CHARACTERISTIC CLASSES OF HOMOGENEOUS SPACES

BY
ALFRED ADLER

Introduction. It is the object of this paper to prove the results of §§11,
12, and 13; for a homogeneous space G/K (G a compact Lie group, K a
closed connected subgroup) it is shown that:

if K is abelian, the Pontrjagin classes of G/K are zero;

if G/K is symmetric, or simply-connected complex homogeneous, all char-
acteristic classes of degree greater than (dimension G/K) — (rank G—rank K)
are zero.

Finally, it is shown that the characteristic classes of G/K depend, in a
sense, only on the abelian part of K.

The canonical connection of the second kind on G/K is used to demon-
strate that the characteristic classes of G/K with respect to its bundle of
oriented frames can be considered characteristic classes of G/K with respect
to its principal K-bundle. The characteristic classes of the K-bundle structure
are then computed by means of the well-known algebraic operations in the
Lie algebra of a semi-simple Lie group.

The first sections of this paper are devoted to an exposition of the needed
facts concerning characterisic classes, in particular those of homogeneous
spaces; much of the material is based on [3]. The numbers in brackets refer
to the bibliography.

I am much indebted to I. M. Singer for the frequent advice he has given
me during the past year.

1. Invariants. Let g be the Lie algebra of a Lie group G of dimension N.
A real-valued r-linear function T on g is called a symmetric r-tensor if

T(...,X,...,Y,...)=T(...’Y’...,X,...)foranytwoele-
ments X, Y of g. It is called invariant under G (or, simply, invariant) if
T(ad gX, ---,ad gZ)=T(X, - -, Z) for any r elements X, - - -, Z of g

and any element g of G. The set of all invariant symmetric r-tensors on g is
denoted by I'(g), and the set of all invariant symmetric tensors on g is de-
noted by I(g).

If T, T’ are symmetric r-tensors on g and .S is a symmetric s-tensor on g,
we define symmetric 7- and r+s-tensors T+7" and TS on g as follows:

(T+ Tl)(X) * ;Z)= T(Xy v aZ)+ TI(X)° * '!Z)’

X, - - -, Zr elements of g.
(TS)(le st ;Xr+a) = ((7 + 5)!)—‘1 Z T(Xin Tty Xir)S(Xfyﬂy Ct Yy Xir+,)}
X, - - -, X,4. being any elements of g and the summation extending over
all permutations 4y, = - -, Gy 0f 1, - - -, 7+s.
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These operations define a commutative ring structure in the set of all sym-
metric tensors on ¢, and in fact this ring is isomorphic to the ring of all poly-
nomials in N variables. If T, T/, and S are invariant, so are T+ 7" and T-S;
hence the above operations define a ring structure in I(g).

PROPOSITION. If G is connected, then an r-linear real-valued function f on g
1s invariant under G if and only if the following equality holds for any choice of
elements X1, - -+ -, X, and Z of ¢:

f([Z) Xl]) X2; Ty Xr) +f(Xl) [Z$ X2]y X37 ) Xf) + .-
+f(Xl’ ] X'—h [Z’ Xf]) = 0.
Proof. Let V be the vector space of all r-linear functions on g, f&€ V. Then
ad(exp tZ)(f) =f for all Z&g if and only if ad Z(f) =0 for all Z&Eg. Letting

g=exp tZ, it follows, from ad Z =lim,., (ad g—1I)/¢, that (ad g—I)(f) =0 for
all Z&g if and only if (lim(ad g—1I)/t)(f) =0 for all ZEg. The equality below

will thus show: (ad g—I)(f(Xy, - - -, X,))=0 for all X;Eq and all g of the
form exp tZ, Z€Eyg, if and only if
f([Z’ Xl]) X27 t XT) + +f(X17 Ty Xr—ly [Za Xr]) =0

for all X;and Z in g. Since G is connected (hence generated by a neighbor-
hood of the identity element), the proposition is proved:

(im (ad g — I)/O(f(Xy, - - -, X7))

= lim (1/f)(f(ad gX, - - -, ad gX,) — f(Xy, -+ -, X))

= lim (1/)((f(ad gX1, - - -, ad gX,) — f(X1, ad gX,, - - -, ad gX,))
+ (f(X,, ad gX,, - - -, ad gX,)
— f(Xy, Xo,ad gX5, - - -, ad gX,) 4+ - - +)

= f(lim (ad gX, — Xy)/¢t, lim (ad gX,), - - -, lim (ad gX,))
+ f(X,, lim (ad gX» — X5)/¢, lim (ad gX3), -+ - ) + - - -

=fz, Xi], Xo, -+ -, X)) +f(X0, [2, Xo), - - - X))+ - - -

2. Connections and curvature [1]. For a detailed discussion, see [1]. All
vector fields and all forms will be assumed of class C>.

Let M be a C*-manifold, G a Lie group, g the Lie algebra of G. Let
(M, B, G, w, ®) denote the principal bundle with base space M, bundle space
B, group G, projection 7 of B onto M, and maximal family ® of strip maps ( a
strip map ¢ of ® is a 1-1mapping of some set § XG onto m—'—where 6 is an
open submanifold of M—with ¢ and ¢~! both of class C=.) If ¢ is a strip map
of §XG onto 70 and if m is a point of 8, we denote by ¢,, the mapping of
G into B which assigns to each g &G the point ¢(m, g) of B. It is assumed that
for any two strip maps ¢, ¢’ for which ¢, and ¢/ are both defined, the map-
ping ¢, 0 @’ is a left-translation by some element of G.

A tangent vector ¢ at a point of B is called vertical if w(£) =0. There is a
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natural mapping ¢ of the elements X of g into vertical vector fields ¢X on B,
defined as follows: Let b be any point of B, let m =mb, let 6§ be an open sub-
manifold containing m, let ¢ be a strip map of 8 X G onto #—0. Then b =¢(m,g)
for some g&G, and we define (¢X)(b) to be the tangent vector ¢,X (g)—
where X is considered here to be a left-invariant vector field on G. Since any
two strip maps, when restricted to #—!(m), differ only by a left-translation
in G, this definition is independent of the choice of strip map ¢.

DEFINITION. A rule which assigns to each point of B an alternating r-
linear function from the tangent space at that point into g, is called a g-
valued r-form on B.

DEFINITION. A connection on (M, B, G, m, ) is a g-valued 1-form w on B
which satisfies the following conditions: '

(a) if tis a vertical tangent vector at a point b of B, then w(¢) is the unique
element X of g with (¢X)(b) =¢;

(b) let R, denote right-translation on the fibres #—!(m) of B induced by
an element g of G, and let ¢ be a tangent vector at a point of B; then (Rjw)(¢t)
=ad g7} («(?)).

A tangent vector ¢ at a point of B is called horizontal if w(t)=0. Any
tangent vector ¢ at a point of B decomposes into the vector sum of a vertical
vector (denoted by V¢) and a horizontal vector (denoted by Ht). This de-
composition depends, of course, on the choice of connection w.

DEFINITION. The covariant derivative DA of an r-form A on B is the (r41)-
form on B defined by (DA)(¢, - - -, ') =dA(HY, - - -, H')—wheret, - - -, ¢/
are r+1 tangent vectors at a point of B.

DEFINITION. The curvature form Q of the connection w is the g-valued
2-form Dw.

REMARK. Suppose a rule is given which assigns to each point b of B a
linear subspace H(b) of the tangent space to B at b, and which satisfies the
following conditions:

(a) H(bg) =R,H(b), for any b&B and g&G;

(b) at any point b of B, H(b) is a linear complement to the set of all verti-
cal tangent vectors at b;

(c) if X is a C* vector field on B, then the vector field resulting from
projecting X on H(b) at every point b, is also C*.

Then H defines a connection w on B in the following way:

(a) if ¢is a vertical tangent vector at a point b of B, then w(t) is the unique
element X of g with (¢X)(b) =t.

(b) if ¢is a tangent vector at a point b of B, then H(b) defines a decomposi-
tion of ¢ into a vertical part V¢ and a horizontal part Ht&€ H(b); and we define
w(t) to be w(Vt)—w(Vt) having already been defined in (a).

We will need the following facts:

(a) If g&G and ¢, ¢’ are tangent vectors at a point of B, then (RyQ)(¢, t')
=ad g~1(Q, t')).
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(b) If X, X’ are horizontal vector fields in a neighborhood of a point b
of B, and if ¢, ¢’ are their values at b, then Q(¢, t') = — (1/2)w([X, X"](b)).

(c) DQ=0; this is the Bianchi identity.

(d) If¢, ¢’ are tangent vectors at a point of B, then

do(t, 1) = QU 1) = (1/D) (), o()];

this is the equation of structure.

3. The characteristic ring [3]. Let w be a connection on the principal bun-
dle (M, B, G, w, ®), with covariant derivative operator D and curvature form
Q. We now define a mapping of I(g) into the cohomology ring H(M) of M.

Let r be any positive integer and let T be an element of I"(g). We define
a real-valued 2r-form Q7 on B as follows: If ¢, - - -, t,, are tangent vectors
at a point of B, then Qr(f, - - -, f2,) is to be the real number Alt (T(Q(t, t),

<o, Qb b)) = () ) ZeT (Rt tiy), + - ¢y Qtiye_yy biy,)), Where € is the
sign of the permutation taking 1, - - -, 27 into 4, * - -, 45, and where the
summation extends over all such permutations.

The form Qr has three important properties:

(1) It is horizontal—that is, it is zero if one of its arguments is vertical.

(2) RXQr=Qr, for any g€G.

(3) Qr is closed—that is, dQr =0.

Proof of (1). © is horizontal.

Proof of (2). Since R;Q=adg™'Q, it is clear that R;Qr =0 (adg™)*T. This
in turn is equal to Qr, since T is invariant under G.

Proof of (3). From (1) and (2) it follows that dQr = DQr. Now if we restrict
our attention to horizontal forms on B, D is an antiderivation; hence dQr
=Alt (T(DQ, @, - -, D+ - +7(Q, - - -, R, DQ)), which is zero since
DQ=0.

Qr gives rise in the following way to a real-valued 2r-form Qr on M:
If x, - - -, z are 2r tangent vectors at a point m of M, choose a point bEB
with mb =m, choose tangent vectors X, - - - , Z atb withwX =x, - - - ,7Z =3,
and define Qz(x, - - -, 2) to be the number Qr(X, - - -, Z). Since Qr is hori-
zontal and invariant under right translation by G, this definition is inde-
pendent of the choice of & in #=!(m), and of the choice of tangent vectors
X, - - -, Z at b projecting into x, - - -, z under w. Furthermore, dQr =0 since
dQr=0.

Thus any element '€ I*(g) defines, in the sense of de Rham, an element
of H¥(M) whose representative is the cocycle Qr.

DeriNiTION. This mapping of I(g) into H{M) is called the Weil mapping.
It is a ring homomorphism. The images of elements of I'(g) under the Weil
mapping are called 2rth characteristic (cohomology) classes of M with respect
to the bundle (M, B, G, w, ®), and the image of I(g) is called the characteristic
ring of M with respect to the bundle (M, B, G, w, ®).

Note that if 7 is greater than half the dimension of 37, the image of I"(g)
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is zero—for, any differential form on M of degree greater than the dimension
of M, is the zero-form.

4. The Weil theorem [3]. Let o and 3 be, respectively, g-valued p- and
g-forms on the bundle space B of the principal bundle (M, B, G, w, ®).

We define a g-valued p+¢ form a AB on B as follows: If t;, - - -, t,4, are tan-
gent vectors at a point of B, then (a¢/AB)(t, * * * , tptq) =Alt ([at, - - -, t),
B(tps1, - * -, trsq) |)—the alternation being over the vectorsty, - + -, fyiq and

[a( ), B( )] being the bracket operation in g.

It follows from the Jacobi identity that if «, 8 are g-valued 1-forms on B,
then a/\(a/\B) =(1/2)(a/\a) \B.

It can also be checked that if a, B are, respectively, g-valued p- and g¢-
forms, then BAa=(—1)?eta B, ’

Suppose wp and w; are connections on (M, B, G, w, ®), with covariant de-
rivative operators Dy and D, and curvature forms @, and £;; then the equa-
tions of structure are Q; =dw;+ (1/2)w; A\w;, =0, 1. If we define, for 0=t =1,
a form w, = tw, + (1 —f)wo, we get a “homotopy” of wimo=wo and wea1 =w;. The
form w, is a connection on (M, B, G, w, ®) for any such ¢, since both w, and
w; coincide on vertical vectors of B with the inverse of the mapping ¢ defined
in §2; we denote the curvature form of w, by Q,, and we let # =wo—w;.

LEMMA 1. If w is a connection with covariant derivative operator D, and if
B is a horizontal g-valued form on B satisfying the rule R;B=ad g~'8 for all
2EG, then DB =dB+w/\B.

LEMMA 2. (a) Q,=Q¢—tDou+ (¢2/2)uNu.

(b) dQ/dt=— (Dou—tu/N\u).

(C) DoQ¢ = —Qt/\u.

Proof of (a). u is horizontal, hence Lemma 1 shows that Qo—tDu
+ (t2/2)u/\u = d(v)o+ (1/2)0)0/\600—tdwo“}‘td(.dl—lwo/\wo"‘}'t(vo/\w;-"(t2/2)wo/\wo
+ (£2/2)ws Awr — w0 Aw1 = dw, + (1/2)w Awe = Q.

Proof of (b). This follows from (a).

Proof of (c). It will be shown below in (1), (2), and (3) that Dju = Qo A,
Do(uAu)=2DouAu, and (u/\u)A\u=0. Hence

DoQ, = 0 — tDou + (¢2/2) Do(u /\ u)
= — {Qou + 2Dou N\ u — (13/2)(u /\ u) /\ u
= — (Q — tDou+ (ta/2)u N\ uw) \tu= — QN tu.

(1) Since Dgu is horizontal, Lemma 1 shows that

d(Dou)+wo/\ Dou=d(du+wo/\u)+wo/\(du+wo/\u)
0+dwg/\u—wo/\du+wo/\du+wo/\(wo/\u)
(dwo + (1/2)wo A\ wo) A\ # = Qo /A u.

Do(Dou)
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(2) uishorizontal;hence Do(u Au) =D N\u—u A\Dou=Dou/\u+Dou N\u
=2DouN\u.

3) wANAuWINu=1/2)uN\NmAu), and (wAu)A\u=—u/N(u/u). Thus
(wNAw)N\u=—1/2)(uA\u) A\u, i.e. (uA\u) Au=0.

Suppose now that T is an invariant symmetric tensor of I7(g), and that
Q7 and QF are the characteristic forms on M defined by T, and respectively,
Qo and ;. Then we have the following theorem, due to A. Weil:

THEOREM. Q7 and Qp are cohomologous on M—and hence, the Weil mapping
is independent of the choice of connection (and curvature form) on (M, B, G, =, P).

Proof. If A,, - - -+, A, are g-valued forms on B, we define a real-valued
form T(Ay, - - -, A,) on Basfollows: T(4y, - - -, 4,)=Alt (T(4,, - - -, 4,)),
the alternation being over the vector arguments of 4, - - -, 4,. We denote
T(Q, - - -, Q) by @ (this is consistent with the previous definition of Q%
and Qr.) It will be shown in Lemma 3 that dQ/dt= —r-dT(u, Q, - - -, Q);
hence if we define a real-valued form R(V, X, ¥, Z) on B by

1
RV,X,V,2) = — rf TV, X =tV 4+ (3/2Z, - - -, X —tY + (2/2)Z)dt,

0

then we have:
—_1 —0 L L _
Qr — Qp =f (dﬂr/dl) dt = — rf dT(u, Qg v v v Q;)dl.
0 0

that is, Qp—Qp=dR(u, Qo, Do, u/\u).

Clearly, R(u, @, Dou, u/\u) is a horizontal real-valued form on B, in-
variant under right translation by elements of G. Thus R(u, Qo, Dou, u /\u)
defines a differential form R on M (just as Qr defined Q7); and so Qb —Q}
=dR, i.e. @ and Q) are cohomologous on M.

LEMMA 3. dQr/dt= —r-dT(u, Q, - - -, Q).

Proof. T(u, Q., - - -, Q) is invariant under right translation by elements
of G, and is horizontal with respect to wo; hence dT(u, @, - -, Q)
=D¢T(u, 2, - - -, Q), and we have:

dT(u, Qi - -+, Q) = DoT(u, 2y, - - -, Q)
= T(Dou, Qs+~ -, Q) — T(t, DoQs, Qpy - -+, Q) — - - -
— T(u, Q, - -+, Q, DyQy)
= T(Dow, s, - =, Q) + T(e, Qe N tu, Qp, + -+, Q)+ - - -
+ T(u, Qi -+ o, iy QN L)
=*T(Doyu, Qu, - = =, Q) — T(u N\ tu, Qp, - - -, Q)

= T(Dou-—u/\tu,ﬂt, L ‘793) = - T(dQ;/dt,Qg, LN Qg).
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The equality* follows from the following extension of the proposition of §1:

If 4; (=1, - - -, r) are g-valued a;-forms, and if X is a g-valued 1-form
(on B), then the invariance of T under G implies that
> (=)ot HanT(Ay, -+ Aicy, Ai AN X, Aig, - -+, A7) = 0.
Thus we have:
dQp/dt = T@R/dt, @i, -+, @) + -+ -+ T(Qey - - -, Q, dQ/d1)
=7 T(dQ/dt, Oy« - -, Q) = — 7-dT(u, Ry - - -, Q).

5. Transgressions [2; 3].

THEOREM. If w is a connection on (M, B, G, w, ®) with covariant derivative
operator D and curvature form Q; and if T is an element of I'(g); then Qr
= —dR(w, Q, dw, w/\w) (the notation being the same as in §4.)

Proof. The form A,=Q—tdw+ (t?/2)w/\w is a “homotopy” of A;.o=
and A1 =0. We have:

dA, = dQ — tddw + (12/2)d(w N\ w)
=dQ — tdQ — (1/2)d(w N\ w) + (1*/2)d(w N\ w)
=1 =042 — (¢/2)(1 — §)2dw N\ »
=1 —-0DDe—w A Q) — /2)(1 — )(2dw N\ w)
=1 =2 N —t1—=0do ANw+ (2/2)(1 = o N w) AN
=(Q —tdw + (?/2)w N w) A (1 — o = A, A (1 — Ho.

Thus dA,=A, A(1 —f)w, and so an argument similar to the one used in the
proof of the theorem of §4 shows that

dR(w, Q,dw,w/\w) =T(A1,' N ',A;) ——T(Ao, . ',Ao)
=0—T(Ao,"',Ao)=—§T.

Thus Qr is a coboundary on B, although not on M itself (R(w, ©, dw, w A\w) is
not horizontal on B, hence does not define a form on M). If we identify G
with a fibre #=1(m) of B, and denote the inclusion mapping by i: G—B, then
the form ¢*R(w, Q, dw, wAw) is closed and hence defines an element of H(G).

Let A (g) denote the set of all left-invariant differential forms on g. Then
the above procedure, taking us from T to Qr and then to i*R(w, 2, dw, w \w),
defines a mapping & of I(g) into A(g).

DEFINITION. Any element of 5(I(g))—i.e. any *R(w, @, dw, w/\w)—is
called transgressive. Any linear mapping X of 8(I(g)) into I(g) satisfying
)\ o d =identity, is called a transgression.

6. Special principal bundles. Suppose M is a real orientable Riemannian
manifold of dimension N. Then the bundle of oriented frames of M is the fol-
lowing principal bundle:
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(1) G is the group O+(N) of all orthogonal real N XN matrices of deter-
minant 1.

(2) B is the set of all (N+1)-tuples (m, e, * * -, ex), with mEM and
e1, * - -, ey a positively-oriented orthonormal basis of the tangent space at m.

(3) m maps the point (m, e, - - -, ex) of B into the point m of M.

(4) ® consists of all mappings ¢ defined as follows: Let m be a point of M,
let X1, + - -, X~ be vector fields in a neighborhood of m whose values at any
point furnish an orthonormal properly-oriented set of tangent vectors at
that point, and let g be an element of G (that is, an orthogonal N X N matrix
(gi;) of determinant 1). Then let ¢(m, g) be the point (m, Y gi;X(m), - - -,
2_gniX;(m)) of B.

If M is a complex hermitian manifold of complex dimension N, then the
unitary bundle of M is the following principal bundle:

(1) G is the unitary group U(N).

(2) B is the set of all (N41)-tuples (m, e, - - -, en), with m& M and
e1, -+ +, ex a complex orthonormal set of tangent vectors at m.

(3) mand ® are defined as in the bundle of oriented frames of a real mani-
fold.

REMARK. Suppose Q is a curvature form on one of these bundles. Then we
can define a function Q on M as follows: Let ¢, # be a pair of tangent vectors
at a point mE M. Choose a point b= (m, e1, - - - , ex) in the bundle space, and
choose a pair of tangent vectors T, T’ at b with #T=¢ and #T’=¢. Then
Q(t, ') is to be the linear transformation on the tangent space at m which,
with respect to the basis e, - - -, ewn, has the matrix Q(T, T7). We will let
Qi;(¢, t') denote the (¢, j)th entry of this matrix.

7. Some characteristic classes [3]. The bundle of oriented frames of an
N-dimensional real orientable Riemannian manifold, has as its group the
Lie group O+(NV); the Lie algebra g of this group is the set of all real skew-

symmetric N X N matrices (matrices (a;) satisfying a¢;; = —a;;). Consider the
tensors T, (r=1, 2, - - - ) defined as follows:

TT(A: B; Ty E) = Z eai:ixbiziz Tt €y,
where 4 = (a;;), B=(b;j), - - +, E={(e;;) are r skewsymmetric N X N matrices.
(Here, the summation extends over all choices of integers 4;, + - -, 4, from
among 1, - - -, N, and over all permutations 1, - - -, jrof 21, - - -, %,; € is

the sign of the permutation.)

T, is invariant under O*(N), hence gives rise to a characteristic form
Qr, on M. Qr, is called the 2rth Pontrjagin form of M. Symbolically, it can be
written as Qr,= Y €Qij, - * - Qi,5,, with @ a curvature form on the bundle of
oriented frames of M. Q(t, ') is a skewsymmetric matrix (¢, ¢ any tangent
vectors at a point of B); hence Qr, is zero unless 7 is even.

Note. If 4 is any N X N matrix, the polynomials p,(4) of the expansion
det ANT—A)=N¥+p1(ANV1+ - - - +pa(A4) are:
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Pr(A) = (—1)'2 €04y, Qigjy * * 0 Qigjpe

Thus T, (4, - - -, A)=(—=1)"-p,(4).
Suppose now that M has even dimension 2#. The tensor S which assigns
to any n skewsymmetric 2# X 2n matrices 4, B, - - -, H the value

S(4,B,---,H) = Z 60.‘,;217.‘,;‘ et hizn—xizn

is invariant under O*(2n) (here € is the sign of the permutation taking
1, - -,2ninto 14, - - -, 72,4, and the summation extends over all such permu-
tations). Thus S gives rise to a characteristic form Qg on M, called the
Euler-Poincaré form of M. Symbolically, it can be written as Qs
= Zeﬂilh ©r o Qg giges

If M has odd dimension, we define the Euler-Poincaré form of M to be the
zero-form on M.

A proof of the following theorem can be found in [3].

THE GAUsS-BONNET THEOREM. If M is a compact orientable Riemannian
manifold, then [wQx is equal to the Euler-Poincaré characteristic of M. (Qx
is defined to be Qs if M has odd dimension, and (—1)"/n!(4w)n-Qs if M has
even dimension 2n.)

Note. If A is a real skewsymmetric 2N X 2N matrix, then (S(4, - - -, 4))?2
=4~ .det 4.

Finally, suppose M’ is a complex hermitian manifold of complex dimen-
sion N’. We consider its unitary bundle. The group of this bundle is U(N’),
and the Lie algebra g of U(N’) is the set of all N’ X N’ skew hermitian matrices
(complex matrices (a;;) satisfying aj; = —d,;). Each tensor T,(4, B, - - -, E)
=D €ajbi,i, - * - €i,;, is an invariant symmetric tensor on ¢ (here
A, B, - - -, E are r elements of g), and so T, defines a characteristic form
Qr, on M’'. Qr, is called the 2rth Chern form of M’. Symbolically, it can be
written as Qr,= > €, - - - ©,, with @' a curvature form on the unitary
bundle of M’.

8. Semi-simple Lie algebras [4]. From now on, ¢ will denote the square-
root of —1.

The fundamental bilinear form of a Lie algebra g is the form (X, Y)
=trace (ad X oad ¥), X, YEg. g is called semi-simple if the fundamental
bilinear form is nondegenerate on g. It is known that the Lie algebra of a
compact Lie group is always the algebraic direct sum of a semi-simple Lie
algebra and an abelian Lie algebra.

The rank of a compact Lie group G is the dimension of any maximal abel-
ian subgroup of G.

Suppose G is a compact semi-simple Lie group (that is, the Lie algebra
g of G is semi-simple), and suppose H(g) is a maximal abelian subalgebra of g.
So the dimension of H(g) is the rank of G. Let g’ denote the complexification
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g+1g of g, and let H(g’) denote the complexification H(g)+2H(g) of H(g).
Then H(g’) is a maximal abelian subalgebra of g’, and g’ has a vector-space
decomposition g’ = D _g. satisfying:

(a) ais a complex-valued linear function (called a roof) on H(g'), and ga
is the set of all eigenvectors of a: [H, X]=a(H)X for any HEH(g') and
X Eg.

(b) go=H(g").

(c) Each g, is one-dimensional.

(d) If @, B, and a+f are roots, then [ga, 8s] =ga4s; if @48 is not a root,
then [g., gg] =0.

(e) If e is a root, then kais a root if and only if 2=0, 1, or —1.

H(g’) is called a Cartan subalgebra of ¢'; an element of g, is called a root
vector of g’ with respect to H(g').

The following relations hold: (H, g.) =0, (g4, gs) =0, and (H, H) 0, for
any HEH(g') and any roots «, 8 with 87 —a. It is possible to choose one

~ element e, from each g, in such a way that (e, e_.) = —1, and that the num-
bers Ns defined by [ea, €s] = Naseass satisfy the relations: (1) N—,_s=Nas
(2) Nga= —N,s (3) NZsis a non-negative rational number.

From now on, it will be assumed that the e,’s have been chosen in this
manner. We then define, for each root «, elements X., V,, H*, H* of ¢’:

Xo = ta+ ea H* = — [ea, €—al,

Ve = i(ta — €—a), He = iH=.
The vectors X,, Y, are called quasi-root vectors of ¢'. The following facts are
known.

(a) The elements X,, V., H= span g and lie in g. So a vector D @.eq
+ > boHe of ¢'(@a, ba complex numbers) is in g if and only if each b, is pure
imaginary and a_,=d, (complex conjugate).

(b) If ais a root, HEH(g’), and hE H(g), then (H=, H) =a(H), a(H*) is
a positive real number, and a(k) is pure imaginary.

It can easily be seen that for any HEH(g’') and any root e, [H, X,.]
= —ia(H) Y, and [H, V,]|=ia(H)X,.

From now on, we will be dealing only with compact semi-simple Lie
groups; this serves to simplify the notation. All results hold, however, for
compact Lie groups, since every compact Lie group has a decomposition of its
Lie algebra into the algebraic direct sum of an abelian and a semi-simple Lie
algebra. Only slight modifications of the proofs are needed.

9. Homogeneous spaces [6]. Hereafter, G will denote a compact semi-
simple Lie group, and K a closed connected subgroup of G. The Lie algebras
of G and K will be denoted by g and ¥ respectively, and m will denote the set
of all X &g for which (X, k) =0, all k€t Then ad K is a set of linear trans-
formations of m (and so [m, f] lies in m), and g is the vector-space direct sum
of m and [.
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We can associate g with G, (the tangent space to G at the identity e).
The fundamental bilinear form thus can be considered to be on G,, and is in-
variant under ad G. If we define a bilinear form on the tangent spaces at other
points of G by right-translating the fundamental bilinear form at e, the re-
sulting bilinear form on G will be both left and right invariant under G. It
induces a metric on G/K in the natural way (see [6]).

We can also associate m with the tangent space (G/K).x to G/K at the
point eK. Then K induces a group of orientation-preserving isometries of
(G/K).x, and in fact the effect of any ad k on m (REK) is the same as the
effect of left-translation by & on (G/K).x.

If ¢ is a tangent vector at a point of G, we define an element # of g as fol-
lows: Extend ¢ to a left-invariant vector field on G, thus defining an element
of g; tr is to be the projection of this element on f.

10. The canonical connection of the second kind. There are now two prin-
cipal bundles to be considered: The bundle (G/K, B, O*(N), =, ®) of oriented
frames of G/K (here N denotes the dimension of G/K), and the coset bundle
(G/K, G, K, p, ®')—where p is the natural projection of G onto G/K, and
where the strip maps @’ are the natural ones.

Let w be the connection on the coset bundle of G/K defined as follows:
If ¢ is a tangent vector at a point of G, then w(¢) =t This choice of connection
makes horizontal the elements of G, corresponding to m; and so if Q is the
curvature form of w and if X, ¥ are tangent vectors on G which, when ex-
tended left-invariantly, generate elements of m, then

X, ¥) = — (1/2)[X, Y.

The connection w induces a connection on the bundle of oriented frames of
G/K in the following way:

A. Let Xy, - - -, Xn be horizontal left-invariant vector fields on G which,
at any point of G, define a set of orthonormal tangent vectors whose orienta-
tion is consistent with that of G/K. Then there is a mapping A of G into B:
A(g) = (gK, pXi(g), - - -, pXn(g)). A(g) can be interpreted as the left-action
of gon (G/K).x; A maps K into O*(N) by taking any element % of K into the
matrix of ad k acting on the vectors Xi(e), - - -, Xn(e)—i.e. acting on m.
Clearly, roA=p.

B. A can be used to define a connection in B. H(A(g)) is to be the image
under A of the space of horizontal tangent vectors (with respect to w) to G
at g, and H at other points of 7-1(gK) is to be defined by the relations H(bo)
=RoH(b), bEB and o€ 0*(N). It is clear that this H is a connection on the
bundle of oriented frames of G/K; let ad w denote the corresponding 1-form
on B with values in the Lie algebra of O+(N), and let ad @ denote the curva-
ture form of ad w. ad w is called the canonical connection of the second kind on
G/K.

C. We have the following simple results:
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(a) If ¢ is a vertical tangent vector at a point gEG, then A(¢) is a vertical
tangent vector at A(g), with (ad w) (A(t)) A(w(t)). Also, A(w(t)) is the matrix
of ad ¢ with respect to the basis X;, : + -, Xy of m.

(b) If x, y are horizontal tangent vectors at a point A(g), then there exist
horizontal vector fields X, ¥V at g with A(X), A(Y) horizontal vector fields
whose values at A(g) are x, y.

ProrosiTION 1. If x, y, X, Y are as above, then
(ad 2)(x, y) = ad (2(X(g), ¥ (g)))[m]

(the symbol ad Z[m], ZEY, denotes the matrix of ad Z with respect to the basis
Xy, -, Xyof m).

Proof. (ad )(x, y)=—adw([A(X), A(Y)]A(R))=—-A[X, Y]()
=A(Q(X(g), Y(2))). N

Now ad € induces the form ad @ on G/K. Let g be a point of G. We will
denote pX; by V;. Then L,Y;(e) = Y;(g)—here L, denotes left-translation by
g—and (ad Q)(L,Y;(e), L,Yi(e)) is the linear transformation whose matrix
with respect to the basis L,Y,(e) is (ad Q)(A(Y;(g))A(Yi(g))) = —A[Y;,
Y:](g)). Similarly, (ad Q)(Y;(e),Yi(e)) is the linear transformation whose
matrix with respect to the basis ¥,(e) is —A(w[¥j, ¥i](e)). Thus, since ad @
is bilinear, we have:

_ProrositioN 2. If t, ' are tangent vectors at eK and if gEG, then
(ad Q) (Lgt, Lot') wort. {L,V.(e)} =(ad Q)(t, ¢') w.rt. {V,(e)}.

Proposition 2 shows that one need consider characteristic forms on G/K
(with respect to the bundle of oriented frames) only on vectors at eK: For,
if one uses the connection ad w, then ad € at any point gK can be expressed
in terms of ad Q at eK.

ProrosITION 3. Let ¢(K) and c¢(O*) denote respectively the characteristic
rings of G/K with respect to the coset bundle and the bundle of oriented frames.
Then c(Ot) is contained in c(K).

Proof. We use the connections w and ad w. Let Qr be a form of ¢(0%), and
define a tensor 7 on ¥ by: 7T(X, - - -, Z)=T(ad X[m], - - -, ad Z[m]),
X, .-, Z€&L It follows from Proposition 1 that Q7 (using the curvature
form Q) is identical with Q7 (using the curvature form ad Q). Since Q5 is an
element of ¢(K) if T is an invariant symmetric tensor on ¥, it remains to show
that T is invariant (clearly, it is symmetric): So suppose X, ¥, - - -, Z and
A are elements of f; then:

_T([A)X]’ Y77Z)+ -I—T(X, Y,'a[A)Z])
= T(ad [4, X][m], ad Y[m], - - -, ad Z[m]) + - - -
= T([ad 4[m], ad X[m]], ad ¥[m], - - -, ad Z[m]) + - - -
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and this final sum is zero since T is invariant under O+(V) and since ad K [m]
is a subset of O+(V). Since K is connected, it follows that T is invariant
under K.

PropoSITION 4 (See [2, p. 70]). Let J be the set of all elements of I(£) which
can be written in the form Z.- T.S;, where T; and S; are elements of I(f) of
degree greater than zero, and where each S; can be extended to an element of I1(g).
Then a characteristic form Qr of c(K) is cohomologous to zero on G/K if and
only if T is an element of J.

Proof. We will prove here only that every TEJ gives rise to a form Qr
which is cohomologous to zero on G/K; the other half of the proposition will
not be needed here, and its proof is considerably more difficult.

So suppose T'= »_T:S;, with each S; extendable to an element of I(g). It
will be shown below that each Qs, is cohomologous to zero—that is, Qs,=dA;,
for some form A; on G/K. Then, since the Weil mapping is a ring homomor-
phism, and since dQr; =0, it follows that Qr=d(D>_Qr,A\A)).

Suppose then that S is an element of I(f), extendable to an element of
I(g). The principal bundle with fibre G associated with the principal bundle
(G/K, G, K, p), is the bundle (G/K, G X kG, G, p’), where G X kG is the set of
equivalence classes of G X G under the equivalence relation gk Xg' =gXk™'g'.
Let w be the connection on (G/K, G, K, p) defined previously, and let Q be
its curvature form. An argument similar to the one used in the proof of
Proposition 1, above, shows that w and @, and the natural mapping of G into
G X xG, give rise to a connection w’ on (G/K, GXkG, G, p’), with curvature

form @', satisfying: S(Q, - - -, Q) =S, - - -, Q) (both of these forms are
considered to be on the base space G/K.)
Now S&I(g), hence S(?, - - -, &) is a characteristic form of G/K with

respect to the bundle (G/K, GXkG, G, p’). Since the Weil mapping is inde-
pendent of the choice of connection, and since this bundle is trivial (f(gK)
=g Xg!is a cross-section), it follows that S(Q, - - -, ') is cohomologous to
zero on G/K, hence that Qs=S(Q, - - -, Q) is cohomologous to zero on G/K.

PROPOSITION 5. Let H(f) be a maximal abelian subalgebra of ¥, let ¢, ¥/, m’,
and H(F') denote respectively the complexifications of g, t, m, and H(E); so
H(¥') is a maximal abelian subalgebra of ¥'. Extend H(Y') to a maximal abelian
subalgebra H(g") of §’. Let H(m') =H(g')Nm'. Then H(g')=H(t')+H(m').

Proof. Suppose HEH(g'), with H=k+m (k€¥, m&m’). Then
0=[H, HY)]= [k, HE¥)]+[m, H(')]. Since [k, H®)]EY and [m, H(Y)]
€', it follows that [k, H(#)]=0. But H(') is a maximal abelian subalgebra
of ¥'; hence REH('), and m=H—kEm'NH(g') =H(m’). Thus HCH(Y¥')
+H(m').

11. The abelian case.

THEOREM. If K is abelian, all Pontrjagin forms of G/K are cohomologous
to zero.
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Proof. Let N, N’ denote the dimensions of G/K, G. Since K is abelian, !
lies in H(g). If we choose an orthonormal basis of g whose first N elements are
an orthonormal properly-oriented basis of m, then with respect to this basis
we have

ad H[m] | ©
ad ] ( 0 | o )
for any element H of .

Define T, T’ as follows:

(a) If A={(a:j), B=(bij), - + -, E=(es;) are r skewsymmetric real NXN
matrices, then T(4, B, - - -, E)= Zeaﬁ,-,b;,i, .« - ey, (4, + -+, i chosen
from among the integers 1, - - -, N).

(b) If A'=(a;), B'=(by), -+ -, E' =(e;) are r skewsymmetric real
N’'X N’ matrices, then 77(4', B', - - - , E") = Zea,’mb,'m sy (Bt
chosen from among the integers 1, - - -, N).

Clearly T and T’ are symmetric and are invariant under O+(N) and
O*(N') respectively. They define tensors T, T’ on f in the following way: If
H,, - - -, H, are r elements of f, then T(H,, - - -, H,)=T(ad Hy[m], - - -,
ad H,[m]) and T'(H,, - - -, H,)=T"(ad Hy[g], - - -, ad H,[g]). Since K is
connected, T and 7" are elements of I(f); and from the expression given above
for any matrix ad H[g](HET¥) it follows that the summands of T give zero
contributions except in the cases when all the indices 7,, - - -, 7, lie between
1 and N, hence that T and 7’ coincide on f. The method of proof of Proposi-
tion 3, §10, shows that the 2rth Pontrjagin characteristic form of G/K is
Q7; and so the 2rth Pontrjagin form of G/K is Q7.

If the tensor T on g is defined by T""(X, - - -, Z)=T"(ad X[g], - - -,
ad Z[g]), X, - - -, Zr elements of g, then T" is an element of I(g) and also
an extension of 7/ to all of g. Thus T/& J (see Proposition 4, §10), and hence
Q7 is cohomologous to zero.

12. Complex and symmetric homogeneous spaces [6; 8]. A homogeneous
space G/K (G a compact connected Lie group, K a closed connected subgroup
of G) is called symmetric if there is an involutive automorphism A of G (that
is, A?=identity) for which K lies between the set K, of all fixed points of A
and the identity component of Ka. A induces an involutive automorphism of
g (again denoted by A); if i denotes the eigenspace for the eigenvalue —1 of
A, then g=P+ii, and A([f, fi])=[AM, Af]=[—m, —ii]=[m, fi], ie.
[, ] lies in f. It is easily seen that fi is the orthogonal complement of £
with respect to the fundamental bilinear form of g. So we conclude that
[m, m]Ct.

By a C-space we will mean an even-dimensional homogeneous space G/K,
with G a compact semi-simple Lie group and K a closed connected subgroup
of G whose semi-simple part coincides with the semi-simple part of the cen-
tralizer of a toral subgroup of G. Wang has shown in [8] that the C-spaces are
exactly the simply-connected compact complex homogeneous manifolds.
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THEOREM. If G/K is a symmetric space or a C-space, then all characteristic
c(K) and c(Ot)-forms of degree greater than (dimension G/K)—(rank G
—rank K), are zero. If G/K is a symmetric C-space, then rank G=rank K.

Proof. If G/K is symmetric, it has been proved by H. Cartan [2] that the
cohomology ring H(G/K) of G/K is ring-isomorphic with a tensor product
¢(K)®Y, where Y is the Grassman algebra over a vector space of dimension
N—R (N=dim G/K, R=rank G—rank K) and where the degree of an ele-
ment ¢c®y (cEc(K), y&Y) is understood to be the sum of the degrees of ¢
and y if these are both homogeneous elements. So if Q7 were a nonzero
¢(K)-form of degree greater than N—R, and if a4, - - -, anv—r were a basis
of the vector space generating Y, the element Qr® (a; - + - ax_g) would be a
nonzero element of H(G/K) of degree greater than N. This cannot be, since
N is the dimension of G/K. It follows that all.¢(K)-forms of degree greater
than N —R are zero; hence all ¢(O*)-forms of degree greater than N—R are
zero, since ¢(0O%) is contained in ¢(K).

Next, suppose G/K is a C-space. It will now be shown that every pair of
root vectors e., €_, lies either in I’ or in m’, hence that every pair of quasi-
root vectors Xa., YV, lies either in f or in m. Since [H, X,]= —ia(H) Y, and
[H, V,]=ia(H)X, for any HEH(g"), it follows from this that [H(m), m]t=0
(where H(m) =mMH(m')). Thus Q(H, X)=0 for any HEH(m) and X Em.
But then suppose Qr is a ¢(K)-form of degree greater than N—R. The
dimension of H(m) is R, and so we can choose a basis of m whose first R
elements are in H(m). Consider any term Qr(X, - - -, Z), where X, - - -, Z
are elements of m. If this term is expanded in terms of the above basis of m
(that is, X, - - -, Z are written in terms of this basis), then every term
Qr( - - - ) of this expansion will have at least one entry from H(m). Since
Q(H(m), m) is zero, it follows that each Qz( - --) is zero, hence that
Qr(X, - - -, Z) is zero.

We now show that every pair eq, e_q lies in ¥’ or m’. First, [H(m), £]=0:
For if this were not zero, there would be an element H& H(m) and an element
Ea.,ea (@« complex numbers) in [ with (H, Zaae..];éo; then, since [m, t|Cm
and since the semi-simple part of f is the semi-simple part of the centralizer
of a torus T of g (it can easily be seen that our choice of H(g’) can be sub-
jected to the condition TS H(g")Mg), it follows that there is an H'&T with
[H', [H, Xa.e.]]#0—ie. D aca(H)a(H)e,0, which cannot be since it
implies that [H’, D a.e.]7#0. But the condition [H(m), £]=0 implies that
[H(m"), ¥']=0, hence that the root vectors of the semi-simple part of ¥
with respect to H(¥) are in fact root vectors of g’ with respect to H(g'). Hence
it is clear that ¥ is spanned by the pairs of root vectors e., e_o of g’ which lie
in ¥; and it follows from this that the root vectors of g’ which do not lie in
', must lie in m’.

Finally, suppose that G/K isa symmetric C-space and that rank G #rank K.
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Then there exists a nonzero element H in H(m'). Let a be a root such that
a(H)#0. Since G/K is a C-space, e, lies in I’ or in m’. But the fact that
a(H) 0 then leads to a contradiction: For example, if e, &m’, then [H, e,]
=a(H)e, is a nonzero element of ¥ (since [m’, m’|C¥’), which cannot be since
FNm'=0.

13. Maximal abelian subalgebras. Let K be a compact connected Lie
group with Lie algebra f. Let H(f) be a maximal abelian subalgebra of f, and
let ¥/, H(f') be the complexifications of £, H(f). Let Xa, Ya, X5, Vs, - - - de-
note the quasi-root vectors of the semi-simple part of f with respect to H(f’).
Let T be an invariant symmetric tensor on f.

LEMMA. Consider any term T(H,y, - -+ - ,H;, Xay, »  + , Xaps Yo+ * 5 V),
with the H.'s elements of H(f) and the X,,, Yg,'s quasi-root vectors of the semi-
simple part of ¥ with respect to H(Y'). Suppose ar(Hy) 0. Then this term can be
written as a linear combinations of the following types:

(1) terms T( « - - ) with j+1 entries from H(E);

(2) terms T( - - - ) with j entries from H(E), with Hy in at least two entries.
Proof. The invariance of T'(Hy, - - -, H;, Hy, Xay, * * +, Yg,, + + ) under
Y,, shows
0= ial(Hl)'T(Xan H2a ] Hf) Hl: Hazy tt Yﬁn t ') (a)

+ ial(HZ)'T(Hl, Xan H3) Ty, Hi) Hl; Xazy ] Yﬂn ce )
+ ial(Hf)'T(Hly Yy Hj—lr Xan Hlv Xuz’ tt Yy Yﬂn ° ')
+ ial(Hl)'T(Hly R Hf} Xan Xﬂz; Y Yﬂn c ) (b)
+ terms of the form T(H,y, - - -, Hj, Hy, - - - ).

The terms (a) and (b) both equal oy (Hy) - T(Hy, + + + Hjy Xagy + = =5 Yoy * + +).
Since a1 (H;) #0, the lemma is proved by bringing (a) and (b) to the left side
of the equality sign.

THEOREM. If X, - - -, Z are any elements of ¥, then T(X, - - -, Z) can be
written as a linear combination (with real coefficients) of terms T( - - - ) all of
whose entries are elements of H(Y). Thus the invariant symmetric tensors on t
depend on the maximal abelian part of ¥.

Proof. Consider any term T'(H,, - - -, Hj, Xay, + + +, Vg, + - - ). It will
be shown that this term has property P: It is expressible as a linear combina-
tion of terms T'( - - - ) each having at least j+1 entries from H(f). Thus
the proposition will be proved by induction on j. We will denote by (*) any
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linear combination of terms T°( - - - ) each having at least j+1 entries from
H(t).

Suppose a,(H() #0 or 8,(H:) 0 for some s and ¢ (if thisis not the case, see
Case 2, below); and for simplicity of notation, suppose it is a1(H;) which is
not zero. The precedinglemmashowsthat T'(H,, - « - \Hj, Xay, = -+, Yo, -+ +)
is expressible (modulo (*)) as a linear combination of terms with H; in at least
two entries. So we must show that each of the terms in this linear combina-
tion has property P. We continue the process described in the lemma until
we arrive at a point where the terms are of the form T'(H,, - - - ,Hy, H}, - - -,
H, Xy, oy Yoy - -+ ), with N(HD) =N(H) = - - - =8(Hy) =8(H) = - - -
=0. We then apply the process of the lemma to Hj, and so on, finally arriving
at the situation T'(Hy, « -+, Hj, Xay, =+ -y Vg, + - - )=+ (**), with (*¥*)
a linear combination of terms of the form

p terms

— —

j terms >
t=T(Hy, -, Hyhay - hay -~ hay - hayhy - by Xey oo, Vay oo o),
hy, - - - ,haelementsof H(Y), k€ H(F),and m,(hy) = - - - =7 (hs) =A,(B)= - - -

=A,(ks) =0 for all subscripts r. So the theorem will be proved if it can be
shown that any term ¢ of (**) has property P.

CasE 1. Suppose that for some r, 7, (k) #0 or A.(h) #0; and, for simplicity,
suppose it is (k) which is not zero. Then the invariance of

p+ 1 terms
— —

T(Hy -+ - Hihay -+ - hay oy hay - hayhy oo o by Xy o ooy Vg e 0)
j + 1terms —

under Y-, shows that ¢ has property P.

Case 2. Suppose (k) =A,(k) =0 for all ». Choose an H with m(H)#0,
HEH(f). Then the invariance of the following term under Y., shows that ¢
has property P:

p terms
«— —

T(Hy, - - - Hyhay o - hay o oy hay o+ o hayhy oo By H, Xy - o+ Vay, - - 2.
7+ 1 terms >

COROLLARY 1. If rank G#rank K, the Euler-Poincaré characteristic of
G/K is zero. (This is part of the theorem proved in [51)

Proof. The Gauss-Bonnet theorem shows that it suffices to prove s is
identically zero. This is true by definition if G/K has odd dimension. If the
dimension of G/K is 2N, choose H(F) to be a maximal abelian subalgebra of
f and let Hy, - - -, Hy be any elements of H(f); then S(H, - - -, Hy)
= Y e(ad Hi[m])iyi, - - - (ad Hy[m])gy uy- It will be shown that
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S(Hy, - - -, Hy) is zero. It then follows from the preceding theorem that S is
identically zero on f, hence that Qg is identically zero. Let H(¥') = H(f) +-<H(f).
Extend H(¥) to a maximal abelian subalgebra H(g’) of ¢’, and let H(m)
=H(@)"m and H(m')=H(g')\m’. Then H(g')=H(¥)+H(m’), and
H(m')0 since rank G#rank K. If we choose an orthonormal properly-

oriented basis H!, - - -, H*, X, - - -, Z of m (with HY, - - -, H* in H(m)),
then, with respect to this basis,
amfn) = (—--) =1, N
a jpml =1 —- =1,
’ 0| 4; 7 ’
with 4; a skewsymmetric (2N —s) X (2N —s) matrix.
In the definition of S(H,, - - -, Hy),one of 41, - + « , 43y must in each sum-
mand be equal to the number 1. From the above matrix it can be seen that
the corresponding term (ad H,[m]).,;, is zero. Thus S(H,, - - -, Hy)=0.

COROLLARY 2. If rank G=rank K, the natural mapping of 1(g) into I(f) is
1-1.

Proof. Choose any maximal abelian subalgebra of g which lies entirely in
I. The preceding theorem shows that any element of I(g) is then determined
by its values on f.
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