„7>„ = 0,       Dno>' + co'Dn = 0.

(4.9) aJD„ = A„lBa„,        anco' = wa„.

(4.10) If c | i,   Dch'e.i = — h'CfiDi.
c

(4.11 Anan(xDn(y)) = A„a„(a;)A„aB(y) = Anan(oi'D„(x) ■ y),

where x and y are in H(K, n) ®H(L, n).

A multiplication * is defined in S0(K, L) as follows: For each pair of posi-

tive integers i and j, choose integers a and /3 so that ai+^j=(i, j). For x in

H(K, i) ®77(7, i), y in H(K, j) ®H(L, j), we define

x* y = xy if j = 0

(4.12) = oi'(x)y if; > 0, i = 0

= ax-T^y) + /^'(T^*)) • y if i > 0, j > 0.

This product is extended to So(K, L) by linearity. So(A", L) with this multipli-

cation is a (nonassociative) ring.

The following theorem shows the importance of the * products.

Theorem 4.1. <j>0: S0(K, L)-^H(K®L) is a ring homomorphism with re-

spect to the * products in So(K, L); i.e. <po(x * y) =cbo(x) <t>o(y).

Proof. It suffices to check this for

x in H(K, i) ® H(L, i) and y in H(K,j) ® H(L,j).

There are four cases to be considered. Case 1, *' = /=»0 follows from formula

(4.4); Case 2, i>0, j = 0; and Case 3, i = 0, j>0 follow from formulae (4.6),

(2.6) and (2.8). Case 4, i>0, j>0 follows from formulae (4.13) and (4.14),

below, which are consequences of formulae (4.9), (4.10) and (4.11).

For x in H(K, i)®H(L, i) and y in H(K,j)®H(L,j), i>0,j>0, c=(i,j),

(4.13) Acac(*Di(y)) = — A,a,(*)A,a,(y),
c

(4.14) Acac(o>'(Di( x))y) = — A.-a.-^A^y).
c

We should observe that in this theorem we have not assumed K and 7 to be

finitely generated cochain complexes.

Combining Theorems 3.1 and 4.1, we obtain
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Corollary 4.2. If K and L are finitely generated free cochain complexes,

then Qo(K, L) is an ideal of So(K, L) with * as multiplication.

Thus we have the very important

Corollary 4.3. <f>o induces a ring isomorphism <f>o* of So(K, L) modulo

Qo(K, L) onto H(K®L) when K and L are finitely generated and free.

The multiplication * introduced in S0(K, L) depended on choices of

integers a and 0. Theorem 4.1 shows that this multiplication is determined

modulo kernel d>o- Thus if 72 and L are finitely generated and free, * is deter-

mined modulo Qo(K, L). However, it can be shown directly that if a second

multiplication *' is introduced in S0(K, L) using a different choice of integers,

then for x in 7/(72, i) ®H(L, i), y in 77(72", j) ®H(L, j) and c = (**, j)

x* y — x*'y = Dc(kco'(x)y) for some integer k.

But Dc(u) is easily seen to be in <2o(72, /,). Thus * is unique modulo Qo(K, L).

Suppose 72 and L are finitely generated free cochain complexes. Let T be

the collection of all integers n such that w = 0 or n = (t, s) where t ranges over

the torsion coefficients of 72 and 5 ranges over the torsion coefficients of L

(Eilenberg and Steenrod [5, p. 138]). If we examine the proof that d>0 is onto

H(K®L), we see that only the groups 7/(72", n)®H(L, n) for n in T are

needed. However z^ner H(K, «) ®H(L, n) need not be a subring of So(K, L).

Let T' be the smallest collection of integers which contains T and is closed

with respect to taking greatest common divisors. Then clearly

X) B(K,n) ® H(L,n).
neT'

is a subring of So(K, L) which contains the subring generated by

.£ 7/(72, n) ® H(L, n).
niT

Thus the cohomology ring 7/(72®/,) is determined by the finite collection of

cohomology rings 7/(72, n) and H(L, n) for n in 7* if 72 and L are finitely gen-

erated and free.

Chapter III. The cohomology ring H(K®L, n)

5. The group H(K®L, n), n>0. Suppose K and L are cochain complexes.

Let P.(K, L) be the direct sum of the groups 7/(72, i) ®H(L, i) for all integers

i which divide n. Let Sn(K, L) be the group direct(4) product

P.(K, L) X P„(K, L).

We define 6n: P„(K, L)^H(K®L, n) by the formula

_ 6n | 7/(72, i) ® H(L, i) = hn.itxi

(4) We use the direct product notation here because both factors are the same, while for

P.(K, L) we used the direct sum notation because all the factors were distinct.
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and 4>n: Pn(K, L) XPn(K, L)^H(K®L, n) by the formula

(5.1) cbn(x, y) = 6n(x) + An.n6n(y),

tor x and y in Pn(K, L). Clearly, <pn is a group homomorphism.

Theorem 5.1. If K and L are finitely generated free cochain complexes, then

(a) 0„ is a homomorphism onto H(K®L, n).

(b) kernel cpn is the subgroup Qn(K, L) of Sn(K, L) generated by the following

relators:

(i)   (0, hi,j(x,)®yi-Xj®hj,i(yi)),

(ii)  (hi,j(x])®yi-xi®hj,i(yi), 0),

(iii)   (7>„(m), -u),

where iandj both divide n, XjEH(K, j), y,-£77(7, i) anduEH(K, n)®H(L, n).

As in Chapter II, it suffices to prove the theorem for K and L as elemen-

tary complexes(5) because of the following lemma.

Lemma 5.2. If K= zZi K*, L = zZ> A> where Ki and L, are allowable sub-
complexes of the cochain complexes K and L respectively, then

(1) Sn(K,L) = zZSn(Ki,L,),
i.i

(2) 4>n(Sn(Ki, Lt)) E H(Ki ® Lj, n).

The proof of this lemma is left to the reader.

Letting Rn(K, L) =Sn(K, L) mod Q„(K, L), we have

Corollary 5.3. If K and L are finitely generated free cochain complexes,

cpn: S„(K, L)-*H(K®L, n) induces an isomorphism cp*: Rn(K, L)-J>H(K®L, n),

»>0.

6. Products in Sn(K, L). Thus far Sn(K, L) has been given only a group

structure as the direct product Pn(K, L) XPn(K, L).

A multiplication will now be introduced in Sn(K, L) by first introducing a

multiplication in Pn(K, L) = zZi\nH(K, i)®H(L, i). It is easy to see that

Pn(K, 7) is an ideal of So(A", 7) with respect to the skew multiplication

defined by formulae (4.1) and (4.2), and also with respect to the * product

defined by formula (4.12). Thus, in particular, Pn(K, L) is closed with respect

to both these multiplications. We introduce another product O in Pn(K, L)

by defining for x in 77(i£, i) ®H(L, i) and y in 77(7:, j) ®H(L, j)

n
(6.1) xOy = Tr^rxy

(6) Details of such a proof are given in the appendix.
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where [i,j] is the least common multiple of i and j. This product is extended

to all of P„(K, L) by linearity.

The following formulae show the relations between the homomorphism Bn

and the products defined on P.(K, L). These formulae are established using

formulae (2.4), (2.5) and the definition of 8„.

(6.2) 6n(xO y) = 6.(x)8.(y);

(6.3) d„(x-Dj(y)) = — e.(x)-A.Jn(y);
c

(6.4) 6.(Di(x)-y) = — [A.,n6.(x) -fl.(y) J;
c

i 7

(6.5) 6n(x*y) = a — 6„(x) ■ An,.(e„(y)) + 0 — co(A„,.dn(x)) -d.(y);
c c

(6.6) A...6. = hn,o4>o\ P.(K,L);

where xGH(K, i) ®H(L, i) ,yGH(K, j) ®H(L, j),c= (i, j), a and 0 are integers

such that ai-\-0j = c, and * is defined using these integers (formula (4.12)).

For each i and j which divides n, choose integers a and 0 such that

<xi-T-0j = c=(i, j) and suppose that * has been defined using these integers.

Let xGH(K, i)®H(L, i), yGH(K, j)®H(L, j). A multiplication denoted

by * * is introduced in S.(K, L) =Pn(K, L) XP.(K, L) by the formulae

(i)    (0, x)**(0, y) = (0, x*y),

(ii)   (0, x) * * (y, 0) = I — co'(x) * y, a — x Q y),

(6'?) i

(iii) (y, 0)* * (0, x) = ( y* x, a —co'(y) O xj,

(iv)   (y,0)**(x, 0) = (y O x, 0).

This product is extended to all of Sn(K, L) by linearity. It is easy to check

that S„(K, L) with this multiplication is a (nonassociative) ring.

Theorem 6.1. <h.:S„(K, /,)—>H(K®L, n) is a ring homomorphism with

respect to the * * product defined by formula (6.7), i.e. <j>„(u * * v) =<j>.(u) ^.(v)

for u and v in S.(K, L).

Proof. It suffices to prove this for the four cases given in formula (6.7).

Cases (i) and (iv) are immediate consequences of formulae (6.2) and (6.6).

The proofs for cases (ii) and (iii) are similar, hence we only give a detailed

proof for Case (ii). Note the use of formulae (5.1), (6.5), (6.2) and (2.5).
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<t>„((0, x) * * (y, 0)) = <pn( -cc'(x) * y, a — x Q y j

i
= - e„(co'(x) *y) + a — An,n6n(x O y)

c

=    -      a— en(0>'(x))-AnJn(y)
c

+ pjcc(An,n8n(U'(x))-dn(y)~\

i

+ a— [An,n(9n(x))-Bn(y) + u>8n(x) ■ An,„0n(y) ]
c

j i
= p — An,ndn(x)-dn(y) + a — AnJn(x)-dn(y)

c c

= An,ndn(x)-dn(y)

= 0„(O, x)-cpn(y, 0).

The following corollaries are immediate consequences of this theorem and

Theorem 5.1.

Corollary 6.2. Qn(K, L) is an ideal of Sn(K, L) with respect to the * *

product if K and L are finitely generated free cochain complexes.

Corollary 6.3. If K and L are finitely generated free cochain complexes,

then Sn(K, L) is associative modulo Qn(K, L), i.e. x* * (y* *z) = (x* *y) * *z

mod (?„.

It can be proved directly that the multiplication defined in Sn(K, L) is

unique modulo Qn(K, L). However if K and L are finitely generated and free,

this is an immediate consequence of Theorems 5.1 and 6.1.

Since Qn(K, L) is an ideal of Sn(K, L) with respect to the * * product

when K and L are finitely generated and free, Rn(K, L) is a ring. Thus we can

state Theorem 5.1 in the stronger form:

Theorem 6.4. If K and L are finitely generated free cochain complexes, then

cp*: Rn(K, L)-+H(K®L, n) is a ring isomorphism.

We will now apply the foregoing theory to the example given in the intro

duction. We let Z„ [u] denote a cyclic group of order n with generator u. Since

the Klein bottle K and the union of the real projective plane and a one-

sphere (P2\/Si) have only two as torsion number, we need consider only the

cohomology rings with integers and integers modulo two for coefficients. The

integral cohomology groups and the cohomology groups with integers modulo

two are as follows:
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77°(72) = H"(P2VSi) =Z[(e)o],

IP(K) = H\P2\/ Si) = Z[(c)„],

IP(K) = H2(P2VSi) =Z2[(b)o],

77»(72, 2) = H°(P2VSh 2) = Z,[(e)t],

H\K, 2) = W(P2 V Si, 2) = Zi[(c)2] + Zi[(a)2],

H\K, 2) = H2(P2VSU 2) = Zi[(b)i].

In each case, these generators of the respective groups are related by the

Bockstein and coefficient homomorphisms as follows:

Ai((a)i) = (b)o, A2((e)2) = A,((c),) = A,((i),) = 0,

hi,o((e)o) = (e)i, hi,0((c)0) = (c)2 and hi.0((b)o) = (b)t.

The multiplication table for the cohomology rings of these spaces is deter-

mined by giving the products for these generators. With integer coefficients

we have the same multiplication table for the both spaces. Thus we have the

following table:

(e)o (c)0 (b)0

(e)o (e)o (c)0 (b)o

(c)0 (c)o 0 0

Wo (b)0 0 0

However, with integers modulo two we have different products as indicated

in the following tables:

(e)i (c)2 (a)i (b)i

(e)i (e)i (c)2 (a)i (b)2

(c)2 (c)i 0 (bh 0
(a)i (a)2 (b)2 (b)2 0

(b)i (b)i 0 0 0

Klein Bottle K

(e)2 (c)i (a)i (b)i

(e)i (e)i (c)i (a)i (b)2

(c)2 (c)2 0 0 0

(a)i (a)2 0 (b)2 0

(b)2 (b)2 0 0 0

7W Si
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It can be easily seen that the rings determined by the above multiplication

tables are not isomorphic. If we compute the cohomology groups of KXK

and (Pi\/Si)X(Pi\/Si) in dimensions one and three, we find the following

generators:

(c ® e)o,    (e ® c)0 in dimension one,

(c ® b)o,    (b ® c)o, in dimension two

and

(— d(a ® a) 1  = (b ® a — a ® b)o in dimension three.

This gives rise to the following multiplication tables:

c®e e®c

(c®b)0 0 0

(b®c)0 0 0

(b®a-a®b)0 (b®b)0 (b®b)Q

KXK

(c®e)0 (e®c)0

(c®b)0 0 0

(b®c)0 0 0

(b®a— a®b)0 0 0

(Pi V Si) X (Pi V Si)

This substantiates the assertion made in the introduction.

We now consider a second and more startling example which shows that

we actually need to consider not only the abstract ring structures but also the

coefficient and Bockstein homomorphisms. Let us take for the spaces, the

lens spaces 7(5, 1) and 7(5, 2) (cf. Seifert and Threlfall [7, p. 210]). We let

7,1 = 7(5, 1) and L2 = 7(5, 2). Both of these spaces have only five torsion.

Hence, we need consider only the cohomology rings with integers and integers

modulo five for coefficients along with the corresponding coefficient and

Bockstein homomorphisms. It is left to the reader to verify that these spaces

have isomorphic cohomology rings with integers and integers mod 5 for coeffi-

cients. However, one finds that there is no isomorphism between these rings

which commutes with the Bockstein and coefficient homomorphisms. Upon

computing the integral cohomology rings of the spaces LiXLi and L2X72,

using the above constructions, one finds that there can exist no isomorphism

(ring) between these rings.
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Chapter IV. The cohomology spectrum of 72®L

7. The Bockstein and coefficient homomorphisms in S„(K, L). Thus far

we have constructed, for each non-negative integer n, a ring S.(K, L). In this

section homomorphisms are defined within this collection of rings which will

correspond to the Bockstein and coefficient homomorphisms. These new

homomorphisms will be denoted by the same symbols.

For m and n positive integers we define hm,„: Sn(K, L)-*Sm(K, L) by the

formula

[m, n]     ,
*-..(*. o) = -r—^ (*:.,-(*), o),

\m, i\
(7.1)

m , ,
hm..(0, x) =- (ahc,iDi(x), Bhc.i(x))

(tn, n)

where x is in 77(72, i) ®H(L, i), i\ n, c= (m, i) and the integers a and 0 satisfy

am-\-0i = c. We also define hm,o: S0(K, L)—>Sm(K, L) by the formula

hm,o(x) = (h'm,o(x), 0) i = 0,

(7.2)
= (ahc,iDi(x), 0hcA(x)) i > 0

for x in 77(72, i)®H(L, i), c=(m, i) where the integers a and 0 satisfy

am -r-0i = c.

The Bockstein homomorphism A„: S„(K, L)—>So(K, L), n>0, is defined

by the formula

(7.3) A.(x, y) = x

for (x, y) in 5„(72, L). We also define an involution co. of 5„(72, L) for «>0 by

the formula

<*n(x, y) = (co'(x), -co'(y)) n > 0.

An involution co0 of 5o(72, L) is defined for x in 77(72, i) ®H(L, i) by the

formula

wo(x) = — co'(x) i > 0,

= co'(x) i = 0.

It can be shown directly that hm..(Q.(K, L))GQm(K, L) and A.(Q.(K, L))

GQo(K, L). However, such a direct proof is a long and tedious computation.

The two inclusions are immediate corollaries of the following theorem when

72 and L are finitely generated and free.

Theorem 7.1. The homomorphisms hm,„, A. and co. defined above commute

with 4>.. Thus we have the following formulae:

(7.6) <t>.h.,m   =   hn,m<bm H  >   0, tK  ^   0,
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(7.7) 0„Am = Am<pm m>0,

(7.8) <bnun = oxbn n ^ 0.

The proofs of these formulae are easy verifications and are left to the

reader.

As an immediate consequence we have

Corollary 7.2. If K and L are finitely generated free cochain complexes,

then

(i)    km,n(Qn(K, L)) C Qm(K, L), m > 0, n ^ 0;

(ii)      An(Qn(K,L))EQo(K,L), n>0;

(iii)     cc„(Qn(K, L)) C Qn(K, L).

Hence these homomorphisms induce homomorphisms h*,:„, A„* and co„* on the

quotient rings R„(K, L), m^O, and these induced homomorphisms satisfy

formulae (7.6), (7.7) and (7.8). Thus, since each <pn induces an isomorphism

between Rn(K, L) and H(K®L, n), the induced coefficient and Bockstein

homomorphisms correspond to the coefficient and Bockstein homomorphisms

in the cohomology spectrum of K®L.

8. Homomorphisms induced by allowable cochain maps. In this section,

the obvious definitions of homomorphisms induced by allowable cochain maps

on the rings Sn(K, L) are given. Let K, K', L and L' be cochain complexes,

and let/: K-+K' and g: L-^L' be allowable cochain homomorphisms. Then

(/, g)o: So(K, L)->S0(K', L') is defined by the formula

(8.1) (/, g)o | 7/(A-, ») 0 77(4 n) = /„ <g> gn

where /„: H(K, «)—>77(A", n) and g„: H(L, n)-*H(L', n) are the homomor-

phisms induced by/ and g respectively. Let (/, g}„' = (f, g)o\Pn(K, L). Then

(f, g>»: Sn(K, L)->Sn(K', L') is defined by the formula

(8-2) (f, g)n =«f,g)n,(f, g)'n).

Since / and g are allowable cochain homomorphisms, /„ and gn commute

with the corresponding Bockstein and coefficient homomorphisms (formula

(2.9)). Thus (/, g)n, «^0 maps the generators of Q„(K, L) into the correspond-

ing generators of Q„(K', L') and therefore (/, g}„ induces a homomorphism

(f,g)*:Rn(K,L)^Rn(K',U).
The homomorphisms (/, g)n and (J, g)*, «^0 satisfy the following func-

torial properties:

Lemma 8.1. (a) If f: K-^>K and g: L—*L are identity homomorphisms, then

(/, g)n: Sn(K, L)^S„(K, L), n^O, and (/, g)*: Rn(K, L)^Rn(K, L) are iden-

tity homomorphisms.
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(b) Iff: 72->72', /': K'-^K", g: L-*L' and g': L'^L" are allowable homo-
morphisms, then

iff, g'g)»  =   (/', g'Uf g)nMK, L)   ® Sn(K", L"),

and

iff, g'g)* = (/'- g')*(f, g)*n:R.(K, L)-+R„(K", L").

These functorial properties follow from the corresponding properties for

tensor products, direct sums and homology, the details of the verification

being left to the reader.

The following theorem shows that <j>n, n^O, is a natural homomorphism

with respect to induced maps.

Theorem 8.2. If f: K—>72' and g:L-^>V are allowable cochain homomor-

phisms, then

<t>n(f,  g)n  =   (f®  gUnSn(K, L) -» 77(72'  ® /',   «)

and

*»(/. g)*« = (/ ® gU*n:Rn(K, L) -* 77(72' ® /', n).

This follows from the definitions, formula (2.9), and the fact that

Cti(fi ® gi)   =   (/® g)iCti.

Theorem 8.3. Let f: K—>K' and g: L—>L' be allowable cochain homomor-

phisms. Then (f, g)n: S„(K, L)—>S„(K', L') preserves the * * products, i.e.

(/. g)n(x * * y) = (/, g)n(x) * * (/, g)n(y) for x and y in Sn(K, L).

Proof. It suffices to prove this for the case listed in the definitions of the

* * products, e.g. formulae (4.12) and (6.7). The following formulae are used

in this verification, where xGH(K, i)®H(L, i), yGH(K, j)®H(L, j) and

u and v are in 5o(72, L).

(8.3) (fi® gi)h'i.i= h'i,i(fi® gi),

(8.4) (f,g)»(u-v) = (f,g)o(u)-(f,g)o(v),

(8.5) Di(fi®gi) = (fi®g<)Di,

(8.6) (/, g)B(Di(x) ■ y) = Di((f, g)0(x)) ■ (/, g)0(y),

(8.7) (/, g)o(xDi(y)) = (/, g)o(x)-Di(f, g\(y),

(8.8) (J, g)n = (f, g)o\ Pn(K, I).

Theorem 8.4. If f: K—>K' and g: L—*L' are allowable cochain homomor-

phisms, then

(8.9) (/, g)nhn.m = h.,m(f, g)m:Sm(K, L) -+Sn(K', L'),
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(8.10) (/, g)0A„ = A„(/, g)n:Sn(K, L) -»So(K', V).

These formulae are consequences of the definitions. Their proofs are left

to the reader.

Formulae (8.9) and (8.10) also hold for the homomorphisms (f, g)*,

h*m and A* induced on the quotient rings Rn(K, 7).

The results of this section can be interpreted using the language of the

theory of functors, (cf. Eilenberg and Steenrod [5, p. 111]).

For each integer n 2:0, Sn is a function which assigns to each pair (K, L)

of cochain complexes a ring S„(K, L) and to each pair of allowable cochain

homomorphisms/:^—* K' and g: L—>7', a ring homomorphism (f,g)n:Sn(K,L)

—>S„(K', 7'). Then Lemma 8.1 states that Sn is a covariant functor on pairs

of cochain complexes.

For each n^O, Rn is a function which assigns, to each pair (A', L) of

finitely generated free cochain complexes, a ring R„(K, L), and to each pair of

allowable cochain maps /: K—*K' and g: L—>L', a ring homomorphism

(/, g)*: Rn(K, L)-^Rn(K', L'). From Lemma 8.1, we see that Rn is a covariant

functor defined on pairs of finitely generated free cochain complexes.

9. Extension to infinite complexes and Cech cohomology. In this section,

the functors Sn and Rn will be shown to commute with direct limits. This will

then enable us to extend the results of the previous sections to infinite cochain

complexes. We first list some known results about direct limits. Their proofs,

in a general form, may be found in Cartan and Eilenberg [4].

(1) Direct limits commute with tensor products.

(2) Homology, as well as the coefficient and Bockstein homomorphisms,

commute with direct limits.

(3) Direct sums commute with direct limits.

We shall use the notation of Eilenberg and Steenrod [5] for direct systems

of groups.

Let the cochain complexes 3C and £ be the direct limit of the direct system

of cochain complexes JA', w\ and (7, p\ over the directed sets M and N

respectively. The set MXN is directed by defining (a, P) < (y, 5) if a<y and

P< 8 where a and y are in M and P and 5 are in N. Let {Sn(K, L), S„(t, p)},

[Qn(K, L), Qn(w, p)} and {R„(K, L), R„(ir, p)} be the direct system of

groups, subgroups and quotient groups defined as follows:

Sn(K, L)(,,,3) = S„(Ka, Li);        5n(7r, p)(O,0) = 5»(7r0, pi);

(y f) ~t        o

Qn(K, 7)(«,is) = Qn(Ka, Li);       Qn(ir, p)<a,/3) = S„(ira, pp) | Q„(Ka, Lp);

Rn(K, £,),„,„, = Rn(Ka, Lf);        R„(ir, p)<I^ = Rn(rl, p'f)   for (a, p) < (y, 6).

Theorem 9.1. S„(X, £), Qn(X, £) and Rn(X, £) are the direct limits of the

direct systems of groups, subgroups and quotient groups (5n(A', 7), Sn(rr, p)},

\Qn(K, L), Qn(w, p)} and {R„(K, L), R„(it, p)} respectively.
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Proof. That Sn(X, £) is the direct limit of the direct system of groups

{S„(K, L), Sn(ir, o) } follows from the facts that tensor products, homology

and direct sums commute with direct limits. To see that @„(3C, £) is the direct

limit of J Qn(K, L), Q„(ir, p) J, one uses the fact that the homology spectrum

commutes with direct limits. Thus the relations which define Q„(3Z, £) can

be pulled back to some Q„(Ka, Lp). Since direct limits preserve exact se-

quences (cf. Eilenberg and Steenrod [5, p. 225]), 7?n(3C, £) Is the direct limit

of {7?„(72, L), Rn(ir, p)J because for each a in M and 0 inW, the following

sequence is exact:

0 -> Qn(Ka, Lp) -» Sn(Ka, Lp) -> R.(Ka, Lp) -» 0.

Theorem 9.2. If K and L are torsion free cochain complexes, then for each

t£0,
(a) 4>i'- Si(K, /,)—>H(K®L, i) is a ring homomorphism onto,

(b) kernel 4>i = Qi(K,L).

Proof. In §§4 and 6, we saw that 4n is a ring homomorphism for i^O.

Hence it suffices to prove that </>,- is onto and kernel <£, = (),(72, L). 72 is the

union of its finitely generated allowable subgroups. Also for each pair (72,,, Kp)

of finitely generated allowable subgroups, the subgroup generated by Ka\JKp

is finitely generated and allowable. Hence 72 is the direct limit of its finitely

generated allowable subgroups (cf. Eilenberg and Steenrod [5, p. 229]).

Similarly 7, is the direct limit of its finitely generated allowable subgroups.

Since a finitely generated subgroup of a torsion free group is free, the fol-

lowing sequence is exact for any finitely generated allowable subgroups 72„

of 72 and Lp of L:

0 -> Qi(Ka, Lp) -> Si(Ka, Lp) -> 77(72„ ® Lp, i) -» 0

where the map 5,(72,,, Lp)—>-H(Ka®Lp, i) is<^(a,ff). Since direct limits preserve

exact sequences, we conclude by Theorem 9.1 that the following sequence is

exact:

0 -* Q,(K, L) -» 5,(72, L) -* 77(72 ® L, i) -> 0

where the map 5,(72, L)—>II(K®L, i) is ip?. Since 4>i is natural, it commutes

with the induced projections; hence 0,°° =<£,-. This completes the proof of the

theorem.

Corollary 9.3. If 72 and L are torsion free cochain complexes, then cb*:

Ri(K, L)^>H(K®L, i) is a ring isomorphism onto.

Let X be a locally compact space, and let H(X, i) be the Cech cohomology

ring of X with compact supports with the integers modulo i as coefficients. It

is known (cf. H. Cartan [3] or J. Leray [6]) that a torsion free cochain com-

plex 72 can be assigned to X so that the cohomology ring 77(72, i) is naturally

isomorphic toH(X, i). It is also known that if 72 and L are torsion free cochain
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complexes assigned to the locally compact spaces X and Y, as above, then

the torsion free cochain complex K®L has the property that the cohomology

ring H(K®L, i) is naturally isomorphic to H(XXY, i) (for details and a

proof see [3, p. 60] or [6, pp. 113-114]). Thus we see that the cohomology

spectra of X and Y determine the cohomology rings H(XXY, i). This is

stated precisely in

Corollary 9.4. If X and Y are locally compact spaces, then cp*: Ri(X, Y)

—>H(X X Y, i) is a ring isomorphism onto.

Proof. Since the spectra of X and Y are isomorphic to the spectra of K

and 7, where K and 7 are as above, we have Ri(X, Y) is isomorphic to

Ri(K, L). By Corollary 9.3, Ri(K, L) is isomorphic to H(K®L, i) which in

turn is isomorphic to H(XX Y, i).

Theorem 9.5. If X and Y are compact spaces, the Cech cohomology spectra

of X and Ydetermine the Cech cohomology rings H(XX Y,i),i^0.

Proof. The Cech cohomology ring, H(XX Y, i) is the direct limit of co-

homology rings of nerves of finite coverings. One can verify that the set of

"product" coverings { UiX Vi) with {77;} a finite open covering of X and

{ Vj\ a finite open covering of Fis cofinal in the set of all coverings of XX Y.

Let N(U) denote the nerve of a covering U. It can be verified that the sim-

plicial product ([5, pp. 66-70]) N(U) AN(V)=N(UX V) where UX V is the
product covering. Since \N(U)AN(V)\ is homotopically equivalent to

| N(U) XN(V)\, it follows that H(N(U)XN(V)) is naturally isomorphic to

H(N(UXV)). Hence

.. AO.Y)
q>i =   Um <pi

(U,Y)

is an isomorphism of Ri(X,  Y) onto H(XXY, i) by Theorem 9.1.

Appendix. We shall prove Theorems 3.1 and 5.1 for the case where K and

7 are elementary complexes with two free generators. Let K have free gen-

erators a and b in dimensions p and p + 1 respectively with 8a = tb, 8b = 0, and

let 7 have free generators a' and b' in dimensions q and q +1 respectively with

8a'=sb', 8b'= 0. For easy reference, we list the cohomology groups of K, L

and K®L with the integers mod n for coefficients, «^0. Zn[u] will denote a

cyclic group of order n with u as a generator, c= (n, t, s) and d = (t, s).

H»+l(K,n) =Z(t,n)[bn], »StO,
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H-+l(L,n) =Z(,,n)[b'.], n^O,

IV+"(K ® L, n) = z\ f — a ® a' J    , n > 0,

77"+"+1(A' ® L) = ZJY— d(a ® a'))    ,

Hp+*+2(K ®L,n)= Zr[(b ® b')n], n^O,

H"+"+l(K ® L, n) =-Zc + Zc, n> 0.

It is convenient to describe this last group as the abelian group generated

by

E = (-*-5(a ® a')) , G = (-1)'(—— a ® b')
\d /„ \ (n, t) /„

and

F = (—— b ® a')
\(n, s) /„

subject to the relations:

cE = cF = cG,

nc                     tc                   sc
-E = -F H-G.
(n, t)(n, s) (n, t)d (n, s)d

All the other cohomology groups of 72, L and K®L are zero. The proof that

the group generated by E, F and G subject to the above relations is the direct

sum of two cyclic groups of order c is left to the reader. Note that the integers

nc/[(n, t)(n, s)], tc/[(n, t)d] and sc/[(n, s)d] are relatively prime in pairs.

To prove that qbn is onto, it suffices to exhibit a pre-image for each gener-

ator. Thus we have

4>n(ac ® a'c, 0) = f — a ® a' j , n > 0,

<bo(ad ® a'd) = (-— &(a ® a') ) ,
\ d /o

<b„(bn  ®  b'n,  0)   =   (b  ®  b')., »   >   0,

4>o(6o ® b0) = (b ® b')0,

4>n(b(n.s)   ®  «(n,S), 0)   = F,

<t>n((-l)pa(„,t) ® &(„,,), 0) = G,

<t>n(ahc,dDd(ad ® a'd), Bac ® ai) = E,
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where a and P are integers such that an+pd = c. The verification of the

above formulae is left to the reader.

It is easy to see that Qn(K, 7)Ckernel <£n, w>:0, because <f>„ maps each

generator of Qn(K, L) into zero. Thus to prove (b) kernel <b„ = Qn(K, 7), it

suffices to prove (b') kernel <p„EQn(K, L), n^O.

In proving (b'), it will be convenient to introduce a graded structure in

S„(K, L), «>:0. This is done for So(K, 7) by defining

S'o(K, L) =   zZ  HV(K) ® B\L) +      zZ      E H"(K, n) ® HQ(L, n).
P+g—r P+Q- r— 1    n>0

For Sn(K, L), we define

P'«(K, L) =   zZ   Z HP(K, i) ® H\L, i)
p+t—T   i | n

and

Srn(K, L) = P'n(K, L) X p7\k, L).

It is easily seen that <pn(S'n(K, L))EH'(K®L, n), »2t0. Thus to prove that

kernel <pnEQn(K, 7), «S:0, it suffices to consider only homogeneous elements

Of Sn(K, L).

An equivalence relation ~ is introduced in Pn(K, L) as follows: u~v if

u — v is a linear combination of elements of the form h,,,(x) ®y — x®hj,i(y)

where both i and j divide n. That ~ is an equivalence relation follows im-

mediately.

We now list some relations which are useful in the proof of b'. We assume

that i divides n and c=(n, t, s).

i(n, I, s)
(A.l) hi,,(x) ® hi,,(y) ~-—-—- hc,,(x) ® hc,.(y),

(t,i)(t,s)

(A.2)       zZ^ihUu) ® hUv)~(zZ^i        ,'   \**M ® *«..(«))
• In \ <|n (l,l)(l,s)/

where each A i is an integer.

(A.3) hi,n(x) ® hitt(y) ~ -^-— x ® hn,,(y),
(h I)

(», 0
(A.4)        ht,,(x) ® hi,n(y) ~ —-— hn,,(x) ® y,

(ht)

(A.5) D((u) ~ Dnh'n.i(u) for u in 77(tf, i) ® H(L, i).

Formulae (A.l), (A.3), (A.4) and (A.5) follow from formula (2.1), and the

definition of ~, while (A.2) follows from (A.l).
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An equivalence relation is introduced in 5„(72, L)—P„(K, L)XPn(K, L)

as follows: For u and v in S„(K, L), u=v (mod Qn) ii u—v is in Q„(K, L). It

is immediate that this is an equivalence relation.

For x and y in P„(K, L) the following three statements are equivalent:

(i) x~y,

(ii)  (0, x) = (0, y) mod<2„,

(iii)  (x, 0) = (y, 0) mod Qn.

This follows from the definitions of Q„(K, L) and the equivalence relations

defined above.

The following equivalences modulo Qn are readily verified. A proof of (A.7)

is given below. In each case i divides n.

(A.6) (0, hi.0(x) ® hi.o(y)) = 0 mod Q.,

(A. 7) (Dt(u), 0) m (o, 4- * J mod Q.,

(A.8) (0, Di(u)) = 0 mod Q»

for u in 77(72, i) ®H(L, i), x in 77(72) and y in 77(7,).
Proof of (A. 7). It suffices to prove this for u =x®y in 77(72, i) ®H(L, i).

(n/i)x®y = hi,nh„,i(x) ®y~hn,i(x) ®h„,i(y) by formula (2.1) and the definition

of ~. Hence (0, (n/i)x®y) = (0, hn,i(x)®hn.i(y)). By formula (A.5) and the

relations defining <2„(72, L) this is =(D„h'n,i(x®y), 0) = (Di(x®y), 0). The

next two formulae are proved in a similar fashion.

(A.9) — (ah[..dDd(u), Bh'c.du) = (0, h[..d(u)) mod Qn,
c

nc tc sc
(A. 10) - e=-f-\-gmodQn

(n, l)(n, s) (n, l)d (n, s)d

where d=(t, s), c=(n, t, s), uGH(K, d)®II(L, d), a and 0 are integers

such that an+0d = c, e=(ah'c.dDd(hd,t(xi)®hd,s(yi)), 0hc.i(xi)®hc,a(yi)), f

= (hn,oAt(xi)®h.,,(y,), 0) and g=(hn,lco(xi)®h„,oAs(yl), 0), xtGH(K, t) and

y,GH(L, s). The proof that kernel cb„GQn(K, L) can be broken down into

the following cases for «>0.

Case (1) x G Sn+"+\K, L).

Case (2) * G S*+"+\k, L).

Case (3) * G Sl+t+1(K, L).

Case (4) x G S?\K, L).

We will only give proofs for Case (1), n>0, and Case (3), «>0 because

the proofs for the other cases are similar.

Proof of Case 1, »>0. Let xG5£+8+3(72, L), «>0. Then <f>„(x) =0 because
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H"+***(K®L, n) =0. But x= £,,„ 4,(0, hi.o(b0)®hi,0(bo)) which by formula

(A.6) is =0 mod Qn. Thus x is in Qn(K, L).

Proof of Case 3, n>0. Suppose xESf'+^K, L). Then by formulae (A.3),

(A.4), (A.9), and (A.2), x=Ae+Bf+Cg mod QH where A, B, and C are inte-

gers, c=(n, t, s), d = (t, s),a and P are integers such that an +pd = c,

e = (ahc,dDd(od ® ad), Phc,t(ai) ® hc,,(a,)),

f=(bn® kn,.(a.), 0)

and

g = (hn.t(u(ai)) ® b'n, 0).

Since <pn(e)=E, </>„(/) = F and <pn(g) =G, <pn(x) =0 implies AE+BF+CG = 0.

Thus

nc
yl = m-mod c,

(n, t)(n, s)

tc
B = — m -mod c,

(n, t)d

sc
C = — m -mod c

(n, s)d

for some integer m. Since ce — cf—cg, this implies by formula (A.10) that

x=0 mod Qn.
One proceeds in a similar fashion in the (simpler) case « = 0.
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