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1. It is known(') that a trigonometric series is a Riemann-Stieltjes series

if and only if its (C, 1) sums are bounded in the Li norm. The analogous prob-

lem for the Walsh system needs a slight reformulation, since the Walsh func-

tions are not continuous. Morgenthaler(2) has proved that a Walsh series is a

Riemann-Stieltjes series corresponding to a continuous determining function

of bounded variation if and only if

(1) f     |  <Tn(x) |  dx   =  0(1)
J 0

and

sn(x)
(2) ->0 uniformly in [0, lj,

n

where sn and an are the partial sums and the (C, 1) sums, respectively, of

the given series. This still leaves open the general case, in which a Lebesgue-

Stieltjes integral is used, the determining function being merely of bounded

variation. It is the purpose of this paper to settle the question by giving

necessary and sufficient conditions, and to show how the determining function

may be recovered from the given series. It turns out that (1), which is nec-

essary, is not sufficient. However, the analogy with the trigonometric case

can be restored completely by transferring attention to the dyadic group, of

which the Walsh functions are essentially the characters. It is then an easy

matter to return to the unit interval.

2. The dyadic group G consists of all sequences x= (xi, x2, • ■ ■ ), x, = 0, 1,

where addition is defined coordinatewise mod 2. The product topology is

assigned to G, and with it G becomes compact and totally disconnected. For

a discussion of G and its connection with the Walsh functions, we refer the

reader to [2]. We define the mapping

00

(3) X(x) = zZ *.-2"' (xGG)
i-l

from G to 7, the reals mod 1. It is clear that X maps G continuously onto

7 in an  almost one-to-one fashion, the exception being that each dyadic
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(') See [8, p. 79].

(2) See [6, Theorem 16].
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rational in 7 has two pre-images. We make the inverse u unique by choosing

the finite expansion in case of doubt. For a dyadic rational p, we shall write

jo for u(p) and p' for the other element of G which is mapped on p by X. We

denote the denumerable set \p'\ by E.

If / is a real-valued function on 7, there is a corresponding function J on

G, given by

7(*)=/(X(x)) (xEG-E),

= lim sup/(j) (xEE),
K-»i

where the approach is over those y corresonding to dyadic irrationals. We

shall indicate that (4) holds by writing /~/. If/is continuous, so is J, but not

conversely. For example, the characters jf* are continuous but the correspond-

ing Walsh functions ^* are not. These matters have been discussed in some

detail by Morgenthaler, in the paper previously mentioned.

Throughout this paper, by a measure on G (on 7) we shall mean a real,

finite, signed measure defined on the Borel sets in G (in 7)(3). Every measure

on G decomposes uniquely into a usual measure, vanishing on all subsets of

E, and an unusual measure, vanishing on all Borel subsets of G — E. There

is a one-to-one correspondence, denoted by fh^-'m, between the usual measures

on G and the measures on 7, given by

m(A) = m\(A) (A EG - E),
(5) = o (a cm,

or by

(5') m(B) = mu(B) (B C I).

A character series S = zZa$k is a (Fourier-) Stieltjes series on G if there

exists a measure in for which

(6) ak =  I $kdm,
•7 a

and we write S = S(dm). Similarly, a Walsh series S = zZak^k is a (Fourier-)

Stieltjes series on 7 if there exists a measure m for which

(7) ak =   I tkdm,

and we write S = S(dm). In either case the measure is determined uniquely

on Borel sets by the sequence {ak}.

If a character series S and a Walsh series 5 have the same coefficients, we

write S~S, or S~S.

(*) For the measure-theoretic concepts used here, see [4].
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3. The following theorem is easy to prove, and is stated merely for con-

venient reference.

Theorem 1. (i) If J^ and m~m, then fofdm=fifdm.
(ii) Iff~f, then fofdx=fifdx, where dx denotes the normalized Haar meas-

ure on G and dx denotes Lebesgue measure on I(*).

(iii) S(dmi) = S(dm2) implies mx = m2, and S(dmi) = S(dmi) implies fhi = w2

(era Borel sets).

(iv) S = S(dm) and m~m imply S(dm)~?>(dm').

(v) S(dm)~S(dm) implies m~m.

The next theorem has a precise analogue in the trigonometric case(6).

Theorem 2. A necessary and sufficient condition that a character series S

be a Stieltjes series on G is that its (C, 1) sums

n-l   / fa \

(8) *„=E(i—W*
*_o \        « /

satisfy

(9) f | *„ | a* = 0(1).
J a

Proof. If S = S(dm), then

ff„(x) =  fKn(x + T)dm(i),
J a

where Kn is the (C, 1) kernel. By Fubini's theorem,

J* | *„(£) I <** = / I  / I *»<* + t) | dx~\ | dm(t) | .

But

f | Kn(x + t) | dx =   f | /?„(*) I dx £ 2,
J a J a

by the invariance of Haar measure and a result of Yano's(6). Therefore

f | *„(x) I dx = 2F,
J a

where V is the total variation of m over G.

(4) For a proof of this part, see [6, Theorem l].

(') See [8, p. 79].
(•) See [7, Lemma 9].
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Now suppose that (9) holds. Let C(G) denote the Banach space of real-

valued continuous functions on G, with the usual norm. We define the linear

functionals Tn on C(G) by

(10) TnQ) =   f an(x)f(x)dx.
J a

Then ||r„|| =Ja\an\dx = 0(l). By a theorem of Banach(7), there is a subse-

quence Tni which converges weakly to a bounded linear functional T, that is,

Tm(])-+T(f) (JEC(G)).

Since every bounded linear functional T on C(G) has the representation (8)

ni) = f Mm,
J a

where m is a measure on G, we have

/trni(x)}(x)dx —> I f(x)dm.
a J a

Putting /=#*, we get

(11) ak = lim 11-J ak =   I \J/kdm.
<-»» \        nil J q

Hence S — S(dfn) and the proof is complete.

We observe that (9) may be replaced by

(12) lim inf I   | an\ dx < oo,
n—♦«    «/ cj

since we can apply the reasoning above to any bounded subsequence of { Tn}

to obtain (11). By the necessity part of the theorem, we see that (12) implies

(9). Also, we can show that the entire sequence { Tn] converges weakly to T.

For if not, there exist an fEC(G) and two subsequences {re<} and {re/}

such that Tni(J)—>a, Tni(f)—>b, and a^b. By taking sub-subsequences, we

find a=fofdMi, b= Jafdnti. But, as in (11), S(drni) =S(dmi), so OTi = w2 by
Theorem 1 (iii). This implies the contradiction a = b.

It is of course not necessary that T„ converge strongly to T. In fact, this

is precisely the condition that m be absolutely continuous with respect to

Haar measure, or that 5 be a Fourier series(9). It is not true, either, that

||r„||—*\\T\\, as in the trigonometric case, the difference being that the Walsh

C) See [1, p. 123].
(8) See [5, Theorem 10] or [4, pp. 247-249].

(>) See [6, Theorem 17].
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(C, 1) kernels are merely quasi-positive. However, we can show that ||r||

glim inf ||7\,|| glim sup J|rn|| g2||/j|, and it seems likely that the constant 2

is best possible. This would be true if

lim sup   |   |  ~Kn | dx = 2.

We shall now show how to isolate the discrete component of rh (and of m).

Theorem 3. // S = S(dm), then the partial sums satisfy

(13) $.(*)/»-+*({*}).

If S = S(dm), then

(14) *„(*)/»-«({*}).

Proof. We have

j„(x)      r Dn(x + I) jw,
-=   I   -dm(t),

n        J a        ra

where Dn is the Dirichlet kernel. The integrand is bounded by 1 and con-

verges to 1 at f = x, to 0 elsewhere. The result (13) follows from Lebesgue's

convergence theorem. To prove (14), let m~m and apply Theorem 1 (iv).

Then, by (13),

-=-nn({n(x)\) = m(\x\).
n n

Theorem 4. Necessary and sufficient conditions that a Walsh series S on I

be a Stieltjes series S(dm) are

(15) J \o-n\dx = 0(l),

Sn(p -  0)
(16) ->0 (p = dyadic rational).

ra

Proof. Let S~S. By Theorem 1 (ii),

/| an | dx =   J   | o-„ | dx,
a Ji

so by Theorem 2, (15) is necessary and sufficient that S = S(din). Again by

Theorem 1 (iv and v), S = S(dm) is equivalent to m being a usual measure

and m~m. By Theorem 3, m is usual if and only if

(17) 5„(p')/»->0

for every dyadic rational p. But s„(p') =sn(p — 0), so (17) is equivalent to (16),
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and the proof is complete.

A simple example to show that (16) may fail even if (15) holds is the fol-

lowing. Let ak=yj/k(l — 0), 5= zZa^k- Then S~S(dm), where m is the unit

measure concentrated at 0' = (1, 1, 1, • • • ). It is easy to verify directly that

there is no measure m on 7 for which S = S(dm), that tr„(x) =Kn(x+(l —0)),

so that (15) holds, and that s„(l—0)/ra = l.

This situation is typical. Given a Walsh series S satisfying (15), the limits

Sn(p ~ 0)
(18) c(p) = lim- (p = dyadic rational)

n—»oo        re

always exist, the series zZpc(p) converges absolutely, and the Walsh series

with coefficients

(19) ak-zZ c(p)Up ~ 0)

is a Stieltjes series S(dm). In fact, S~S(dm), fh = mi+nti, where mi is usual,

Mi unusual, and Mi~m. The sum in (19) is the £th coefficient of S(dfh2),

and c(p)=nti({p'}).

4. We have mentioned earlier a result due to Morgenthaler, which in our

notation is equivalent to a characterization of those S(dm) with m nonatomic.

Theorem 5 corresponds to his result, although the method differs somewhat.

Theorem 5. (i) Necessary and sufficient conditions that S = S(dm) with in

nonatomic are

(20) f | in I dx = 0(1),
J a

(21) s„(x)/n —» 0 uniformly in G.

(ii) Necessary and sufficient conditions that S = S(dm) with m nonatomic are

(20') f | "n | dx = 0(1),

(2F) sn(x)/n —> 0 uniformly in I.

Proof, (i) The sufficiency of (20) and (21) follows immediately from Theo-

rems 2 and 3. The necessity of (20) also follows from Theorem 2. Suppose,

then, that S—S(dm) with m nonatomic. For each xEG and e>0, there is a

neighborhood NT(x), consisting of all yEG which coincide with x in the first r

places, such that \m\ (Nr(x))<e/2. Since G is compact, we may take r to

depend only on e. Then

l!«lsflM±»i|*8,|_ f    +f      -,. + *,
re •/ a re J Nrct)      J G-nr<.t)
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say. We have /i= \m\ (Nr(x)) <e/2. But \~Dn(x+t)\ g2r+1 for tGG-Nr(x),

so

Ji g 2'+l | m | (G)/ra < e/2

for w>ra0(r, e) =n'o(t). This completes the proof of (i).

(ii) Given (20') and (21'), we observe that s„(p-0) =s.(p-2-"), so (15)

and (16) hold, and S = S(dm), by Theorem 4. That m is nonatomic then

follows from Theorem 3. Conversely, if S = S(dm) with rat nonatomic, then

S(dm)~S(dm) with m~m, and w is nonatomic. By (i), sn(x)/n—>0 uniformly

in G, so 5„(x)/ra = S„(/j(x))/ra->0 uniformly in /, and (21') holds. Of course

(20') holds, by Theorem 4, and the proof of the theorem is complete.

Our next result replaces (21) and (21') in Theorem 5 by a condition which

depends more directly on the coefficients.

Theorem 6. // 5~S= ^a*^*, then S and S are Stieltjes series correspond-

ing to nonatomic measures if and only if

(22) J* | <rn I dx = 0(1),

1   n-l     t

(23) -Zs^O.
n k-o

Proof. (22) is equivalent to S = S(dm). By Theorem 3, and Lebesgue's

convergence theorem(10)

f  —dm(x)^ f m({x])dm(x) = zZm2({x}),
Jan Jo t so

the last sum containing only countably many nonzero terms. But

/' sn(x)  _ 1   r
--dm(x) =   lim — I sn(x)in(x)dx

a     n                    n->»   n J a

1 »=»   ,/ k\
=  lim -Lfl*   1--

jv-.-  ra t_o     \        N/

¥«.
= — zJflk.

n k-o

Therefore

1   n-l    t

(24) lim — !>*= £ *({*}),
n->«   M   k=-0 i€G

and the theorem is proved for 5. It follows for 5 by Theorem 1 and the fact

(">) Clearly \a„\ S|»|(G), so \'sn(x)/n\ S|»|(G).
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that a nonatomic in is necessarily usual.

Similar results for trigonometric series are known(n). For example,

S = S(dm) implies

(25) -»->
ra t

(26) lim-i:  \ck\2 = -±-zZtnK{*}),
n->»   M   _„ Lie1    *

where ck = (l/2ir)flTe-iktdm(t).

5. By Theorem 3, we can isolate the atomic portion of a measure m by

means of the partial sums of S(dm). Our next step is to recover the distribu-

tion function F(x) = m([0, x)).

Theorem 7. If x is a dyadic rational or a point of continuity of F, then

(27) F(x) = lim   f sn(t)dt.
n—»eo   %J q

Proof. Let g(u) denote the characteristic function of [0f.x)t and let

g(u; r) be the Abel sum(12) of its Walsh-Fourier series:

00

(28) g(u; r) = £ /*(*)*»(«)'* (0|r< 1),
k=o

where Jk(x) = fl4/k(t)dt. Under either hypothesis for x, g(u; r)—*g(u) a.e. (m)

as r—yl—0, and |g(u, r)\ £ 1. Hence

I    g(u; r)dm(u) —* j g(u)dm(u) = F(x).

For fixed r<l, the series (28) converges uniformly in u, so

J» 00
g(u;r)dm(u) = zZ a»/*(*)r*.

I fc-0

Thus the series in (29)  is Abel summable to F(x). Now ak = 0(l), Jk(x)

= 0(1 /k). By Littlewood's Tauberiah theorem, the series converges at r = l:

00

(30) F(x) = E fl*7*(a;).

Equation (30) is equivalent to (27).

The analogous theorem for trigonometric series is that for all a and b,

(») See [8].

0») See [2, §7 and Theorem 21].
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F(b + 0) + F(b - 0)     F(a + 0) + F(a - 0)      „      f"   ,XJ
-= hm   I   $„(<)<#•

2 2 n-»«o   J a

The proof can be made as in Theorem 7, or even more easily by observing

that sn(t; dF)=s„(t; F) and using Dirichlet's theorem. The restriction on x

in Theorem 7 cannot be removed, as may be seen by taking m to be the unit

measure concentrated at a dyadic irrational x and referring to §8 of [2].

The problem of the recovery of F is theoretically solved by Theorem 7,

but the following is also of interest, since it shows how the absolutely con-

tinuous component can be isolated.

Theorem 8. IfS = S(dm) =S(dF), then

(i)   s2n(x) -*F'(x) a.e.,

(ii)  <rB(x) ->F'(x) a.e.,

Proof. Define a„(x), p\(x) by

p-2-» = a„(x) g x < /3„(x) = (J> + 1)2"".

Since the characteristic function of [a„, /3„) is 2~nz~ZT=~o1 $k(x)\pk(t),

F(pn) - F(an) r C 2^i
_^J-K—L = 2" I dm =  \   Y, Mx)Mt)dm(D

Pn   —  Ctn J [a„.fl„) " I   *-0

=   S,n(x),

from which (i) follows immediately. For F absolutely continuous, (ii) has

been proved in [3]. The proof for an arbitrary F is quite similar and requires

only technical modifications. We shall therefore omit it. For the trigonometric

case, see [8, p. 59].

From Theorems 7 and 8 we get the following representations for the singu-

lar component of a continuous F:

(31) F*(x) = lim   f sin(t)dt -  f   lim stn(t)dt,

<r„(0<B -  I     lim <r„(0d/.
0 J o    n—»»
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