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1. Introduction. Let g be a Lie algebra over an algebraically closed field

fi of characteristic p>7, whose Killing form trace (ad x)(ad y) is nondegener-

ate. Seligman has proved that g is a direct sum of simple Lie algebras, each

of which has a nondegenerate Killing form, and is the analogue of one of the

simple Lie algebras over the complex field. This analogy is sharpened by the

main result of the present paper, which states that there exists a modular Lie

algebra I over the prime field Zp in fi, and an isomorphism H of I into g such

that g is obtained by extension of the base field to fi from the image IP of I

in g. The proof of the theorem is based upon the first part (§§1-5) of Selig-

man's thesis [5], on a theorem of Chevalley and Harish-Chandra [4] concern-

ing the existence of a semi-simple Lie algebra over the complex field with a

prescribed Weyl matrix, and on the construction of modular Lie algebras

from semi-simple Lie algebras of characteristic zero given in [2]. The argu-

ment does not involve the explicit determination of the root systems of the

algebras g given by Seligman [5, §§6—14], and therefore provides a new ap-

proach to the problem of classifying the simple Lie algebras of characteristic

p>7 with nondegenerate Killing forms. This application is outlined in the

last section of the paper.

In brief, the contents of the paper are as follows. §2 is devoted to prelim-

inary results. In §3, the concept of a simple system of roots is introduced, and

the existence of a maximal simple system of roots of g with respect to a Cartan

subalgebra is established. Seligman proved this result by calculating all pos-

sible root systems. In §4, the Weyl matrix of g relative to a maximal simple

system of roots is defined, and it is proved that the Weyl matrix of g is ob-

tained from the Weyl matrix of a semi-simple Lie algebra ? over the complex

field by reduction modulo p. It is then proved that the system of roots of 8

is isomorphic in a certain sense to the system of roots of g. Chevalley's recent

work [l ] on simple groups makes it possible to give a more satisfactory ap-

proach to the construction of an admissible basis (see [2]) of 2 than was out-

lined in [2]. In particular it is possible to select the rational field as a coeffi-

cient field in every case. This improvement is sketched in the last section, and

the existence of a modular Lie algebra satisfying the requirements of the main

theorem is proved.

The author is indebted to Dr. G. Seligman for reading an earlier draft of

the manuscript.
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2. Summary of known results. The statements given without proof in

this section are proved in §§1-5 of Seligman's paper [5]. Throughout the

paper, g denotes a Lie algebra over an algebraically closed field ft of char-

acteristic p > 7 whose Killing form (u, v) = trace (ad w)(ad v) is nondegenerate.

We remark that the results of §§2.a, b, and the first part of §2.c are proved

in [5] for any restricted Lie algebra 0 over ft which possesses a restricted

representation x—> U(x) for which the form trace( U(x) U(y)) is nondegenerate.

Later we shall observe that the results of §§3 and 4 are actually valid for a

Lie algebra satisfying this weaker condition.

2.a. Let c be a Cartan subalgebra of Q. For each linear function p on c,

we let

gp = {u I u G 8, [uc] = p(c)u for all c G c}.

A linear function pj^O such that gP^0 is called a root of g (with respect to c),

and the set of roots of g will be denoted by 7?(g). Then g is a vector space

direct sum

S = c + Sflp-

The spaces g„ are one dimensional. For each root p, +p are the only multiples

of p which are roots. For all roots p and a we have

[8p8»] = 8p+».       p + o- 7* 0;        [fl_p, gp] C c;

(8p. 8») = 0,       P + a 7*0;       (8p, e) = 0;       (g_„ g„) 7* 0.

The results listed so far are Theorems 3.1,3.2, 3.4, 5.1, 5.2, 5.3, and 5.5 of [5].

2.b. The restriction of the Killing form (u, v) to c is nondegenerate; hence

for each root p, there exists a unique element of c, which we shall denote by

Cp , such that (c'p , c) =p(c) for all c in c. For all roots p, we have

P(c/) = (c/,c/) 7*0,

by Theorem 4.2 of [5]. Moreover, by Corollary 3.2 of [5],

(1) [e_„, e„] = (e_„ e„)cp'

for all roots p, and for arbitrary e_p in g-p, ep in gp. For each root p, we set

^-2(c'p , c'p )~lcp'; then p(cp) = 2.

2.c. The prime field Zp in ft may be identified with Z/(p), where Z is the

ring of rational integers, and p is the characteristic of ft. We shall write r*

for the image of an element r in Z under the natural mapping of Z—*ZP\

however, to simplify the notation, we shall frequently write 2, 22 = 4, etc. for

the images in Zp of the powers of 2.

For each pair of roots (p, a), p7*a, there exist uniquely determined ra-

tional integers rp,„ and sp.„ such that —3gr,,,g0g5p,,g3, with the property

that for any integer k between ±(p — l)/2, p+k*o is a root if and only if

rP,cg& g.W- It is known that for each pair of roots p, a,
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and that(l)

(2) p(c,) =  f'P' "'} = - (r*, + **,) G {0, ±1*, +2*, ±3*}.
(c/, ci)

The roots of the form p+k*cr form an arithmetic progression, symmetric

about p—p(c„)o/2. Since p and p—p(cc)<r are symmetric about p—p(c,)a/2, it

follows that p—p(c,)a is a root. We define a linear transformation st acting

in the dual space c* of c by

sc: X —* X — \(cr)o-, X G c*.

Then each of these transformations maps P(g) into itself.

We shall need the following explicit formula for (cp', c-). If we compute

(c/, Cp)= trace (adcf')2 relative to any basis of g consisting of a basis of c

together with elements efE§P for each root p, then we obtain(2)

(3) W,c,') = E<Kcp')2.
<r€R(8)

Substitution of (2) in the right hand side of (3) yields the formula

(4) (c;, o = ~ 2>*, + *,*>(*;, ei)2.
4   ,

Since (e/, cp')^0, we obtain

(',',«,') =4(E(Vp+*..p)2)-1.
a

3. Simple systems of roots(3). A nonempty set ACji?(g) is called a simple

system of roots if and only if the difference of any two elements of A is not a

root. A chain of roots (from A) C=C(pi, • ■ • , pi) is an ordered set of roots

(pi, • • • , Pr), p.GA, such that for each k, 1 gkgr, zZm P» is a root; the roots

Pi, l^i^r, are called the links of the chain; the number of times a root pGA

appears in a chain C is called the multiplicity of p in C; and the total number

of links in C is called the length of C. The roots 2^ts* P«"» I =^ = r, are said to

be generated by the chain C; a root p is generated by a chain of length r if

there is at least one chain C(pi, • ■ ■ , pT) such that p= XXiP»- The set of

0) Because 0 is not counted as a root, we define rp,p = — 2 and sf,p=0 for all roots p, so that

formula (2) is valid in all cases.

(2) It is in the derivation of formula (3), and hence in the applications of this formula which

appear later in the paper (see Proposition 6) that the assumption that the Killing form of g be

nondegenerate is used in an essential way.

(3) The proofs of the results in §§3 and 4 (Propositions 1-5) make no use of formula (3),

and consequently are valid for any restricted Lie algebra g over il with a restricted representa-

tion x—*U{x) such that the form trace U(x) U(y) is nondegenerate.
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all roots generated by chains with links in a simple system A will be denoted

by T(A).
We shall derive some elementary properties of chains. Once for all we

select basis elements up for the root spaces gp such that for every root p,

[tt_p, up] = cp;

that such a choice is possible follows from (1). The results of 2.a imply that if

C(pi, • • • , pr) is a chain, then [ • • • [upi, uPl] • ■ ■ uPr] is a nonzero multiple

of «p where p = ^ p..

Lemma 1. Let A be a simple system such that pGA implies — pGT(A). Let

p and a be roots in T(A) which are generated by chains of lengths r and s respec-

tively. If [upuc] 7*0, then p-\-a is a root; and if p-\-a is a root, then p-f trGr(A)

and is generated by at least one chain of length r+s.

Proof. We use induction on s. Both statements are obvious if 5 = 1, be-

cause of the hypothesis of the Lemma. Assume that s>l, and that both

results hold for all pairs of roots p', a', where a' is generated by a chain of

length less than or equal to s—l. The root vector uc is a nonzero multiple of

[«„< Mr] where a' is a root generated by a chain of length 5 — 1, and rGA.

Now suppose that

(5) 0 7* [upua] = <x[up[u,> uT]] = a[[wpfv]«T] + a[«,'[«pMT]],

where a.7*0 is in ft. If p+c is not a root, then p-\-a = 0, and the results of §2.a

imply that both summands on the right are in c. If the first is different from

zero, then the induction hypothesis implies that p+<r'Gr(A), and (p+<r')+T

= 0, contrary to the hypothesis of the lemma. If the second is not zero, then

p-f-TGr(A), and (p+r)-\-a' = 0 contradicts the induction hypothesis. Thus

we may assume that p+c is a root. Then by the hypothesis of the Lemma,

p-\-T7*0, and hence either p+r is a root; or p+r is neither zero nor a root, and

[ttpWT]=0. If p+r is a root, then p+o- = (p+t)-f-o-'Gr (A) and is generated by

a chain of length (r + l)+(5 —1), by the induction hypothesis. If on the other

hand, [mpmt]=0, then [upuC']t*0, and by the induction hypothesis, p+a'

GY(A), and is generated by a chain of length r+s —1. Then p+o- = (p-|-o-')+T

is generated by a chain of length r-\-s, and the proof is complete.

Remark. The proof of Lemma 1 establishes the further result that p+a

is generated by a chain whose links are the combined links of the chains gen-

erating p and a.

Lemma 2. Let A be a simple system such that pGA implies —pGr(A). Then

rGr(A) implies -t$T(A).

Proof. Suppose, to the contrary, that r and —r both belong to T(A).

Then [u-7ut]t*0, and — r-fr = 0 in contradiction to Lemma 1.

Lemma 3. Let C=C(pi, • • • , pr) and C' — C(pi, • • • , p,') be chains with
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links in a simple system A such that pGA implies — pGT(A). If zZar Pi
= zZ>s> Pi , then r = s, and for all pE&, the multiplicity of p in C is equal to the

multiplicity of p in C.

Proof. If r = l <s, then pi—p,' = zZiz>-iP'i 1S a root, contrary to our as-

sumption that A is a simple system. To prove that r = s, it is sufficient to prove

that if both r and 5 are greater than one, then there exist chains of lengths

r —1 and 5 — 1 respectively which generate the same root, and which are ob-

tained from the original chains by deleting a single root. Because zZa P>

= z~Z\ Pi> tne Iact tliat: the root spaces are one dimensional implies that

v> = [ • • • [uPluP1] • • • «pr] = «[••• [«,;«,;] • • • upi], a£B.

Then by 2.a, [»«_,,;] is not zero, and belongs to gp<, where p'= zZfi~1 Pi ls a

root. On the other hand, ad u-p\: w-^[wu-„',] is a derivation, and we obtain

r

(6)        0 j* [w.Pi] = zZ [ ■ ■ ■ [«p,«p«] • • • «P,--i]«t,-]«P.-+,] • • • «p,]>
t=.i

where since Pi~pl is not a root,

*       r i       (° if Pi ^ P>>
(') «p< = l«««-»i 1 = i     _    ..

(c< G c if pi = p/.

By 2.a, the terms on the right side of (6) must either belong to root spaces

gp or to c. Because g is a vector space direct sum of c and the spaces gp, it fol-

lows from the fact that [ww_p'.]GgP' that for some i, 1 H^r, and for some

CiEc defined by (7), we have

(8)   o ?* (pi + • • • + p._i)(c,)[ • • • [unuPi] ■ ■ ■ «„_,]«„+,] • • • uPr] E gP-.

By (8) and Lemma 1, we infer that p' is generated by the chains

C( (pi, ■ • • ,p',-i) and C:(pi, • • • , p,_i, pi+u • ■ ■ , pi) of lengths 5 — 1 andr— 1

respectively, both of which are obtained by deleting p,' from the original

chains. Therefore r = s. Since we may assume by induction that the multi-

plicities of any root p in A in the chains of lengths r—1 and 5 — 1 are equal,

the statement concerning the multiplicities is also proved.

If A is a simple system of roots, then we shall denote the set of roots

{ —p|pGA} by A-. Then A- is a simple system. Now we shall prove, by an

argument similar to one given by Dynkin [3], that there exists a simple sys-

tem of roots A which satisfies the hypotheses of Lemmas 1, 2, and 3, and

which has the property that every root of g relative to c belongs either to

r(A) or T(A-).
Seligman has proved (see [5, p. 20 ]) that there exists a system of / = rank

g = dim c linearly independent roots ei, • • • , €j of g with respect to c. Then

c'tl, • • • , c'u and hence c,„ • • • , c«, form a basis of c, so that a root p is

uniquely determined by the numbers p(cu), lgigl. By formula (2), the num-
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bers p(c(<)G{0*, ±1*. ±2*, ±3*}, lgig/. We shall introduce a lexico-

graphic order among the roots of 8 based upon the ordered set eu ■ ■ ■ , ei as

follows. For each root p, let p(0 be the natural number 0, ±1, +2, +3 ac-

cording asp(cl() is 0*, +1*, ±2*, ±3*; thenp(i) is uniquely determined since

the characteristic of ft is greater than 7. We define p<<r if the first nonzero

difference a'-i)—p<-i) is positive, and shall call p positive (p>0) if the first

nonzero p(<) is positive. We summarize some simple properties of the order

relation.

Lemma 4. The order relation p<<r introduced among the roots of 8 ^a5 the

following properties.

(i) the principle of trichotony holds;

(ii) p<a, a<t implies p <r;

(iii) if p>0, <r>0, and if p-\-a is a root, then p+o->0;

(iv) p<0 if and only if —p<0;
(v) if p, <r, and p—a are roots, then p>a if and only if p — a>0; and

(vi) the roots belonging to a sequence {p<} such that

Pi > Pi > Pi >

are distinct, and any such sequence is finite.

Proof, (i) is clear since a root is uniquely determined by the ordered set of

natural numbers (p(1), • • • , pco); (ii) follows from the observation that for

each *, T<i}-p^) = (T(i)—o-(i,) + (o-(<)—p(0). (iii), (iv), and (v) follow from the

fact that if p + tr is a root (where to include (iv), p may be zero) then (p + a)(i)

=p(')+o-('). The finiteness of the properly descending chain (vi) is a con-

sequence of the fact that there exist only a finite number of roots; this de-

scending chain condition is of course equivalent to the statement that the

roots are well ordered, in the sense that every set of roots contains a root

which is less than all the other roots in the set.

Now we shall prove the main result of this section. We might remark that

this proof, based upon Lemma 1, and applied to semi-simple Lie algebras of

characteristic zero, is a slight variation of the usual proof of the correspond-

ing result.

Proposition 1. There exists a simple system of roots A of 8 with respect to

c with the following properties:

(i) T(A)r\T(A~)=<t>;
(ii) 7?(g)=r(A)Ur(A-).

Proof. Following Dynkin [3], a positive root p is called simple ii p cannot

be expressed as the sum of two positive roots. There exist simple roots, for

example the least positive root p with respect to the order relation, which

exists by Lemma 4, (vi). In fact, p =pi+pi , where pi and pi are positive, im-

plies, sincep—pi = pi is a positive root, thatpi<p, by Lemma 4, (v), and hence
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p is a simple root. The set of all simple roots will be denoted by A; by Lemma

4, A is a simple system.

Since the simple roots are positive, the roots belonging to T(A) are also

positive, by Lemma 4, (iii). Similarly the roots belonging to T(A_) are nega-

tive, by Lemma 4, (iv), and hence T(A) and T(A_) have no roots in common.

Finally, every root will belong to r(A)Wr(A_) if we can prove that every

positive root p belongs to T(A). This we shall do using induction on the

order relation we have introduced among the roots. We have already shown

that the least positive root belongs to A. Now assume that every positive

root cr<p belongs to T(A). If p is not simple, then p = cr-r-T, where <r and r

are both positive roots which are less than p. By our induction hypothesis,

a and t belong to T(A), and p belongs to T(A) by an application of Lemma 1.

Definition. A simple system of roots A satisfying (i) and (ii) of Proposi-

tion 1 will be called a maximal simple system of roots. A set A of roots is

decomposable if A=A'KJA", where A' and A" are orthogonal in the sense that

p'(cP")=p"(cP')=0 for all p'GA', p"£A"; otherwise A is said to be inde-

composable. If A' and A" are orthogonal then we shall write A'JLA". Evidently

orthogonal sets of roots are disjoint.

Proposition 2. The dimension of the space spanned by any maximal simple

system of roots is I, where / = dim c = rank g.

Much later (in §5) it is proved under stronger assumptions that the num-

ber of roots in a maximal simple system is exactly /.

Proof. Lemma 5.4 of [5] implies, since [gg] = g, that there exist / = dim c

linearly independent roots ei, • • ■ , ej of g with respect to c. Let A be any

maximal simple system of roots. By Proposition 1, the «, are all linear com-

binations of the elements of A with coefficients in Q. Hence the linear space

spanned by the elements of A has dimension /, and the assertion of Proposi-

tion 2 is proved.

Proposition 3. Let A be a maximal simple system of roots of g. Then there

exist indecomposable, mutually orthogonal, simple systems of roots A.-CA such

that A = UJ=1 A,-. // i^j then r(A,)±r(Ay), and T(A)=\Jsi,l T(A,). For each i,

T(Ai)\JY(A^) is the complete set of roots of an ideal gt- in g such that g = gi© • • •

©g„. The ideals g< are simple Lie algebras.

Proof. It is immediate that A = Uj„1 A,-, where the A< are indecomposable

and mutually orthogonal, and that r(Ai)_Lr(A,) if ?Vi. Now suppose, in the

hope of arriving at a contradiction, that U*_i r(A,-) is properly contained in

T(A).Then there will exist a chain C(pi, • • • , pt),p, £A, such that pi, • • • ,p*-i

GA,- and pkE^i for some j^i. Then zZat PtEV'-i r(A«) by the uniqueness

of the links of the chain C(pi, ■ • ■ , pi) proved in Lemma 3. Clearly k> 1, and

if <r= zZ'sk-i P,, then a is orthogonal to p*. Since o+pk is a root and <r(cPk) =0,

the results stated in §2.c imply that <r—p* is a root, and hence
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K«-pJ =  [[ • • •  [«p!«pJ • • • «p»-,] «-pJ * o.
ButptGA,-, hence [ttPiM_Pi]=0 for lgt'gfc — 1. These statements are contra-

dictory, and hence T(A) =U?=1 r(A,-).

Now let g,- be the subspace of g spanned by the elements up, c'p ,

pGr(A,)Wr(Ai"). It is easy to prove that g,- is an ideal in g with Cartan

subalgebra c,- spanned by the c'p , pGr(A,-)Ur(A,~), and that A,- is a maximal

simple system of roots of g< with respect to Ci. Then g is the direct sum of the

g,-, and the gi are simple algebras. These facts have been established by

Seligman [5, Theorem 15.2] in a context which is applicable to the present

situation, and we shall not give the proofs here.

4. Existence of a semi-simple Lie algebra of characteristic zero whose root

diagram is isomorphic to the root diagram of g.

Proposition 4. Let A = (pi, ■ • ■ , pm) be a maximal simple system of roots

of g. Then there exists a uniquely determined m by m matrix (a,-,-) with integer

coefficients Oy such that (1) a*= —p,(cPj), |aw| g3, a,-,= —2, a.y^O if i7*j,

and a,y = 0 if and only if ay, = 0. This matrix has the further properties: (2) the

group W generated by the linear transformations Si, l^i^m, and defined by

XiSj = Xi+aijXj, lgzgw, is finite, and (3), det (a.-y^O.

Proof. We shall call the matrix (— Pi(cPj)), lgt, jgw, the Weyl matrix

oi g associated with A. By (2), §2, there exists a matrix (a<y) with integer coeffi-

cients such that a*= —Pi(cPj), and |o,y| g3, au= —2. Since A is a simple sys-

tem, (2) implies that a.y^O if i7*i. Since the characteristic of 0 is greater

than 5, the matrix (a,y) is uniquely determined by these properties. The last

statement of (1) is a consequence of the fact that Pi(cpj) is a nonzero multiple

of Pj(cPi).

Now let V be a vector space of dimension m over the real field, and let

xi, •••,*» be a basis of V. Let us define linear functions Ai, • • • , Am on V

by the equations A,-(xy) = —ay., 1 gi, jgw, then the linear transformations

Si defined in the statement of Proposition 4 are given by

(9) xSi = x - Ai(x)xit    xGV, 1 g * g m.

By Proposition 1, every root of g with respect to c is either generated by a

chain C or is the negative of such a root. To each root p in T(A) generated by

the chain C(piu • - • , p,r) we assign the vector X(p)=x^+ ■ ■ ■ +x,-r in V;

to the root p in T(A_) we assign the vector X(p) = — X(— p). Because

T(A)r\T(A~)=d) by Proposition 1, and because the multiplicity with which

p in A appears in the chain C is uniquely determined by Lemma 3, we con-

clude that the mapping p—>X(p) is a single valued mapping of 7?(g) into V.

We prove next that if p, a, and p+cr are roots, then

(10) X(p + c) = X(p) + X(<r).

By the remark following Lemma 1, and the definition of the vectors X(p),
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(10) is valid provided that both p and cr belong to either T(A) or r(A~). For

the other case, we may assume that p£r(A), and ctET(A~). We use induction

on the length of a chain generating — cr. If that length is one, so that —cr

= Ci£A, then

«p-»,   =   £[«P«<r]   =   |[«p«_„], I G   ̂

and as in the proof of Lemma 3, it follows that p—cri is generated by a chain

whose links are the links of a chain generating p with the exception of a single

d. Thus (10) holds in this case. If the length is greater than one, then

cr= —(cr'+p'), p'EA, o-'Gr(A), where cr' is generated by a shorter chain than

cr. Then

«„+,  =  {[«„[«_-«_„.]]   =   {[[«„«_.]«_„-]  + £[«_„< [«PM-P']],

where ££fi. Since the root spaces gp are one dimensional, up+? must be a

multiple of one summand or the other. In the first case, p—cr' is a root, and

by induction we have

X(p - cr') = X(p) + X(-cr').

By the first part of the argument,

X(P + ,) = X(p - o') + X(-p') = X(P) + X(-o') + X(-p')

= X(P) + X(o).

The argument in the second case is similar, and will be omitted. Thus (10)

is valid in general.

Because a,» = —2, we have 5? = 1, l^t'lw, and the 5,- generate a group

of linear transformations. Since X\, • • • , X„ form a basis of V, the finiteness

of this group will follow if we can prove that the set \X(p) \pER(g)} is

mapped into itself by all the linear transformations Si. For this it is suffi-

cient to prove that if pET(A) then

(11) X(p)Si = X(psJ, l^igm,

where sPi is the reflection X—>X— X(cPi)p,- investigated in §2.c. We recall that

psPi is a root whenever p is a root. To prove (11), first assume that p=p,GA.

Then X(Pi)Sj= - X(p,). If * * j, then X(p,)Si = X(ps) - Ai(X(p,))Xi
= Xj+ajtXi. Since pj, Pj+pi, ■ • ■ , Pi+a*iPi — pjSPi are roots(4), it follows that

Xj+ajiXi = X(pjSp,). If pGT(A) is generated by a chain of length greater than

one, then p = cr+p', where p'GA, and cr is generated by a shorter chain than

p. Assuming by induction that (11) holds for cr, we have, by two applications

of (10),

X(P)Si = (X(o) + X(p'))Si = X(ospi) + X(P'spi)

= X((o + p')spi) = X(spl).

(4) Cf. [5, Theorem 5.7].
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This completes the proof that the group W is finite.

In order to prove that det (a,-y)y*0, we observe first that since the linear

transformations belonging to W have real coefficients, it follows (see [6,

p. 153]) that there exists a positive definite quadratic form Q(x) on the vector

space V such that the operations of W are orthogonal transformations rela-

tive to the form Q. The bilinear form /3(x, y) =Q(x+y) — Q(x) — Q(y) associ-

ated with Q is nondegenerate, and has the property that j3(x, x) =2Q(x)t*0

whenever xt*0. By (9) the operations 5,- of W are reflections in the hyper-

planes £,•: A<(x) =0, and the vectors x,- have the property that x,5,= —X(. We

shall prove that

(12) A,-(x) = 28(x, xi)8(xi, xi)-\ xGV,l£igm.

Since all the Si are orthogonal transformations, we have

0(x, xi) = 8(xSi, XiSi) = 8(x - At(x)Xi, - xi)

= - 8(x, xi) + Ai(x)B(xi, Xi).

But B(xi, xi)7*0, and hence we obtain (12). Finally we have

2B(xj, Xj)
an — — A ,•(*,•) =-< 1 g i g m,

B(Xj, Xj)

and because det (B(x{, xj))t*0 by the nondegeneracy of 0, det (a,y)?^0, and

Proposition 4 is proved.

By Proposition 4 and Theorem 1 of [4], there exists a semi-simple Lie

algebra 2 over the complex field, and a Cartan subalgebra § of 2 such that

the following statements are valid. It is possible to find a set of linear func-

tions a,-, 1 gigw on § such that ai, • • ■ , am is a fundamental system of roots

of 2 with respect to §, and the Weyl reflections Sai corresponding to the at

are given by the formulas ay5ai=ay+ay,a., lgi, jgw. Then every root a

oi 2 with respect to § can be expressed in the form ct= ^T-i dica, where the

d, are rational integers which are either all non-negative or all nonpositive.

The former are called the positive roots; they are the positive roots with

respect to the lexicographic ordering of the roots relative to the set au ■ ■ ■ ,a„.

As in the case of 7?(g), the concept of a chain C=C(otil, ■ ■ ■ , a,r) can be

introduced, and it is known that every positive root is generated by a chain

(cf. [3, Theorem XV]).

Proposition 5. The mapping ca-+pi of the set a\, ■ ■ • , ctm onto the maximal

simple system A can be extended to a (1-1) mapping a-^>f(a) of the set R(2) of all

roots of 2 onto the set R(q) in such a way that the following conditions are satisfied.

(1) If a, B, a+8 are roots of 2 then f (a) +f(B) is a root of g, andf(a+8) =/(«)

+/(/8); (2) 7/p, a, p+o- are roots of g then f~i(p)+f~l(o-) is a root of 2, and

f"1(p+<r)=/-1(p)+/-,W-
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Proof. Every root a of ? can be expressed in the form(6)

m

(13) a = aiSah ■ ■ ■ Sajr = zZ dm,
•-1

where lgigm, 1 gjk^m, diEZ. We define the mapping/ by

(14) f(a) = PisPh ■ ■ ■ s,it;

then f(a) is a root by the results of §2.c. We prove first, by induction on r,

that if axSaj ■ • • Sajr = zZ™ dfoti, then ptsPi ■ ■ ■ sp-r = zZ™ d*pi. The result is

evidently true if r = l. Assume that if /3 = a,-Saj. • • • Sajr = zZeiai, then

a=PiSfJl ' • • sn,_,= zZe*Pi- Then PSajr= zZe^i + {Yle^ir)ar while <rsp.r

= zZe*Pi~^~(lL,e*a*)pr, and our assertion is proved. From this fact it follows

that the mapping /is single valued, and that if a= zZdiCti, then

m   *

(15) f(a) = zZdiPi.
1

From (15) we infer that if a, /3, ct+fi are roots, then/(a+/3) =f(cx)+f(0), and

(1) is proved.

From (1) we deduce that if C(ctiv ■ ■ ■ , a<r) is a chain generating the

positive root a, then the root/(a) of g belongs to T(A), and is generated by

the chain C(piu • ■ ■ , p,-,). If a and /3 are distinct positive roots, then a and /?

are generated by chains in which some a,-appears with different multiplicities.

By the preceding remark, it follows that/(a) and/(/3) are generated by chains

in which pi appears with different multiplicities, and hence f(a) ?^f(f3) by

Lemma 3. If a>0 and |8<0 then/(a) ^/(/3) since r(A)C\r(A~) =cb. Therefore

/is a (1-1) mapping of R(2) into R(q).

Let Ri be the set of images/(a) of the roots of 2; then/-1 is defined on Ri.

We prove (2) for roots in Ri. First let p, cr, p+oERi^^(A), and let a—f~l(p),

j3=/_1(op), and 7=/_I(p+<r). From what has been established it follows that

the multiplicity with which a root a,- appears in a chain generating y is equal

to the multiplicity of p,- in a chain generating p+cr, and we conclude that

7 =a+0. A similar argument applies in case p, cr, p+oER\C^(A~). Finally if

pET(A)r\Ri, crEV(A-)r\Ri, p+crERi, then we may assume that p+<rGr(A).

Then p+cr, -cr, pERir\T(A), and by the first case, f-l(p+o-)+t1(-cr)

=/_1(p). Since/—'(—(r) = — /_1(cr), (2) is proved for roots in R\.

It remains to prove that i?i = 7?(g). Let rGT(A) be a root generated by a

chain of length greater than one, and assume as an induction hypothesis that

all roots in T(A) generated by shorter chains than r belong to Ru Then

T = o+pi, PiEA, and o-=f(fi)ERi- Let u and v be the rational integers,

u^Ogv, such that P + koii is a root if and only if ugkgv. Then | u+v\ f=3,

(6) See Sataki, On a theorem of E. Cartan, Journal of the Mathematical Society of Japan

vol. 2 (1951) pp. 284-304, Corollary 1 to Proposition 3.
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and if 8= ^,dkak, then it is known that u-\-v= ^dkttki- By (15) we have

<r=f(B) = J2dtPk, and by the results of §2.c we obtain J^dta*t= (r,,Pi+sc,Pi)*.

Thus the numbers u+v and r,,Pi+s,.Pi are congruent modulo p. Since both

have absolute value ^3 and /> = 7, the numbers are equal. Since o--\-pi is a

root, 5„,Pl-^l, and we have v^(ra,Pi — «)+l. By the proof of Lemma 3, the

roots a, <r—pi, ■ ■ ■ , o- — (—r*P()pi are all generated by shorter chains than a,

and hence belong to 7?i. Applying/-1 by the special case of (2) already estab-

lished, we see that 8, 0—on, • • ■ , 0 — ( — r*Pi)ai are roots of 2, and hence

r,.Pi — u^0, and »^1. Then 8+cti is a root, and by (1), f(0+ai) =r. Since we

have proved that 7?i = 7?(g), 2) is valid for all roots, and the Proposition is

completely proved.

Corollary. If A is a maximal simple system of roots, then every root of g

is an image of an element of A by a transformation of the group generated by the

reflections sp determined by the roots p belonging to A.

5. Construction of a modular Lie algebra isomorphic to g. We begin by

selecting an admissible basis of 2, taking into account the results of Cheval-

ley [l ] on the properties of the constants of structure Nap. Let § be a Cartan

subalgebra of 2, a, 0, ■ ■ ■ the roots of 2 with respect to §, B(X, Y) the Kill-

ing form on 2, Ha the unique element of § corresponding to a root a such that

B(Hi, H)=a(H) for all HG§, and Ha = 2B(HJ, HJ)~lHJ, so that a(Ha)
— 2. Then 2 has a basis consisting of root elements Ea in (1-1) correspondence

with the roots, and a basis of §. Then Ea can be chosen so that for each

root a,

(16) [£«£_«] = Ha,       B(Ea, £_) = - 27i(//a', *.')-».

Then we have the following multiplication table for 2.

[HH'\ = 0, [EaH] = a(H)Ett,        H, H' G §;

0 if a + B is not a root,
(17)

[£„£^] =   Nap-Ea+p- if a + B is a root (0 is not counted as a root),

Ha if a + B = 0.

It is with the elements A7^ that we shall be concerned. In [2] it is stated that

the Nap< could be selected so that Na&GZ, the ring of rational integers; the

reference given in [2] to Weyl's paper shows only that Nip can be assumed

to be a positive rational number, if different from zero. The coefficient field

K defined in [2] is the algebraic number field generated by the Afap-; it con-

tains the constants of structure of the admissible basis consisting of the Ea

and elements IIav ■ ■ • , H„m corresponding to a fundamental system of roots

of 2. Without further analysis, the set of exceptional primes defined in §4

of [2] would have to be enlarged to include those primes p for which A^^Gop-

Chevalley has shown, however, that for a suitable choice of the Ea, the
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Nap are rational integers [l, pp. 21-23]. If we replace the Ea by EJ =£aEa,

Z«EC, then (16) will hold provided that £«£_„= 1; we shall assume that this

condition is always satisfied. Then Chevalley proves [l, p. 22] that for any

choice of the £„,

N*fiN-a.-l>  =   NatN-..-*

He then calculates this uniquely determined number, and obtains

yai>x-a.-f = -(p+ i)2,

where p is the integer such that (3+ia is a root for — p£i&0. Then for a

suitable choice of the Ea,

and hence if Nag^0,

(18) Naf  =    ±   (P +   1).

Now we define a rational basis (Xi) of 2 as a set of the Ea for which (16)

and (18) are satisfied, together with elements H„v ■ ■ ■ , Ham belonging to a

fundamental system of roots of 2 with respect to §. A rational basis is admis-

sible in the sense of [2], but not every admissible basis need be rational. Some

remarks in [2] concerning the uniqueness of the coefficient field, and which

refer to a particular method of normalizing the Ea, of course can be ignored

if we restrict ourselves to rational bases, for if (Xi) is a rational basis, then

the constants of structure c<# defined by [XtXj]= zZc'itXk are rational

numbers (the 77„ are not necessarily integral linear combinations of the 77ai,

1 gigm.) The set of exceptional primes is defined as before (see [2]) to be

the primes 2, 3, and any primes for which the determinant of the Killing

matrix (B(Xit Xj)) is not a unit.

Now let p be a rational prime. A p-integral subring 2 of 2 is the set of all

linear combinations with p-adic integer coefficients of the elements of a ra-

tional basis (Xi), provided that 2 is closed under the bracket operation. By

[2, §4], a sufficient condition that zZ°pXt, where op is the ring of p-adic inte-

gers r/s, sE(J>), form a p-integral subring is that p^2, 3, and that for each

root a, B(Ea, E_a) be a unit in op. A modular Lie algebra I is the Lie ring

2/p2, viewed as a Lie algebra over the prime field Zp = op/(p) in the natural

way.

The following result makes use of formula (3), §2, and hence, for the first

time, the assumption that the Killing form of g be nondegenerate is indis-

pensable.

Proposition 6. Let p be the characteristic of Q (p > 7), and let o be the ring

of p-adic integers. Then the set 2 of linear combinations with coefficients in o of

the elements of a rational basis (Xi) is closed under the bracket operation.
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Proof. It is sufficient to prove that for each root a, B(E-a, Ea) is a unit

in o. By (6) of [2] we have the formula

B(E_a, Ea) = - 2B(Hl, Hi)-' = - - (£(«*.„ + «,,.)*),

where up,a and vp,a are the integers, M^,ag0g^,o, such that 0-\-ka is a root if

and only if ttp-.ag&gt/fl,,,. Since P>7, this formula implies that each

B(E-a, Ea)Go. Let/be the mapping of R(2) onto 7?(g) constructed in Prop-

osition 5; then by (1) and (2) of Proposition 5, we have

r/(«)./(/J)   =   Ua.S, 5/(o),/(/3)   =   Va,$,

where r and 5 are the integers defined in §2.c. Because

2_Xr/<p')./e») + 5/oS),/«,))2 7*  0
0

in ft by formula (4), §2, we conclude that 73(£_«, E„) is a unit in o, and

Proposition 6 is proved.

Now we come to the main result of the paper.

Theorem. Let gbe a Lie algebra over an algebraically closed field ft of char-

acteristic p>7, whose Killing form is nondegenerate. There exists a semi-simple

Lie algebra 2 over the complex field whose Weyl matrix (aij) has the property that

(a*) is the Weyl matrix of g associated with a maximal simple system of roots.

Then there exists a modular Lie algebra I over the prime field Zp in ft belonging

to a p-integral subring of 2, and an isomorphism H of I into g such that g is ob-

tained from 177 by extension of the base field from Zp to ft.

Let A= \pi, ■ ■ ■ , pm\ be a maximal simple system of roots of g with Weyl

matrix (a*). The existence of the Lie algebra 2 with Weyl matrix (o,-y) follows

from Proposition 4, and from Theorem 1 of [4]. Let (Xi) be a rational basis of

2, and let o be the ring of p-adic integers. By Proposition 6, the set 2 = ^oAT;

is a />-integral subring.

We review some of the properties of the modular Lie algebra I = 2/pS,

most of which were established in the course of the proofs of Theorems 1

and 2 of [2]. We let <j> be the natural mapping of o onto Zp, and let T be the

natural mapping of 2 onto I. Then T maps §P\2 onto a Cartan subalgebra

f) of dimension m in I. For each root element Ea appearing in the basis (Xi),

we write ea> for EaT. We write hi for HaiT, where the Hai are the basis ele-

ments of § among the (Xi), and ha- for HaT. For each root a of 2, let a! be

the unique linear function on h whose value on HaiT is <j>(a(Hai)), 1 gt'gw.

Then for all 77G§n2, we have

«(a(ff)) = a'(HT),
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and in particular, since i7«G§C\2 by (17), a'(HaT) =0(2)^0 in Zv, so that

the linear functions a! are different from zero. If we use the fact that for all

the roots a of 2, a(Hai) = 2a(H'ai)cti(H'ai)~l is a rational integer such that

|«(#«,■)I S3, then a(Hai)=P(Hai) (mod p) for lgi^m implies that a(77a,.)

= j8(77„>.) since p> 7. Therefore the mapping a—>a' is a (1-1) mapping.

The table (17) yields the following multiplication table for I.

[hh'] = 0;    [ea.h] = «'(*)««.   A, h' E Q;

0 if a + jS t^ 0 and if a + P is not a root,

(19) [ea'Cp-'] = ■ »a'js'ea'+/j' if a + P is a root,

fc„. = #„7 if a + j8 = 0,

where na,0,=<p(Na$) is a nonzero element of Z„ whenever Nap?±0 for the

following reason. Let P+ia be a root for —pgigq. Then by (18), A^

= ±(p + l).Ontheotherhand,p+g^3 (see [l,p. 19]), and henced>(Nafs)j*Q

in Zp since the characteristic p is greater than 7.

From the formulae (19) it follows that the linear functions a' are roots of

I with respect to h. The mapping a—>a' is a (1-1) mapping of the set of roots

of 2 with respect to £ onto the set of roots of I with respect to h. The bi-

uniqueness of the mapping has been proved, and the mapping is onto by the

argument used in the first part of the proof of Theorem 2 of [2]. Evidently

the mapping a—>a' has the following additional properties.

a, 0, a + 0 E R(2) implies a', j3', (a + fi)' E R(l)

and (« + fi)' = a' + p',

a', P', a' + P' E R(l)   implies a + p E R(2),

a E R(2) implies (-a)' = -a'.

The sets A0= {«i, • • • , am} and Ai= [a{, •• • , 0&,} of roots of 2 and I

respectively are simple systems of roots, and the definitions of chains etc.

given in §3 can be applied to A0 and Aj. It is known(6) that if a is a root of 2

then either a or —a belongs to a chain with generators in A0. By (20) the

same remark applies to the roots of I. Moreover, the length of a chain which

generates a' is uniquely determined, and is equal to the length of a chain

which generates a.

Using the mapping / constructed in Proposition 5, it follows that the

mapping a,'-^p,-, l^i^m, can be extended to a (1-1) mapping a'—>a—»/(a)

= a" of R(\) onto R(a,) with the property that the mapping «'—>«" and the

inverse mapping preserve sums, and a chain C(a'h, • ■ • , a'ir) with links in

Ai is mapped onto the chain C(^, • • • , a't'r) with links in A. Since ct(Hd) and

a"(c$") can be calculated from the lengths of corresponding strings of roots

of 2 and g respectively, it follows that if a'—xx", P'—>P", then a'(hp) =a"(cf>).

(6) This statement can be proved by an argument similar to the proof of Proposition 1.
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We prove next that every ideal b7*0 in I contains at least one of the ea<.

For this we choose an infinite field F~DZP, and consider the nonzero ideal

6' in F(7). Since the linear functions a' are distinct and different from zero,

there exists an element h in hF such that a'(h)7*0, and a'(h) — 0'(h) t*0 for

all a' and 0'. By assumption there exists in bF a nonzero element

m

such that r\a'7*0 for some a'. Then

w(ad li)" = £ va-a'(h)<>ea. G bF

for all gSil, and by using an appropriate Vandermonde determinant, we

obtain

&Va'ea'  G  t>F, 7Ja.   7*  0,

where

« = (II«'(*))(I1V(A) - 0'(A))) * 0
a' o</S

by the choice of h. Thus ea'GbFr\l = b.

Now we shall construct a homomorphism 77 of 1 into g, where g is, for the

purposes of this construction, viewed as a Lie algebra over Zp. We recall that

g is a vector space direct sum g = c+ / ,„ gP, and that g possesses a basis con-

sisting of the root elements w„» normalized so that [u-0"Uf]=cp', together

with a basis for c. For each i>0, let I,- and g,- be the subspaces of I and g re-

spectively spanned by the root elements ea- (resp. ua») and the corresponding

elements ka- (resp. ca") which belong to roots generated by chains of length

gi.

We sketch a proof by induction on i that there exists a linear mapping 77 of

U,->o L onto Ui>o 8i with the following properties: f)77 = c; la'H = Qar,, where

la'=Zpea'; xGU'CMi, yEVHI,-, [xy]£r«'+p-nL., implies x77, y77, [xy]77£g,-
and [xH, yll] = [xy]/7; and x£L<P\I,-, hGb, implies [x77, hll] = [xh]H in g,-.

We define 77 on U by setting e±a'H= ±«±«'/, A<,;77 = ea;', 1 gigra, and ex-

tending 77 by linearity to a mapping of U onto gi. Then 77 is single valued on

Ii, and maps f) onto C. Since a/ —a/ is not a root, and since ol[ -\-aj, if a root,

has length greater than one, the fact that 77 preserves the bracket operation

can be shown by the following calculation. From [e-„;e„;.] = — A„;, we

have [e_a;e«;]77= —ha\II= —c„;' = [e_„;77, ea\H], lgtgw, and [e±a\, ha'f]

= +a*e±a; implies that [e^^H, ha)H] = +a*(e±a'iH).

Now assume that for some *>1, 77 has been extended to a mapping of

U onto g,- with the required properties. For any root a' oi I generated by a

chain of length i + l with links in Ai, we have a' =0''+«*', where 0' is gener-

(') We use the notation bF for the vector space 6® F (viewed as an algebra or as an ideal)

obtained by extension of the base field from Zp to F.
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ated by a chain of length i, and ai EAi. We have shown previously that

«3',«;^0; therefore [lfl'L;] = Ia' since the root spaces I„< are one dimensional,

and any mGL' can be expressed in the form u= [vw], where z»GIp", wEla't-

Then we define uH= [vH, wll]. By construction, vHE&v, wHEQPt> and

uH= [vH, w/7]Gga", so that l„'i7=g£r". The action of H upon !_„' is defined

in a similar manner, and H is defined on I,+i by linearity. The verification

that H is defined independently of the representation of a' as a sum P'+ai,

and that H possesses the homomorphism property on Ii+1 is identical with the

argument given by Seligman [5, §16], and we shall not repeat the details.

Then H is a homomorphism of I into g, and 177 contains a basis of g over Q

because for every root p of g, either p or —p belongs to T(A) by Proposition 1.

Therefore (177)" = g. By construction the kernel of H contains no root space

L', and by a result established earlier in the proof, the kernel of II is zero,

and H is an isomorphism. This completes the proof of the theorem.

Corollary 1. Let Abe a maximal simple system of roots of a Lie algebra g

over an algebraically closed field ofcharacteristic p> 7 whose Kilting form is non-

degenerate. Then A is a linearly independent set of I roots, where I is the rank of g.

Proof. By Proposition 2, A contains at least / linearly independent roots.

In the proof of the theorem we have shown that the number of roots in A

is equal to the dimension of the Cartan subalgebra f) of I. Since H is an iso-

morphism mapping f) onto c, the dimension of c is equal to the number of

roots in A, and the Corollary is proved.

Corollary 2. Two Lie algebras g and g' satisfying the hypotheses of Corol-

lary 1 are isomorphic if the Weyl matrices A and A' associated with maximal

simple systems of roots of g and g' are identical.

Proof. The main theorem implies that there exists a modular Lie algebra

I, and isomorphisms H and H' of I onto g and g' such that g = (177)", g' = (I77')".

Then the mapping H~lH' can be extended to an isomorphism of g onto g'.

According to Corollary 2, a Lie algebra g over Q with a nondegenerate

Killing form is determined within isomorphism by the Weyl matrix belonging

to a maximal simple system of roots of g with respect to a Cartan subalgebra c.

Therefore the classification of the algebras g is equivalent to the explicit de-

termination of all possible Weyl matrices. The main theorem gives a partial

solution to this problem. By Proposition 3 it is sufficient to consider the case

of a simple algebra. Let g be a simple Lie algebra over 0 whose Killing form

is nondegenerate, and let A be a maximal simple system of roots of g relative

to a Cartan subalgebra. By Proposition 3, A is an indecomposable simple sys-

tem. Then by the main theorem there exists a semi-simple Lie algebra 2 of

characteristic zero with the following properties. There exists a Cartan sub-

algebra § of 2, and a fundamental simple system of roots cti, ■ ■ ■ , an of 2

relative to § such that if «<—>«< +aijOLj, l^i^l, is the Weyl reflection deter-
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mined by the root ay, 1 gj g I, then (a*) is the Weyl matrix of g belonging to

A. Let B(X, Y) be the Killing form on 2, and for each root a, let 77„' be the

unique element of § such that B(Ha\ H)=a(H) for all 77£$. Let Ha

= 2B(HJ, Hi^HJ. Then 77a„ • • • , 77,, is a basis for £, and af(Hai)

= — Oij, 1 ̂ i,j^l. Then it follows from the way the matrix (a,y) was selected

(see Proposition 4) that the fundamental system of roots <xi, • ■ ■ , ai is in-

decomposable in the sense that for each *, lgig/, there exists a J7*i such

that aii(Hai)7*0. It is well known that the indecomposability of the system

a\, ■ ■ ■ , ai implies that 2 is a simple Lie algebra. The Weyl matrices of the

simple Lie algebras 2 can be constructed explicitly, for example, from the

classification of the indecomposable simple systems of roots given by Dynkin

[3]. Thus the Weyl matrix of a simple Lie algebra over an algebraically closed

field of characteristic p>7 whose Killing form is nondegenerate is obtained

by reduction modulo p from the Weyl matrix of a simple Lie algebra over an

algebraically closed field of characteristic zero, and the Weyl matrices of the

latter are known explicitly. The following problem is not settled by our re-

sults, however, and is discussed from a different point of view by Seligman

[5, pp. 77-83]. Let (a,y) be the Weyl matrix of a simple Lie algebra over an

algebraically closed field of characteristic zero, and let p be a prime number.

The problem is to find necessary and sufficient conditions on (a,y) in order

that the matrix of residue classes of the a,-,- modulo p be the Weyl matrix of

a simple Lie algebra over an algebraically closed field of characteristic p with

nondegenerate Killing form.
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