SYNTACTICAL TRANSFORMS

BY
A. H. LIGHTSTONE AND A. ROBINSON(})

1. Introduction. A syntactical transform is a formal rule whose application
to a sentence in a given formal language, in our case a variant of the lower
predicate calculus, produces another sentence in the same language. For ex-
ample, a set of instructions which converts a sentence into prenex normal
form, or into Skolem’s normal form, is a syntactical transform. The choice of
the syntactical transforms which are considered in the present paper is moti-
vated by mathematical considerations. We develop transforms which, in a
sense to be made precise later, generalize the passage from the assertion of
the existence of certain elements to the assertion that these elements are
continuous functions of the parameters involved. We then show that, under
certain conditions, the deducibility of an assertion of the former type from
a given set of axioms entails the deducibility of its transform from a related
set of axioms. Corresponding results for the concept of boundedness have
been derived elsewhere [5].

Among the applications, we mention that if a sentence of a certain class
holds in every completely divisible torsion-free abelian group then a trans-
form of the sentence which expresses uniform continuity in the sense indi-
cated above, holds in every completely divisible ordered abelian group. Also,
if a sentence of a certain class holds in all groups then a transform of the
sentence which expresses the topological continuity (in a weakened form) of
any element whose existence is affirmed by the sentence, holds in every
topological group. Finally, we show that in certain circumstances the mere
existence of a solution of a system of equations entails a result concerning
the continuity of the solution.

We shall make use of a particular many-sorted calculus (here called the
uniform predicate calculus) in which no distinction is made between predicate
variables and individual variables. Moreover, in certain cases we indicate a
relation simply by the juxtaposition of its arguments. The use of this language
proves convenient, though not essential, for our theory of syntactical trans-
forms, which can also be formulated within the ordinary lower predicate
calculus.

2. The uniform predicate calculus.

SyMBoLs. Symbols fall into two categories—variables and functors. A
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variable is a symbol x}, where % is a positive integer not exceeding n, while ¢
is any positive integer. The superscript denotes the class to which a variable
belongs, while the subscript serves to differentiate between variables of the
same class. Thus, a variable may be considered as an ordered pair of integers.
In all, there are # classes of variables. A functor is a symbol ¢f( - - - ) possess-
ing a finite number of argument places each filled with a variable or functor.
Again, the superscript denotes the class, while the subscript distinguishes
between functors of the same class.
CONNECTIVES, QUANTIFIERS AND BRACKETS:

~, V, 4x;, Exi, (,)

where mE M, M a given set of positive integers not exceeding 7, and ¢ is any
positive integer.

WELL-FORMED FORMULAE. WIf are generated by a given set, called the
generating set, of finite sequences of positive integers (not exceeding %) in the
following manner: replace each integer in a sequence by any symbol with
that integer as superscript; each of the resulting sequences of symbols is said
to be a wff, and is called a generating wff. Furthermore, if @, ® and € are
any wiff then so are

~(@), (@) V(®), Ax(€), Ezx (@)

where m and 7 are as above, provided no variable is both free in @ and bound
in ® or vice versa, and provided «7' is free in ©. The terms “free” and “bound”
have the usual meaning. The usual convention for dropping brackets will be
followed.

PROVABLE FORMULAE. In the following @, ®, @ are any wff; m and ¢ are
as above; y denotes any symbol with superscript m; @ D® is an abbreviation
for ~aV®; (®); denotes the formula obtained from @ by replacing each
instance of z in @ by w, and replacing each bound instance of w in @ by z—
where w and z denote symbols with the same superscript. We now say that
the following are provable provided they are wff:

2.1. aVVaDa;

2.2. aDOGRV®;

2.3. GVRDOBVQ;

24. (@D®)D(eveadeva);

2.5. A7(@)D (@)%

2.6. (@)ir DEXT(@).

Further, we say that

2.7. ® is provable if @ is provable and @ D® is provable.

2.8. @D Ax7(®) is provable if @ D® is provable and x]* does not occur in
@ but is free in ®.

2.9. Ex*(®)D @ is provable if 8D @ is provable and x{* does not occur in
@ but is free in ®.
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k
9 h r k xﬂ
2.10 Ax;Ax; - -+ Ax.Ex,,(((B)y:(zg,l;...,:)) DX¢

is provable if Ax{Ax} - - - Ax}(®) D@ is provable, providing ¢;(xix] - - - x})
occurs in ® but not in @,while xf, does not occur in ®.

It is readily shown that the Uniform Predicate Calculus is consistent,
since we can show that not every wff is provable. In particular, it is easy to
show that

~(@V ~a)

is not provable.

We introduce the idea of a structure in which a wff can be interpreted in
the usual way. A structure, S, is a set of constants together with a function,
f, defined over certain finite sequences of the constants, and taking the value
0 or 1. A wff is said to be defined in S if we can correlate the variables and
functors of the language with constants of .S in such a manner that the image
under the correlation of each generating wif appearing in the given wff (and
all other generating wff obtained from the same generating sequence) is
defined under the function f. We say that a generating wff defined in the struc-
ture S holds in S if its image under the correlation takes the value 1 under f,
and that it does not hold in S if its image takes the value 0. Furthermore, if @
and ® are any wff, we say that

~@ holds in S iff @ does not hold in S;

@\/® holds in S iff @ holds in S or ® holds in S;

Ax(@) holds in S iff (@) holds in S no matter what symbol y is, pro-
vided only that it have superscript m;

Ex7(@) holds in Siff (@)= holds in S for some y, where y denotes a sym-
bol with superscript m;

provided that @V ®, Ax7(Q), Ex'(®) are wff.

It is clear that if a wff is defined in a particular structure, then either it
holds in that structure or it does not hold in that structure, and that both
cases cannot occur simultaneously.

We can now show that the Uniform Predicate Calculus is complete in the
sense that a wff is provable if it holds in every structure in which it is defined.
It is enough to show that every consistent (noncontradictory) set of wff
holds in some structure. Now, if a set, K, of wff in prenex normal form is con-
sistent, so is the set, K*, of wif obtained from the wff of K by replacing all
existentially quantified variables by functors of the preceding universally
quantified variables. Furthermore, K holds in any structure in which K*
holds. We now form the set K** of wff obtained from those of K* by replacing
each quantified variable in a matrix by a symbol with the same superscript—
in all possible ways—and discarding each prefix. But if KX* is consistent so is
K** and K* holds in every structure in which K** holds. However, it can
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be shown (e.g. [4]) that any consistent set of wff free of quantifiers holds in
some structure. Thus, any consistent set of wiff holds in some structure.

We note that the lower Predicate Calculus is a special case of the Uniform
Predicate Calculus. Interpret x| as individual variables, and xf as predicate
variables of order k—2 for 2<k=<n. Set M= {1}, and let the generating set
consist of the sequences (k, 1,1, - - -, 1) with 2<k=<#, where % is followed
by k—2 1's.

An extended predicate calculus results if we replace M in the above
interpretation by the set of all positive integers not exceeding #.

Furthermore, a many-sorted calculus is obtained by restricting the first &
classes to individual variables of various sorts, while the remaining classes
represent relations (e.g. [6]); hence, M= {1, 2, - - -, k}.

In the following, we interpret the Uniform Predicate Calculus as a many-
sorted calculus in which, generally, relations are indicated by the juxtaposi-
tion of theirarguments. Thus, generally, variables with different superscripts
denote individual variables of different sorts. .

3. Duplication. Let Y be any formula, we denote by D,(Y) the formula
obtained by applying the following syntactical transformation to Y.

3.1. Each variable «}* or functor ¢} (a; - - - a,) with superscript m is
replaced by x5x51 or @5 (Dm(ar « - - @4))P541(Dmlar - - - a,)) respectively;
for example, x7x} %7 (x]'x) is replaced by

p m m r m m m r m m m r
X x2ixzj+1xk¢23(x2jx2j+1xk)¢2e+l(x2;'x2 j+1xk)-

3.2. Each quantifier A%} or Ex]' with superscript m is replaced by
AxjAxg or ExyExyii, respectively. In the following we denote 2¢ by 14,
2¢4+1 by %,, and the components of D,,(y) by 1 and y. if y is a function; thus,
if y is @' (x]'x)) then y; is @5 (x5x%, 1x;) and s is @, (x5x5;, 1%;). We note that
Dn(Gzp) is (Dm(@))zim)zir which we write simply as (Dm(@))zirzim.

We shall show that D,.(Y) is provable provided it is a wff and Y is prova-
ble. (Note that a generating sequence when duplicated may not be a generat-
ing sequence; thus, D,(Y) is not always a wff.) We use induction on the
order of a provable wff where the order is the minimum number of applica-
tions of rules of inference required to establish provability of the wff. Thus,
the wff 2.1-2.6 have order zero; we show that their duplicates are provable.
This is clearly true for 2.1-2.4; we consider 2.5. Now,

A Ax(Dn(@)) D (A25(Dm(@)))% m is provable
but,
(A25(Dn(@))2n D (D(@)) ynziim is provable,
thus,
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AxiA 2o (Dn(@)) D (D,,.((i))f,.l::zhm is provable.
The duplicate of 2.6 can be shown to be provable in a similar way. Thus, any
provable wff of order zero has a provable transform. Suppose that any prova-
ble wff of order <% has a provable transform; we shall show that then any
provable wff with order » has a provable transform. We show, in fact, that the
duplicate of a wff is provable if the wff is obtained by applying a rule of
inference to a provable wff of order <n.

Let @ and @D ® be provable wff of order <#; then D, (@) and D,.(@D®)
are provable. But D,(@D®) is Dn,(@)DD.,.(®); hence, by 2.7, D,(®) is
provable.

Let @D ® be provable of order <#, where x7* is free in ® but does not occur
in @; then D,(@D®) is provable, i.e. D,(®@)DD.(®) is provable where xj
and 7, are free in D,(®) but do not occur in D,(@). Hence, by 2.8, D.(@)
DAxAxy(Dn(®)) is provable.

It can be shown similarly that the duplicate of a wff is provable if the wff
is obtained by applying 2.9 to a provable wff of order <n.

Let Ax{---Ax} .- Ax(®) D@ be provable of order <, where

(8 - - - x - - - a}) occurs in ® but not in @, and x} does not occur in ®.
Then, Ax]--- AxjAxl - - Ax;(Dn(®))DDn.(@) is provable, where
(a0 - - - xpap - - - xf) occurs in Dn(®) but not in Dn(@), and x; does not

occur in D, (®); thus,
k

g m m r k Xp
Ax.~ e ijlA Xy * * Ax,Exp((Dm((B)).,,f(x;...,'.»,z;....,;), D D,,,(G)

iyt

is provable by 2.10.

Let Ax? - - - Ax}(®8) D@ be provable of order <=, where ¢;'(x{ - - - x[)
occurs in ® but not in @, and xj does not occur in ®. Then Axf - - -
Ax(D,(®)) DD, (@) is provable where neither ¢jj(x] - - - &) nor ¢j;(xf - - - x[)
occurs in D,(@), while both occur in D,(®), and neither x; nor xj, occurs in
D, (®). Hence,

m m

r m m x x
Axf e AxsExplExpg((Dm((B))¢',"lzf'~~'xf)¢',';(x§”--'z:>) D Dm(a)

is provable, by 2.10.
We have now shown that every provable wif of order » has a provable

transform provided that every provable wff of order <# has a provable trans-
form. This completes the induction; thus, if ¥ is provable, so is D,(Y).

Of course, D,,(Y) may itself be duplicated with respect to another class,
say k. Thus, if ¥ is provable so is Dx(Dn(Y)). But it is clear that Di(D.(Y))
is precisely D,(Di(Y)); i.e. the order of duplication does not affect the result.
Hence, if a provable wff is duplicated simultaneously with respect to two
classes, the resulting formula is provable (provided that it is a wff). Finally,
we see that if a provable wff is duplicated simultaneously with respect to all
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classes occurring in the wff, then the resulting formula is provable.

We have demonstrated that if ¥V is a provable wff, then so is D(Y),
where D(Y) is obtained from Y by applying the following syntactical trans-
formation:

3.3. Each variable x} or functor ¢} is replaced by xyxsji1 or ¢ods1, re-
spectively, t=1,2, - - -, n,j=1, 2, - - - ; for example, x7¢7 (x7x}) is replaced
by

P P m, m m r or m m m r r
x2ix2i+l¢2s(x2ix2j+lx2lx2t+1)¢2s+1(x2ix25+1x2tx2t+l)o

3.4. Each quantifier Ax} or Ex} is replaced by Ax}Ax} 1 or ExyExh

respectively.
4. Relativization of quantifiers. In this section we confine ourselves to
that portion of our language which contains no functors. There is no loss in

generality in doing so, since a functor, ¢f(x}' - - - x%), with # argument places
can always be replaced by the wff xx] - - - x%x} which is interpreted as
xF=xx7 - - - x2, where x] plays the role of ¢} [3] with the appropriate axioms.

We consider now a syntactical transform which has made several appear-
ances in the literature (e.g. [1]). The purpose of this transform is to restrict
the range of a variable being quantified to a set of variables satisfying a given
wff. The transform is as follows:

4.1. Replace Ax'(@) by Ax{"(x"RnD Q).

4.2. Replace Ex'(@) by Ex["(x'Rn/\ @n)
where @ A® is an abbreviation for ~(~@\/ ~®). Here, m is fixed, and R,,
denotes a fixed sequence of variables each with superscript different from ,
such that "R, is a wff; we call R,, the relativizing sequence of the transform.
We denote by V,, the wif obtained by applying the transform to Y. Clearly,
if Y is quantifier free then Y, is V.

It can be shown (compare [1]) that

Ex';(x';Rm) DOVn

is provable, provided that Y is provable, has no free variables with superscript
m, and no variable that occurs in R,, is bound in Y.

We shall say that a set of wff, Sk, is a supporting set of a transform, K,
if the K-transform of any provable wff is deducible from Sk. Thus, if we re-
strict the above transform to wff which possess no free variables with super-
script m and no bound variables that occur in R, then Ex}'(x]'Rn) is a sup-
porting set of the transform.

So far we have relativized with respect to just one class of symbols. We
now introduce another relativizing sequence, Ry, and relativize quantified
variables with superscript k. Thus,

Ax’;((i) is replaced by Ax?(fok D Q)

and
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Exf(a) is replaced by Exf(fok A Q).

Again, R, is a sequence of variables each with superscript different from k.
It follows that if V is provable, has no free variables with superscript m or k&,
and if no variable that occurs in R,, or R; is bound in Y, then

Ex’:’(x,;Rk) D (Ex;(2; Rm) D You)i is provable.
_But, (Y.)iis (Yi)m; accordingly, we denote (Vn)i by Yme. Thus,

(Ex, (%, Rm) D V)i

is Ex](x7"Rn) D Vor; hence, Exf(x{Ri) AEx](x]'Rp) D Vi is provable.

Generally, if Y is provable, has no free variables, and no variable bound
in ¥ occurs in any Ry, i=1, 2, - - -, n, then Ex](x])R\)NEx(ZR)NA - - -
AEX}(x}R,) DR(Y) is provable, where R(Y) denotes the wff obtained by
relativizing ¥ with respect to all classes. Thus, a supporting set, Sg, of the
R transform is constituted by

1,1 2, 2 n, n
Exi(x;Ry), Exj(2;R,), - - - , Exj(x;R,).

5. The continuity at zero transform. We introduce now a transform which
generalizes the idea of continuity at zero for a function which takes the value
zero when its arguments are zero. A wff in prenex normal form is transformed
by relativizing its matrix with respect to the variables in the prefix, and quan-
tifying any variables introduced in the relativizing sequences. This transform
is defined only for wff in prenex normal form in which no more than one class
of variables is quantified, and which contains no free variables of a quantified
class; we shall say that a wiff belongs to the class Y if it satisfies these restric-
tions. The transform is as follows:

5.1. Adjoin to the left of the prefix the sequence of quantifiers obtained
as follows:

(a) write down the prefix in reverse order, interchanging 4 and E,

(b) remove all but the last of each sequence of universal or existential
quantifiers,

(c) change all superscripts to those of another class (not mentioned pre-
viously.

5.2. Relativize with respect to the class quantified in the given wff, the
relativizing sequence for each quantified variable being the variable intro-
duced into the prefix which corresponds to the block of universal or existential
quantifiers to which the quantifier concerned belongs.

For example, the transform of

ExEx;Ax: (@)

is
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ExZA x:Ex:nEx:"A x;:"(x,mx: VA (x':nx: AN (x,',"x;, D a))).

We shall denote the transform of ¥, as above, by Z(Y).
If in the interpretation the wif x7"x; means that x[* is small, then the trans-
form of Ax["Ex]'(@), namely,

Ax;Ex:Ax; Ex; (2; %¢ D (x',"x: N @))

expresses the continuity at zero of the functor satisfying @. For this reason we
call this transform the “continuity at zero” transform.

A related transform is considered by one of the authors in [5]; this trans-
form is termed the “bounding” transform, since under an appropriate inter-
pretation the boundedness of a functor can be obtained from its existence by
use of the transform. The bounding transform differs from the continuity
transform only in its treatment of the prefix of a wif; for example, if the pre-
fix is
where only the initial quantifier in each block is shown, then the transformed
prefix is

r r r r m m m m
Ax;ExijAx Ex,Ax; -+« Exj -+ Ax -+ - Ex,.

It is shown that a supporting set of the bounding transform consists of the
following:

5.3 Ex:Ex;”(x,,nx:) :

5.4 AxAxi(xix; \/ X% ;

5.5 Ax:-Ax;A x;:(x.rx,' AN x;x; D xix);
5.6 Ax?A x;A x;(x:"x; YA\ x',x';, D x:-"x;);

where the transform is restricted to wff belonging to the class Z consisting of
those members of the class Y whose prefix does not have the form

A E---A---

where the dots denote quantifiers. It is also shown that if 5.3 is replaced by
5.7 Ax:Exjm(x';xZ)

then the bounding transform may be applied to wff possessing free variables
of the class m.

We shall show that if the continuity transform is applied only to wff be-
longing to the class Z, then 5.4-5.7 constitute a supporting set of this trans-
form. We denote this set by Sz. First, we require the following
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5.8. THEOREM. If YEY and has the form

< o Ax:Ax:E:L,": Ex';:Ax,:':'--Ax;:((B(x:':~~-x::,
J. m m m m
Xjy ot Ty Tey o )
then Y is consistent provided {Z(Y)}\USz is consistent.

Proof. We suppose we are given a structure S* such that {Z(¥)}USz
holds in S*. Hence,
ath(y) A\ - AN ash(y) D fily, a1 ady A= A fdy, e any
/\(blz/\..‘/\buz:)(B(al...a"fl(y,al...a‘)...f‘(y,al...a‘)’

5.10

bi- - b))
holds in S* for any choice of a; - - - a;, b1 - - - by, ¥ Where b, fi - - - f¢ are
given functions over S*, and z is a given constant. Note that a; - - - a,,
by - - - by are correlated with variables with superscript m, while y and z are

correlated with variables having superscript 7.
We shall construct a structure S in which 5.9 holds. The constants of S

are obtained from those of S* and ¢ symbols Fi(x1 -+« x,), * =+ ,Fe(x1 - -+ %)
each having s argument places. First, we say that a constant of S* has order
zero in S; next, we say that Fy(x; - - - x,),2=1, - - -, ¢, is a constant of S of

order # if its arguments are constants of .S of order <#, and at least one argu-
ment has order » —1. We denote the constants of S by

C1y Cgy * * * 5y Cny " " °

such that ¢, precedes ¢; if the order of ¢; is not greater than the order of ¢,.

Having defined the constants of .S it remains to define for each generating
wff of ® whether or not it holds in S when its symbols are replaced by con-
stants of S. When this is done we will have constructed a structure in which
5.9 is defined.

Let W be the set of all wff obtained from the generating wif of ® by re-
placing symbols by constants of S in all possible ways. Let W; be the set of all
wff obtained in this manner by using only constants of S of order =k; then

WoCWiCWyC -+ and 2 Wi=W.

It is known that if the wff of each W, are assigned values in such a manner
that 5.9 holds when the universally quantified variables are restricted to con-
stants of order <k, then a valuation of W can be found such that 5.9 holdsin S.

We show now how to assign values to the wff of Wi so that the above
requirement is obtained. First, we define two mappings of the constants of S



1957] SYNTACTICAL TRANSFORMS 229

of order <k into the constants of .S* as follows:

{z, if ¢, has order %;
Cm =
K minimum (uF1(¢m * * * €m), #(uF1(cm * - + €m))), otherwise

where minimum (a;, @;) =a; if a;a; holds in S*; otherwise minimum (a;, a;)
=a;.
New =a;, if ¢, has order zero, where a;uc,, holds in S*

NFi(ciy - -« ¢5) = filwFi(ciy + - - ¢;), Nejy + =+ Nej,).

We show that uc,=uc, if ¢» and ¢, have the same order: true if ¢, has
order k; suppose true if ¢,, has order >j. Let ¢, and ¢, have order j; then

ucp = minimum (uF1(cp - -+ ¢5), B(pF1(cp - -« ¢p)))

but Fi(¢, + - ‘¢cp) has order >j, and

order Fi(cp - + + ¢p) = order Fi(cy - - - ¢,);
thus, by the induction assumption, uFi(c, - - - ¢,) =uFi(cq - - - ¢,), hence,
pep, =minimum (uFi(c, - -« ¢g), B(uFilcy - - - €)))) =pc,.
Itisnow clear that uc.uc, holdsif order ¢, S order ¢, since ucupu Fi(Cm * * * Cm)

holds; thus, ucmpuc, holds if order ¢, =1-order c,, but ucauc, holds if order
¢, =1-order c,, hence ucnuc, holds if order ¢, =2+ order c,.; carrying this on
we see that ucnuc, holds if order ¢, Sorder c,.

We show now that Nc,uc, holds in S*: true if ¢, has order zero; suppose

true if ¢, has order <. Let ¢, = F;(c;, - ¢;,) have order , then A¢juc; A\ - - -
AXc;ucj, holds; hence, by 5.6, Ac;uc;,/\ - - - ANcjuc;, holds, where ¢;, has the
maximum order of c¢;, - - -, ¢;,. But wc;h(uFi(c, - - - ¢;)) holds, hence,

pcih(uFi(c;, « - - ¢;,)) holds, since

,uF](le e C ) = ,LLF;‘(C]‘I cr st);

thus, by 5.6, Ac¢jh(ucg) A - - - ANc;h(uc,) holds; hence, from 5.10,
fi(uFi(ciy = - - ¢i)y N6jy + + + Ncj)ucg holds, then, NFi(c;, - - - ¢j,)uc, holds, i.e.
Acuc, holds.

Now, in 5.10, set a1=Acj, - -+, @,=N¢j,; bi=Ncx, * + +, bu=NCi,; ¥
=pFi(cj, - - - ¢;,). But Nejh(uFi(es, - - - )N - - - ANGR(WFi(c)y - - - ¢j,))
holdsin S*;and Ack,g/\ -+ - ANcr,2 holds in S*, since e uck, /\ -+ - ANk puck,
holds, and uc:z holds for any <. Hence, ®(Acj, - - - N¢j,, fi(uFilcy, - - - ¢cj,),
Aej, - o N6g) - s fel(wFa(es, - - - €i), NGy - 0 - N6, Nk, - - - Aery,) holds in S*,
ie. BN, - - - Nej,y NFulcjy - - - cj) - - - NFu(csy - - - ¢5,), Neky + - - Ner,) holds
in S*.

We now define the value in S of any generating wff ¢;, - - - ¢;, to be the
value in $* of the corresponding sequence Ac;, - - - Ac;, under the N mapping.
Hence, it is clear that.
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&(Cil “ e Cin Fl(cfl e ci.) Y F‘(Cil « .. c’.’), Ckl “ e ck“)

holds in Sif ¢j, - - - ¢j,, &, * - - c, are constants of order <k. We now define
¢t functions, gi(x1 « + - %), + * +, ge(x1 - - - %,), in S as follows: gi(c;, * - - ¢j,)
takes as its functional value the constants Fy(c;, « - - ¢;,). Thus, 5.9, holds in
S when the universally quantified variables are restricted to constants of
order <k.

CoUNTER-EXAMPLE. We show that 5.8 does not apply generally; in par-
ticular, we show that there is a wff with prefix Ex{'4Ax]'Ex; such that 5.8 is
false. Consider Y = Ex["Ax]'Exy (xix7'x] A~xxy'x}). Now,

~A x';(xfx:"x?) V A x?(xfx?x?) holds in any structure,

ie.

Ex?(Nxfx:"x?) V Ax:(xfx?x:') holds in any structure;
thus,

Ex?A x:.(Nx’:x?x? \V4 x’,’x:‘x:‘) holds in any structure;
hence,

Ax:-nEx',f'A xp (~aexy x; %% x ) holds in any structure,
thus,

m m m, p m m p m m_ .
Ex; Ax; Exy (x,x; x; /\ ~ %,%; x;) is contradictory.

We shall show that {Z(Y¥)}\US; is satisfied in some structure. Consider
the structure M with two classes of constants, y, and d;, where 4, j, k

=...,—2,—-1,0,1,2, - - - ;and a constant x7.
We define:
yids holds in M iff j < 4;
did; holds in M iff i < j;
Xryiyn holds in M iff m < E;

[d) = disy  foldd) = v fildidiy) = 3o
Now, Z(Y)=AxEx;Ax;Ex]Ax}Ex}(xPxIN (] D xp/\xixix] N~xixi'xx)),
but under the above interpretation,
A(did)d; A (ynfa(@) D fu(didiy)ds A Zofo(dids) ym
A ~ a(didi) fs(did )

holds in M for any choice of d;, d;, ¥%, where fi, fo, fs are the functions given
above, since

i k i ik i
y.{_ld; A (Ymdic1 D yods N\ x’:y:'—lym N\~ x‘z’yz-lyo)
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is satisfied in M. But it is easily checked that Sz holds in M. Thus, {Z(Y)}
U.Sz is consistent, but Y is contradictory. We assert now that

5.11. THEOREM Z(X)NZ(Y)DZ(A(X, Y)) is deducible from Sz provided
that X €Y, YEY, and variables of the same class are quantified in X and Y.
We demonstrate the theorem for the case in which neither X nor Y has a
prefix of the form

since we require the theorem only for this case, where A for the purpose of
this demonstration is restricted to the following syntactical transform which
is applied only to wff so described: let

P=Ax; -+ Az, Exj - -+ Ex;':AxZ: e Ax;:(a),
Q=Azx, - Ax:,Ex;’: e Ex:;Ax:: s Ax::((B),
then
AP, Q) = Ax:: s Aac:-':A::c:l s Ax:,Ex';: cee Ex::Ex:: < Ex;:Ax;: <
Axp Az, -+ Azpn(@ N ®).
We see that when A is applied to a pair of wif belonging to VY, it produces a
wif belonging to Y and equivalent to the conjunction of the given wff.
We demonstrate 5.11 by applying repeatedly the following wff; this trans-

form can be generalized so that A(x, y) is equivalent to x Ay and is in prenex
normal form.

5.12 (eXbd) NcDaX((bANo)

where X stands for A and V/, but not for both simultaneously in the same
formula. It is easily seen that 5.12 is provable, since

(aVBO AcD(@Vb A(aV ¢ is provable, and
(aVbd N(@Ve)=aV (bAc) is provable.

Now, let @ be the matrix of C(X), and ® be the matrix of C(Y). Then G is
of the form a; X (by X (- -+ X (ma X P) - - -), while & is of the form
azX (b2 X (- - - X(meXQ) - - - ), where X may be A or \/. We apply 5.12
to @ /A\®; this gives

ar X (br X+ -+ Xna X P)A(a2 Xba X+ XmyXQ)).

We now apply 5.12 to (51X - - - XmuXP)A(a:Xb X - -+ XmaXQ)) remov-
ing either b, or a; as we see fit. Continuing this process, we find that

5.13. AABDECXPAQ is provable, where C consists of a;, b1, - - -, m
and @y, bs, - - -, my intermingled in any manner provided only that the order-
ing in @ and ® is maintained. But if BD Cis provable, so are Ax{"\B) D A4x7(C)
and Ex*(B) D Ex](C). Applying this rule to 5.13 we obtain
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5.14. A(Z(X), Z(Y)D - - - (EXPAQ) is provable where the implicate
differs from Z(A(X, Y)) in that there are surplus quantifiers with superscript
r in the prefix, and the matrix contains corresponding relativizing sequences
with subscript j, say, rather than . It is apparent that unwanted universal
quantifiers may be discarded, and the corresponding relativizing sequences
replaced as desired, since if

Ax AL (7 i N\ %723 D B)
holds in a structure, then
Axi(xi % N\ x; %5 D B)

holds in the same structure. However, to eliminate unwanted existential
quantifiers we must make use of the set Sz; suppose

AxpExiExy(P D xox: A 2 25 A Q) A Sz

holds in a structure. Then there are functions f(x;) and g(x;) such that
POxf(ah) AxTg(xi) AQ holds in the structure for k=1, 2, - - - . We now
define the function k(x;) as follows:

M) = {f(x'k) if g(xx)f(xx) holds;

It is easily checked that

g( x;) otherwise.

PO x h(xe) A 2 h(x1) AQ

holds in the structure, since Sz holds in the structure. Thus, A xtEx;(P Dx;x}
Axrx; AQ) holds in the structure. We have now shown that the implicate of
5.14 implies Z(A(X, Y)) is deducible from Sz; thus

Z(X) NZ(Y) DZ(A(X, 1))

is deducible from Sz.
We wish to show now that 5.8 holds even if ¥ has fewer changes from 4
to E and from E to A then has 5.9. Suppose that a wff takes the form

Y = Ax, Ex; (®)

and that {Z( Y) } U.Sz is consistent. But xgx; Dxx; holds in any structure in
which it is defined; thus, Exjdx} (xfx; Dxrx;) holds in any structure satisfy-
ing Sz; hence, {Z(V)}\U{Z(4x}(x}x}))}\USz is consistent. But then, by
5.11, {Z(Axi"‘Ex}"sz”((B/\xk’"xi))}USZ is consistent; hence, by 5.8,
Ax"ExPAx} (® N\xix;) is consistent. Thus, Ax7Ex}(®) is consistent. It is
apparent that the other cases follow in a similar manner.
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We wish to show that if the prefix of ¥ contains E - - - 4 - - - E, where
the dots represent quantifiers, then 5.8 does not hold in general, i.e. we can
find a matrix such that 5.8 is false. Now, X = Ex{"Ax] Exy (x{x7x] A\ ~xix7 %5 )
is contradictory, while {Z(X)}\US; is consistent; also, Exjdx™(x™xiDx"x})
holds in any structure satisfying Sz. Thus,

(ZXO)} U {Exd (2. D 50 %)} U Sz

is consistent; but it is easily shown by the method of 5.11 that {Z( Y)}USZ
is consistent, where

m m m m, pm m p m m m
YV = Ex; Ax; Exp Ax, (%% 5 /\ ~ %% X /\ %5 %)

Thus, Y is contradictory while {Z (¥)}US; is consistent. By repeating the
process on Y in place of X, it is clear that, by placing the quantifier where
we will, we can introduce as many universal quantifiers into the prefix as we
wish.

We show that we can introduce existential quantifiers where we will by
considering

W=XAEx(@D Q).

Here, Wis contradictory, but it is easily shown that {Z (W)}\USz is consistent.

We now define the syntactical transform N(Y) which applies only to wff
belonging to the class Z: N(Y) is obtained from Y by interchanging 4 and E
everywhere in the prefix of ¥V, and inserting ~ before the matrix of V;
thus, N(Y)=~Y. We have established

5.15. THEOREM. V is consistent provided {Z(Y)}\USz is consistent, and
N(Y)ez.

This theorem is expressed in descriptive or semantic terms; we wish now
to express it in terms of provability. Thus, we shall prove

5.16. THEOREM. If Y is provable then Z(Y) is deducible from Sz, provided
Yyez.

For this purpose we must first establish
5.17. ~Z(Y)=Z(N(Y)) is provable. Let

Y=---Ax, -+ Ex; - (Q)

Z(Y) = ---Ax; -+ Et;--- Ax; -+ - Exy - - -

m r

(...x’:x’;D...xix’./\...a)

and
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N(Z(Y)) = --- Ex;---Ax;--- Ex; ++- Ax; - - -
(N xix, D~ Q)
but
N(Y)=---Ex; - Ax; « -+ (~Q)
and
Z(N(Y)) = --- Ex;+-- Axy- -+ Exy -+ - Ay -
(- mi e N xrx; D ~@Q)
hence,
N(Z(Y)) = Z(N(Y)) is provable,
thus,

~Z(Y) = Z(N(Y)) is provable.

Now let X be any provable wff such that X€ Z, then 5.15 asserts that
N(X) is consistent provided that {Z(N(X))}\USz is consistent. Hence, we
can assert that ~Z(N(X)) holds in any structure which satisfies Sz; thus,
~Z(N(X)) is deducible from Sz, i.e. Z(X) is deducible from Sz. This estab-
lishes 5.16.

Let X4, - - -, X. be a set of wff in which only one class is quantified, and
such that N(X,)EZ, i=1, 2, - - -, n. We define the syntactical transform
A(Xy, - -+, X,) asfollows: let X1=A(X,, X)), - - -, X =AX*1, Xpp1), - - -,
X 1=A(X""?, X,); then X» =X\ A - -+ AX,, and N(X*)E&Z. We de-
note X1 by A(X,, - - -, X.).

We establish now

5.18. THEOREM. Z(X)N -+ + NZ(X.)DZ(Y) is deducible from Sz pro-
vided Xa N\ - - - NX.DY is provable, YEZ, and N(X))EZ i=1, - ., n.

We have that N(A(A(Xy, - - -, X.), N(Y))) is provable and belongs to
the class Z; hence, from 5.16, Z(N(A(AX,, - - -, X,), N(Y)))) is deducible
from Sz; but from 5.11, Z(X)AZ(N(Y)) DZ(A(X, N(Y))) is deducible from
Sz, if N(X)EzZ; thus, by 5.17, Z(N(A(X, N(Y)))) D(Z(X)DZ(Y)) is deduci-
ble from Sz. Hence, Z(A(X4, - - -, X.))DZ(Y) is deducible from Sz; but
from 5.11, Z(X)A - - - AZ(X)DZ(A(X,y, - -+, X,)) is deducible from Sz;
thus, Z(X)A - - - AZ(X,)DZ(Y) is deducible from Sz.

6. The uniform continuity transform. We develop now a transform which
generalizes the idea of uniform continuity of a function. A wff is transformed
by applying two of the above transforms to it; first, we apply the continuity
at zero transform, and then we duplicate with respect to one class. We denote
by U(Y) the result of applying this transform to the wff Y.

Now, in 3, we showed that provability is invariant under duplication;
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hence, by virtue of 5.16, if YV is provable and Y€ Z then D, (Z(Y)) is deducible
from D,,(Sz). Thus, U(Y) is deducible from D,(Sz). Hence, a supporting set
of the U transform is the following, which we denote by Sy:

6.1 Ax:Ex; Eap (%5550

6.2 Ax:A x;(x:xr, V x:x:) ;

6.3 AxiA x’;A x;c(x:x', A xr,x; D) x:x;);

6.4 AxiAxiAxiA i x’.':x::xr, A xgce D x:':x::x;)

We have established

6.5. THEOREM. If Y is provable them U(Y) is deducible from Sy provided
Yyez.

Suppose that X;A - - - AX.DVY is provable, YEZ, and N(X,)EZ
1=1,2, -+ -, n; then, by 5.18,

Dn(Z(X1) N\ -+ NZ(XW) DZ(Y))

is deducible from D,(Sz), i.e. UX)N -+ - ANUX.)DU(Y) is deducible
from Sy. We have proved

6.6 UX) N - NUXa) DUY)
is deducible from Sy provided XiA - -+ AX,DYVY is provable, and YEZ
and N(X,))€Z1=1,2,---,mn

We show now that under a suitable interpretation the U transform does
generalize the idea of uniform continuity of a function. Consider

m m m m m m
V = Ax; Ax; Ex, (B(x; x; xx ),
then |
r r m m m m m m m m r m m r
U(Y) = AxpEx; Az AxiAxj Axj, Exy Exi, (% %e,%: /\ %j,%,%:
m m r m m m m m m
D) Xk Xko Xk A\ &m(xilxithxhxklxkz))-

For any 1, j, k we interpret x' as complex numbers, x} as positive numbers,
xPxrx, as |aP—af| <xf, and we define ®n(xfxlxpxixiay) as follows: we
replace each generating wff that appears in @ by the conjunction of two such
wif; for example, Q(x"x7xt) is replaced by @(xfxjxp) A G(x5x5xE,). Thus, if
® is a conjunction of generating sequences, then U(Y) expresses the uniform
continuity of the function which Y states exists.

7. The topological continuity transform. The supporting set required for
the Z transform, see 5, represents essentially a simply-ordered set; we intro-
duce now a transform, T, whose supporting set represents a partially ordered
set. The transform itself differs from that of 5 only in that a quantifier is
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introduced for each quantifier of the given wff, rather than each block of
quantifiers in the given wff, and no two variables have the same relativizing
sequence. It should be noted that this departure is not strictly necessary since
topological continuity can be adequately expressed by the Z transform in
view of 7.8. However, the T transform has the advantage of being a more
natural choice to represent topological continuity than the Z transform—the
T transform can be described more simply than the Z transform—and as a
consequence we can establish without difficulty that ' ‘

T(X) AN T(Y) D T(A(X, 1))

is provable, whereas we could show only that the corresponding wff for the
Z transform is deducible from Sz.
This transform applies only to wif belonging to the class Y. The transform

is as follows:
7.1. Adjoin to the left of the prefix the sequence of quantifiers obtained

as follows:
(a) write down the prefix in reverse order, interchanging A and E,

(b) change all superscripts to those of another class.

7.2. Relativize with respect to the class quantified in the given wff, the
relativizing sequence for each quantified variable being the corresponding
variable introduced into the prefix.

For example, the transform of

Ax; A xTEx;n((B)

T T r m m m m r m r m r
AxiEx;ExiAx; Ax; Exy (x; 2 /\ ;27 D % xr N\ B).

If in the interpretation the xi" are points and the x] are neighborhoods of
one point, and x7'x] is interpreted as xi' €xj, then the transform of the above
wif expresses the topological continuity at the fixed point of the function of
x7 and x7" which satisfies ®.

7.3. THEOREM. If YEY and has the form

m m m m m
Ax.-l L Ax."Ele v Ex,"Axkl e
7-4 m m m m m m m
Axp (B(xq, -+ Xy Xj 00 Xy Tay v 00 X))

then Y is consistent provided Sr\J { T(Y) } is consistent, where St consists of the
following:

7.5 AxiEx; (2] %0);
7.6 AxAxiAxi(xix; N\ %26 D xixr);
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7.7 Ax:nA x;A x;:(x:"x: A xr,x; D) x:"x;);
7.8 AxiA xr,Ex:A xrg(x:x: AN xlx: A (x:x: A x:x: D) x:x;)),
7.9 Axy(xixy).

Proof. We suppose we are given a structure S* such that SpU{T(¥)}
holds in S*. Consider any set of constants of S* which correspond to variables
of the class 7, say, ¥ - - - yn, which is such that y7y;Ajy; holds in S* for
j=2,3, .-, n; then we form the structure S** which is obtained from S*
by eliminating all such sets of constants y; - - - ¥,, and retaining all other
constants and truth values. Hence, in S** if y72" A2z"y" holds, then y"=2".

We shall show that STU{T( Y)} holds in S**: clearly, 7.5, 7.6, 7.7, 7.9
hold in S**; consider 7.8. Suppose that for a pair of constants x” and y" of
S** the constant 37 which exists in S* by virtue of 7.8 is not in S**. Then
there is a w™ in S** such that w"z" Az'w" holds in S*; hence, by 7.6, wx™ Aw'y"
holds in S**, and for any ", #'x" Awy" Du'w holds in S**. That T(Y) holds
in S** follows from 7.7, since

xryr /\ yrxr D (axr D ayr) /\ (ayr D axr)

holds in S*; thus, if x"y" Ay"x" holds in S*, then Ax(xx"=xy") holds in S*.

It is now clear that T(Y) holds in S** since if some constant x” which
satisfies T(Y) in S* does not belong to S**, then there is a constant y” of
S** such that Ax(xx"=xy") holds in S*; hence, the constant y" satisfies T(Y)
equally as well as x".

We shall denote the constants of S** which exist by virtue of 7.8 for each
x" and y" in S** by x"M\y".

We show that (x"My")Nz"=x"M(yMNz’) in S**: denote x"My" by %7, and
y"Mz" by uj, and #;Nz" by v}, and x"Muj by v5. Then 25x” Aviu; holds in S**,
but #,y" holds, hence, v5x" Avsy” holds; thus v5u] holds in S**. Also, v}2" holds
in S**; hence, v} holds in S**. Similarly, »{#; holds in S**; thus 9] =1;. Thus,
we may disregard brackets and write x"M\y"Mz". It follows that yiMN\ - - - Ny,
is independent of any bracketing, and may be written without brackets.

Now, T'(Y) holds in S**, hence

ah(yi - YDA Aah(yic 90 D filyic Yo a1 @)y
7.10 A NS nan @)y A A Abu
D(B(al"'asyfl"'ftybl"’bu))

holds in S** for any a; - + - @, ¥ - + - i, b1 - - - by where by « - - ke, f1 - - -f;
are given functions over S**, and z] - - - z, are given constants in S**.

We choose y;=9y" for i=1, 2, - - -, t; and define the function & over S**
by h(y)=hi(y" - - -y )N\ - -« Nh(y" - - - y7); also, let 7=z - Nz,
then we have, by virtue of 7.6, 7.7, and 7.8, that
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ah(y) A - A ah(y) D iy arc - @)y A s NSy e ey
7.11 NGz A Abuig" DR+ @, iy 81 ¢« @) « + -
ft(yfy [ at)v bl tt bu))

holds in S** for any a1 * - - a4, ¥", b1 * - * bu.
We now construct a structure S in which 7.4 holds. The constants of S

are obtained from those of S** and ¢t symbols Fi(xy - - - %), =+ +, Fe(21 -« - x4)
each having s argument places. First, we say that a constant of S** has order
zero in S; next, we say that Fy(x; - - - x,),7=1, 2, - - - , t, is a constant of S

of order # if its arguments are constants of S of order <#, and at least one
argument has order n—1. We denote the constants of S by

C1, €2y ° * * 4 Cny *

where ¢; precedes c; if the order of ¢; is not greater than the order of c;.
We now define two mappings of the constants of S of order <k into those
of S**:

z* if ¢, has order k&,
{uF 1em ** €m) M B(uF1(cm * + * ¢m)) otherwise;
Aem = a; if ¢, has order zero, where a;uc» holds in S**;
NFi(ci, - - - ¢5) = filuFi(ciy - -+ €3.)y Nejy « =+ NGj,).

Note that wcnuFi(cm * * * Cm) A\MCP(UF1(Cm - * + ¢m)) holds in S** if ¢, has
order <k.

We show that uc,=puc, if ¢, and ¢, have the same order. True if ¢, has
order k; suppose true if ¢, has order >j. Let ¢, and ¢, have order j<k;
then pepuFi(cy - -+ €p) Auch(uFi(cp - - - ¢p)) holds, but Fi(c, - - - ¢,) and
Fi(c, - - - ¢,) have order j+1; hence uFi(c, - - - ¢p) =puFi(c,y - + - ¢;) by the
induction assumption; thus, uc,uFi(cq -+ + ¢q) Amcoh(uFi(cqy - - - ¢,)) holds;
hence, by 7.8, ucyuc, holds. Similarly, uc.uc, holds; thus, uc, =puc,.

It follows from the above and 7.9 that uc.uc, holds if order ¢, Sorder c,;
since, ucmuFi(cn - - - ¢a) holds if ¢, has order <k, i.e. ucnuc, holds where
order ¢, =1+order ¢, <k; but uc,uc, holds if order ¢, =14 order ¢, < k; hence,
uCmiuc, holds where order ¢, =2+order ¢, <k. Continuing this process we see
that ucnuc, holds if order ¢, Zorder c,.

We show now that Acnuc, holds in S**, True if ¢, has order zero; suppose
trueif ¢,, hasorder <n.Letc,= Fi(c;, - - - ¢;,) have order n; then A¢j uc;, \ - - -
ANcjuc;, holds in S**; hence, by 7.7, Ncjuc; N\ - - - ANc;uc;, holds, where
the order of ¢;, is the maximum order of ¢y, + + -, ¢, Butc; h(uFi(cj, - - - ¢;))
holds, and wFi(c;, + « - ¢;) =pFi(c;, - - - ¢;,) hence, pc;h(uFic;, - - - ¢;,))
holds; thus, by 7.7, Nejh(uFi(cy, -+ - ;)N + - - AN R(uFi(cs, - - - ¢5))
holds in S**. Hence, from 7.11, fi(uFi(cj, - - - ¢i,), N¢jy + = » Nz uFi(ei, + - - ¢5,)
holds in S**; ie. AFi(c;, - - - ¢j)uFi(c;, - - - ¢;,) holds in S**. But

MCm =
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wFi(cj, - - - cj)uFi(ci, - - - ¢;,) holds in S**; thus, by 7.7, AFi(cj, - - - ¢;,)
-uFi(c;, - - - ¢j,) holds in S**, i.e. Acgucy holds in S**,

Now, in 7.11, set a1=N¢j, * * ', @y=Ncj,; bi=Nck,, * + +, bu=NCk,; ¥
=uFi(cj, - - - ¢;,)- But from the above we have that

Nejh(uFa(ciy - -+ i) AN\ - - - AN h(uFalcsy - - - ¢4,)

holds in S**; also, Ack,2"/\ - - - ANei,2" holds, since Nexuck;/\pck;z" holds.
Thus, ®(Acj, + * - Ncj,, NFicj, =+ - ¢5,) ++ - ANFu(Ciy + + * €3,)y NCry * * * NChy)
holds in S**.

The argument of 5.8 now establishes that we can define truth values in
S so that 7.4 holds in S.

We note that the T transform of the counter-example to 5.8 is the same
as the Z transform; and that Sr holds in the structure M considered there.
Thus, the counter-example to 5.8 applies to the T transform as well.

We show now that T(X)AT(Y)DT(A(X, Y)) is provable. Let @ be the
matrix of T(X) and ® be the matrix of T(Y). Now, if PDQ is provable, so
are Ax'(P)DAXT(Q) and Ex{'(P)DEx[’(Q). Applying this rule to 5.13 we
obtain A(T(X), T(Y)DTA(X, Y)) is provable. Thus, T(X)AT(Y)
DTA(X, Y)) is provable.

As in 5 we can now show that 7.3 holds even if ¥ has fewer changes from
A to E and from E to A then has 7.4; and that if the prefix of ¥ contains
E..-A---.E, where the dots represent quantifiers, then we can find a
matrix such that 7.3 is false. We now have the theorem

7.12. THEOREM. V is consistent provided {T(Y)}\USr is consistent and
N(Y)EZ.

Since T(X)NAT(Y)DT(A(X, Y)) is provable, we have from the proof of
5.18.

7.13. THEOREM. T(X)A -+ - AT(X,)DT(Y) is deducible from Sr pro-
vided that X,/ « - - NX.DY is provable, and N(X,\)EZ, - - -, N(X,)EZ,
and YEZ.

Note. 1f YV is provable and Y&EZ, then D,(T(Y)) is deducible from
D,.(Sr). Thus, the transform V which first applies the T transform and then
applies the D,, transform, has for a supporting set 7.6, 7.8, 7.9, 6.1, and 6.4—
which we denote by Sy.

From 7.13 we obtain

7.14. THEOREM. V(X)A - - - AV(X,)DV(Y) 1s deducible from Sy pro-
vided that X, - - - NX.DY is provable, and N(X,)EZ, - - -, N(X,)EZ,
and YEZ.

8. Applications. We wish to show, generally, that if a wif @ of a certain
type is deducible in a particular algebraic structure, say a group or integral
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domain, then a transform of @ holds in another algebraic structure, say an
ordered group or a field, as the case may be. Thus, from the existence of a
functor in one algebraic structure we pass to the continuity—in a sense made
explicit below—of the functor in another algebraic structure.

ExaMPLE 1. As a first example, we consider a completely divisible, tor-

sion-free abelian group(?). This can be represented by the following axioms.

(For “xjx},” read “x; =x,"; for “x;xjx;” read “x;+x; =x").

8.1 4 x,»(x.»x:) ;

8.2 Axid x}A xi(x:xt A x;x; D) x;x:);

8.3 Ax:A x;-A x,ch xlA x:,A x.l,,(x:x:x,l, A x.lx.t A x:x.l, A x,lcx.lp D) x.ix,l,x.t,);

8.4 A x:A x:Ex:(x,lx;x;),

8.5 4 x:A x:Ex},(x:xix:) ;

8.6 Ax:A x}A x},A xl,A x.l,A xlvA xl.,,(xlixlkxl, AN xl.xlgx:, A xl.xl,x:, A\ xl.,xixt,, D xu‘x.:,);
8.7 Ax:A x:-A x;A x.l,(x:xtx}, A x?x:x,l‘ D) x},x.l,);

8.8 {C,} p=2,3,57 -, where Cpis
AxiA x; “e - Ax:,(Nx:x:x: D) (x:xix: A xix;x;
11 1 1 11
A A B p1X, D~ XpX%,))

8.9 {D.}n=2234,---, where D,is
1 1 1 1 111 111 11 1 11
Ax;Ex\Exy - - - Exo(x1%,22 A %122%3 /\ © * © /\ %1%n_1%s /\ %i%a).

From 8.1 and 8.2 we have that AxjAx;(xix; Dx)x;) holds since, from 8.2, we
obtain Ax}Ax}(xix} Axjx;Dxjx}); but from 8.1 xjxj always holds. The result
follows. Note that from 8.7 and 8.4 we can deduce that sums are unique, since
xlxles Axbclxs Axjxix Dxpxr Axyx holds, but akay Axux; Dagxy holds; thus
Ax A} AxrAx,(x1%) %5 A\ xix)x, Dxix,) holds.

We wish to show that the Z transforms of 8.1-8.9 hold in any completely
divisible, ordered abelian group, M, under the following interpretation:

2 2
x; denotes those elements of M such that 0 < x; holds;
22, ., 2 2
x;x; is interpreted as x; < x;;
1
x; denotes any element of M;
1, 1
1z, o, 1 2 1 x; 1f 0 < x4,
x;x; is interpreted as | ;| < xj, where | 2| = 1 .
— x; otherwise;
11, 1 1.
x;x; is interpreted as x; = x;in M;

111, 1 1 1,
x;%;xy is interpreted as x, = x; + x;in M.

(2) See [5] where the corresponding analysis is carried out for the Bounding transform.
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Since M is an ordered group its elements satisfy the following conditions:

Az xi=0VO0< 2V 0 < — 21
AEi=0D~0< 2 \~0< — )

8.10 1 1 1
ANO< D~z =0AN~0< — %)
AO< =z D~ai=0A~0< x));

8.11 Axidz; (0 < 5 A0 < 2,0 < 2 + x),

where < denotes the ordering relation in M. We say that x} <x] holds in M iff
0<ux;—x;\Vx; =x] holds in M. Then, from 8.10, Ax}Ax)(x} <x}\/x} <x}) holds
in M, and from 8.11 Ax;Ax;Axi(x; <x; Axj <xDx) < xp) holds.

We show that

8.12 Ax:Ax;(]x:—i— xil < Ix:I + |x:|)

holds in M. If 0<x}A0<x) then 0<x|+x;; thus, |xl+x}| =x/+x]. Also
|xt| + | %} =i +x]. If 0<x} AO< —x] AO<x!+x], then
1 1 1 1 1 1 1
Ix,~+ x,-| = x; + x;, and |x,| + Ix,l = x; — xj-,

but x; +x} <x; —x; since x; —x] — (x; +x]) = —2x, and 0 < —2x].

If 0<x AO< —xjA0< —xf—xj, then |xi+x}|=—xl—xl; but xi—x}
—(—x;—x}) =2x;, and 0<2x;, i.e. —x;—x) <x}—x}; this establishes 8.12.

We show now that the Z transforms of 8.1-8.9 hold in M, where r=2.
First, we observe that if a wff has the form

Y = Ax:Ax; cee Ax,l‘((B(x:x; cee x,l,))i
then YD Z(Y) is provable, since

AmAxy - - - Axn(®(2122 - - - )
1 2 1 2 1 2 11 1
D (wxs A\ @i A -0 A 2 D B(21%2 * -+ %))

is provable; thus, YD Z(Y) is provable.

We have now to consider the transforms of 8.4, 8.5, and 8.9. We show that
the transform of 8.4 holds in M: consider Ax{Ex;Ax;Ax,Exi(xix;/\x}x:
Dxxp Axixjx;); if we choose xf=x where x{+x] =2} then |x+x| <|x}
+|x}| <x?+x?=22+4x?=x2. We show that the transform of 8.5 holds in M:
consider AxiEx;Ax;Ax]Exy(xix; A\xjxi Dxpxi Axixix)); if we choose #2=a?
where xf+x} =xf then |xj—x}| <|x}| +|x}| <22 +22=x+22=22. We show
that Z(D,) holds in M;

First, we show that |x;| <|xi+x;| holds in M for any !; if |x}| =«} then
x;+xi| =x;+xi, hence |xi+xi| —|xi| =x} and 0<a}; if |xl| = —x} then
xj+x;| = —xi —x}, hence | 2} +x}| —xl = —x! —x} — (—x!) = —x!,and 0 < —x.
It is now clear in fact that |x}| <|xi+xi4+ - - - 4+«!| holds in M. Consider
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2 2 1 1 .1 12 1 2 1 2 111
Z(D,) = Ax\Ex;Ax;Ex, - - - Ex,(x;x; D (2101 A\ - - - A\ X1 /\ 12125

111 11 1 11
A\ Zaxexz N\ ¢ ¢ /A XiXa—1Xa N\ xixn));
2 2 2__ .2 2 2 H .
choose x! =x; where x{=x;+x;+ : - - +x; n times; then
1 1 1 1 2 2 2
|x1|<|x,+-;-+x1|=x.~<x.~=xk<x1;
7 times

also |x}| <|xi4x}| <|x}| +|x}| <xi+x}<al. Similarly, | 23| <|3| holds for
k=3,4, - ,n

It is easily checked that the supporting set, 5.4-5.7, holds in M under the
above interpretation. Applying Theorem 5.18, we now have

8.13. THEOREM. If X 1is a wff which holds in any completely divisible,
torsion-free, abelian group, then Z(X) holds in any ordered, completely divisible,
abelian group under the above interpretation; provided that X belongs to the
class Z.

ExaMPLE 2. We wish to show that the U transforms of 8.1-8.9 hold in a
completely divisible, torsion-free, ordered abelian group M under the follow-
ing interpretation:

x) denotes any element of M;

x? denotes any element of M such that 0<x};

x%x? is interpreted as x% <x7;

xixlx? is interpreted as | x| —x]| <af;

xix! is interpreted as x| =x;;

x;x)x} is interpreted as xx=x,+x;.

We show that the U transform of 8.4 holds in M: Consider AxjEx?Ax;,
-Ax}, Ax) Ax}, Exy Exy, (1,560,565 A%} 56,565 D% XX /\%1 %) Xk, /\X1,%),Xx,) ;. choose
x!=x? where x}+x% =x%; then

1 1 1 1 2 2
< Ixil—xizl + Ixiz—xill < %+ %

1 1 1 1
| 2 + x5, — (%, + x5)
2 2 2
< x4+ 2 < Xk

The U transform of 8.5 can be shown to hold in M in a similar fashion. It is
easily checked that the transforms of the other group axioms hold in M, and
that the supporting set, Sy, holds in M. Applying 6.5 we obtain

8.14. THEOREM. If X holds in every completely divisible, torsion-free, abe-
lian group, then U(X) holds in any ordered, completely divisible, abelian group
under the above interpretation; provided that X EZ.

ExaMpPLE 3. We obtain an integrally closed integral domain of char-
acteristic zero by adjoining to 8.1-8.8 the following:
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1 1 1 1 1 1 3111 11 11 11 3111
8.15 AxAxjAxAx,Ax,A%(212:2 %% /\ %% N\ %%y A\ TpXw D X1y Xy X)) ;

8.16 Axidx;Exy(xizicizs);
8.17 4 x:A x}A x,l,A xiA x.l,A xf,A xl.,,(xix;x;lcxt A\ xfxtxl,xl N xixixl,xt,
A xfx:x:x:, D) x:x:,) ;
8.18 Axid x;A axd x.ll(x::x:x;x}c A xfx:x:xfl‘ D lecxal‘);
8.19 4 x:A x;A x;ch x,lA x:A x,tA x,l,A x:o(xjx,l,x,l A xix:xixt A x:x:x:xi

3111 111 11
I\ B1iXe Xy /\ ZuXpXw D Xi%y);

{X.} n=234,--, where X, is
1 1 1 1 1 1 1 1 3111
Axy - -AxuEx; - - - Ex; Exj - - - Exj,_ Exy, - -+ Exg,_ (412,248, N - -
31 1 1 311 1 3 1 11 1 1 1
8.20 N X135, %iy Biy N\ 121%0, %5 N\ 00 A\ B1%a1 %0 %4, N\ X0, %Kk,

A\ x’lﬂlx;lelfz VANRRIVAN x;u—ax:‘u—zx’l‘n‘z A x}‘n—lel'n—zx:);
8.21 Ax:AxiAx;lc(xfx,lx:x;t A ;7c;toc;1¢x,1c D x,lx.lx.l V x:x:x:) '

In the interpretation,

xycix)xy is read as xy=x;-x};

x; is interpreted as a complex number, for any 1;

«? is interpreted as a positive number, for any i;

x;x; is read as | x}| <a%;

xix; is read as x| =x};

x;%;% is read as x}=x|+x;

Note that from 8.16 and 8.18 we can deduce that products are unique.
We do not postulate the existence of a unit element. Note 8.20 asserts that
every monic polynomial has a root.

It is easily checked that the supporting set Sz and the Z transforms of
8.1-8.8 and of 8.15-8.21 hold in the field of complex numbers under the above
interpretation. Applying 5.18 we obtain

8.22. THEOREM. If X is a wff which holds in any integrally closed integral
domain of characteristic zero, then Z(X) holds in the field of complex numbers
under the above interpretation; provided that X EZ.

A special case of Theorem 8.22 is

8.23. THEOREM. If a system of equations with integral coefficients and with
parameters from an integrally closed integral domain of characteristic zero,
has a solution in all such integral domains, including integral domains without
a unit element, then the solution is continuous in the sense of 8.22; provided that
the system of equations can be expressed as a wff belonging to the class Z.

ExaMPLE 4. We wish to show now that the T transforms of the group
axioms, 8.4-8 6, hold in a structure whose elements on the one hand form a
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group, and on the other hand form a T space such that there is a neighbour-
hood which is contained in all other neighbourhoods of the space. Further, we
require that the group operations be continuous in the T space.

We interpret x; as an element of the group and a point of the topology;
%7 is interpreted as a neighbourhood in the topology;

x2x7 is interpreted as x; Cx)—the neighbourhood «} is contained in the
neighbourhood «%;

x;x; is interpreted as x; €x’—the point x; belongs to the neighbourhood x7;

x;x; is interpreted as x; =x;;

xix;xy, is interpreted as x;=x| +x;.

It is easily checked that Sr holds in the structure under the above inter-
pretation. We consider the T transform of 8.4:

2 2 2 1, 1_1,1¢2 12 12 111
AxyEx;Ex; Ax; Ax;Exi(x:2; /\ %% D X /\ %i%5%%).

But this is precisely the statement that addition is continuous in the T'g space.
The transform of 8.5 is

2 2 2 1 1 1 12 1 2 1 2 111
AxkExiExiA x.A ijxk(xix; /\ xXiX; D XXk /\ x;xkxi),

which is precisely the statement that subtraction is continuous in the T
space.
Applying Theorem 7.13 we have established

8.24. THEOREM. If Y holds in all groups then T(Y) holds in the above struc-
ture, provided YEZ.

ExaMpLE 5. We establish now

8.25. THEOREM. If Y holds in all groups then T(Y) holds in any topological
group, provided Y EZ, where x} is interpreted as a neighbourhood of the group
zero for i=1,2,3, - - -, and the other symbols are interpreted as in the previous
example.

Proof. We have only to show that Sr and the T transforms of the group
axioms hold in a topological group under the above interpretation. It is easily
checked that Sr and the transform of 8.6 hold in a topological group. We show
that the transforms of 8.4 and 8.5 hold also. Now the following conditions
hold in a topological group:

(a) if a and b are any two elements of the group then for every neighbour-
hood W of the element a+b there exist neighbourhoods U and V of the ele-
ments @ and b such that

rcUNyeEVDxr+yEW,

(b) if @ and b are any two elements of the group then for every neighbour-
hood W of the element a—b there exist neighbourhoods U and V of the ele-
ments ¢ and b such that
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rCEUNYyESVIDx—yc W.

Hence, from (a) choosing a =b=0 we have that for every neighbourhood
W of zero there exist neighbourhoods of zero, U and V, such that

tCUNYyEVDax+yEW,;

and from (b) choosing a=b=0 we have that for every neighbourhood W of
zero there exist neighbourhoods of zero, U and V, such that

rcUNyEVIDx—yEW,;
ie.
Ax:Ex?Ex?A x:A x:Ex;(x:xf A x;xj D) xix: A x:x:x;‘)
and
Ax:Eijfo x,lA x:Exi(x:xf AN xjx: D) x;xzk N xtx;xl,)
both hold in the topological group. 8.25 now follows from 7.13.

REFERENCES

1. J. Herbrand, Recherches sur la théorie de la demonstration, Travaux de la Société des
Sciences et des Lettres de Varsovie, Class III, Nr. 33, 1930.

2. D. Hilbert and W. Ackermann, Principles of mathematical logic (English translation),
Chelsea, 1950.

3. A. Robinson, Note on an embedding theorem for algebraic systems, J. London Math. Soc.
vol. 30 (1955) pp. 249-252.

4. , Theorie métamathématique des idéaux, Paris, 1955.

S. , Complete theories, Studies in Logic and the Foundations of Mathematics,
Amsterdam, 1956.

6. A. Schmidt, Uber deduktive Theorien mit mehreren Sorten von Grunddingen, Math. Ann.
vol. 115 (1938) pp. 485-506.

7. , Die Zuldssigkeit der Behandlung mehrsortigen Theorien mitlels der #blichen ein-
sortigen Pridikatenlogik, Math. Ann. vol. 123 (1946) pp. 187-200.

UNIVERSITY OF ALBERTA,
EpMONTON, ALTA., CANADA

UNIVERSITY OF TORONTO,
ToroNTO, ONT., CANADA



