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1. Introduction. Let p be an odd prime and e a divisor of p — 1. Let g be

a fixed primitive root of p and write p — l=ef. The cyclotomic number (i, j)

= (i,j)e is the number of values of y, 1 ̂ y^p — 2, ior which

y = g"+i, l + y = g"+i (mod p),

where the values of 5 and t are each selected from the integers 0, 1, • • • ,/— 1.

Dickson [5] showed in the case e = S that 64(i, j) is expressible for each i, j

as a linear combination with integral coefficients of p, x, y, a and b, where

(1.1) p = x2 + 4y« = a2 + 2b2 (x = a = 1 (mod 4)),

and where the signs of y and b depend on the choice of the primitive root g.

There are four sets of formulas depending on whether / is even or odd and

whether 2 is a biquadratic residue or not.

Emma Lehmer [8] raised the question whether or not constants a, B, y,

5, e can be found such that

(1.2) 256(j,i)i6 = p + ax + fiy, + ya + 8b + t,

at least for some (*',/). To answer this question she undertook the following

experiment on the SWAC (National Bureau of Standards Western Auto-

matic Computer). The cyclotomic constants of order sixteen were computed

for eight primes p of the form 32w + 1 for which 2 is not a biquadratic residue.

She found that (1.2) is not satisfied for any (i,j)Xi when the signs of y and b

are taken in accordance with the results on cyclotomic constants of order

eight. A similar computation for primes p of the form 32w + 17 also led to a

negative result.

The SWAC experiment leaves open the question of determining if the

equation (1.2) can be satisfied for any prime p for which 2 is a biquadratic

residue. In the present paper this is answered in the affirmative for six of

the cyclotomic constants. The following formulas involving only p, a and x

are derived. Let p = 16/+1 be a prime. If the integer m is defined by the con-

gruence gm = 2 (mod p), then
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(1.3) 256(0, 0)i6 = p - 47 - 18x (f even, m = 4 (mod 8)),

(1.4) 256(8, 0)16 = p- 15 - 18x - 32o (f even, m = 4 (mod 8)),

(1.5) 256(4, 8)16 = p + 1 - 2x (/even, m = 0 (mod 8)),

(1.6) 256(0, 0)16 = p - 31 - 18x - 16a (2 odd, m == 0 (mod 8)),

(1.7) 256(0, 8)I6 = p+ 1 - 18x - 48a (/ odd, m = 0 (mod 8)),

(1.8) 256(4, 0)16 = p - 15 - 2x+ 16a (f odd, w = 4 (mod 8)),

where the signs of a and x are selected so that a = x = l (mod 4). In other

cases it is shown that the cyclotomic constants (i,j)u are such that 256(i,j)io

is expressible as a linear combination with integer coefficients of p, a, b, x, y

and certain other integers c0, c\, c2, c3, do, di, • • - , di defined in §3.

The results in §3 provide a useful tool for investigating the existence of

difference sets composed of sixteenth power residues modulo p. By a difference

set of order k and multiplicity A is meant a set of k elements ai, a2, • • • , a*

(mod v) such that the congruence ai—a,=d (mod v) has exactly A solutions

for d^O (mod v). Residue difference sets are difference sets composed of eth

power residues modulo a prime. It is well known that the (p —1)/2 =k quad-

ratic residues modulo a prime p = 3 (mod 4) form a difference set of multiplic-

ity A = (p —3)/4. Chowla [2] proved that the (p —1)/4 = & biquadratic resi-

dues modulo p form a difference set of multiplicity A= (p — 5)/16 if (p —1)/4

is an odd square. Emma Lehmer [7] proved that the set of octic residues

modulo p forms a difference set if and only if the number of terms k = (p —1)/8

and the multiplicity A=(p — 9)/64 are both odd squares. It is proved in §4

that the set of sixteenth power residues modulo p cannot form a difference

set if 2 is an octic residue of p. Whether such difference sets exist when 2 is

not an octic residue of p remains an unsolved problem.

It is a known result [7] that the number 2 is an eth power residue of p ii

and only if (0, 0)« is odd. In §5 the expressions for (0, 0)i« are employed to

deduce a new proof of the Cunningham-Aigner criterion [3; l] for the six-

teenth power residue character of 2.

2. Cyclotomy. The following basic properties of the cyclotomic numbers

are established in the paper of Dickson [5].

(2.1) (i,j) = (e- i,j -i),

i(j,i) .     (/even),

(  '  } \(j + e/2, i + e/2)        (/odd);

(2-3) S(^)={/ ci *;*.-!>.

When e is even we put e = 2E and define
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(2.4) s(i,j) = (i,j) - (i,j + E),    i(i,j) = (i,j) -(i+ E,j).

The notation s(i, j) should, of course, not be confused with 5 times (i, j).

By (2.2) we have

(2.5) t(i,j)=i5{j'i) (/CVen)'

\s(j+E,i+E)        (/odd).

We also have the easily proved formula

(2.6) (i, j)E = (i, j) + (i + E, j) + (i, j+ E) + (i + E,j+E).

The last result is a consequence of the fact that a number of the form

gE.+i (mod p) is either of the form gel+i or get+i+B (mod p).

Let m, n denote integers and put 8 = exp (2iri/e). Then we define the

Jacobi sum [6]

p-i
ip(3m 8n) =  y ^ Bm *ncI 0~*~n *nt* (1~a)

o-0

where |3ind(0) =0. Two important properties of the Jacobi sum are

(2.7) *(/*-, 0») = w, r) = (- i)"^(rm-n, /»-),

and

(2.8) iK/3- fi")iP(0—, rn) = P,

provided no one of m, n, m+n is divisible by e.

The finite Fourier series expansion of ip(Bv", 8n) is given by

e-l

(2.9) *(/»•», 0») = (-1)-/ E B(i, v)P",
i-0

where the coefficient

e-l

(2.10) B(i, v) = E (*, * ~ »A)
)i=0

is a Dickson-Hurwitz sum [l0]. By (2.3) B(i, 0) equals/— 1 or/ according

as i is divisible by e or not. We have also the identity

(2.11) B(i, v) = B(i, e - v - 1).

We next let a denote a root of the equation ap_1 = 1  and  put f

= exp (2iri/p). The Lagrange sum

p-i
r(a) = E aind °f°

a-0

is related to the Jacobi sum by means of the formula
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(2.12) +(B~, 8n) = TC8-)T08-)/rC9-+-)>

provided m+n is not divisible by e. Another important property of the

Lagrange sum is given in the formula [6]

(2.13) r(-l)r(a2) = a2mT(a)r(-a) (gm = 2 (mod />)).

We now prove two lemmas of which the second is a generalization of a

lemma given by the author in an earlier paper [10],

Lemma 1. If e is even and E = e/2, then

(2.14) 4(». j). = (i, J)e + s(i, j) + s(i + E, j) + 2t(i, j),

where s(i, j) and t(i, j) are defined in (2.4).

This lemma follows from (2.4) and (2.6).

Lemma 2. Let e = 2*, E = 2k~1, k^l and let B(i, v) be defined by (2.10).

Then for any integer j we have

e-l

(2.15) E (B(i + jv, v) - B(i + E+ jv, »)) = es(j, i).
v=0

To prove Lemma 2 we first deduce from (2.10) the relation

(2.16) E B(i +jv, v) = e(j, i) + 'iZzZ(h+j,i- vh).
v—0 v—0 h—\

Now replace i by i+E. For a fixed value of A, l^h^e — 1, put

h = 2°6,   Ogagk-1,   b odd.

Since e is a power of 2 and b is odd, vb runs over a complete residue system

(mod e) whenever v does. Hence

zZlZ(h+j,i + E-vh)
v—0 h—1

= lZzZ(h+ j, i + 2«(2*"1- - vb))
n—1 ti—0

(2.17)

= zZzZ(h+j,i+2°(-vb))
n-l ti-0

= zZzZ(h+j,i-vh).
ti-0 n-l

Subtracting the left member of (2.17) from the left member of (2.16) we ob-

tain (2.15). This completes the proof of the lemma.
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3. Determination of the cyclotomic constants of order sixteen. When e is

a power of 2 Lemmas 1 and 2 provide a technique for calculating the value of

ii,j)t given the value of H,j)b- For this purpose we require the values of the

successive terms of the sum in (2.15). In this section we take e = 16, £ = 8 and

derive formulas for the values of B(k, v)—B(k+8, v), k=i+jv, v = 0, 1, • • • ,

15. The following lemma will be used frequently.

Lemma 3. If e = 2*, k ̂  1 awd q is an odd integer, then

(3.1) B(i,q) = B(qi,q),

where q is any solution of the congruence qq = 1 (mod e).

In (2.10) replace i by qi, v by q and h by i—qh. As h runs over a complete

residue system (mod e) so does i—qh. Therefore by (2.2)

(3.2) B(qi, q) = £ (?'* + - ef,i - qh + ±-ef).
h~o\ l 2     /

Now replace h by q2h and use (2.2) again. Then the right member of (3.2)

reduces after simplification to the sum for B(i, q). This completes the proof of

the lemma.

Put p = 16/+l and fl = exp (2iri/16). We now make five applications of

(2.13) with a = B, 82, B3, 8*, 87 respectively. Using (2.7) and (2.12) we get with

a little manipulation

(3.3a) iP(p*, fi2) = iP(B», 82) = (- D'P-Wa 8),

(3.3b) 4>(8\ 84) = +i8\ 8') = 04"W, 82),

(3. 3c) ip(8\ 82) = M8\ 8°) = 8tm+(Bn, 83),

(3.3d) iP(8\82) = 8Am+(8n,82),

(3.3e) ip(8\ 8) = 82m+(8u, 8) = (-l)'82"i>i8, 8),

where the integer m is defined by the congruence gm = 2 (mod p).

By (2.8) and (2.9) it is clear that ipiB~4, B~*) is the complex conjugate of

ip(8*, /34). Employing the notation used by Dickson [5] and making use of

(2.9) we may write

(3.4) iP(8\ 8*) = ~ x + 2yi, p = x2 + 4y2.

The finite Fourier series expansion of ip(8*, B2) is given by (2.9) with v = 2,

w = 2. Introducing this expansion into (3.3b) and equating coefficients of like

powers of 8 we get the formulas

B(0, 2) - B(4, 2) + B(8, 2) - .6(12, 2) = (-l)<»+»%,

5(2, 2) - B(6, 2) + 5(10, 2) - 5(14, 2) = (-l)»"22y.

Again by (2.8) and (2.9) we see that ip(8~*, 8~2) is the complex conjugate
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of ip(B\ 82). By (2.9) we have (compare [10])

(3.6) ip(8\ 82) = - a + b(82 + j8«),        p = a2 + 2b2.

In the sequel it will be convenient to distinguish the following four cases:

First case; m = 0 (mod 8), / even or«s4 (mod 8), / odd.

Second case; m = 0 (mod 8), / odd or m = 4 (mod 8), / even.

Third case; m = 2 (mod 8), / even or»s6 (mod 8), / odd.

Fourth case; tn = 2 (mod 8), / odd or m =■ 6 (mod 8), / even.

The finite Fourier series expansion of ^(/3a, 3) is given by (2.9) with v = 6,

« = 1. Comparing coefficients in (3.3a) and (3.6) we obtain in the first case

-a = B(0, 6) - B(S, 6),

(3.7) b = B(2, 6) - 23(10, 6) = 23(6, 6) - 23(14, 6),

0 = 23(4, 6) - 23(12, 6).

Equations (3.7) are valid in the second case when —a is replaced by a and b

is replaced by —b. For the third case we have the formulas

a = 23(4, 6) - 23(12, 6),

(3.8) b = - [23(6, 6) - 23(14, 6)] = 73(2, 6) - 23(10, 6),

0 = 23(0, 6) - 23(8, 6).

Equations (3.8) are valid in the fourth case when a is replaced by —a and b

is replaced by — b.
Formulas (3.7) and (3.8) yield values for B(i, 6)—B(i + 8, 6) when i is

even. When i is odd we put e= 16, q = 9 in (3.1) and deduce readily with the

aid of (2.11) that

(3.9) B(i, 6) - B(i + 8, 6) = 0 (i odd).

We next put v = 7, n = l in (2.9). Then we may write

(3.10) ip(8\ 8) = (-IV E CiB\       d = B(i, 7) - B(i + 8, 7).
i-0

By (3.1) with e = 7 we have B(i, 7)=B(7i, 7). This yields the formulas

(3.11) Ci = c7,        c2 = — ce,        0% = c^        d = 0.

The following formulas now follow from (2.9) and (3.3e).

a = B(i, 1) - B(i + 8, 1) (First case),

(3'12) a = B(i - 4, 1) - B(i + 4, 1)    (Third case).
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When d is replaced by —c.the first and third cases of (3.12) are transformed

into the second and fourth cases, respectively.

Finally we put v = 2, w = l in (2.9). Then we may write

(3.13) H82, 8) = E dS\       di = B(i, 2) - B(i + 8, 2).
»=o

Comparing (3.3c) and (3.3d) we get ip(B12, B2) =B2m^Pi811,8')- We next multiply

both members of the last equation by r(B)r(Bu) /t(B3)t(B12) and make use of

(2.7) and (2.12) to obtain

(3.14) ip(82,8) = (-l)>82m+(8\8).

Therefore by (3.13), (3.14) and (2.9) with i> = 4, n — 1, we get after equating

coefficients

di = B(i, 4) - B(i + 8, 4) (First case),

dt = B(i - 4, 4) - B(i + 4, 4)    (Third case).

The first and third cases of (3.15) are transformed into the second and fourth

cases when d, is replaced by —di.

By (2.11) and (3.1) with q = 3 and 5 we have B(i, 4) =B(3i, 3) and B(i, 2)
= B(5i, 5). These results lead to the formulas

(3.16) B(i, 4) - B(i + 8, 4) = B(3i, 3) - B(3i + 8, 3),

and

(3.17) dt = B(5i, 5) - B(Si + 8, 5),

which are, of course, valid in all four cases.

By means of formulas (3.7), • • • , (3.17) in conjunction with formulas

(2.3) and (2.11) the sum in Lemma 2 can be expressed as a linear combination

of a, b, Ci and d<. In [9] Emma Lehmer has tabulated the values of the 64

constants (i, j)g. These values are expressible in terms of p, x, y, a and b,

where the signs of x and a are such that x = a = l (mod 4). Employing the

method indicated by Lemmas 1 and 2 the present author has, in turn, cal-

culated the values of each of the 256 constants (i, j)u. There are eight sets of

formulas depending on the parity of/and the eighth power residue character

of 2. Of the 408 essentially different formulas there are only six which,

fortunately, do not involve the c's and d's. These are the especially simple

formulas (1.3), • • ■ , (1.8) cited in the introduction.

It should be noted that in some instances the result in Lemma 1 may be

simplified. Thus it follows from (2.2) and (2.4) that t(i, j) =0 when / is even

and/= 8 or when/is odd andj = 0. The application of Lemma 2 may also be

simplified by making use of the result
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(«-2)/2

(3.18)      E   (B(i + 2jv, 2v) - B(i + E + 2jv, 2v)) = E(s(j, i) + s(j + E, i)).
v—0

To establish (3.18) we replace/ by/+£ in Lemma 2. Then the uth term in

the sum of (2.15) is multiplied by ( — 1)° and (3.18) follows easily.

To illustrate the technique of calculating a value of (i, j)u we now give

the details of the computation of the formula

256(0, 2)« = p- 15 + 6x+ 16b+ 16y + 8c0 + 32c2

- 16d0 + 16d2 + 16d4 + 16d6,

which is valid when/ is even, m = 0 (mod 8). From the table in [9] we have

when 2 is a biquadratic residue of a prime p=l (mod 16), 64(0, 2)» = p — 7+6x

+ 16y. Using the classification of cases given immediately after formula (3.6),

we find that in the first case the 8 consecutive terms of the sum (3.18) for

i = 2,j = 0 are given by 0, d2, d2, b, c2, —d2, d6, c2. Therefore 8(5(0, 2)+5(8, 2))

= a + 2c2+d2+d6. We find also that the 16 consecutive terms of the sum (2.15)

for i = 0,j = 2 are given by —1, c2, d«, d2, —d0, d2, 0, c2, c0, b, d4, d6, —d0, —d2,

0, 0. Therefore 16/(0, 2) = 16s(2, 0) = -l+b+c0+2c2-2do+d2 + 2di+d6.

Formula (3.19) now follows at once from the identity 256(0, 2)i6 = 64(0, 2)8

+645(0, 2)+645(8, 2) + 128;(0, 2).
In checking a numerical instance of a formula such as (3.19) the following

remark should be kept in mind. Dickson [5] has shown in the case e = 8 that

the formulas for the cyclotomic numbers 64(t, f)8 are such that x = a = l

(mod 4). Formula (3.5) not only provides a check on the value of x but ren-

ders y unambiguous. Similarly, formulas (3.7) and (3.8) determines a and 0

without ambiguity.
4. Application to residue difference sets. The following theorem is due to

Emma Lehmer [7]: If e is even and/=(p —l)/e is odd, then a necessary and

sufficient condition for the set of eth power residues modulo p to form a

difference set is that (i, 0) = (/-l)/e, i = 0, 1, • • • , e/2 -1, where (f-l)/e

= A is the multiplicity of the difference set. We shall now give an application

of this result in the case e= 16,/odd, m = 0 (mod 8). The values of the cyclo-

tomic constants (♦, 0)i6 are tabulated in Table IV of the appendix. Making

use of these results we may verify the relation 128((1, 0) + (5, 0) —(3, 0)

-(7, 0))+256((2, 0)-(6, 0))=64y. The condition (*, 0) = (p-17)/256,
i = 0, 1, • • • ,7 now implies the absurd conclusion y = 0. Thus we have proved

the following theorem.

Theorem 1. If 2 is an octic residue of p, then the set of 16th power residues

modulo p cannot form a difference set.

It is not necessary to give a separate proof of this theorem for the case /

even. For it is known [7] that there exists no residue difference set for e odd,

or for e even and / even.
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Whether the set of 16th power residues can form a difference set when 2

is not an octic residue of p is not known. However, when / is odd and

w = 4 (mod 8), formula (1.8) together with the equation 256(4, 0)=p —17

leads to the necessary condition 8a = x—1, where a = x=l (mod 4). An

examination of Cunningham's table [4] of quadratic partitions of primes p

less than 100,000 has revealed only one instance in which the three conditions

/ odd, wt=4 (mod 8) and 8a = x —1 are simultaneously satisfied. The single

example is p = 98,321 with x=— 311 and a= — 39. There are therefore no

difference sets with w = 4 (mod 8) below this limit.

When / is odd and w = 2 (mod 8) we employ the formulas for (i, 0) given

in Table V of the appendix. We may thus establish

128((1,0) - (3, 0) + (5,0) - (7, 0)) - 256((0, 0) - (4, 0)) = - 16x + 16.

The condition that the numbers (i, 0) be equal therefore implies that x = l.

The condition 256(2, 0)=p—17 now yields y=2d4. Finally the relation

256((0, 0) - (2,0) + (4, 0) - (6, 0)) = - 16 - 64d4 + 16a

leads to a = l+2y. This equation together with x=l implies that p = l+b*.

We conclude that when 2 is not a biquadratic residue of p a necessary condi-

tion for the set of sixteenth powers to form a difference set is that p = l+b*.

By the table in [8] the first example of p = 1297 does not give a residue

difference set. The next example is p= 1336337 so that there are no difference

sets of the prescribed type below this limit. It should also be noted that when

/ is odd and m=6 (mod 8) the equations x=l, a = l—2y again lead to p

= l+b*.
A modified residue difference set is one in which zero is counted as a

residue. It is known [7] that such difference sets cannot exist for e odd, or

for e even and / even. Emma Lehmer [7] has proved that if e is even and

/= (p — l)/e is odd, then a necessary and sufficient condition for the set of eth

power residues and zero to be a difference set is that l+(0, 0) = (i, 0)

= (f+l)/e, i=l, 2, • • • , e/2-1, where (/+l)/e=X is the multiplicity of the
set. Proceeding exactly as in the proof of Theorem 1 we obtain

Theorem 1'. 7/ 2 is an octic residue of p, then the set of 16th power residues

and zero modulo p cannot form a difference set.

Suppose now that/is odd and m = A (mod 8). Then by (1.8) the condition

256(4, 0)=p + 15 is equivalent to the condition 8a = x + 15. Hence in order for

the set of 16th power residues and zero to be a difference set it is necessary

that 8a = x + 15, where x=a=l (mod 4). There is not a single example in

Cunningham's table in which this relation is satisfied.

Finally suppose that/ is odd and 2 is not a biquadratic residue of p. The

method used in the case of ordinary residue difference sets may be applied

again. This time we deduce that a necessary condition for the set of sixteenth
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powers and zero to form a difference set is that x = —15, a = —15 + 2y, where

the sign is plus or minus according as m=±2 (mod 8). It follows that

b2 = + 30y. Since a and b cannot both be multiples of 5 there is no difference

set in this case.

5. The sixteenth power residue character of 2. An integer n is said to be-

long to the residue class i with respect to a primitive root g il n = g"+< (mod p).

We shall make use of the easily proved lemma [7]: the cyclotomic numbers

(0, i) are odd or even according as 2 belongs to the residue class i or not.

Employing this lemma we may now verify the criterion of Cunningham [3]

and Aigner [l] for the sixteenth power residue character of 2 (compare the

proof in [lO]).

Suppose to begin with that 2 is a biquadratic residue of a prime p of the

form 16/+1. From the first of the two formulas [9]

64(2, 4)8 = p + 1 - 2x,        64(2, 5), = p + 1 + 2x - 4a,

we deduce that x = l or 9 (mod 16) according as/is even or odd. From the

second formula we see that a = l (mod 8). The congruence a2+ 262=1 (mod 16)

now implies that 6 = 0 (mod 4).

We next assume that 2 is also an octic residue of p. Then, by Reuschle's

criterion [10] for octic residuacity, we have y =0 (mod 8). Returning to (1.1)

we may now derive the two congruences

(5.1) p = x2 + 32y (mod 512),        a = x - 46 (mod 32).

The lemma asserts that 256(0, 0) =256 or 0 (mod 512) according as 2 be-

longs to the residue class 0 or 8. It is convenient to consider separately two

cases. We examine the easier case first.

(i) / odd, m = 0 (mod 8). We make use of (5.1) and the fact that x = 9

(mod 16). Converting (1.6) into a congruence modulo 512 we get

(5.2) 256(0, 0) = 32y + 646 + 256 (mod 512).

(ii) / even, m = 0 (mod 8). In addition to the values of 256(0, 0) and

256(4, 0) listed in Table I of the appendix we have also the formulas

256(1, 8) = p + 1 + 2x + 4a + 16y + 86 + 8c0 - 8c2 - 16d2 - 16d4,

256(2, 8) = p + 1 + 6x + 16y - 8c0 - 16d0 - 16d4,

256(5, 8) = p + 1 + 2x + \a + Idy - 86 + 8c0 + 8c2 + 16d2 - 16d4.

From these equations we obtain the result

256[(0, 0) - 6((1, 8) + (2, 8) + (5, 8)) - 9(4, 0)]

= - 26/> + 70 - 60x - 240a - 288y.
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Since 2 belongs to the residue class 0 or 8 it follows from the lemma that

(4, 0) is even. Therefore

(5.3)        256(0, 0) = - 26p + 70 - 60x - 240a - 288y (mod 512).

Just as in the derivation of (5.2) we may now use (5.1) and the fact that

x = l (mod 16) to verify that the right member of (5.3) is congruent to

32y + 646 + 256 (mod 512).
In either event we conclude that 2 is a 16th power residue modulo p or not

according as 32y +646 = 0 or 256 (mod 512). We have therefore proved the

following theorem.

Theorem 2. Let p = x2+4y2 = a2 + 2b2 be a prime of the form 16/+1. If 2
is an octic residue of p, then 2(-p~1)ne=(-l)<-vls)+(b'4) (mod p).

APPENDIX: Cyclotomic constants (i, 0) of order 16.

The 256 constants (i, /)i6 have at most 51 different values for a given p.

These values are expressible in terms of p, x, y, a and 6 in (1.1) and the num-

bers Co, Ci, d, Ci, do, di, ■ ■ ■ , d-i defined in §3. There are eight cases depending

on the parity of /and the eighth power residue character of 2. Because of the

application to residue difference sets the values of the 16 special constants

(i, 0), i = 0, ■ ■ ■ , 15 are of particular interest. These values are given by the

relations contained in the following tables. It should be noted that when /

is odd the value of (i, 0), i = 8, • • • , 15 may be calculated from the relation

(i, 0) = (i+8, 0). When m = 6 (mod 8) a table of values for (i, 0) may be

deduced from the table corresponding to m = 2 (mod 8). For this purpose

make the following transformations: replace (i, 0) by ( — i, 0) and replace the

letters x, y, a, 6, d0, dt, d2, ds, d4, d5, d6, d7, c0, cu c2, c3 by x, —y, a, —6, d0,

— d7, —de,, —d;,, —d^ —d3, —d2, —dx, c0, —C\, c2, —cz, respectively.

TABLE I./even, m=0 (mod 8).

256(0, 0) =£-47-18*-48a+96<*0-l-48co
256(1, 0)=/>-15+2* + 16;y+4a+24&+32<i1 + 16</2-16d3 + 16rf4-16<Z6-8co+32c1+8<;2

256(2, 0)=/>-15+6x + 16;y+166-16(Zo+16<Z2 + 16<f4 + 16<26-|-8co-r-32<:2
256(3, 0)=p-15+2x-16y+'ia+24b + 16dl+32d3-16di + 16di + 16d7-8co-8c2+32c3

256(4, 0)=/>-15-2*+16a+32<24
256(5, 0)=p-15+2x + 16y+'ia-24b + l6dl-16d2 + 16dt+32d!, + 16d-,-8c0-8c,+32c3

256(6, 0)=/>-15+6*-16y + 16J-16d0+16<f2-16<t,--|-16<i6-|-8<:o-32c2

256(7, 0)=p-15+2x-16y+4:a-24b-16d3-16dt-l6di-16de+32d7-8c0+32ci+Sc2

256(8, 0)=/>-15-18*-16a-32<io-16co
256(9, 0)=p-15+2x + 16y+4a+24b-32dl + 16d2 + l6d3 + 16di+16di-8c0-32ci+8c2

256(10, 0)=p-15+6x + 16y-16b-l6d0-16d2 + l6dl-16d«+$c0-32ci

256(11, 0)=£-15+2*-16:y+4a+24&-16(f,-32d3-16<2< + 16d6-16d7-8co-8£2-32c3
256(12, 0)=£-15-2x-|-16a-32<>4

256(13, 0)=p-l5+2x + 16y+4a-2<lb-\6d1-16d2 + 16d1-32dt-l6d7-8c0-8c2-32c,

256(14, 0)=/>-15+6*-16;y-16&-16do-16<22-16d4-16d6-r-8<;l)-f-32f2

256(15, 0)=£-15+2s-16y+4a-24J + 16d,-16<i4 + 16<i5-16d6-32<i7-8co-32ci-|-8(;.,
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TABLE II. /even, w=2 (mod 8).

256(0, 0)«p-47+6*+48do+48<Z4+24co
256(1, 0)=p-15+2x+4a-86-16rfo+16rfi-r-16rf.-16</,-8co-r-16ci-(-8c2 + 16c,
256(2, 0)=£-15-2x-16y-16a-f-16&-16<i2-r-l<W,+16<;o
256(3, 0)=£-15+2x+4a+86 + 16<Zo+lod, + 16<i6 + 16rf,+32<i7-8co+16e1+8c2 + 16c,

256(4, 0) =£-15-I0x+l6a-l6d0+4&di-&cn

256(5, 0)=p-15+2z+4a+86-16<Zo-16(k-l<5<f,+16<is-8£o-16c1-8cj+16c
256(6, 0)=p-l5-2x+16y-16b-16a\-32d,+16d,-32ci
256(7, 0)*=p-l5+2x+4a-8b + 16do+16dl-32d,-16dt+i6d7-&c<l+16ci-&Ct-16c,

256(8, 0)=/>-15+6*-16<io-16<i<-8co
256(9, 0)=p-15+2*+4a-86-16<io-16(i1-|-16rf2-|-16<i7-8co-16ci+8<:2-16c,

256(10, 0)=/>-15-2x-16y-16a-166 + 16*-16d,+16co
256(11, 0)=£-15-f-2*-|-4a-|-86-|-16(io-16da-16<i6-r-16(/6-32(i7-8co-16ci-r-8<:i-16c,

256(12, 0)=p-15-10x-16o-16<io-16<i<-r-24co
256(13, 0)=p-15+2x+4a+&b-16d<,-16d1 + 16d3-16di-&c<>-\-16ci-Sci-16c,
256(14, 0) =/)-15-2x + 16jr + 166 + 16<ij-3244-16rf,-|-32c,
256(15, 0)=p-15+2*-|-4o-86-|-16(io-16(i,-t-32t78-16rf,-lM7-8co-16ci-8c2+16c,

TABLE III. /even, m=4 (mod 8).

256(0, 0) =£-47-18*
256(1, 0)=£-15+2*+16y+4a+8& + 16<2j-|-16<f,-16<i4-16<fs-8<:()-8c2

256(2, 0) = p-15+6x + 16y-l6b + 16d<,-16d, + 16dl-16d,+8ca
256(3, 0)=£-15+2*-16>+4a-r-8ft-16<ii-|-16</, + 16<i,-r-16<i7-8co-|-8c2

256(4, 0)=p-15-2*-32d0+32(i,-|-16co
256(5, 0)=£-15-|-2a: + 16)'+4o-86-|-16rfi-16<i2-16d1-16<i7-8co-|-8c2

256(6, 0) =£-15+6x-16y-166-|-loJo-16i2-16(i,-16<i,-|-8co
256(7, 0) =£-15+2*-16y+4o-86-16<i3-r-16d,4-16<i,-16<i,-8co-8c2
256(8, 0)=£-15-18*-32a

256(9, 0)=£-15+2* + 16y+4a+8&-r-16<Z2-16<Jj-16<Z4-|-16<i6-8£o-8c2
256(10, 0) = p~15+6x + 16y + l6b + l6d0 + l6a\ + l6d, + l6dt+8co

256(11, 0)=£-15+2x-16y+4a+8& + 16<Zi + 16<Z4-|-16<ie-16<J7-8<:l)-r-8c2

256(12, 0)=/>-15-2*-32<io-32(f4 + 16c(,
256(13, 0)=£-15+2* + 16y+4a-86-16</,-16ei2-16d4-|-16(i7-8co+8cr

256(14, 0)=£-15+6x-16y + 16& + 16<2o+16<i2-16<i,-|-16<f6+8co

256(15, 0)=£-15-t-2*-16y+4a-86 + 16<is+16(i4-16(is-16(i,-8<;o-8ei

TABLE IV. /odd, m-0 (mod 8).

256(0, 0) =£-31 -18x-16a
256(1, 0)=£-15+2z+16y+4a+8&-|-16<i2-16<f4-8co-8c2

256(2, 0) =£-15+6*+16y+16</.-|-16<ii+8co
256(3, 0) =£-15+2x-16y+4o+86-|-16<i4+16(i,-8co+8c2

256(4, 0)=£-15-2x-32</0+16co
256(5, 0) =£-15+2* + 16y-|-4o-86-16d2-16rf<-8co+8cj
256(6, 0) =£-15+6*-16y-|-lfcio-16rf4-t-8co
256(7, 0)=£-15+2*-16jr+4a-86 + 16<i4-16<f,-8<;o-8<;j
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TABLE V. / odd, m=2 (mod 8).

256(0, 0)=/>-31-r-6x-t-16do-16d4+8c0
256(1, 0) = £-15+2*+4a+8&+16<fo + 16ds-8<:,>-8<:2
256(2, 0)=£-15-2x-16y+32<f4
256'(3, 0)=£-15+2;<:+4a-8&-16a'o+16a',-8<:(,-8<:2
256(4, 0)=p-l5-lOx-l6d„-16dt+8co
256(5, 0)=/>-15+2x+4a-8& + 16a,0-16d2-8<;o+8c2

256(6, 0)=£-15-2* + 16y-16a + 16<;o
256(7, 0) =£-15+2*+404-86-16^0-16^-8^-]-8c2

TABLE VI. /odd, ms4 (mod 8).

256(0, 0)=£-31-18*-32a+32a\>+16eo
256(1, 0)=£-15+2*+16y+4a+246+16i2+16<i4-8co+8c2
256(2, 0)=p-15+6x + 16y-16dl>+16di+8c„
256(3, 0)*=p-15+2x-16y+4a+24tb-i6di+16d,-8cl)-8ci
256(4, 0)=p-15-2x+16a
256(5, 0)=£-15+2*+16y+4a-246-16ij+16<J4-8co-8c2

256(6, 0)=/>-15+6*-16y-16<io-16i4+8co
256(7, 0)=p-15+2*-16y+4a-246-16d4-16rf,-8c0+8c2
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