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1. Introduction. In classical analytic function theory, the boundary in-

tegral

- J log | <p(pe") | P(f, 9)d6 m d>(p; f),

where P(f, 0) is Poisson's kernel, has been extensively studied (Compare, for

example, the Jensen-Poisson formula). We study it here, much less exten-

sively of course, in a greatly generalized situation (see [ll]).

By way of introduction, we state results only for the "archimedean" case.

(The archimedean case deals with that analogue of holomorphic functions

4>(z) = a0 + aif + • • • + a„f" H- (| f |   = 1)

where the exponents are non-negative real numbers instead of integers).

First of all, for p> | f |, the integral <p(p; f) is finite, unless <p(z) =0 identi-

cally. It therefore provides (for each pair of the parameters p> |f|) a real

valued homomorphism of the multiplicative set of nonzero elements of the

integral domain A0 ( of all functions holomorphic in the sense of [ll] on the

unit disc A, generalized as in [ll]).

The second result is that this homomorphism depends continuously on <p,

in the sense that if <pn(z) converges uniformly to <p(z) on (suitable) compact

sets in A, (which are never required to touch the boundary), then <pn(p; D

-**(p; f).
We make use of some properties of equicontinuous families of holomorphic

functions. These properties were first utilized in connection with almost pe-

riodic functions by H. Bohr [VI], and later used by B. Jessen [III] in study-

ing a function which we show below to be <p(p; 0).

Jessen and Tornehave [IV] establish convexity properties of <p(p; 0), and

connect the points of increase of the derivative with the zeros of <t>(z). We

shall explore these matters in general, elsewhere.

2. Measures for semi-groups of functions. We review briefly some matters

discussed in [I, §§5-6]. There 5 is a topological space and H is a class of real

valued non-negative continuous functions, closed under multiplication, and

containing all positive constants. Moreover, there is a compact set B in 5

such that every element of H attains its maximum value (for all of S) on B.
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Upon these hypotheses, there exist [I, 5.2] for each point s of S, measures

ra, "representing s" (which is to say)

2.1 J   log g(a)m.(da) = log g(s)   when   g, g~l G H

and supported by B. Moreover, for each singular element h of H (s having

already been selected) there is at least one representing measure for s, sup-

ported by B, for which

2.2 log h(s) =  f log h(B)m.(dB)

and indeed the right hand side of 2.2 can be made as large as, but no larger

than [I, 6.25, 6.4]

1
2.21 inf — g(s)

n

where (g, n) runs over all nonsingular g in H and n over all positive integers

such that

1
2.22 — log g ^ log h on B.

n

2.3. Lemma. Let S, H, B be as above, and let s, h be selected as above. Then a

(regular Baire) measure ra, representing s, supported by 73, can be found such

that for any other (regular Baire) measure n, with compact support not neces-

sarily in 73, but representing s, one has

2.31 f log h(a)n,(da) g   f log h(B)m,(d8).
J S J B

Proof. For ra, we take anyone giving the value 2.21, and supported by 73.

Let 73i be 73 plus the (compact) support of »,. Then S, H, Bi satisfy all the

conditions imposed on S, H, 73. In particular [I, 6.4] or the remarks above

f   log h(a)n,(da) g 2.21(73!)

where 2.21 (730 means the value 2.21 with "73" in 2.22 replaced by "73!".

But the predicate 2.22 of g is independent of 73, since it says precisely that

g-1An5S 1 on S. Therefore 2.21 (73!) =2.21 (73), which value ra, was constructed

to give. This suffices to give 2.31.
By way of elucidation we shall derive a well-known result (see, for exam-

pie, [VIII]).
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2.4. Theorem. Let f be continuous on the closed unit disc, and analytic in-

side. Let 0 ̂  r ^ 1. Then

f     log | /(re") \de^   f T log | /(««) | d$.
Jo Jo

We shall give the proof as it illuminates the lemma.

Let A0 be the algebra of all /of the specified sort. Let H be the class of all

|/|. Let S be the disc and B its boundary. If g is nonsingular in 77, g= | gt|,

giGAo, then gi = eu+iv, u-\-ivGAo; and logg = M. For such a u,

1   r2"
2.5 — j     u(reie)d6 m Ir(u) = w(0).

2tt J o

Thus the integral Ir "represents" the origin in the sense used above. For

r = 1, the measure involved is supported by B. Because the measure is deter-

mined by its Fourier Stieltjes coefficients, it is the only measure on B repre-

senting 0. We therefore know that ra, (see 2.31) is the measure corresponding

to the integral h, and that Ir represents 0. From 2.31 we obtain

2-6 7r(log |/|) g/i(log [/|).

We insert the definition of I„ I\, multiply by 27r, and arrive at 2.41 as desired.

Taking r = 0, we obtain

2.7 log |/(0)|   g- f     log \f(e»)\d».
2ir J o

This special inequality holds also in the general case [I, 6.41] where it can be

deduced from Lemma 2.3 by noting that the point j is itself a measure repre-

senting 5.

These methods can be applied to any commutative Banach algebra [i]

but nothing interesting is yet known to result. We apply them therefore to a

special situation generalizing 2.4.

3. A generalization of analytic functions. Let [I, 4.21-4.23] G be a dis-

crete abelian group with a distinguished multiplicative subset G+ generating

G. and containing the 1 of G. Such a system will be called an A-system (G, G+).

The elements of G will be denoted by x, y, ■ • • . Let A be the space of homo-

morphisms (onto the complex numbers C) of the algebra A0 of continuous

functions 0 on T (the character group of G) whose Fourier transforms

I <b(oi)a(x)da

vanish for x not in G+. Then A coincides with the class of complex homomor-

phisms of G+, and the Silov boundary of A is naturally identifiable with T

[II, 4.6]. Following the ideas and notation of [II, 5.52], we let, for each
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I' in A, mf denote the harmonic measure on T. Among all regular Baire meas-

ures supported by T there is only one which represents f.

We shall now consider a proposition (3.2, below) which involves the

multiplication of points, say f and n of A. The product %n is that point of A

for which %n(x) =£(x)r](x) for each x in G+. Having selected f and t] from A,

we can define an elementary integral

3.1 /(*) =   f $({a)mfaa)

where $ runs through the space of complex-valued continuous functions on

A. Now this integral represents the point s = f»7, in the sense that 7(0) =<p(s)

for each 0 in Ao, as can be checked by selecting <1>(8) =0(8) =8(x) for each of

(he x in G+. This, it will be noted, is precisely what is required of the integral

on the left side of 2.31. For the measure on the right, one can and must take

the harmonic measure m„ because of the uniqueness mentioned a few lines

above. An application of 2.3 now yields the desired result.

3.2. Lemma. For 0 in Ao, and f, n in A,

3.21 J   log  | *({•«) I mfaa) ^ J   log  | d>(a) | m{n(da).

It pays to complicate this a bit. Replace <f>(a) by 0(0a). Then we obtain

3.22 j   log-7——jm{fact) ^  I   log -j—-—-j mfaa)
J r        I (b(6a) | J r        | 4>(0{a) |

It is convenient to introduce the following

3.3. Notation. For <p in Ao define

<t>(B;tj) =   I   logy——jtnfaa).
J r        | <p(0a) |

A priori, this might be + <» in some cases, e.g., 0 = 0. In this notation, 3.22

says just that

3.31 <t>(6-Av) ^*(flf;ij);

white far ||0|| £1,

3.32 <b(0;r,) ̂  0.

From [II, 5.73] we obtain

3.33 -log |*(0iO|   ^ <t>(8; v).

Our main objective is to see when 3.32 is positively infinite. (We remark

in passing that, by 3.33, this makes <f> vanish at the point dn).
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Let p be a non-negative element of A (which means that p(x)^0 for all

x in G+). Then we can define p" for all m^O [II, 7.1].

3.4. Theorem. For <p in A0 with \\<p\\ gl, and 9, p, u as above,

3.41 <b(6; p) ^ e"<b(6P"; p).

The proof consists of three parts: first a proof of

3.42 /„ = «/,„ («£1),

where I„ is the Poisson (-like) integral on T associated with the point p [II,

5.3, 5.51 ]; then an application of 3.31; and finally a limit process.

Let A be a non-negative Baire function on T. By [II; loc. cit.]

3 A3 Ip(h) =   \      \   h(yriv)c(v)dydv
J-x Jr„

where c(v) =ir~1(i+v2)~l. Further Tp is a certain compact subgroup (and dy

means integrate with respect to the Haar measure). Of this, all that is

relevant here is that if p = ra (a>0) then rr = r,,. The r is any real valued

homomorphism of G which agrees with p wherever p is not 0, and itself never

vanishes. If we let / serve as the r for r, and take p=ra, then 3.43 takes the

form

ITa(h) =   f     f h(ytaiv)c(v)dydv.
J _oo J rT

Let av = u. Then

I Ah) =   f   tf(W)/a|l + —t)      du

where K(u) is independent of a, and non-negative. Let

y» 00

x(a) =   I    K(u) (a2 + u2)~Hu.
J -a,

Then

aIT"(h) = x(a)-

Now

-x'(a) =   f K(u)2a(a2 + u2)~2du g 2a~1x(a).

From this a2x' + 2ox = 0 or a2x is increasing. Replacing a by 1 and then by

w^l gives 3.42.

Now insert
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-log  |0(0p"«)|

as an integrand in 3.42, where u = l+a; a, m|£0. Then

0(0pna; p) £ (1 + a)0(0p"«; p»+»)

g (1 + a)0(0p<"+1>°; p) (by 3.31).

Consequently

(1 + a)»0(0p"°; p)

increases as the integer w increases, and is not less than 0(0; p). Let a = u/n

and make n go to infinity. This yields

0(0; p) g e«0(0P»; p).

3.5. Theorem. 7,e£ 0 belong to A0, and let f oe aw element of A whose polar

decomposition is f = p/3. Suppose

3.51 I    log  | 0(a) I mfact) =  —  oo.

7Aew /or a// complex w (with non-negative real part)

3.52 0QV) = 0.

Equivalently, <p vanishes on the subset jSpT" of A (see [II, 5, just above 5.6] /or

r<>.)
7/p ma^j G+ in a 1-1 way into the (multiplicative) non-negative reals then

0 = 0. If G+ is the set of elements greater than or equal to the identity in an

archimedean ordering of G, and (3.51 holds where) J" is not a boundary point,

then 0 = 0.

Proof. We can clearly factor a constant out of 0 achieving ||0|| ±£1 and

retaining 3.51. Then 3.51 says that °o =0(1; p/3). Now

0(1; p/3) g (P\p) £ e«0(ft»»;p).

Then 3.33 tells us that 0(/3p1+u) =0. It is known [II, 7.4] that 0(/3S*O is holo-
morphic in w, so 3.52 must hold. The next line of 3.5 is established by invok-

ing [II, 7.4, « = 0].
If p (or f) never vanishes then p° = 1 so that 0 vanishes on pT^, which is a

coset of the subgroup I> in T. Now T" is the set of a which are 1 wherever

p = l (on G+). If p is 1-1, this is only for x = l in G+; and every a in T is 1

there, so that r' = r. Finally, if p is 1-1 then it cannot ever vanish. Hence

0 = 0.
In the archimedean case, ii f is not on T then p(x) ^ 1 for some x in G+. Let

us take first the case where p(x) ^ 1 for some xj^l. Then p(x)^0 for all x in

G+, because xn is co-final in G+ and (because p^l) p(x) never increases as
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we ascend in G+. For the same reason p(x) 5*1 except for x= 1. Thus p is 1-1

(and so 0 = 0). If p(x) =0 for some X5*l then p(x) =0 for all x5*1 in G+, and

p (and also £") is the "center" of the disc (which we might call 0) :

3.53 0(0) =   I <t>(a)da, (Haar integral).

We have now to deduce that 0 = 0 if

3.54 0(1; 0) = oo.

This says (of course) that

3.55 j   log | 0(a) ] da = — oo.

Noting that 0 in 3.54 can be written as p-0, we have (by 3.31) for all p

3.56 0(p; 0) = oo.

We shall present two demonstrations of the fact that 3.56 implies 0 = 0.

Our first proof (§4) the more complicated, but has the merit of establishing

a connection with some work of B. Jessen.

The second treatment is given in §5. It involves some of the ideas used by

Jessen in the paper quoted in §4.

4. Connection of 0(p; 0) in the archimedean case with a function of B.

Jessen. B. Jessen [III, 500-502] has proved the following lemma.

4.1 (Jessen). Let F (u-\-iv) be almost periodic (in u), holomorphic and uni-

formly bounded for Uo<u<Uz, and nonzero. Suppose U\, w2, and c are given

with u0<Ui<Ui<Ui and c>0. Then there exists a number ra such that if b>l

then for all real a and all u such that Ui^u^Ui, we have

/» a+b
(log I F(u + iv) | m - log | F(u + iv) \ )dv < be

a

where \n\m means max (\n\, ra).

With the aid of this we can show that 3.54 implies 0 = 0.

As we have observed before, F(u-r-iv)=d>(pu+iv), (if it doesn't vanish

identically) satisfies all the conditions of 4.1 with uQ chosen arbitrarily but

positive, and p chosen arbitrarily. We select P5*0, 1. If 05*0 then Ft*0, since

{p'"} is dense in T as p° = l and r" = r.

Let "lm" stand for either lim sup or lim inf, b—>». From 4.1 we obtain

(with any value of c),

J      n a+6 J      n a+b

4.3    0 = lim — I        log | 4>(Pu+iv) \mdv - lm— |        log | 0(pu+") \ dv <, c
b   J a b   J a
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Consider that log \<p(pua)\m is a continuous function on T. It may there-

fore be uniformly approximated by linear combinations of elements of G,

and for each element x of G

I      r> c+b

4.4 lim — I       x(piv)dv = 0 or 1
b J a

according to whether x = 1 or ^ 1 in G. Hence 4.4 gives the Haar integral of

x, and consequently the lim term of 4.3 is

4.5 I   log | 0(pua) \mda = I(m).

On the other hand, 4.3 shows that

M = lm — I        log | <p(pu+iv) | dv
b J a

is finite (— oo was the only danger), since

4.6 0 g I(m) - M g c.

As m approaches 0 from above, the integral I(m) tends downward to

4.7 I    log | 0(p"a) | da = - 0(pu; 0)

by Levi's theorem, and by 4.6 this is finite too. This destroys the possibility

of 3.56 when 0^0, and finishes the proof of 4.1.
However, it is worthwhile to exploit 4.1 somewhat more. We evidently

have

0 g - 0(p"; 0) - M < c

from which we can conclude

4.8. Corollary.

-<p(pu;0) = lim — I        log | <b(pu+iv) \ dv.
6->oo   b   J a

Here we intend to assert also that the "mean" on the right exists.

It should not be supposed that

/> /• a+b
\p(a)da = lim    I       f(piv)dv

r 6->«  J a

holds for every summable^ on T, or that the right side necessarily exists, since

it depends merely on the behavior of \p on a set of Haar measure 0.

Jessen and Tornehave [IV] have studied the behavior of (what amounts
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to) the function in 4.8 and its dependence on u. They do not consider the

(perhaps more elementary) functions 0(p"; f), f 5*0.

5. Second proof that 0(p; 0) < oo if 0?*O in the archimedean case. Select

an x from G+, x not equal the identity. This determines a character of T;

and the kernel XF of that character has Haar measure 0 in T. Consequently

the set

E = {cx;a(x) 5* - 1}

has measure 1 in T.

Select pGA, p^O, such that p(x)5*l. Let

b = - ir/log p(x).

It is easy to see that £ is homeomorphic with

(-b, b)xxT

under the mapping

5.1 (v, B) -> a = p"/S.

If we use the proper Haar measure in XT, and normalize so that the whole

measure of xr is 1/26 then 5.1 is also measure-preserving [V], and (therefore)

5.2 I   log I <Kp«) I da =   I     I     log I </>(p1+i"/3) I dvdp.
JE J rT J -b

Since £ has measure 1 in T, the integral over £ in 5.2 is equal to — 0(p; 0).

Let Fg(w) = 4>(pu'8) (w = u + iv, u ^ 0). Let 5 be the segment u = 1,

— b^v^b. Let Wi be the set of points not more than 1/3 away from S, and

let Wi be the set of points not more than 2/3 away from 5. Using the fact

that [F$] is a totally bounded family of functions bounded away from the

zero function, one can prove (cf. [VI])

5.3. There is an N such that each £5 has no more than N zeros on Wi.

5.4. There is a positive number p such that for each 8, if w\, • • • , wn are

the zeros of F$ on Wi, then

F»(z)
-   ^ P for z G S.
(z — wi) ■ • ■ (z — wn)

In §6 we shall use the following

5.5. For every r>0 there is an ra>0 such that for each 8, if z in Wi is not

less than r removed from all the zeros of Fp on Wi, then

I Fp(z) I   ^ ra.

Now for F = £3,

log I F(w) j   g: log p + 2 log I w ~ w< I (on S)
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whence

5.6 I    log\F(l + iv)\dv^2blogp+zZ,\    log\w-wt\dv.
J-b J-b

It is not hard to verify that for wt in Wi,

5.7 I     log | 1 + iv - Wi | dv ̂  2o(log b - 1).
7_b

We insert this into 5.6, and observe that there are not more than N zeros,

so that

f   log | 7(1 + iv) | dv ̂  26(Iog p + N(log b - 1)).
J -b

Inserting this in 5.2 gives 0(p; 0) y^ oo since

J   log | qj(pa) \da= - 0(p; 0) ^ log p + N(log b - 1).

6. The continuity of 0(0; f) as a function of 0. In this section we assume

that G is archimedean-ordered, just as we did in §5.

We have just proved that, for 0 in Ao, 0?*O,

6.1 K(<p) =  I   log | <p(pa)da ̂  - co.

(The symbol P(0) is introduced for convenience at this time).

6.2. Lemma. Let 0 in Ao be given. Let e>0, and pEA be given, 0<p<l.

Then a compact set in the interior of A can be found, and an m>0, such that if

\pEAo and |0(D —-0(f)| <w on the compact set, then

| P(0) - P(0) |   < a.

Proof. Let 0 be any element of AQ, besides the given 0. Define Fp(w)

= 0(p*°/3), and define 77g similarly in terms of 0. By 5.2 we have

i r\ i6.21     I P(0) - P(0) I   g max — |    | logF^l + iv) - log P^(l + iv) \ dv.
0£*r 2b J -b

Hence we will achieve our end if we show that the integral in 6.21 can

be made uniformly less than e.
We will not bother to write the indices /3 on F, H henceforth, but we in-

tend the indices to be the same. We use the closed sets S, Wi, Wi as in §5.

Let Xi, • • • , x„ be the zeros of F on Wi, and let

X(w) = (w — xi) ■ ■ ■ (w — xn).
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By 5.5 and Rouche's theorem, there is, for each positive r (which we shall

specify later), an ra>0 such that if | £—H\ <ra on Wi then there is one

zero of H in the r-neighborhood of each zero of F. Denote by y,- that zero of

H which is near x,-. (This need not exhaust the zeros of H.) Let

Y(w) = (w — yi) ■ ■ ■ (w — yn).

Let X/Y-l =/, and H-F = g. Then

TJ p

6-22 =Z-i[/£+g(/+ 1)].
y     x.

We consider the modulus of 6.22 on the boundary /32 of Wi. The modulus

of X~l depends essentially only on n, and that is fixed. The modulus of / be-

comes as small as we wish if r is small enough; and g becomes small if | F—H\

is small enough on Wi. For any positive q, we select an r so small, and an ra

so small as to both serve as the ra (for that r) in 5.5 and also so small so that if

6.23 | F(w) - H(w) |   < m for w G Wi

then the modulus of 6.22 is less than q on /32, and hence on W2:

6.24 -< q (on Wi).
Y      X

Our first requirement on q is that it should be smaller than the p of 5.4;

and we then have

H   X q
6.25 -1   < —<1 (onS).

F   Y p

Let us denote the rational function X/ Y by Z. Then

6.26 | log | F |   - log  | H | |   ^ q/(p - q) +  \ log | Z | | (on S).

Now the integrals defined by the various y:

J   log [ 1 + iv — y | dv,
E

regarded as functions of the set £C [ — b, b] are easily seen to be uniformly

absolutely continuous [VII, 29.4]; whence by [VII, 29.6]

/6|         1 + iv — xlog   -    dv
-b\        1 + iv — y

is uniformly small for all y sufficiently close to x.

By 6.21, if we take the integral mean
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1  Cb
— I     • • • dv (w = 1 + iv)
2b J -b

of the right side of 6.26, we get an estimate of |P(0)—P(0)|, namely

q/(p — q) plus « terms like 6.27. The latter go to zero with r. Now we finally

select r, q to make this estimate as small as desired. In order to ensure 6.23,

we need only have |0(f) — 0(f) | <w on the "sub-disc" pA.

We now turn to the measures m, associated with points <r not at the center

of the disc. We wish to study the continuity of 0(p; a). We can better adapt

the earlier formulas if we study 0(r; p). Analogously to 6.1 we define

6.3 7(0) = J    log   | 0(ra) | mfaa) =  - 0(r; p).

Now we suppose \p\ 9*1, \r\ 7^1; and by a rotation we can obtain 0<r, p< 1.

Moreover, by the archimedean ordering, we can write r=pa, a>0. Conse-

quently (by 3.43)

7(0) = zZ I   Fn(a + iv)c(2nb + v)dv
n   J-b

where

Fn(w) = 0(p2"4i+™).

For \pEAo we define 77„ analogously. It is now a matter of studying F,

H on and near the segment from a — bi to a + bi. The previous method of

estimating | log \ F\ —log |77| | leads in the same way to the corresponding

result. We combine it with 6.2.

6.4. Theorem. Let 0 in A0 be given (where G+ is supposed archimedean

ordered). Let r in A be given, \ r\ 5^0, 1, and suppose 0^0. Let p be given in A,

\p\ F^l. Let e>0 be given. Then there exists a compact set in A — T, and an

m>0, such that if (for any other \p in Ao)

| 0(f) — 0(f) |   < m for all f in that compact set

then

/log  | 0(ra) | m„(da) —   I    log | 0(ra) | m„(da)    < e.
r J r
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