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1. Introduction. A syntactical transform is a formal rule whose application

to a sentence in a given formal language, in our case a variant of the lower

predicate calculus, produces another sentence in the same language. For ex-

ample, a set of instructions which converts a sentence into prenex normal

form, or into Skolem's normal form, is a syntactical transform. The choice of

the syntactical transforms which are considered in the present paper is moti-

vated by mathematical considerations. We develop transforms which, in a

sense to be made precise later, generalize the passage from the assertion of

the existence of certain elements to the assertion that these elements are

continuous functions of the parameters involved. We then show that, under

certain conditions, the deducibility of an assertion of the former type from

a given set of axioms entails the deducibility of its transform from a related

set of axioms. Corresponding results for the concept of boundedness have

been derived elsewhere [5].

Among the applications, we mention that if a sentence of a certain class

holds in every completely divisible torsion-free abelian group then a trans-

form of the sentence which expresses uniform continuity in the sense indi-

cated above, holds in every completely divisible ordered abelian group. Also,

if a sentence of a certain class holds in all groups then a transform of the

sentence which expresses the topological continuity (in a weakened form) of

any element whose existence is affirmed by the sentence, holds in every

topological group. Finally, we show that in certain circumstances the mere

existence of a solution of a system of equations entails a result concerning

the continuity of the solution.

We shall make use of a particular many-sorted calculus (here called the

uniform predicate calculus) in which no distinction is made between predicate

variables and individual variables. Moreover, in certain cases we indicate a

relation simply by the juxtaposition of its arguments. The use of this language

proves convenient, though not essential, for our theory of syntactical trans-

forms, which can also be formulated within the ordinary lower predicate

calculus.

2. The uniform predicate calculus.

Symbols. Symbols fall into two categories—variables and functors. A
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variable is a symbol x\, where k is a positive integer not exceeding n, while i

is any positive integer. The superscript denotes the class to which a variable

belongs, while the subscript serves to differentiate between variables of the

same class. Thus, a variable may be considered as an ordered pair of integers.

In all, there are n classes of variables. A functor is a symbol <f>\( • • • ) possess-

ing a finite number of argument places each filled with a variable or functor.

Again, the superscript denotes the class, while the subscript distinguishes

between functors of the same class.

Connectives, quantifiers and brackets:
m m

~, V, Axi, Exi, (,)

where mGM, M a given set of positive integers not exceeding n, and i is any

positive integer.

Well-formed formulae. Wff are generated by a given set, called the

generating set, of finite sequences of positive integers (not exceeding n) in the

following manner: replace each integer in a sequence by any symbol with

that integer as superscript; each of the resulting sequences of symbols is said

to be a wff, and is called a generating wff. Furthermore, if 6t, 03 and 6 are

any wff then so are

~(a),      (a) v (a),     Ax7(e),     Ex7(e)

where m and i are as above, provided no variable is both free in a and bound

in 03 or vice versa, and provided x™ is free in 6. The terms "free" and "bound"

have the usual meaning. The usual convention for dropping brackets will be

followed.

Provable formulae. In the following a, 03, e are any wff; m and i are

as above; y denotes any symbol with superscript m; CO03 is an abbreviation

for ~dV03; (ft)? denotes the formula obtained from a by replacing each

instance of z in a by w, and replacing each bound instance of w in a by z—

where w and z denote symbols with the same superscript. We now say that

the following are provable provided they are wff:

2.1. avaDa;
2.2. aDaV(B;
2.3. a\/03D(BVa;
2.4. (aD(B)D(evoeV(B);
2.5. AxT(a)D(a)vIT;

2.6. (a)l-DExT(a).
Further, we say that

2.7. 03 is provable if a is provable and aD03 is provable.

2.8. dZ^Axf (03) is provable if aD03 is provable and xf does not occur in

a but is free in 03.

2.9. Ex!"((B)Da is provable if 03Da is provable and xf does not occur in

a but is free in 03.
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k

h lr X

2.10 AXiAXj ■  ■  • Ax,Exp((<S.)4ki!0j>...*ri) 3 ft
t    i  i e

is provable if Ax°iAx) • • ■ Axrs(($i)Zi)(l is provable, providing <p1(oc\xhj • - - x's)

occurs in 03 but not in ft.while x*p does not occur in 63.

It is readily shown that the Uniform Predicate Calculus is consistent,

since we can show that not every wff is provable. In particular, it is easy to

show that

~(ft V ~ ft)

is not provable.

We introduce the idea of a structure in which a wff can be interpreted in

the usual way. A structure, 5, is a set of constants together with a function,

/, defined over certain finite sequences of the constants, and taking the value

0 or 1. A wff is said to be defined in 5 if we can correlate the variables and

functors of the language with constants of 5 in such a manner that the image

under the correlation of each generating wff appearing in the given wff (and

all other generating wff obtained from the same generating sequence) is

defined under the function/. We say that a generating wff defined in the struc-

ture S holds in S if its image under the correlation takes the value 1 under/,

and that it does not hold in S if its image takes the value 0. Furthermore, if ft

and (B are any wff, we say that

~ft holds in 5 iff ft does not hold in S;

ft V® holds in 5 iff ft holds in 5 or 03 holds in S;
Ax™(&) holds in S iff (ft)?? holds in 5 no matter what symbol y is, pro-

vided only that it have superscript m;

Ex™(ft) holds in S iff (ft)";» holds in S for some y, where y denotes a sym-

bol with superscript m;

provided that ft\/(B, Ax™(a), Ex™(&) are wff.

It is clear that if a wff is defined in a particular structure, then either it

holds in that structure or it does not hold in that structure, and that both

cases cannot occur simultaneously.

We can now show that the Uniform Predicate Calculus is complete in the

sense that a wff is provable if it holds in every structure in which it is defined.

It is enough to show that every consistent (noncontradictory) set of wff

holds in some structure. Now, if a set, K, of wff in prenex normal form is con-

sistent, so is the set, K*, of wff obtained from the wff of K by replacing all

existentially quantified variables by functors of the preceding universally

quantified variables. Furthermore, K holds in any structure in which K*

holds. We now form the set K** of wff obtained from those of K* by replacing

each quantified variable in a matrix by a symbol with the same superscript—

in all possible ways—and discarding each prefix. But if K* is consistent so is

K**, and K* holds in every structure in which K** holds. However, it can
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be shown (e.g. [4]) that any consistent set of wff free of quantifiers holds in

some structure. Thus, any consistent set of wff holds in some structure.

We note that the lower Predicate Calculus is a special case of the Uniform

Predicate Calculus. Interpret x] as individual variables, and x* as predicate

variables of order k — 2 for 2 ^ k g n. Set M= {1}, and let the generating set

consist of the sequences (k, 1, 1, • • • , 1) with 2^k^n, where k is followed

byjfe-2 l's.
An extended predicate calculus results if we replace M in the above

interpretation by the set of all positive integers not exceeding n.

Furthermore, a many-sorted calculus is obtained by restricting the first k

classes to individual variables of various sorts, while the remaining classes

represent relations (e.g. [6]); hence, M— {l, 2, • • • , k}.

In the following, we interpret the Uniform Predicate Calculus as a many-

sorted calculus in which, generally, relations are indicated by the juxtaposi-

tion of their arguments. Thus, generally, variables with different superscripts

denote individual variables of different sorts.

3. Duplication. Let Y be any formula, we denote by Dm( Y) the formula

obtained by applying the following syntactical transformation to Y.

3.1. Each variable x™ or functor <$" (a\ • • • an) with superscript m is

replaced by x™Xy+i or <^(/>m(at • • • a„))d>™j+i(Dm(ai ■ ■ • a„)) respectively;

for example, xvix™xTkd>™(xY~xTk) is replaced by

p    m    m r    m       mm r       m m    m r

XiXiiXii+iXktbia(XiiXii+iXk)4>2s+i(xijXij+iXk).

3.2. Each quantifier Ax™ or 7£x™ with superscript m is replaced by

Ax^jAxy+i or ExyExv+i respectively. In the following we denote 2i by t'i,

2^+1 by i2, and the components of Dm(y) by yi and y2 if y is a function; thus,

if y is </>T(xJxrk) then yx is 4>l(x7jX7J+lxk) and y2 is C+i^S+X)- We note that

Dm(Q^) is ((Dm(&))llr)v^ which we write simply as (Dm(a))yx]fx^.

We shall show that Dm( Y) is provable provided it is a wff and Y is prova-

ble. (Note that a generating sequence when duplicated may not be a generat-

ing sequence; thus, Dm(Y) is not always a wff.) We use induction on the

order of a provable wff where the order is the minimum number of applica-

tions of rules of inference required to establish provability of the wff. Thus,

the wff 2.1-2.6 have order zero; we show that their duplicates are provable.

This is clearly true for 2.1-2.4; we consider 2.5. Now,

Ax7lAx72(Dm(a)) Z> (Ax7i(Dm(a)))I)m is provable

but,

(Ax72(Dm(a)))x]m D (Dm(a))"x1.lmXhm is provable,

thus,
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AxhAxi,(Dm(a)) D (Dm(a))"^mXiim is provable.

The duplicate of 2.6 can be shown to be provable in a similar way. Thus, any

provable wff of order zero has a provable transform. Suppose that any prova-

ble wff of order <ra has a provable transform; we shall show that then any

provable wff with order ra has a provable transform. We show, in fact, that the

duplicate of a wff is provable if the wff is obtained by applying a rule of

inference to a provable wff of order <re.

Let ft and COG3 be provable wff of order <re; then 7>m(ft) and 7>m(eO03)

are provable. But 7>m(ftD03) is Dm(a)DDm(<$,); hence, by 2.7, Dm((&) is

provable.

Let CO03 be provable of order <re, where X™ is free in 03 but does not occur

in ft; then 7?m((OA3) is provable, i.e. 7>m(ft)I)7)m(03) is provable where x™

and x™ are free in T>m(ffi) but do not occur in Dm(Q,). Hence, by 2.8, Dm(Qi)

Z)Ax™Axl(Dm(<$>)) is provable.
It can be shown similarly that the duplicate of a wff is provable if the wff

is obtained by applying 2.9 to a provable wff of order <re.

Let Ax\ ■ • • AxJ • ■ ■ ̂ 4xj(fl3)Dffi be provable of order <n, where

</>f(x? • - • xj • • • xTs) occurs in 03 but not in ft, and xkv does not occur in 03.

Then, Ax°, ■ ■ • Ax™Ax% ■ ■ ■ AxT3(Dm(($,))Z)Dm(a) is provable, where

cp\(x°i • • • x^x^ ■ ■ ■ x's) occurs in 7>m(03) but not in Dm(Q), and x* does not

occur in Dm((S>); thus,

k

Ax" ■ ■ ■ AxixAxit ■ ■ ■ Ax,Exp((Dm(<&))4,>tz*---z?,j'a.---z'), D 7>m(ft)

is provable by 2.10.
Let Ax° • ■ ■ ̂ 4»s(ffl)3a be provable of order <ra, where <f>T(xi ■ ■ ■ xTs)

occurs in 03 but not in ft, and x™ does not occur in 03. Then Ax"t • • ■

AxTs(D„,(<$>)) DDm(Qi) is provable where neither <£™(x? ■ ■ ■ x's) nor <#"(x? ■ ■ ■ xrs)

occurs in Dm(Q), while both occur in Dm(®>), and neither x™ nor x™ occurs in

7>m(03). Hence,

xm xm

Ax" ■ ■ ■ Ax[Ex'^1Ex^((Dm((&))^zf'...z:)4,^zf,..-z',)) D Dm(a)

is provable, by 2.10.
We have now shown that every provable wff of order ra has a provable

transform provided that every provable wff of order < re has a provable trans-

form. This completes the induction; thus, if F is provable, so is Dm(Y).

Of course, 7>m(F) may itself be duplicated with respect to another class,

say k. Thus, if Fis provable so is Dk(Dm(Y)). But it is clear that Dk(Dm(Y))

is precisely Dm(Dk( Y)); i.e. the order of duplication does not affect the result.

Hence, if a provable wff is duplicated simultaneously with respect to two

classes, the resulting formula is provable (provided that it is a wff). Finally,

we see that if a provable wff is duplicated simultaneously with respect to all
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classes occurring in the wff, then the resulting formula is provable.

We have demonstrated that if Y is a provable wff, then so is D(Y),

where D(Y) is obtained from Y by applying the following syntactical trans-

formation:

3.3. Each variable xj or functor </>'■ is replaced by x2jx2'+i or d>ycf>ij+i, re-

spectively, t=l,2, • • ■ , n,j=l, 2, ■ ■ ■ ; for example, xvL4h(xnfxrt) is replaced

by
p     p m      mm r     r m m    m r     r

XuXii+i(t>t,(XtjXtj+iXuX2t+i)tl>i,+l(XijXij+iXitX2t+i)-

3.4. Each quantifier Ax] or Ex] is replaced by Ax^Ax'y+i or ExijEx2]+i

respectively.

4. Relativization of quantifiers. In this section we confine ourselves to

that portion of our language which contains no functors. There is no loss in

generality in doing so, since a functor, </>?(x™ • • ■ xl), with n argument places

can always be replaced by the wff x'x™ • • • xvHx) which is interpreted as

x* = x'x™ ■ • • xn, where x\ plays the role of d>t [3] with the appropriate axioms.

We consider now a syntactical transform which has made several appear-

ances in the literature (e.g. [l]). The purpose of this transform is to restrict

the range of a variable being quantified to a set of variables satisfying a given

wff. The transform is as follows:

4.1. Replace AxT(a) by Ax?(x?RmD(Xm).

4.2. Replace Ex?(a) by Ex?(x?Rm/\am)

where aA03 is an abbreviation for '~(-~a\/'~(B)- Here, m is fixed, and Rm

denotes a fixed sequence of variables each with superscript different from m,

such that x™Rm is a wff; we call Rm the relativizing sequence of the transform.

We denote by Ym the wff obtained by applying the transform to Y. Clearly,

if Y is quantifier free then Ym is Y.

It can be shown (compare [l]) that

Ex7(x7Rm) D Ym

is provable, provided that Y is provable, has no free variables with superscript

m, and no variable that occurs in Rm is bound in Y.

We shall say that a set of wff, Sr, is a supporting set of a transform, 72,

if the 72-transform of any provable wff is deducible from Sr- Thus, if we re-

strict the above transform to wff which possess no free variables with super-

script m and no bound variables that occur in Rm, then Exf(x™Rm) is a sup-

porting set of the transform.

So far we have relativized with respect to just one class of symbols. We

now introduce another relativizing sequence, Rk, and relativize quantified

variables with superscript k. Thus,

k k      k
Axt(Q) is replaced by Ax{(xiRk D a*)

and
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k k       k
Exi (ft) is replaced by Exi (xi Rk A ft*)-

Again, Rk is a sequence of variables each with superscript different from k.

It follows that if Y is provable, has no free variables with superscript m or k,

and if no variable that occurs in Rm or Rk is bound in F, then

Exj(xjRk) Z) (Exj(xjRm) 3 Ym)k is provable.

_ But, (Ym)k is (Yk)m; accordingly, we denote (Ym)k by Ymk. Thus,

(Ex^(x^Rm) D Ym)k

is Ex?(x?Rm)DYmk; hence, Ex)(x)Rk) AEx?(xJRm)D Ymk is provable.

Generally, if F is provable, has no free variables, and no variable bound

in Y occurs in any i?„ i=l, 2, • ■ ■ , re, then Ex)(x)Ri)/\Ex](x2jRi) A ■ • ■

AEx1(x"R„)Z)i?(F) is provable, where R(Y) denotes the wff obtained by

relativizing Y with respect to all classes. Thus, a supporting set, Sr, of the

R transform is constituted by

II 2      2 n      n
Exj(xjRi), Exj(xjRi), • • • , Exj(xjR„).

5. The continuity at zero transform. We introduce now a transform which

generalizes the idea of continuity at zero for a function which takes the value

zero when its arguments are zero. A wff in prenex normal form is transformed

by relativizing its matrix with respect to the variables in the prefix, and quan-

tifying any variables introduced in the relativizing sequences. This transform

is defined only for wff in prenex normal form in which no more than one class

of variables is quantified, and which contains no free variables of a quantified

class; we shall say that a wff belongs to the class "y if it satisfies these restric-

tions. The transform is as follows:

5.1. Adjoin to the left of the prefix the sequence of quantifiers obtained

as follows:
(a) write down the prefix in reverse order, interchanging A and E,

(b) remove all but the last of each sequence of universal or existential

quantifiers,

(c) change all superscripts to those of another class (not mentioned pre-

viously.

5.2. Relativize with respect to the class quantified in the given wff, the

relativizing sequence for each quantified variable being the variable intro-

duced into the prefix which corresponds to the block of universal or existential

quantifiers to which the quantifier concerned belongs.

For example, the transform of

m m m

ExiExjAxk (ft)

is
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r r        m        m        m       m   r m   T m    r

ExkAx,Exi ExjAxk (x,- x,- A (xj xt A (xk xk _) a))).

We shall denote the transform of Y, as above, by Z(Y).

If in the interpretation the wff x™x) means that xf is small, then the trans-

form of Ax?Ex^(d), namely,

r        r        m        m      m   r m   r

AxjExiAxi Exj (Xi Xi D (x,- x,- A a))

expresses the continuity at zero of the functor satisfying a. For this reason we

call this transform the "continuity at zero" transform.

A related transform is considered by one of the authors in [5]; this trans-

form is termed the "bounding" transform, since under an appropriate inter-

pretation the boundedness of a functor can be obtained from its existence by

use of the transform. The bounding transform differs from the continuity

transform only in its treatment of the prefix of a wff; for example, if the pre-

fix is
m m m m

Axi ■ ■ • Exj ■ • ■ Axk ■ • • Exa

where only the initial quantifier in each block is shown, then the transformed

prefix is
.    rrrrm m m ~   m

AxiExjAxkExgAxi  ■ ■ ■ Ex, ■ • • Axk • • • ExB.

It is shown that a supporting set of the bounding transform consists of the

following:

5.4 A XiA Xj(x{Xj V Xjxi);

5.5 AxiAxjAxk(xiXj A x3x* D XiXk);

5.6 A X{A XjA Xk(xi x,- A xixk D x,- xk);

where the transform is restricted to wff belonging to the class Z consisting of

those members of the class y whose prefix does not have the form

■ ■ . A • ■ ■ E- ■ ■ A ■ ■ ■

where the dots denote quantifiers. It is also shown that if 5.3 is replaced by

O • / yi jCi.il/jCj \jCj % i)

then the bounding transform may be applied to wff possessing free variables

of the class m.

We shall show that if the continuity transform is applied only to wff be-

longing to the class Z, then 5.4-5.7 constitute a supporting set of this trans-

form. We denote this set by Sz. First, we require the following
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5.8. Theorem. If F£0| and has the form

m m        m mm m. m m

Ax(l ■ • ■ Axi,Exjl ■ • ■ ExjtAxkl ■ • ■ Axku(<8>(xix ■ • ■ x{„
-J - y m m m m

xii ' ' '  •*-)'(, xki " ' "  Xkj)

then Y is consistent provided {Z(Y)\ WSz is consistent.

Proof. We suppose we are given a structure S* such that \Z(Y)]\JSz

holds in S*. Hence,

aih(y) A • ■ • A ash(y) D /,(y, ai ■ ■ ■  a,)y A • • • A ft(y, ai • • • at)y

A (biz A • • • A buz D (B(ai • • • as, fi(y, Oi •.••«,)•• • /<(y, ai ■ ■ ■ a,),

h ■ ■ ■ K))

holds in S* for any choice oi ai • • • a„ bi • • • bu, y where h, fi • • • ft are

given functions over S*, and 2 is a given constant. Note that ai • • ■ as,

bi ■ ■ ■ bu are correlated with variables with superscript m, while y and 2 are

correlated with variables having superscript r.

We shall construct a structure 5 in which 5.9 holds. The constants of 5

are obtained from those of 5* and t symbols 7q(xi • • • x,), • • • ^((xi • • • x.)

each having 5 argument places. First, we say that a constant of S* has order

zero in S; next, we say that F<(xi ■ ■ ■ xi),i=l, • ■ • , t, is a constant of S of

order re if its arguments are constants of S of order <re, and at least one argu-

ment has order re -1. We denote the constants of 5 by

Cl, Ci, ■ ■ ■ , cn, • • ■

such that Ci precedes Cj ii the order of ct is not greater than the order of Cy.

Having defined the constants of 5 it remains to define for each generating

wff of 03 whether or not it holds in 5 when its symbols are replaced by con-

stants of 5. When this is done we will have constructed a structure in which

5.9 is defined.

Let W be the set of all wff obtained from the generating wff of 03 by re-

placing symbols by constants of 5 in all possible ways. Let Wk be the set of all

wff obtained in this manner by using only constants of 5 of order ^ k; then

WoEWiEWiE- • ■   and     zZi W( = IF.

It is known that if the wff of each Wk are assigned values in such a manner

that 5.9 holds when the universally quantified variables are restricted to con-

stants of order <k, then a valuation of IF can be found such that 5.9 holds in S.

We show now how to assign values to the wff of Wk so that the above

reauirement is obtained. First, we define two mappings of the constants of 5
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of order ^k into the constants of S* as follows:

Cz, if cm has order k;
pcm =  <

(.minimum (nFi(cm • ■ ■ cm), h(y.Fi(cm • • ■ cm)))> otherwise

where minimum (a,, a,)=ai if a,-ay holds in 5*; otherwise minimum (ait ay)

= aj.

\cm = ai, if cm has order zero, where a,/icm holds in 5*

XF,(c,-v • • • Cj) = fi(nFi(ch ■ ■ ■ cu), \ch ■ ■ ■ Xc,;).

We show that ucm = ucn if cm and c„ have the same order: true if cm has

order k; suppose true if cm has order >j. Let cp and cg have order j; then

MCp = minimum (uFi(cp ■ ■ ■ cp), h(nFi(cp ■ ■ ■ cp)))

but Pi(cp •    -cp) has order >j, and

order Pi(cj, ■ • • cp) = order Pi(c, • • • cq);

thus, by the induction assumption, /j.Fi(cp ■ ■ ■ Cp)=/j.Fi(cq ■ ■ ■ cq), hence,

/zc„ = minimum (pFi(cq ■ ■ ■ cq), h(piFi{cq ■ ■ ■ cq)))=ucq.

It is now clear that fxcmuc„ holds if order cm border c„, since ptcm/xFi(cm ■ ■ ■ cm)

holds; thus, \xcm]xcn holds if order c„ = l+order cm, but ptcnacp holds if order

cp = 1 +order c„, hence ixcmfj.cp holds if order cp = 2 + order cm; carrying this on

we see that ucm/j.c„ holds if order c„, border cn-

We show now that \cmiic„ holds in S*: true if cm has order zero; suppose

true if cm has order <n. Let cq = Fi(cjl ■ Cj) have order n, then Xcy^cy, A ■ ■ ■

f\\cjjiCj, holds; hence, by 5.6, Xcy,jucy,A • ■ ■ AXcys^c;>, holds, where c3(,has the

maximum order of c,-,, • • • , o,,. But fiCjJi(piFi(cjtt ■ ■ ■ cjr)) holds, hence,

uCjJi(nFi(cJl ■ ■ ■ Cj,)) holds, since

liFi(ch ■ ■ ■ c-j) = nFi(ch ■ ■ ■ Cj);

thus, by 5.6, \cjji(ncq)A • ■ ■ f\kcjfi(ucq) holds; hence, from 5.10,

fi(pFi(cj1 ■ ■ ■ Cj), Xc;i • • • \cj)ncq holds, then, \Fi(cJ1 ■ ■ ■ Cj)fxcq holds, i.e.

\cqixcq holds.

Now, in 5.10, set ai=\cjl, ■ ■ • , a, = XcJa; bi=\ckl, ■ ■ ■ , bu=\cku; y

= uFi(cj1 ■ • ■ Cj). But \cjlh(nFi(cj1 ■ ■ ■ cit))A • ■ • A^Cj.h(nFi(cj1 ■ ■ ■ c3-))

holds in S*; and \ckizA ■ • • AXc^z holds in S*, since\cklfxckl A ■ • ■ A^ckunCku

holds, and uCjZ holds for any i. Hence, (B(Xcy1 • • • Xc,-„ fi(fiFi(cj1 ■ • ■ Cj),

Xcy, • • • Xcy.) • • ■ ft(nFi(cJ1 ■ ■ ■ Cj), Xcy, • ■ ■ Xcy,), \ckl ■ ■ ■ Xc,tJ holds in S*,

i.e. 03(Xcy1 • • ■ Xcy,, XPi(cy, • • • Cj) ■ ■ ■ \Ft(cJ1 ■ ■ ■ Cj), \ckl ■ ■ ■ \ckJ holds

in S*.

We now define the value in S oi any generating wff c,l ■ ■ ■ Cjm to be the

value in S* of the corresponding sequence Xc,-; • • • Xc,m under the X mapping.

Hence, it is clear that.
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«(<:,-, • • •   Cj„ Fi(cil ■ ■ - a,) • ■ ■ Ft(cil ■ ■ • Cj,), ch - ■ - ckJ

holds in S if Cjl ■ ■ ■ Cj,, ckl ■ ■ ■ cku are constants of order <k. We now define

/ functions, gi(xi • • • x.), • • • , gt(xi •••*,), in 5 as follows: gi(cjt • • ■ c,-,)

takes as its functional value the constants Fi(cj1 • • • c,-,). Thus, 5.9, holds in

5 when the universally quantified variables are restricted to constants of

order <k.

Counter-example. We show that 5.8 does not apply generally; in par-

ticular, we show that there is a wff with prefix Ex^Ax^Exk such that 5.8 is

false. Consider Y=Ex?Ax?Ex?(xpx?x?A~xfx?x?). Now,

~Axj(xtXj Xj) V Axj(xtXi Xj) holds in any structure,

i.e.

Exj(~xtXi Xj) V Axk(xtXi xk) holds in any structure;

thus,
m        m p   m   m P   m   m

ExjAxk(~xtXiXj V xtXi xk) holds in any structure;

hence,
tn m tn . p    tn    m p   tn    tn t

Axi ExjAxk (~X(X< Xj V XtX, xk) holds in any structure,

thus,
in        tn        tn      p   m   tn p   tn   m     t

ExiAxjExk(xtXi Xj A ~ XtXi xk) is contradictory.

We shall show that \Z(Y)\\JSz is satisfied in some structure. Consider

the structure M with two classes of constants, yi and dit where i, j, k

= •••,— 2, —1,0,1,2, •••; and a constant xj\

We define:

ykdi holds in Miff j H i;

didj holds in M iff  i ^ j;

xtykyn holds in M iff m ^ k;
; jb i

fi(di) = dt-i,        fi(didj) = yt-i,       fz(didjym) = y0.

Now, Z( Y) =AxlExrJAxTtExTAxJEx?(x7xrtA(x?x'jDx'?xkAxvx7x?A~x!x?x'2)),

but under the above interpretation,

fi(didj)dj A (ymfi(di) D f3(didjyi)di A xtfi(did,)ym

A ~ xPfi(didj)f3(didjym))

holds in M for any choice of dit ds, y*, where /i, /2, /3 are the functions given

above, since

yLidj A (ymdi-i D yldi A xtyi~iym A ~ *fy<-iyo)
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is satisfied in M. But it is easily checked that Sz holds in M. Thus, JZ(F)}

KJSz is consistent, but Y is contradictory. We assert now that

5.11. Theorem Z(X)AZ(Y)Z)Z(A(X, Y)) is deducible from Sz provided

that XG'y, yGy, and variables of the same class are quantified in X and Y.

We demonstrate the theorem for the case in which neither X nor Y has a

prefix of the form

. . . E- ■ ■ A ■ ••£•••

since we require the theorem only for this case, where A for the purpose of

this demonstration is restricted to the following syntactical transform which

is applied only to wff so described: let

P = Axf. • • • AxitExJl • ■ ■ ExJtAxkl • ■ ■ Axku(Q,),

m mm m tn m

Q = AxPi ■ • ■ AxpfExqi ■ • ■ ExqAxri ■ • • AxTh((&),

then

A(P, Q) = Axtl • ■ • AxitAxP1 ■ • • AxPJExjl • ■ • EXjfExqi • ■ • Exq Axi^ • • •
mm m

AxKAxn ■ • • Axn(a A 03).

We see that when A is applied to a pair of wff belonging to y, it produces a

wff belonging to y and equivalent to the conjunction of the given wff.

We demonstrate 5.11 by applying repeatedly the following wff; this trans-

form can be generalized so that A(x, y) is equivalent to x Ay and is in prenex

normal form.

5.12 (aXb) AcDaX(b Ac)

where X stands for A and V, but not for both simultaneously in the same

formula. It is easily seen that 5.12 is provable, since

(a V b) A c Z) (a V b) A (a V c)  is provable, and

(a V b) A (a V c) = a V (b A c) is provable.

Now, let a be the matrix of C(X), and 03 be the matrix of C(Y). Then a is

of the form ax X (h X ( ■ ■ • X («i X P) • • • ), while 03 is of the form

a2X(biX( • • • X(m2XQ) ■ • ■ ), where X may be A or V- We apply 5.12

to aA®; this gives

ai X ((bi X • • ■ X «i X P) A (a2 X b2 X ■ ■ ■ X m2 X (?)).

We now apply 5.12 to ((hX ■ ■ ■ XmXP) A(a2Xb2X ■ ■ ■ Xm2XQ)) remov-
ing either 6i or a2 as we see fit. Continuing this process, we find that

5.13. aA(BZ)eXPA(? is provable, where C consists of ai, bi, ■ ■ • , «i

and a2, bi, ■ ■ ■ , m2 intermingled in any manner provided only that the order-

ing in a and 03 is maintained. But if BZ)Cis provable, so are Axm\B)Z)Axf(C)

and ExT(B)DEx?(C). Applying this rule to 5.13 we obtain
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5.14. A(Z(X), Z(Y))D ■ ■ ■ (eXPAQ) is provable where the implicate
differs from Z(A(X, Y)) in that there are surplus quantifiers with superscript

r in the prefix, and the matrix contains corresponding relativizing sequences

with subscript j, say, rather than i. It is apparent that unwanted universal

quantifiers may be discarded, and the corresponding relativizing sequences

replaced as desired, since if

r        r      m   r m   r

AxiAxj(xi Xi A Xj Xj D B)

holds in a structure, then

r      m   t m   r

AXi(Xi Xi A Xj X{ Z) B)

holds in the same structure. However, to eliminate unwanted existential

quantifiers we must make use of the set Sz; suppose

A xTkExriExTj(P Z) xmtx\ A x?xTj AQ) ASz

holds in a structure. Then there are functions f(xTk) and g(xrk) such that

PDx7f(xTk) Ax?g(x'k) AQ holds in the structure for *=1, 2, • • ■ . We now

define the function h(x'k) as follows:

,, 's        (/(**) if «(**)/(**) nolds'-

Kg(xk) otherwise.

It is easily checked that

P D x7h(x[) A x?h(xrk) A Q

holds in the structure, since Sz holds in the structure. Thus, AxrkExri(P~2>x7x\

Ax^x'tAQ) holds in the structure. We have now shown that the implicate of

5.14 implies Z(A(X, Y)) is deducible from Sz; thus

Z(X) AZ(Y)DZ(A(X, Y))

is deducible from Sz-
We wish to show now that 5.8 holds even if F has fewer changes from A

to E and from E to A then has 5.9. Suppose that a wff takes the form

m tn ,

Y = AxiExj(<&)

and that \Z(Y) \\JSz is consistent. But x»xJDx™xi holds in any structure in

which it is defined; thus, ExrkAxrkn(x7xrk'2)x7xTk) holds in any structure satisfy-

ing Sz; hence, {Z(Y)}VJ{Z(Ax7(x7xk))}VJSz is consistent. But then, by

5.11, {Z(Ax7ExfAx7((S,Ax7xt))}KJSz is consistent; hence, by 5.8,
Ax7ExfAx7((RAx7xk) is consistent. Thus, Ax7Ex?(<S,) is consistent. It is

apparent that the other cases follow in a similar manner.
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We wish to show that if the prefix of Y contains E ■ • ■ A ■ ■ • E, where

the dots represent quantifiers, then 5.8 does not hold in general, i.e. we can

find a matrix such that 5.8 is false. Now, X = Ex7AxTEx%(xlx?x')nA~xfx?xkn)

is contradictory, while {Z(X)}VJSz is consistent; also, ExTsAxsn(x™xs"Z)x'snxrs)

holds in any structure satisfying Sz- Thus,

\Z(X) ] \J {£x,^x8(xs x, D x, x.) } KJ Sz

is consistent; but it is easily shown by the method of 5.11 that \Z(Y) }U5z

is consistent, where

m m m m      p   m    m p    m    m m     r

Y = ExiAxjExkAx, (xtxt x,- A ~ xtXi Xk A x, xs).

Thus, Y is contradictory while {Z(Y)}\JSz is consistent. By repeating the

process on Y in place of X, it is clear that, by placing the quantifier where

we will, we can introduce as many universal quantifiers into the prefix as we

wish.

We show that we can introduce existential quantifiers where we will by

considering

W = X A Ex7(a d a).

Here, Wis contradictory, but it is easily shown that {Z(W)\\JSz is consistent.

We now define the syntactical transform N( Y) which applies only to wff

belonging to the class Z: N( Y) is obtained from Y by interchanging A and E

everywhere in the prefix of Y, and inserting ~ before the matrix of Y;

thus, Ar(F) = ~F. We have established

5.15. Theorem.  Y is consistent provided {Z(Y)\VJSZ is consistent, and

N(Y)GZ.

This theorem is expressed in descriptive or semantic terms; we wish now

to express it in terms of provability. Thus, we shall prove

5.16. Theorem. If Y is provable then Z(Y) is deducible from Sz, provided

YGZ.

For this purpose we must first establish

5.17. ~Z(Y)=Z(N(Y)) is provable. Let

m. m

Y =    -Ax,  ■ ■ ■ Exj • • • (a)

then

r r m m

Z(Y) = • - • Axj • • • Exi • - • A%i • • • Exj • • •

m   r m     r

(• • • Xi Xi 3 • • • *,• Xj A • • • a)

and
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N(Z(Y)) = • ■ • Ex% • • • Ax\ ■ ■ ■ Exi ■ • • Ax™ ■ ■ ■

(  ■  •  •   Xj Xi A   •  •  ■   Xj XjZ)  •  -  ■ ~ ft)

but

N(Y) = • • • Ex7 • ■ -Ax" ■ ■ ■ (~a)

and

Z(N(Y)) = - ■ ■ Exj ■ ■ ■ Ax\ ■ ■ ■ Ex7 ■ ■ ■ Ax" ■ ■ ■

(■ • ■ XiXi A • • ■ xj xj 3 • • • ~ a)

hence,

AT(Z(F)) = Z(N(Y)) is provable,

thus,

~Z(Y) m Z(N(Y)) is provable.

Now let X be any provable wff such that XEZ, then 5.15 asserts that

N(X) is consistent provided that {Z(N(X))}VJSz is consistent. Hence, we

can assert that ~Z(N(X)) holds in any structure which satisfies Sz; thus,

~Z(N(X)) is deducible from Sz, i.e. Z(X) is deducible from Sz- This estab-

lishes 5.16.

Let Xi, ■ ■ ■ , Xn be a set of wff in which only one class is quantified, and

such that N(Xi)EZ, i=l, 2, • • • , re. We define the syntactical transform

A(Zi, • • • ,Xn) as follows: let Xi=A(Xi,X2), ■ ■ - , X*=A(X*-\ Xk+i), ■ ■ ■,
X"-1=A(Z"-2, Xn); then Xn^=XxA ■ • • A*», and N(X^)EZ. We de-

note X"-1 by AC*!, • • • ,Xn).
We establish now

5.18. Theorem. Z(Xi)A ■ ■ ■ AZ(Xn)DZ(Y) is deducible from Sz pro-

vided XiA ■ ■ ■ AXnDY is provable, YEZ, and N(Xi)E'Z i=l, ■ • ■ , re.

We have that N(A(A(XU - ■ - , X„), N(Y))) is provable and belongs to

the class Z; hence, from 5.16, Z(N(A(AXU • • • , X„), N(Y)))) is deducible

from Sz; but from 5.11, Z(X)AZ(N(Y))DZ(A(X, N(Y))) is deducible from
Sz, if N(X)EZ; thus, by 5.17, Z(N(A(X, N(Y))))D(Z(X)DZ(Y)) is deduci-
ble from Sz- Hence, Z(A(Xi, • • • , Xn))Z)Z(Y) is deducible from Sz; but

from 5.11, Z(Xi)A ■ • ■ AZ(Xn)DZ(A(Xu ■ ■ ■ , Xn)) is deducible from 5^;
thus, Z(Xi)A ■ ■ • AZ(Xn)DZ(Y) is deducible from SZ-

6. The uniform continuity transform. We develop now a transform which

generalizes the idea of uniform continuity of a function. A wff is transformed

by applying two of the above transforms to it; first, we apply the continuity

at zero transform, and then we duplicate with respect to one class. We denote

by U( Y) the result of applying this transform to the wff F.

Now, in 3, we showed that provability is invariant under duplication;



1957] SYNTACTICAL TRANSFORMS 235

hence, by virtue of 5.16, if Fis provable and F£Z then Dm(Z(Y)) isdeducible

from Dm(Sz). Thus, U(Y) is deducible from Dm(Sz). Hence, a supporting set

of the U transform is the following, which we denote by Su:

r       tn        tn      m   tn   r

O. 1 Jl X iHjX jt-A-j Xja\ Xj, XjqXi) ,

6.2 AxiAxj(xiXj\J Xjx);

6.3 AxiAxjAxk(xiXj A XjXk 3 x.-X/O;
mmrrmmr r    r m    m   r

6.4 Axi^x^AxjAx^x^x^Xj A XjXk _) x^x^Xjt).

We have established

6.5. Theorem. If Y is provable then U(Y) is deducible from Su provided

FEZ.

Suppose that A^A ■ ■ ■ AXnDY is provable, F£Z, and N(X)GZ

i = \, 2, • ■ ■ , n; then, by 5.18,

Dm(Z(Xi) A--- AZ(Xn)DZ(Y))

is deducible from Dm(Sz), i.e. U(Xi)A ■ ■ ■ AU(Xn)DU(Y) is deducible

from Su. We have proved

6.6 U(X) A • • • A U(Xn) D U(Y)

is deducible from Su provided A\A • • • AXnZ) Y is provable, and F£Z

and N(X)GZi=l, 2, ■ ■ ■ , n.

We show now that under a suitable interpretation the U transform does

generalize the idea of uniform continuity of a function. Consider

tn        m        m .      .   m   tn   wi

Y = Axi AxjExk ((S>(Xi Xj Xk)),

then

r r        m        m        m m m m       m   m   r m   m    r

U(Y) = AxkExiAxi^AxiJtXj^AxjJLxkiExk^Xi^Xi^Xi A Xj^Xj^Xi
m    m    r .    m    m   m    tn    tn    "*..

_)  Xk^Xk^Xk J\ V^im\Xi^Xi^Xj^Xj^XkyXk^j).

For any i, j, k we interpret x™ as complex numbers, x' as positive numbers,

xTxfxl as Ixf-xfl <x[, and we define ffim(x"x™x^x£x£) as follows: we

replace each generating wff that appears in 03 by the conjunction of two such

wff; for example, afx^x") is replaced by 8(^")A(i(^). Thus, if

03 is a conjunction of generating sequences, then Z7(F) expresses the uniform

continuity of the function which F states exists.

7. The topological continuity transform. The supporting set required for

the Z transform, see 5, represents essentially a simply-ordered set; we intro-

duce now a transform, T, whose supporting set represents a partially ordered

set. The transform itself differs from that of 5 only in that a quantifier is
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introduced for each quantifier of the given wff, rather than each block of

quantifiers in the given wff, and no two variables have the same relativizing

sequence. It should be noted that this departure is not strictly necessary since

topological continuity can be adequately expressed by the Z transform in

view of 7.8. However, the T transform has the advantage of being a more

natural choice to represent topological continuity than the Z transform—the

T transform can be described more simply than the Z transform—and as a

consequence we can establish without difficulty that

T(X) A T(Y) D T(A(X, Y))

is provable, whereas we could show only that the corresponding wff for the

Z transform is deducible from Sz-

This transform applies only to wff belonging to the class y. The transform

is as follows:

7.1. Adjoin to the left of the prefix the sequence of quantifiers obtained

as follows:

(a) write down the prefix in reverse order, interchanging A and E,

(b) change all superscripts to those of another class.

7.2. Relativize with respect to the class quantified in the given wff, the

relativizing sequence for each quantified variable being the corresponding

variable introduced into the prefix.

For example, the transform of

TO TO TO

A Xi A Xj Exk (03)

is

.    rrrmmmmr ™   r mrA s

AxkExjExiAxi Axj Exk (x,- x,- A x,- x,- _) xk xk A 03).

If in the interpretation the x™ are points and the x\ are neighborhoods of

one point, and x^x] is interpreted as x^Ex), then the transform of the above

wff expresses the topological continuity at the fixed point of the function of

xf and xm which satisfies 03.

7.3. Theorem. If YEy and has the form

m mm mm

Axiv ■ • • Axi,Exjl ■ ■ ■ ExitAxkl • • •
7.4 mm mm mm mw

^x*„(iB(x,-1 • • • x{„ Xjl ■ ■ ■ Xjt. xkl • • • xkJ)

then Y is consistent provided 5rW { T( Y)} is consistent, where ST consists of the

following:
r        m      m   r

7.5 ^4x,-£Xj-(x,-x,-);

r r r       r   r r    r r   r

7.6 AxiAxjAxk(xiX, A XjXk _) x,-x*);
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7.7 /I Xj A XjA xk(xi Xj A XjXh _) x< xk);

7.8 AxiAxjExkAxt(xkXi A xkXj A (x<x,- A x,x,- D x(xA));

7.9 ^Xi(x.-Xi).

Proof. We suppose we are given a structure 5* such that 5pW {T( Y))

holds in S*. Consider any set of constants of 5* which correspond to variables

of the class r, say, y\ ■ ■ ■ y'n, which is such that y^Ay^ holds in S* for

j = 2, 3, ■ • • , re; then we form the structure S** which is obtained from S*

by eliminating all such sets of constants y'2 • ■ • y„, and retaining all other

constants and truth values. Hence, in S** if yrzrAzryr holds, then y' = zT.

We shall show that ST^J{T(Y)\ holds in S**: clearly, 7.5, 7.6, 7.7, 7.9
hold in S**; consider 7.8. Suppose that for a pair of constants xr and yr of

S** the constant zT which exists in 5* by virtue of 7.8 is not in S**. Then

there is a wT in S** such that wrzrAzrwr holds in S*; hence, by 7.6, wrxrAwryr

holds in S**, and for any uT, urxT AuryrZ)urwr holds in S**. That T(Y) holds

in 5** follows from 7.7, since

xryr A yrxr D (axr D ayT) A (ayr D axr)

holds in S*; thus, if x'yAy'x'' holds in S*, then -4x(xxr=xyr) holds in S*.

It is now clear that T(Y) holds in S** since if some constant xr which

satisfies T(Y) in S* does not belong to S**, then there is a constant yr of

S** such that ^4x(xxr=xyr) holds in S*; hence, the constant yr satisfies T(Y)

equally as well as xr.

We shall denote the constants of S** which exist by virtue of 7.8 for each

xr and yr in S** by xrC\yT.

We show that (xrr\yr)f~\zr = xTr\(yrC\zr) in S**: denote xrC\yr by u\, and

yTC\zT by u\, and u\C\zr by v\, and xrr\u2 by v\. Then v\xr Av\uT2 holds in S**,

but u\yr holds, hence, v2xrAvr2yT holds; thus v2u\ holds in S**. Also, vT2zT holds

in S**; hence, v2v\ holds in S**. Similarly, v\vr2 holds in S**; thus v\=vr2. Thus,

we may disregard brackets and write xrr\yrC^zr. It follows that y[f^ ■ ■ ■ (~\yTn

is independent of any bracketing, and may be written without brackets.

Now, T(Y) holds in 5**, hence

a^i(yi • • • y«) A ' • • A asha(yi ■ ■ ■ yi) D /i(yi • • • yt, di • • • ae)yt

7.10 A • • • A ft(y\ ■ ■ • ylai- ■ ■ a.)yt A (bJi A • • ■ A buzl

D 03(ai • • • a„, /i •••/(, bi ■ ■ ■ bu))

holds in S** for any ai • ■ • a„ y\ • • ■ y\, bi • • ■ bu where hi • • • h„ f\ • • •/»

are given functions over S**, and z\ • ■ • 2« are given constants in S**.

We choose yTi=yr for i=l, 2, ■ ■ • , t; and define the function h over 5**

by h(yr)=hi(yr - ■ ■ yr)r\ - ■ • r\hs(yr ■ ■ ■ yr); also, let zT = z\C\ ■ ■ ■ n<;

then we have, by virtue of 7.6, 7.7, and 7.8, that
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aih(y) A • • ■ A a,h(y) D fi(yT, «i • • • a)yr A • • ■ Aft(yr, ai ■ ■ ■ a.)y

7.11        A (bizr A ■ ■ • A i«3r D (B(«i • • • a., fi(y, ax • • • a.) • • •

/,(y, a! • • • a,), 61 • • • &„))

holds in S** for any ai • • • a„ yr, bi • • • 6„.

We now construct a structure 5 in which 7.4 holds. The constants of S

are obtained from those of 5** and/symbols Pi(xi • • • x,), • ■ ■ , Ft(xi • ■ x,)

each having s argument places. First, we say that a constant of S** has order

zero in 5; next, we say that P,(xi • • ■ x„), i= 1, 2, • • • , t, is a constant of 5

of order n if its arguments are constants of 5 of order <n, and at least one

argument has order n — 1. We denote the constants of 5 by

Ci, c2, ■ ■ • , c„, ■ • ■

where c, precedes cy if the order of c, is not greater than the order of cy.

We now define two mappings of the constants of S oi order Sk into those

of 5**:

(zr if cm has order k,

P-Cm  ~    \
KuFi(cm • ■ ■ cm) n h(ixFi(cm ■ • ■ Cm)) otherwise;

\cm = a< if Cm has order zero, where a,/iCm holds in S**;

XF.(cy, ■ • • Cj) = fi(ljFi(cj1 • • • c,-,), Xc;i ■ • • Xc,-,).

Note that ncmiiFi(cm • • • cm) Aticmh(uFi(cm • ■ ■ cm)) holds in S** ii cm has

order <k.

We show that ucm = ncn if cm and c„ have the same order. True if cm has

order k; suppose true if cm has order >j. Let cp and cq have order j<k;

then LtcpuFi(cp ■ ■ ■ cp) Aptcph(ptFi(cp ■ ■ ■ cp)) holds, but Fi(cp • • ■ cp) and

Fi(cq ■ • • cq) have order j'+l; hence uFi(cp ■ ■ ■ cp) =/xPi(c„ ■ • • cq) by the

induction assumption; thus, ncpfiFi(cq ■ • ■ cq)AfJtcph(nFi(cq ■ ■ ■ cQ)) holds;

hence, by 7.8, ticp\x.cq holds. Similarly, ucqucp holds; thus, acp — acq.

It follows from the above and 7.9 that ucmficn holds if order cmborder cn;

since, ncmfiFi(cm ■ ■ ■ cm) holds if cm has order <k, i.e. acmptcn holds where

order cn = 1 +order cm g k; but acnp-cp holds if order cp = 1 +order c„ g k; hence,

\xcm\xcp holds where order cp = 2+order cm^k. Continuing this process we see

that iicmucn holds if order cmborder c„.

We show now that \cmucm holds in S**. True if cm has order zero; suppose

true if cm has order <n. Let cq = Fi(c3l ■ ■ ■ Cj) have order ra; then\cj1hcj1 A • • •

AXcyt/iiCy, holds in S**; hence, by 7.7, Xcyj/icy A • • • AXcyjucy holds, where

the order of Cy is the maximum order of c;i, • • • , c3,. But uCj h(ptFi(cj ■ • • cy ))

holds, and (iFi(cjf ■ ■ ■ Cj) =mPi(c3i • • ■ Cj) hence, nc,-h(jiFi(ch ■ ■ ■ cy,))

holds; thus, by 7.7, \cJlh(uFi(cJl • ■ • cit))A • ■ • AXcy,A(AiPi(cy, • ■ • Cy,))

holds in 5**. Hence, from 7.11,/i(juPi(cyj ■ • • Cj),\cj1 ■ ■ ■ Xcya)^iPi(cy, • • • cy.)

holds   in    S**;   i.e.   \Fi(cjl • • ■ Cj)aFi(cil • • ■ c})    holds   in    S**.    But
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ptFi(cjl ■ ■ ■ cj,)uFi(cil ■ ■ ■ Cj,) holds in S**; thus, by 7.7, XF,(c,-, • • • cy.)

■uFi(cjl ■ ■ ■ cja) holds in S**, i.e. \ctucq holds in 5**.

Now, in 7.11, set Ci=Xcy„ • • • , a,=\cj,; bi=\ckl, ■ ■ • , &„=Xc*„; y

= uFi(cjl ■ ■ ■ Cj,). But from the above we have that

\chh(p.Fi(cil ■ ■ ■ Cj,)) A • • • A \cj,h(p.Fi(cjl ■ ■ ■ cit))

holds in S**; also, ~\cklzrA ■ • • AXc*„2r holds, since \ckiuckiAuckizr holds.

Thus, 03(XcJl • ■ ■ \cj„ XFi(cj, • • ■ cit) ■ • ■ \Ft(cJl ■ ■ ■ Cj,), Ac*, • • • \cku)

holds in S**.

The argument of 5.8 now establishes that we can define truth values in

5 so that 7.4 holds in 5.

We note that the T transform of the counter-example to 5.8 is the same

as the Z transform; and that St holds in the structure M considered there.

Thus, the counter-example to 5.8 applies to the T transform as well.

We show now that T(X)AT(Y)Z)T(A(X, Y)) is provable. Let a be the

matrix of T(X) and 03 be the matrix of T(Y). Now, if PDQ is provable, so

are Ax?(P)DAx?(Q) and ExT(P)DEx?(Q). Applying this rule to 5.13 we

obtain A(T(X), T(Y))DT(A(X, Y)) is provable. Thus, T(X)AT(Y)
DT(A(X, Y)) is provable.

As in 5 we can now show that 7.3 holds even if F has fewer changes from

A to E and from E to A then has 7.4; and that if the prefix of F contains

E • ■ • A • • ■ E, where the dots represent quantifiers, then we can find a

matrix such that 7.3 is false. We now have the theorem

7.12. Theorem.   F is consistent provided  [T(Y)\\JSt is consistent and

N(Y)EZ.

Since T(X)AT(Y)Z)T(A(X, Y)) is provable, we have from the proof of

5.18.

7.13. Theorem. T(Xi)A • • ■ AT(X,)DT(Y) is deducible from ST pro-
vided that ZiA • • • AXnDY is provable, and N(Xi)EZ, • • • , N(Xn)EZ,
and YEZ.

Note. If F is provable and YEZ, then Dm(T(Y)) is deducible from

77m(5r). Thus, the transform V which first applies the T transform and then

applies the Dm transform, has for a supporting set 7.6, 7.8, 7.9, 6.1, and 6.4—■

which we denote by Sv-

From 7.13 we obtain

7.14. Theorem. V(Xi)A • ■ • AV(Xn)DV(Y) is deducible from Sv pro-

vided that XiA • ■ • AXnDY is provable, and N(Xi)EZ, • • • , N(X„)EZ,
and YEZ.

8. Applications. We wish to show, generally, that if a wff a of a certain

type is deducible in a particular algebraic structure, say a group or integral
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domain, then a transform of a holds in another algebraic structure, say an

ordered group or a field, as the case may be. Thus, from the existence of a

functor in one algebraic structure we pass to the continuity—in a sense made

explicit below—of the functor in another algebraic structure.

Example 1. As a first example, we consider a completely divisible, tor-

sion-free abelian group(2). This can be represented by the following axioms.

(For "xjxj," read "xj=xj"; for "xjxjxj" read "x!+xj = xj").

8.1 Ax^Xix);

11111        ii ii

8.2 Ax.-AxjAxk(xtXj A XjXk D xkxi);

liiiiiiiiii        ii        ii        i  i i
o.o       A XiA X jA XkA XuA XyA XwyXjXjXk /\  X,'XU /\  XjXv /\ XkXw _J  XUXVXW) ',

8.4 AxiAxjExk(xiXjXk);

8.5 AxiAxjExk(xtXkXj);

1111111111        iii        iii        iii ii
8.6 AxiAxjAxkAxtAxuAxvAxw(XjXkXt A x,-x,xu A x,XjX„ A xvxkxwj) x„x„,);

„ „ 1111111        iii ii
8.7 A XiA XjA xkA xu(XjXjXk A x,x,x„ _) x*xu);

8.8 [Cp] p = 2, 3, 5, 7, • • • , where Cp is
-        1   A       1 A       1, l      l      1   -.     ,      l      1      1      A 111

AxiAxi • ■ • ^4Xj,(~XiX]Xi _) (xiXiXj A X1X2X3

A   • ■ • A XiXp-iXp D ~ xpxpxp));

8.9 {Dn} n = 2, 3, 4, • • • , where Dn is

,   i_, i_, 1 „ 1. 1 1 1  .     1 1 1  A 11      1        11.
^4x,-£xi£x2 • • • £.xn(xiXjX2 A xix2x3 A • ■ ■ A xix»_ix„ A x,x„).

From 8.1 and 8.2 we have that Ax\Ax](x\x]Zi>x]x\) holds since, from 8.2, we

obtain Ax\Ax](x\x]AxJxjOxJx]); but from 8.1 xjx] always holds. The result

follows. Note that from 8.7 and 8.4 we can deduce that sums are unique, since

xlx]xkAxlx)xlAx]x]xlZ)xlxJAxWt holds, but xixjAxixjDxixi holds; thus

Ax\A]Ax\Ax\(x\x]x\Ax\x]x]f2)x\x]) holds.
We wish to show that the Z transforms of 8.1-8.9 hold in any completely

divisible, ordered abelian group, M, under the following interpretation:

2 2
Xi denotes those elements of M such that 0 < x, holds;

22 22
XjXj is interpreted as x, < x3;

x, denotes any element of M;
1 1

12 1   1, 2 1   1, (Xi if 0 < x„

XiX, is interpreted as    x,    < xy, where | x,- [   =  <       1
( — X,- otherwise;

1     >   •       • , 1 1   • 1AT
XiXj is interpreted as x, = x, in M;

111.. .        1 1 ,     1 .    ,,
XiXjXk is interpreted as xk = x; + x,- in M.

(2) See [5] where the corresponding analysis is carried out for the Bounding transform.
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Since M is an ordered group its elements satisfy the following conditions:

Ax\(x\ = 0 V 0 < Xi V 0 < - x,1

A (x) = 0 D ~ 0 < x) A ~ 0 < - xi)
8.10 ii i

A (0 < Xi D ~ Xi = 0 A ~ 0 < - xi)

A(0< -O~j! = 0A~0< xi));

8.11 Ax\Ax\ (0 < x< A 0 < xy 3 0 < x\ + xi),

where < denotes the ordering relation in M. We say that xj <xj holds in M iff

0<x] — x]\Jx\=x) holds in M. Then, from 8.10, Ax\Ax)(x\ <x)\Jx)<x\) holds

in M, and from 8.11 Ax\Ax)Ax\(x\<x)Ax)<x\'Z)x)<x\) holds.

We show that

8.12 AxiAxj( | Xi + Xj |   ■<  | x,-|  + | Xj \ )

holds in 717.  If 0<x]A0<xj then 0<x\+x); thus,  |xj+x]| = x\+x). Also

l*J| + l*Jl -x\+x). If 0<x\A®<-x)AQ<x\+x), then

I   i        ii ii ,    i I        I    11 i        i

but x\+x)<x\—x) since xj—x} —(xj+x]) = —2x] and 0-< —2x].

If 0<x\AQ<—x)AQ<-x\—x), then \x\+x)\ =-x\—x); but xj—xj

— (—x\—«J)=2xJ, and 0-<2x(\ i.e. —x\—x)<x\—x); this establishes 8.12.
We show now that the Z transforms of 8.1-8.9 hold in M, where r = 2.

First, we observe that if a wff has the form

„ i     i iii l
F = AxiAxi ■ ■ ■ ̂ 4x„(03(xiX2 ■ • • x„))

then YZ)Z( Y) is provable, since

ii i        i i i .
AXiAXl ■ ■ ■ ylXn(A3(XiX2 •  ■ •   xn))

12 12 12 11 1

D (XlX{ A XiXj A ■ • • A x„xk D 03(XiX2 • • • xn))

is provable; thus, Y~2)Z(Y) is provable.

We have now to consider the transforms of 8.4, 8.5, and 8.9. We show that

the transform of 8.4 holds in M: consider Ax\Ex2Ax]Ax)Exk(x\x2Ax)x2i

Dxix*Axjxjxi); if we choose x2 = x2 where x2,+x2 = x\ then |xj+xj| <|xj|

+ |xj| <x2+x2 = x2+x2 = x2k. We show that the transform of 8.5 holds in M:

consider Ax2kEx2Ax\Ax)Exl(x\x2Ax}x2Dxlx2kAx)xkx}); if we choose x\ = x2

where x2+x2 = xl then \x)— x\\ <\x)\+\x\\ <x2+x2 = x2+x2t=x\. We show

that Z(Dn) holds in M;

First, we show that \x]\ <\ x\+x\ \ holds in M for any x\; if | x\ \ = x\ then

x\+x)  =xJ+Xj1,  hence  IxJ+xJl — \x\\ =x\ and 0<x\; if  |xj|=—xj then

xj+x]   = —xj-xf,hence |xj-|-xj| — x\= —x}-xJ-(-xJ) = -xj,and0<; — x\.

It is now clear in fact that |xj| < \x\+x\+ • • • +x\\ holds in M. Consider
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,T,X J2^2^1^1 'z12 Z12 12 111
Z(D„) = AxiExiAxiExi ■ ■ ■ Exn(XiXi _) (X1X1 A • • • A x„Xi A X1X1X2

A xix2x3 A • • • A XiX„_iX„ A x,x„));

choose x2 = xl where x2 = x2+x2 + • • • +x* ra times; then

I      1 I I      1 1 I 1 2 2 2
| Xi |    <    I Xi +     •  •  •    + Xi |     = Xi   <   Xi =  Xk   <   X\\

n times

also |x2| <|x{+xl| -<|xj|+|x!| -<x2+x2-<x2. Similarly, |xj| <|x2| holds for

k = 3, 4, • • •, ra.

It is easily checked that the supporting set, 5.4-5.7, holds in M under the

above interpretation. Applying Theorem 5.18, we now have

8.13. Theorem. If X is a wff which holds in any completely divisible,

torsion-free, abelian group, then Z(X) holds in any ordered, completely divisible,

abelian group under the above interpretation; provided that X belongs to the

class Z.

Example 2. We wish to show that the U transforms of 8.1-8.9 hold in a

completely divisible, torsion-free, ordered abelian group M under the follow-

ing interpretation:

x] denotes any element of M;

x2 denotes any element of M such that 0<x,;

x2x2 is interpreted as x?<x2;

x]xjxt is interpreted as \x\— x]\ <x\;

x\x] is interpreted as x\=x);

x)x)x\ is interpreted as xk = x\-\-x).

We show that the U transform of 8.4 holds in M: Consider AxlEx2Axltl

• Ax12AXjtAXj2ExklEXk2(xt jXj2xt AXj^x^Xj^x^Xj^Xt/\xi jXjlxkl AXi2x32xk) ; choose

x2 = x2 where x2+x2 = Xt; then

j      1 1 11, ,1 1   I |      1 1   I 22
|  Xil -\-  X3l \X,%   i    Xy2/ |     ^    |  Xij X,'2 |    -p   | Xy2        X3l |     ^   X, -j- X,

2 2 2

< xt + xt < Xk.

The U transform of 8.5 can be shown to hold in jlf in a similar fashion. It is

easily checked that the transforms of the other group axioms hold in M, and

that the supporting set, Su, holds in M. Applying 6.5 we obtain

8.14. Theorem. If X holds in every completely divisible, torsion-free, abe-

lian group, then U(X) holds in any ordered, completely divisible, abelian group

under the above interpretation; provided that XGZ.

Example 3. We obtain an integrally closed integral domain of char-

acteristic zero by adjoining to 8.1-8.8 the following:
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lA    lA    lA    X A    l A    V   '   '   l   '   A      1   '   A      '   1   A      l   '   —*     3   l   X   V
O •   1 J JT. Xj/I X j/l Xfo/l. Xtf**- XyjCX Xiy\ jC\XijC jXfc    / \    X-iXji    / \    X jX ]}    / \    X fy Xyj     im-J    X\XtyXi) Xy) )   j

1113    111
8.16 ylXi^4Xy£Xi(x1X,-XyXi);

«      AH A1A1A1A1A1A1A1/3111A 3111A 3111
8.17 AxiAxjAxkAxtAxuAXvAxw(xiXjXkXt A XiXiXtxu A xix<xyx„

3    111 11

/\     X\XyXkXlO    .   ,J     XiiXyjJ  j
11113    111              3    111 11

o. lo      A X%A X jA X^A Xji\ X\X%XjXk /\ X\XjXiXu _)  XfcXu)\

1        1 1 1 1 1 1 1111 3    111 3    111

o . 1 y     A X{A XjA X/qA XgA XtA Xy,A XVA X^y XjX/cX8 /\ X\X%X&Xi /\ X\X{XjXy,

3    111 111 11

/\  XiX{X}cXv /\ XuXyXw _J XtXw) ,

{Xn] n = 2, 3, 4, • • • , where Xn is

1 /|1Z71 C1!?1 C1 Z7    * C1 /'8111A
AXi '  '  'AXn-A-sXii '  '  ' J-jXinJjjXj^      ' ' S^Xjn^^JZ.Xk^ '  '  ' A\?.Xkn^2\   1   *i   *l   ii ' \

3111 3111 3111 111

8.20 A XiX^Xf^X;,, A XiXiX.-^Xj! A   •  •  '   A XiXn-iX.^X,-^, A XinXjvXkl

111 1 1 1 1 1 k
A xklXj2xk2 A ' " ' A Xkn_3Xjn_2Xkn^2 A xkn_2Xjn_2xn);

1        113111 111 111 11Js
8.21 ^4x,-/lXjj4x,fc(XiX;XyXfc A XkXkXk Z)  XjXiXi V XjXjXj).

In the interpretation,

XiXiXjXfc is rccici 3,s Xfc== X\ * Xj j

x\ is interpreted as a complex number, for any i;

x2 is interpreted as a positive number, for any i;

x\x2 is read as \x\\ ^x2;

x\x) is read as x\ =x);

XfXjXfc IS 1*63.(1 3.S X/r:==Xi~f X; 't

Note that from 8.16 and 8.18 we can deduce that products are unique.

We do not postulate the existence of a unit element. Note 8.20 asserts that

every monic polynomial has a root.

It is easily checked that the supporting set Sz and the Z transforms of

8.1-8.8 and of 8.15-8.21 hold in the field of complex numbers under the above
interpretation. Applying 5.18 we obtain

8.22. Theorem. If X is a wff which holds in any integrally closed integral

domain of characteristic zero, then Z(X) holds in the field of complex numbers

under the above interpretation; provided that X£Z.

A special case of Theorem 8.22 is

8.23. Theorem. If a system of equations with integral coefficients and with

parameters from an integrally closed integral domain of characteristic zero,

has a solution in all such integral domains, including integral domains without

a unit element, then the solution is continuous in the sense of 8.22; provided that

the system of equations can be expressed as a wff belonging to the class Z.

Example 4. We wish to show now that the T transforms of the group

axioms, 8.4-8 6, hold in a structure whose elements on the one hand form a
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group, and on the other hand form a T0 space such that there is a neighbour-

hood which is contained in all other neighbourhoods of the space. Further, we

require that the group operations be continuous in the T0 space.

We interpret xj as an element of the group and a point of the topology;

x2 is interpreted as a neighbourhood in the topology;

x2x2 is interpreted as x2E*2—the neighbourhood x2 is contained in the

neighbourhood x2;

x\xj is interpreted as x\Ex2—the point xj belongs to the neighbourhood x2;

xjx] is interpreted as xj=xj;

x\x)x\ is interpreted as xi = xj+xj.

It is easily checked that St holds in the structure under the above inter-

pretation. We consider the T transform of 8.4:

22211112 I2--       12A        l   1   \
AxkExjExiAxiAxjExk(xtXi A XjXj _j x^x* A XiXjXk).

But this is precisely the statement that addition is continuous in the Ta space.

The transform of 8.5 is

a2^2^2.1.1^1,12,.    12-v    12a     1x1n
AxkExjExiAXiAxjExk(XiXi A x,x,- _J x^x* A x.-x^x,),

which is precisely the statement that subtraction is continuous in the T0

space.

Applying Theorem 7.13 we have established

8.24. Theorem. If Y holds in all groups then T( Y) holds in the above struc-

ture, provided YEZ.

Example 5. We establish now

8.25. Theorem. If Y holds in all groups then T( Y) holds in any topological

group, provided YEZ, where x2 is interpreted as a neighbourhood of the group

zero for * = 1, 2, 3, ■ • ■ , and the other symbols are interpreted as in the previous

example.

Proof. We have only to show that St and the T transforms of the group

axioms hold in a topological group under the above interpretation. It is easily

checked that St and the transform of 8.6 hold in a topological group. We show

that the transforms of 8.4 and 8.5 hold also. Now the following conditions

hold in a topological group:

(a) if a and b are any two elements of the group then for every neighbour-

hood W of the element a + b there exist neighbourhoods U and V of the ele-

ments a and b such that

xEUAyEVDx+yEW,

(b) if a and b are any two elements of the group then for every neighbour-

hood W of the element a — b there exist neighbourhoods U and V of the ele-

ments a and b such that
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xEUAyEVDx-yEW.

Hence, from  (a) choosing a = b = 0 we have that for every neighbourhood

W of zero there exist neighbourhoods of zero, U and V, such that

xEUAyEVDx+yEW;

and from (b) choosing a = b = 0 we have that for every neighbourhood W of

zero there exist neighbourhoods of zero, U and V, such that

xEUAyEVDx-yEW;

i.e.
2 2 2        1        1 112 12^        12 111

AxkExjExiAxiAxjExk(xiXi A XjXj Z) XkXk A XiXjXk)

and
2 2        211112 12 12 111N

AxkExjExjAxiAxjExk(XjXi A XjXj Z) XkXk A XiXkXj)

both hold in the topological group. 8.25 now follows from 7.13.
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