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Introduction. It is the object of this paper to prove the results of §§11,

12, and 13; for a homogeneous space G/K (G a compact Lie group, K a

closed connected subgroup) it is shown that:

if K is abelian, the Pontrjagin classes of G/K are zero;

if G/K is symmetric, or simply-connected complex homogeneous, all char-

acteristic classes of degree greater than (dimension G/K) — (rank G — rank K)

are zero.

Finally, it is shown that the characteristic classes of G/K depend, in a

sense, only on the abelian part of K.

The canonical connection of the second kind on G/K is used to demon-

strate that the characteristic classes of G/K with respect to its bundle of

oriented frames can be considered characteristic classes of G/K with respect

to its principal 2£-bundle. The characteristic classes of the 2£-bundIe structure

are then computed by means of the well-known algebraic operations in the

Lie algebra of a semi-simple Lie group.

The first sections of this paper are devoted to an exposition of the needed

facts concerning characterisic classes, in particular those of homogeneous

spaces; much of the material is based on [3]. The numbers in brackets refer

to the bibliography.

I am much indebted to I. M. Singer for the frequent advice he has given

me during the past year.

1. Invariants. Let g be the Lie algebra of a Lie group G of dimension N.

A real-valued r-linear function T on g is called a symmetric r-tensor if

T( • • • , X, ■ • • , F, • • • ) = T( ■ ■ • , F, ■ ■ • , X, • • • ) for any two ele-

ments X, Y of g. It is called invariant under G (or, simply, invariant) if

T(ad gX, ■ ■ ■ , ad gZ) = T(X, • ■ ■ , Z) for any r elements X, ■ ■ ■ , Z of g

and any element g of G. The set of all invariant symmetric r-tensors on g is

denoted by 7r(g), and the set of all invariant symmetric tensors on g is de-

noted by 7(g).
If T, T' are symmetric r-tensors on g and 5 is a symmetric s-tensor on g,

we define symmetric r- and r+s-tensors T+T' and TS on g as follows:

(7 + T')(X, ■ ■ ■ , Z) = T(X, ■ ■ ■ , Z) + T'(X, ■■■ ,Z),
X, ■ ■ ■ , Zr elements of g.

(T-S)(Xh ■■■ , Xr+.) = ((r + s) I)-1 Z T(Xh, • ■ • , Xir)S(Xir+v ■■■, XirJ,

Xi, ■ ■ ■ , Xr+. being any elements of g and the summation extending over

all permutations t1( • • • , i,+, of 1, • • • , r+s.
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These operations define a commutative ring structure in the set of all sym-

metric tensors on g, and in fact this ring is isomorphic to the ring of all poly-

nomials in N variables. If T, T', and 5 are invariant, so are T+T' and TS;

hence the above operations define a ring structure in 7(g).

Proposition. 7/ G is connected, then an r-linear real-valued function f on g

is invariant under G if and only if the following equality holds for any choice of

elements Xi, • ■ • , Xr and Z of g:

f([Z, Xi], X2, ■ ■ ■ , Xr) +f(Xu [z, x2], xt, ■ ■ ■ , Xr) + ■ ■ ■

+ f(Xi, ■ " , Xr-i, [Z,Xr]) = 0.

Proof. Let V be the vector space of all r-linear functions on g,/£ V. Then

ad(exp tZ)(f) =/ for all Z£g if and only if ad Z(f) =0 for all Z£g. Letting

g = exp tZ, it follows, from ad Z = lim<H.0 (ad g — I)/t, that (ad g — I)(f) =0 for

all Z£g if and only if (lim(ad g — I)/t)(f)=0 ior all Z£g. The equality below

will thus show: (ad g-I)(f(Xu • • • , Xr))=Q for all -X\£g and all g of the

form exp tZ, Z£g, if and only if

f([Z, Xi], X2, ■ ■ ■ , Xr) + ■ ■ ■ +f(Xh ■■■, Xr-i, [Z, Xr]) = 0

for all Xi and Z in g. Since G is connected (hence generated by a neighbor-

hood of the identity element), the proposition is proved:

(lim (ad g - I)/t)(f(Xu ■ ■ ■ ,Xr))

= lim (l/t)(f(ad gXx, • ■ • , ad gXr) - f(Xx, ■■■, Xr))

= lim (l/t)((f(ad gXh ■ ■ ■ , ad gXr) -f(Xu ad gX2, • ■ • , ad gXr))

+ (f(Xh ad gX2, ■ • • , ad gXr)

- f(Xu X2, ad gX3, ■ • • , ad gXr)) + ■■■)

= /(lim (ad gXx - Xx)/t, lim (ad gX2), • • • , lim (ad gXr))

+ f(Xu lim (ad gX2 - X2)/t, lim (ad gXt), ...)+•••

= f([Z, Xi], X2,---, Xr) +f(Xi, [Z, X2], • ■ ■ , XT) + ■ • • .

2. Connections and curvature [l]. For a detailed discussion, see [l]. All

vector fields and all forms will be assumed of class C°°.

Let M be a C°°-manifold, G a Lie group, g the Lie algebra of G. Let

(M, B, G, ir, $) denote the principal bundle with base space M, bundle space

B, group G, projection ir of B onto M, and maximal family <P of strip maps ( a

strip map <f> of $ is a 1-lmapping of some set 8XG onto 7r_10—where 6 is an

open submanifold of M—with <f> and <p~l both of class C°°.) If <j> is a strip map

of dXG onto ir~1d and if m is a point of 6, we denote by <pm the mapping of

G into B which assigns to each gdG the point <j>(m, g) of B. It is assumed that

for any two strip maps <p, <p' for which <pm and <f>'m are both defined, the map-

ping <p-xm o 4>'m is a left-translation by some element of G.

A tangent vector t at a point of B is called vertical if ir(t) =0. There is a
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natural mapping q of the elements X oi g into vertical vector fields qX on B,

defined as follows: Let b be any point of B, let m = irb, let 6 be an open sub-

manifold containing m, let <p be a strip map of 0XG onto ir~1d. Then 6 =<p(m,g)

for some gGG, and we define (qX)(b) to be the tangent vector <f>mX(g)—

where X is considered here to be a left-invariant vector field on G. Since any

two strip maps, when restricted to ir~1(m), differ only by a left-translation

in G, this definition is independent of the choice of strip map </>.

Definition. A rule which assigns to each point of B an alternating r-

linear function from the tangent space at that point into g, is called a g-

valued r-form on B.

Definition. A connection on (M, B, G,ir, <£>) is a g-valued 1-form co on 73

which satisfies the following conditions:

(a) if i is a vertical tangent vector at a point b of B, then u(t) is the unique

element X ol g with (qX)(b) =t;

(b) let Rg denote right-translation on the fibres ir~l(m) of B induced by

an element g oi G, and let t be a tangent vector at a point of 73; then (R*w)(t)

= adg~1(o}(t)).

A tangent vector (at a point of B is called horizontal if o)(t)=0. Any

tangent vector / at a point of B decomposes into the vector sum of a vertical

vector (denoted by Vt) and a horizontal vector (denoted by 27/). This de-

composition depends, of course, on the choice of connection co.

Definition. The covariant derivative DA of an r-form A on B is the (r+1)-

form on B defined by (DA)(t, ■ ■ ■ , t') =dA(Ht, • • • , 77/')—where t, ■ ■ ■ , t'

are r + 1 tangent vectors at a point of B.

Definition. The curvature form fl of the connection co is the g-valued

2-form Deo.

Remark. Suppose a rule is given which assigns to each point 6 of 73 a

linear subspace 77(6) of the tangent space to B at 6, and which satisfies the

following conditions:

(a) H(bg)=R„H(b), for any 6G23 and gCG;
(b) at any point 6 of B, 77(6) is a linear complement to the set of all verti-

cal tangent vectors at 6;

(c) if X is a Cx vector field on B, then the vector field resulting from

projecting X on 77(6) at every point 6, is also C°°.

Then 77 defines a connection co on 23 in the following way:

(a) if / is a vertical tangent vector at a point 6 of 73, then co(i) is the unique

element X of g with (qX)(b) =t.
(b) if / is a tangent vector at a point 6 of 73, then 77(6) defines a decomposi-

tion of / into a vertical part Vt and a horizontal part HtCH(b); and we define

co({) to be w(Vt)—co(F/) having already been defined in (a).

We will need the following facts:
(a) If gCG and /, /' are tangent vectors at a point of B, then (R*Q)(t, t')

= adg-W, O).
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(b) If X, X' are horizontal vector fields in a neighborhood of a point b

of B, and if t, t' are their values at b, then Q(t, t') = -(i/2)w([X, X'](b)).

(c) 7>fi = 0; this is the Bianchi identity.

(d) If /, /' are tangent vectors at a point of B, then

dw(t, t') = it(t,t')- (1/2)[u(t),«(/)];

this is the equation of structure.

3. The characteristic ring [3]. Letw be a connection on the principal bun-

dle (M, B, G, ir, $), with covariant derivative operator D and curvature form

fi. We now define a mapping of 7(g) into the cohomology ring H(M) of M.

Let r be any positive integer and let T be an element of 7r(g). We define

a real-valued 2r-form Ut on B as follows: If ti, ■ • • , t2r are tangent vectors

at a point of B, then QT(ti, • ■ • , <2r) is to be the real number Alt (7(fi(fi, /2),

• • • , fife-i, /2r)) = ((2r)!)-1Se7(fl(t<1, *<,), • • • , Oft,,.,, *,■„)). where « is the

sign of the permutation taking 1, • • • , 2r into *i, • • ■ , 4r, and where the

summation extends over all such permutations.

The form Ut has three important properties:

(1) It is horizontal—-that is, it is zero if one of its arguments is vertical.

(2) R*UT = UT, for any gdG-

(3) Ut is closed—-that is, dUr = 0.

Proof of (1). fi is horizontal.

Proof of (2). Since P*fi = adg~1fi, it is clear that R*UT = U (adg-y)*T. This

in turn is equal to Ut, since T is invariant under G.

Proof of (3). From (1) and (2) it follows that dUr = DUT. Now if we restrict

our attention to horizontal forms on B, D is an antiderivation; hence dUT

= Alt (r(7>fi, fi, • • • , fi)+ • • • +T(fi, ••-,«, 7>fi)), which is zero since

7>fi = 0.
Ut gives rise in the following way to a real-valued 2r-form fir on M:

If x, • • • , z are 2r tangent vectors at a point m of M, choose a point bdB

with irb=m, choose tangent vectors X, ■ ■ ■ , Z at b with wX=x, ■ ■ ■ ,irZ = z,

and define fir(x, • ■ • , z) to be the number Ut(X, • ■ ■ , Z). Since UT is hori-

zontal and invariant under right translation by G, this definition is inde-

pendent of the choice of b in ir~1(m), and of the choice of tangent vectors

X, • • • , Z at b projecting into x, ■ ■ ■ , z under ir. Furthermore, dfir = 0 since

dUT = 0.

Thus any element 7£7'(g) defines, in the sense of de Rham, an element

of H2r(M) whose representative is the cocycle fir.

Definition. This mapping of 7(g) into H(M) is called the Weil mapping.

It is a ring homomorphism. The images of elements of 7r(g) under the Weil

mapping are called 2rth characteristic (cohomology) classes of M with respect

to the bundle (M, B, G, ir, <£), and the image of 7(g) is called the characteristic

ring of M with respect to the bundle (M, B, G, ir, <£).

Note that if r is greater than half the dimension of M, the image of 7r(g)
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is zero—for, any differential form on 2t7 of degree greater than the dimension

of 217", is the zero-form.

4. The Weil theorem [3]. Let a and 8 be, respectively, g-valued p- and

a-forms on the bundle space B of the principal bundle (217, 73, G, ir, <£).

We define a g-valued p+q form a A3 on 73 as follows: If h, • • • , tp+t are tan-

gent vectors at a point of 23, then (a/\B)(tu • • • , tT+q) =Alt ([a(h, • • ■ , tp),

B(tp+i, ■ • • , tp+q)])—the alternation being over the vectorsh, ■ ■ • , tp+q, and

[a( ), B( )] being the bracket operation in g.

It follows from the Jacobi identity that if a, 3 are g-valued 1-forms on 23,

thenaA(«A0) = (l/2)(«Aa)A|8.
It can also be checked that if a, 3 are, respectively, g-valued p- and q-

forms, then /3A«= (-l)pq+laAB.

Suppose coo and coi are connections on (M, B, G, ir, <$), with covariant de-

rivative operators D0 and 7>i and curvature forms flo and fii; then the equa-

tions of structure are fl,- = dco, + (l/2)co,A«i, * = 0, 1. If we define, for 0^/^l,

a form co< = /coi + (l—/)coo, we get a "homotopy" of co<_o=coo and cot_i=coi. The

form co* is a connection on (217, 23, G, ir, <J>) for any such /, since both co0 and

coi coincide on vertical vectors of 73 with the inverse of the mapping a defined

in §2; we denote the curvature form of co( by fl(, and we let w=co0 —coi.

Lemma 1. If co is a connection with covariant derivative operator D, and if

3 is a horizontal a-valued form on B satisfying the rule R*B = ad g~lB for all

gCG, then D3 = d3+u/\3.

Lemma 2. (a) Q,t = Q,Q-tDau + (t2/2)uf\u.

(b) dQ.l/dt=-(Dau-tu/\u).

(c) 7J>0fi«= -n,/\u.

Proof of (a), u is horizontal, hence Lemma 1 shows that Q0 — tD0u

+ (/2/2)MAM = dcoo+(l/2)cooAcoo-/dcoo+/dcoi-/cooAwo+tooAw1 + (/2/2)cooAco0

+ (/2/2)co1Awi-i2cooAcoi = dco( + (l/2)co,Aco( = n«.

Proof of (b). This follows from (a).

Proof of (c). It will be shown below in (1), (2), and (3) that D20u = Sl0Au,

D0(uAu)=2D0uAu,   and   (mA»)A« = 0.   Hence

D0at = 0 - tDou + (t2/2)D0(u A u)

= - tUou + I2 Dm Au - (t3/2)(u Au) Au

= - (Oo - tD0u + (l2/2)u A u) A tu = - fi< A tu.

(1) Since Dm  is  horizontal,   Lemma  1   shows  that

D0(Dou) = d(D0u) + coo A D0u = d(du + too A u) + w0 A (du + co0 A «)

= 0 + dwo A u — coo A du + coo A du + co0 A (m A u)

= (dwo + (l/2)co0 A wo) A u = O0 A u.
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(2) wis horizontal; hence Z?0(m A«) =D0uAu — u /\Dtsu=Dlxu /\u+DqU /\u

= 2Dau/\u.

(3) (aA«)A» = (l/2)ttA(«A«), and (»A«)A«=-«A(mAm). Thus
(wA«)A«= — (1/2)(«A«)A«, i-e. (wAm)A« = 0.

Suppose now that T is an invariant symmetric tensor of 7r(g), and that

fir and fi'r are the characteristic forms on M defined by T, and respectively,

fio and fii. Then we have the following theorem, due to A. Weil:

Theorem, fi'r awd fiy are cohomologous on M—awd hence, the Weil mapping

is independent of the choice of connection (and curvature form) on (M, B, G, ir, $).

Proof. If Ai, ■ ■ ■ , AT are g-valued forms on B, we define a real-valued

formT(^i, • • • ,Ar) on B as follows: T(AU • • • , Ar) = Alt (T(AU ■ ■ ■ ,Ar)),

the alternation being over the vector arguments of ^4i, • • • , Ar. We denote

7(fi(, • • ■ , fi<) by fir (this is consistent with the previous definition of fir

and fir.) It will be shown in Lemma 3 that dfir/d/= —rdT(u, fi(, • • • , fi,);

hence if we define a real-valued form R(V, X, Y, Z) on B by

R(V, X,Y,Z) = - r j    T(V, X - tY + (t2/2)Z, ■ ■ ■ ,X-tY + (t2/2)Z)dt,

then we have:

~UT - 'Ut =  j    (dUT/dt) dt = - r I    dT(u, Uh ■ ■ ■ , Ut)dl,

that is, fiT-fir = d7t:(w, fi0, 7>0w, u/\u).

Clearly, R(u, fi0, D0u, u/\u) is a horizontal real-valued form on B, in-

variant under right translation by elements of G. Thus R(u, fi0, T>0w, u/\u)

defines a differential form R on M (just as fir defined fiy); and so fiy —fif

= dR, i.e. fir and fij- are cohomologous on M.

Lemma 3. dUT/dt= —r-dT(u, fi(, • • • , fi,).

Proof. T(u, fi(, • • ■ , fi() is invariant under right translation by elements

of G, and is horizontal with respect to «o; hence dT(u, fi{, • • • , fit)

= D0T(u, fi/, • • • , fi(), and we have:

dT(u, Uh ■ ■ ■ , Q,) = D0T(u, Ut, ■ ■ ■ , Ut)

= T(D0u, Uh ■ ■ ■ , Ut) - T(u, D0Uh Ut, - - - , Ut) - ■ ■ ■

- T(u, fl», • • • , Uh D0Ut)

= T(D0u, Ut, ■ ■ ■ , Ut) + T(u, Ut A tu, Ut, ■ ■ • , Ut) + ■ ■ ■

+ T(u, Uh- ■ ■ , Qt, Oi A tu)

= * T(D0,u, Ut, ■ ■ ■ , Qt) - T(u A tu, Ut, ■ ■ ■ , Ut)

= T(D0u-uAtu,Ut, ■■•,",) = - T(dUt/dt,Uh ■ ■ -,Ut).
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The equality* follows from the following extension of the proposition of §1:

If Ai (* = 1, • • • , r) are g-valued aj-forms, and if X is a g-valued 1-form

(on 73), then the invariance of T under G implies that

-£ (-iyi+--+a^T(Ai, ■ ■ ■ , Ai-U Ai A X, Ai+i, ■ ■ ■ , Ar) = 0.

Thus we have:

dflr/dt = T(dQt/dt, 0», • • ■ , 0«) + • • • + T(Qt, ■ ■ ■ , 0,, d0«/di)

= r-T(dQt/dt, 0,, • • • , 0,) = - rdT(u, 0,, • • • , 0,).

5. Transgressions [2; 3].

Theorem. If u is a connection on (M, B, G, ir, <£) with covariant derivative

operator D and curvature form fi; aMd if T is an element of 7r(g); then Or

= — d2?(co, il, dco, coA«) (the notation being the same as in §4.)

Proof. The form A( = fi —/dco + (/2/2)coAw is a "homotopy" of A(_o = fi

and A(_i = 0. We have:

dA, = dO - tddoi + (t2/2)d(u> A w)

= dO - tdQ - (t/2)d(u A w) + (/2/2)d(w A w)

= (1 - t)dQ - (t/2)(l - t)2da A a

= (1 - t)(DU - w A 0) - (//2)(1 - /)(2dw A w)

= (1 - t)Q A w - t(l - t)du A w + (/2/2)(l - /)(w A w) A w

= (0 - Ida + (/2/2)w A w) A (1 - t)u = A, A (1 - t)u.

Thus dAt=AtA(l—t)o), and so an argument similar to the one used in the

proof of the theorem of §4 shows that

dR(u, 0, dw, w A w) = 7(Ai, • • • , Ai) - T(A0, • • • , Ao)

= 0 - T(A0, • • • , A„) = - 0r.

Thus Qt is a coboundary on 73, although not on 217" itself (2?(co, fi, dco, co Aw) is

not horizontal on 23, hence does not define a form on 217). If we identify G

with a fibre tt_1(w) of B, and denote the inclusion mapping by i: G-^-B, then

the form i*R(co, fi, dco, coA«) is closed and hence defines an element of 77(G).

Let .4(g) denote the set of all left-invariant differential forms on g. Then

the above procedure, taking us from T to Or and then to i*2?(co, fi, dw, coAw),

defines a mapping 8 of 7(g) into .4(g).
Definition. Any element of 5(7(g))—-i.e. any i*R(u, fi, dco, coAw)—is

called transgressive. Any linear mapping X of 8(7(g)) into 7(g) satisfying

X o 5 = identity, is called a transgression.

6. Special principal bundles. Suppose 217 is a real orientable Riemannian

manifold of dimension N. Then the bundle of oriented frames of M is the fol-

lowing principal bundle:
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(1) G is the group 0+(N) oi all orthogonal real NXN matrices of deter-

minant 1.

(2) B is the set of all (A/+l)-tuples (m, Ci, • • • , cn), with mdM and

ei, ■ ■ ■ , en a positively-oriented orthonormal basis of the tangent space at m.

(3) ir maps the point (m, d, • • ■ , e^) of B into the point m of M.

(4) $ consists of all mappings <p defined as follows: Let m be a point of JIT,

let Xi, • ■ ■ , Xn be vector fields in a neighborhood of m whose values at any

point furnish an orthonormal properly-oriented set of tangent vectors at

that point, and let g be an element of G (that is, an orthogonal NXN matrix

(gi,-) of determinant 1). Then let <b(m, g) be the point (m, ^gijX)(m), ■ • • ,

H&iXsim)) of B.
If M is a complex hermitian manifold of complex dimension N, then the

unitary bundle of M is the following principal bundle:

(1) G is the unitary group U(N).

(2) B is the set of all (7V+1)-tuples (m, eu ■ • • , ejv), with mdM and

d, • • • , ejv a complex orthonormal set of tangent vectors at m.

(3) ir and <J> are defined as in the bundle of oriented frames of a real mani-

fold.
Remark. Suppose fi is a curvature form on one of these bundles. Then we

can define a function U on M as follows: Let t, t' be a pair of tangent vectors

at a point mdM. Choose a point b = (m, eu ■ • • , ex) in the bundle space, and

choose a pair of tangent vectors T, T' at 6 with irT = t and irT' — t'. Then

il(l, t') is to be the linear transformation on the tangent space at m which,

with respect to the basis «,, • • • , ex, has the matrix fi(7\ T'). We will let

Ui,(t, t') denote the (i, j)th entry of this matrix.

7. Some characteristic classes [3]. The bundle of oriented frames of an

Af-dimensional real orientable Riemannian manifold, has as its group the

Lie group 0+(N); the Lie algebra g of this group is the set of all real skew-

symmetric NXN matrices (matrices (0,7) satisfying a,-,-= —an). Consider the

tensors Tr (r = l, 2, ■ ■ ■ ) defined as follows:

TriA, B, ■ ■ ■ , E) = 2j eotiifiiiii ' ' ' «»Vr

where A = (an), B = (bij), ■ ■ • , E = (en) are r skewsymmetric NXN matrices.

(Here, the summation extends over all choices of integers ii, ■ ■ ■ , ir from

among 1, • • • , N, and over all permutations ji, ■ ■ ■ , jr of ii, ■ ■ ■ , ir; e is

the sign of the permutation.)

Tr is invariant under 0+(N), hence gives rise to a characteristic form

firr on M. fir, is called the 2rth Pontrjagin form of M. Symbolically, it can be

written as Ut,= X)efi»iyt • ■ ■ Q«ryr, with fi a curvature form on the bundle of

oriented frames of M. U(t, t') is a skewsymmetric matrix (t, t' any tangent

vectors at a point of Ti); hence firr is zero unless r is even.

Note. If A is any NXN matrix, the polynomials pT(A) of the expansion

det(X7-yl)=\*-T-pi(yl)\"-1+ • ■ • +pN(A) are:
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Pr(A) = (~l)r2Z «»«i«<i/, • • • <»«,■

Thus77.(,4, • • ■ ,A) = (-iy-pr(A).

Suppose now that 217 has even dimension 2n. The tensor 5 which assigns

to any n skewsymmetric 2nX2n matrices A, 73, • • • , 77 the value

S(A, 73, • • • , 77) = X) ««.,»>*«.»4 " " " *<,„_!.•.„

is invariant under 0+(2n) (here e is the sign of the permutation taking

1, ■ ■ ■ ,2n into ii, • • • , iu, and the summation extends over all such permu-

tations). Thus S gives rise to a characteristic form fis on 217, called the

Euler-Poincare   form   of   M.   Symbolically,   it   can   be   written   as   fis

— Z-ie^il'2   '   '   ' "tin-itin*

If M has odd dimension, we define the Euler-Poincare form of M to be the

zero-form on M.

A proof of the following theorem can be found in [3].

The Gauss-Bonnet theorem. If M is a compact orientable Riemannian

manifold, then /^/fix is equal to the Euler-Poincare characteristic of M. (fix

is defined to be fis if M has odd dimension, and ( — l)n/n\(4ir)n-Qs if M has

even dimension 2n.)

Note. If A is a real skewsymmetric 2NX2N matrix, then (S(A, • • • , ^4))2

= 4NdetA.

Finally, suppose 217' is a complex hermitian manifold of complex dimen-

sion 2V. We consider its unitary bundle. The group of this bundle is U(N'),

and the Lie algebra g of U(N') is the set of all N' X N' skew hermitian matrices

(complex matrices (ay) satisfying a,-,= —ay). Each tensor Tr(A, 73, • • • , E)

= X--€a»'ui0«2J2 ' ' ' e«'r>'r *s an invariant symmetric tensor on g (here

A, B, ■ ■ ■ , E are r elements of g), and so 77, defines a characteristic form

firr on 217'. firr is called the 2rth Chern form of M'. Symbolically, it can be

written as firr = 2~l^'hh ' ' ' ^<U-> w'tn ^' a curvature form on the unitary

bundle of 217'.
8. Semi-simple Lie algebras [4]. From now on, i will denote the square-

root of —1.

The fundamental bilinear form of a Lie algebra g is the form (X, Y)

= trace (ad X o ad F), X, FGg. 8 is called semi-simple ii the fundamental

bilinear form is nondegenerate on g. It is known that the Lie algebra of a

compact Lie group is always the algebraic direct sum of a semi-simple Lie

algebra and an abelian Lie algebra.

The rank of a compact Lie group G is the dimension of any maximal abel-

ian subgroup of G.
Suppose G is a compact semi-simple Lie group (that is, the Lie algebra

g of G is semi-simple), and suppose 77(g) is a maximal abelian subalgebra of g.

So the dimension of 77(g) is the rank of G. Let g' denote the complexification
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g+z'g of g, and let 77(g') denote the complexification 77(g) +iH(%) oi 77(g).

Then 27(g') is a maximal abelian subalgebra of g', and g' has a vector-space

decomposition g'= 2Zg„ satisfying:

(a) a is a complex-valued linear function (called a root) on 77(g'), and ga

is the set of all eigenvectors of a: [77, X]=a(H)X lor any HCH(a') and

*Gg*.
(b) go = 77(g').
(c) Each g„ is one-dimensional.

(d) If a, 3, and a+B are roots, then [ga, g«] =ga+/j; if a+B is not a root,

then [ga, g<j]=0.

(e) If a is a root, then ka is a root if and only if k = 0, 1, or — 1.

27(g') is called a Cartan subalgebra of g'; an element of g„ is called a root

vector of g' with respect to 77(g').

The following relations hold: (77, ga)=0, (ga, gs)=0, and (77, 77)^0, for

any HCH(q') and any roots a, 8 with Bj£ —a. It is possible to choose one

element ea from each ga in such a way that (ea, e_„) = — 1, and that the num-

bers Nap defined by [ea, e^]=Nasea+p satisfy the relations: (1) 2V_a_(J = 2Vafl

(2) Npa= — 2V„(3 (3) Nip is a non-negative rational number.

From now on, it will be assumed that the ea's have been chosen in this

manner. We then define, for each root a, elements Xa, Ya, H", H" ol a':

Ji-a Ca ~T~  C— a, xi \.Ca,  C—aj,

Ya = i(ea - e-a),        77" = iHa.

The vectors Xa, Ya are called quasi-root vectors of g'. The following facts are

known.

(a) The elements Xa, Ya, 77" span g and lie in g. So a vector J2aaea

+ y^6a77a of g'(aa, 6a complex numbers) is in g if and only if each 6„ is pure

imaginary and a_a = a« (complex conjugate).

(b) If a is a root, 77G77(g'), and /*G77(g), then (77«, 77) =a(H), a(H") is
a positive real number, and a(h) is pure imaginary.

It can easily be seen that for any HCH(a') and any root a, [77, Xa]

= -ia(H) Ya and [77, Ya]=ia(H)Xa.

From now on, we will be dealing only with compact semi-simple Lie

groups; this serves to simplify the notation. All results hold, however, for

compact Lie groups, since every compact Lie group has a decomposition of its

Lie algebra into the algebraic direct sum of an abelian and a semi-simple Lie

algebra. Only slight modifications of the proofs are needed.

9. Homogeneous spaces [6]. Hereafter, G will denote a compact semi-

simple Lie group, and K a closed connected subgroup of G. The Lie algebras

of G and K will be denoted by g and f respectively, and m will denote the set

of all XGg for which (X, k) =0, all kC- Then ad TT is a set of linear trans-

formations of m (and so [m, f] lies in m), and g is the vector-space direct sum

of tn and f.



358 ALFRED ADLER [November

We can associate g with Ge (the tangent space to G at the identity e).

The fundamental bilinear form thus can be considered to be on Ge, and is in-

variant under ad G. li we define a bilinear form on the tangent spaces at other

points of G by right-translating the fundamental bilinear form at e, the re-

sulting bilinear form on G will be both left and right invariant under G. It

induces a metric on G/K in the natural way (see [6]).

We can also associate m with the tangent space (G/K)eK to G/K at the

point eK. Then K induces a group of orientation-preserving isometries of

(G/K),k, and in fact the effect of any ad k on m (kdK) is the same as the

effect of left-translation by k on (G/K)eK.

If t is a tangent vector at a point of G, we define an element tt of g as fol-

lows: Extend t to a left-invariant vector field on G, thus defining an element

of g; tt is to be the projection of this element on f.

10. The canonical connection of the second kind. There are now two prin-

cipal bundles to be considered: The bundle (G/K, B, 0+(N), ir, 4>) of oriented

frames of G/K (here N denotes the dimension of G/K), and the coset bundle

(G/K, G, K, p, <£')—where p is the natural projection of G onto G/K, and

where the strip maps $' are the natural ones.

Let oi be the connection on the coset bundle of G/K defined as follows:

If / is a tangent vector at a point of G, then co(t) =tt. This choice of connection

makes horizontal the elements of Ge corresponding to m; and so if fi is the

curvature form of co and if X, Y are tangent vectors on G which, when ex-

tended  left-invariantly, generate elements of m, then

U(X, Y) = - (1/2) [X, Y]t.

The connection w induces a connection on the bundle of oriented frames of

G/K in the following way:
A. Let Xi, ■ ■ ■ , XN be horizontal left-invariant vector fields on G which,

at any point of G, define a set of orthonormal tangent vectors whose orienta-

tion is consistent with that of G/K. Then there is a mapping A of G into B:

A(g) = (gK, pXi(g), ■ ■ ■ , pXN(g)). A(g) can be interpreted as the left-action

of g on (G/K)eK\ A maps K into 0+(N) by taking any element k oi K into the

matrix of ad k acting on the vectors Xx(e), ■ ■ ■ , XN(e)—i.e. acting on m.

Clearly, w o A=p.
B. A can be used to define a connection in B. H(A(g)) is to be the image

under A of the space of horizontal tangent vectors (with respect to co) to G

at g, and 77 at other points of ir~x(gK) is to be defined by the relations 77(6o)

= R0H(b), bdB and odO+(N). It is clear that this 77 is a connection on the

bundle of oriented frames of G/K; let ad co denote the corresponding 1-form

on B with values in the Lie algebra of 0+(N), and let ad fi denote the curva-

ture form of ad co. ad co is called the canonical connection of the second kind on

G/K.
C. We have the following simple results:
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(a) If / is a vertical tangent vector at a point gCG, then A(t) is a vertical

tangent vector at A(g), with (ad co)(A(f)) =A(co(/)). Also, A(co(i)) is the matrix

of ad tt with respect to the basis Xi, ■ ■ • , Xn of m.

(b) If x, y are horizontal tangent vectors at a point A(g), then there exist

horizontal vector fields X, Y at g with A(X), A(Y) horizontal vector fields

whose values at A(g) are x, y.

Proposition 1. If x, y, X, Y are as above, then

(adO)(x,y) = ad(0(X(f), Y(g)))[m\

(the symbol ad Z[m], ZCt, denotes the matrix of ad Zwith respect to the basis

Xu • ■ • , XN of tn).

Proof. (adfi)(x, y) = -adco([A(X), A(Y)](A(g))) =-A(w[X, Y](g))
=A(Q(X(g), Y(g))).

Now ad fi induces the form ad fi on G/K. Let g be a point of G. We will

denote pXj by Yj. Then L„ Y,(e) = Y,(g)—here 27, denotes left-translation by

g—and (ad fi)(L,Fj(e), LaYk(e)) is the linear transformation whose matrix

with respect to the basis LaYr(e) is (ad fi)(A(F,-(g)),A(Fjfe(g))) = -A(co[Fy,

F*](g)). Similarly, (ad fi)(F,-(e),F*(e)) is the linear transformation whose

matrix with respect to the basis YT(e) is —A(co[Fy, F*](e)). Thus, since ad fi

is bilinear, we have:

Proposition 2. If t, t' are tangent vectors at eK and if gCG, then

(ad Q,)(Lat, L/) w.r.t. {LgYr(e)} = (ad fi)(/, /') w.r.t. { YT(e)}.

Proposition 2 shows that one need consider characteristic forms on G/K

(with respect to the bundle of oriented frames) only on vectors at eK: For,

if one uses the connection ad co, then ad fi at any point gK can be expressed

in terms of ad fi at eK.

Proposition 3. Let c(K) and c(0+) denote respectively the characteristic

rings of G/K with respect to the coset bundle and the bundle of oriented frames.

Then c(0+) is contained in c(K).

Proof. We use the connections co and ad co. Let fir be a form of c(0+), and

define a tensor T on t by: T(X, ■ ■ ■ , Z) = T(ad X[m], ■ ■ ■ , adZ[m]),

X, • • • , ZCt- It follows from Proposition 1 that fir (using the curvature

form fi) is identical with fir (using the curvature form ad fi). Since fir is an

element of c(K) ii T is an invariant symmetric tensor on t, it remains to show

that T is invariant (clearly, it is symmetric): So suppose X, Y, • • • , Z and

A are elements of t; then:

T([A, X], Y, ■ ■ ■ , Z) + ■ ■ ■ + T(X, Y, • • • , [A, Z})

= 7(ad [A, X][m], ad F[m], • • • , ad Z[m]) + • • ■

= 7([ad A[m], ad X[m]], ad F[m], • • • , ad Z[m]) + ■ ■ ■
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and this final sum is zero since T is invariant under 0+(N) and since ad 7C[m]

is a subset of 0+(N). Since K is connected, it follows that T is invariant

under K.

Proposition 4 (See [2, p. 70]). Let J be the set of all elements of 7(f) which

can be written in the form J^,- 7\.S,-, where Ti and Si are elements of 7(f) of

degree greater than zero, and where each Si can be extended to an element of 7(g).

Then a characteristic form fir of c(K) is cohomologous to zero on G/K if and

only if T is an element of J.

Proof. We will prove here only that every 7£7 gives rise to a form i~lT

which is cohomologous to zero on G/K; the other half of the proposition will

not be needed here, and its proof is considerably more difficult.

So suppose T= y^.TjSi, with each Si extendable to an element of 7(g). It

will be shown below that each fiSi is cohomologous to zero—that is, 12,^ = dA,-,

for some form A,- on G/K. Then, since the Weil mapping is a ring homomor-

phism, and since dfir, = 0, it follows that fir = d(2fir<AAi).

Suppose then that S is an element of 7(f), extendable to an element of

7(g). The principal bundle with fibre G associated with the principal bundle

(G/K, G, K, p), is the bundle (G/K, GXKG, G, p'), where GXkG is the set of
equivalence classes of GXG under the equivalence relation gkXg' =gXk~1g'.

Let co be the connection on (G/K, G, K, p) defined previously, and let fi be

its curvature form. An argument similar to the one used in the proof of

Proposition 1, above, shows that co and fi, and the natural mapping of G into

GXkG, give rise to a connection co' on (G/K, GXkG, G, p'), with curvature

form fi', satisfying: 5(fi, ■ • ■ , fi)=5(fi', • • • , fi') (both of these forms are

considered to be on the base space G/K.)

Now 5£/(g), hence 5(fi', • • • , fi') is a characteristic form of G/K with

respect to the bundle (G/K, GXkG, G, p'). Since the Weil mapping is inde-

pendent of the choice of connection, and since this bundle is trivial (f(gK)

= gXg_1 is a cross-section), it follows that 5(fi', ■ ■ • , fi') is cohomologous to

zero on G/K, hence that fis = S(Q, • • • , fi) is cohomologous to zero on G/K.

Proposition 5. Let 77(f) be a maximal abelian subalgebra of f, let g', f, vn.',

and 77(f) denote respectively the complexifications of a, f, m, awd 77(f); so

77(f) is a maximal abelian subalgebra of V. Extend 77(f) to a maximal abelian

subalgebra 77(g') of g'. Let 77(m') =77(g')rW. Then 77(g') =77(f)+77(m').

Proof. Suppose 77£77(g'), with H=k+m (kdV, w£m'). Then
0= [77, 77(f)] = [k, 77(f) ] + [m, 77(f)]. Since [k, 77(f) ]£f and [m, 77(f)]
£m', it follows that [k, 77(f)] =0. But 77(f) is a maximal abelian subalgebra

of f; hence kdH(V), and m = 77-&£mV\r7(g') = 77(m'). Thus 77£77(f)

+77(m').
11. The abelian case.

Theorem. If K is abelian, all Pontrjagin forms of G/K are cohomologous

to zero.
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Proof. Let N, N' denote the dimensions of G/K, G. Since K is abelian, f

lies in 77(g). If we choose an orthonormal basis of g whose first N elements are

an orthonormal properly-oriented basis of m, then with respect to this basis

we have

. .      /ad 77[m]      0   \

for any element H of t.

Define T, T' as follows:

(a) If A = (an), B = (bij), ■ • ■ , £ = (ey) are r skewsymmetric real NXN

matrices, then T(A, 73, •••,£) = ^€a,1yl6,,y, • • • eir,r (ii, • • • , iT chosen

from among the integers 1, • • • , N).

(b) If A' = (a'lj), B' = (b'ij), ■ • • , E'=(e'tj) are r skewsymmetric real

N'XN' matrices, then T'(A', B', • • • , £') = £<>$* ■ ■ • «U (*i, • • • , i
chosen from among the integers 1, • • • , N').

Clearly T and T' are symmetric and are invariant under 0+(N) and

0+(N') respectively. They define tensors T, 7" on t in the following way: If

27i, • • • , 77r are r elements of f, then T(771( • • • , 77r) = T(ad 77i[tn], • • • ,

ad77r[tnj) and T'(HU ■ ■ ■ , Hr) = T'(ad Hi[i], • •• , ad77r[g]). Since K is

connected, T and 7" are elements of 7(f); and from the expression given above

for any matrix ad 77[g](77Gf) it follows that the summands of 7" give zero

contributions except in the cases when all the indices ii, • ■ ■ , iT lie between

1 and N, hence that T and 7" coincide on f. The method of proof of Proposi-

tion 3, §10, shows that the 2rth Pontrjagin characteristic form of G/K is

fir; and so the 2rth Pontrjagin form of G/K is fi^.

If the tensor T" on g is defined by T'(X, • • • , Z) = 7"(ad X[g], • • • ,

ad Z[g]), X, ■ • • , Z r elements of g, then T" is an element of 7(g) and also

an extension of 7" to all of g. Thus T'CJ (see Proposition 4, §10), and hence

fir- is cohomologous to zero.

12. Complex and symmetric homogeneous spaces [6; 8]. A homogeneous

space G/K (G a compact connected Lie group, K a closed connected subgroup

of G) is called symmetric if there is an involutive automorphism A of G (that

is, A2 = identity) for which K lies between the set K&. of all fixed points of A

and the identity component of Ka. A induces an involutive automorphism of

g (again denoted by A); if tn denotes the eigenspace for the eigenvalue — 1 of

A, then g = f+fn, and A([tn, fit]) = [Am, Am] = [ — fit, — in] = [fit, fit], i.e.

[fit, fit] lies in t. It is easily seen that fit is the orthogonal complement of f

with respect to the fundamental bilinear form of g. So we conclude that

[m, nt]cif.

By a C-space we will mean an even-dimensional homogeneous space G/K,

with G a compact semi-simple Lie group and K a closed connected subgroup

of G whose semi-simple part coincides with the semi-simple part of the cen-

tralizer of a toral subgroup of G. Wang has shown in [8] that the C-spaces are

exactly the simply-connected compact complex homogeneous manifolds.
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Theorem. If G/K is a symmetric space or a C-space, then all characteristic

c(K)f and c(0+)-forms of degree greater than (dimension G/K) —(rank G

— rank K), are zero. If G/K is a symmetric C-space, then rank G = rank K.

Proof. If G/K is symmetric, it has been proved by H. Cartan [2] that the

cohomology ring H(G/K) of G/K is ring-isomorphic with a tensor product

c(K) <g> Y, where Y is the Grassman algebra over a vector space of dimension

N—R (N=dim G/K, P = rank G — rank K) and where the degree of an ele-

ment c®y (cdc(K), yd Y) is understood to be the sum of the degrees of c

and y if these are both homogeneous elements. So if fir were a nonzero

c(7C)-form of degree greater than N—R, and if oi, • • • , aN-R were a basis

of the vector space generating Y, the element fir®(ffli • • • aj\r-«) would be a

nonzero element of H(G/K) of degree greater than N. This cannot be, since

N is the dimension of G/K. It follows that au.c(7C)-forms of degree greater

than N—R are zero; hence all c(0+)-forms of degree greater than N—R are

zero, since c(0+) is contained in c(K).

Next, suppose G/K is a C-space. It will now be shown that every pair of

root vectors ea, e-a lies either in f or in m', hence that every pair of quasi-

root vectors Xa, Ya lies either in f or in m. Since [77, Xa] = —tee(77) Ya and

[77, Ya] = ia(H)Xa ior any 77£77(g'), it follows from this that [77(m), m]f = 0

(where 77(m) = mn77(m')). Thus fi(77, X) =0 for any 77£77(m) and X£m.

But then suppose fir is a c(7C)-form of degree greater than N — R. The

dimension of 77(m) is R, and so we can choose a basis of nt whose first R

elements are in 77(m). Consider any term QT(X, • • ■ , Z), where X, • • • , Z

are elements of m. If this term is expanded in terms of the above basis of m

(that is, X, • ■ • , Z are written in terms of this basis), then every term

fir( • • • ) of this expansion will have at least one entry from H(m). Since

fi(77(m), m) is zero, it follows that each fir( • • • ) is zero, hence that

&t(X, • ■ ■ , Z) is zero.

We now show that every pair ea, e_a lies in f or m'. First, [77(m), f] =0:

For if this were not zero, there would be an element 77£77(m) and an element

^aaea (aa complex numbers) in f with [77, ^2aaea]rri0; then, since [m, (]Cm

and since the semi-simple part of f is the semi-simple part of the centralizer

of a torus T of g (it can easily be seen that our choice of 77(g') can be sub-

jected to the condition PC7/(g')ng), it follows that there is an T7'£P with

[77', [77, 2a«e<*]]^0—i.e. '^2aaa(H')a(H)ea^0, which cannot be since it

implies that [77', ^aaea]^0. But the condition [77(m), f]=0 implies that

[77(m'), f]=0, hence that the root vectors of the semi-simple part of f

with respect to 77(f) are in fact root vectors of g' with respect to 77(g'). Hence

it is clear that f is spanned by the pairs of root vectors ea, e_« of g' which lie

in f; and it follows from this that the root vectors of g' which do not lie in

f, must lie in m'.

Finally, suppose that G/K is a symmetric C-space and that rank G shrank K.
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Then there exists a nonzero element 27 in 77(m'). Let a be a root such that

a(77)?^0. Since G/K is a C-space, ea lies in f or in tn'. But the fact that

a(H)^0 then leads to a contradiction: For example, if eaCtn', then [77, ea]

= a(H)ea is a nonzero element of f (since [m\ m'jcf), which cannot be since

fAm' = 0.
13. Maximal abelian subalgebras. Let K be a compact connected Lie

group with Lie algebra f. Let 77(f) be a maximal abelian subalgebra of f, and

let f, 77(f) be the complexifications of t, 77(f). Let X„, Ya, Xg, Y9, ■ ■ ■ de-

note the quasi-root vectors of the semi-simple part of t with respect to 72(f).

Let T be an invariant symmetric tensor on t.

Lemma. Consider any term T(Hi, • • • ,HitXai, ■ ■ • ,Xa<l, F^, • • • , Ypm),

with the His elements of 27(f) and the Xar, Ygr's quasi-root vectors of the semi-

simple part of f with respect to 77(f). Suppose ai(Hi)^0. Then this term can be

written as a linear combinations of the following types:

(1) terms T( • ■ ■ ) with j+1 entries from 77(f);

(2) terms T( ■ • • ) with j entries from 77(f), with Hi in at least two entries.

Proof. The invariance of r(77i, • ■ • , 77y, 77i, Xai, • • • , F^, ■ • • ) under

F„, shows

0 = iai(Hi) ■ T(Xai, Hi,--, Hi, Hh Ha„ • • • , Th, ■ ■ ■) (a)

+ iai(Hi) ■ T(HU Xai, 778, • • • , H,, Hu Xa„ ■■-, Yh, ■■■)

+ iai(Hj) ■ T(Hi, ■ ■ ■ , Hj-i, Xai, Hi, Xa2, ■ ■ • , Ybv • • • )

+ iai(Hi) ■ T(HU • • • , Hh Xai, Xav - - - , Y01, ■ ■ ■ ) (b)

+ terms of the form T(HU ■ • ■ , Hj, Hi, ■ ■ ■ ).

The terms (a) and (b) both equal «i(77i) • 7'(771, • • • ,Hs,Xai, ■ • • , Ypv • • •).

Since ai(Hi) 5^0, the lemma is proved by bringing (a) and (b) to the left side

of the equality sign.

Theorem. If X, • • ■ , Z are any elements of t, then T(X, • • • , Z) can be

written as a linear combination (with real coefficients) of terms T( ■ • • ) all of

whose entries are elements of 77(f). Thus the invariant symmetric tensors on t

depend on the maximal abelian part of t.

Proof. Consider any term r(77i, • • • , 77y, Xav • • • , Fp„ • • • ). It will

be shown that this term has property P: It is expressible as a linear combina-

tion of terms T( • • • ) each having at least j + 1 entries from 77(f). Thus

the proposition will be proved by induction on j. We will denote by (*) any
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linear combination of terms T( • • • ) each having at least 7 +1 entries from

77(f).
Suppose a,(Ht) j^O or f3,(Ht)^0 for some j and t (if this is not the case, see

Case 2, below); and for simplicity of notation, suppose it is ai(77i) which is

not zero. The preceding lemma shows that 7(77i, • • • ,77,-, Xav • • • , Fp„ • • • )

is expressible (modulo (*)) as a linear combination of terms with 77i in at least

two entries. So we must show that each of the terms in this linear combina-

tion has property P. We continue the process described in the lemma until

we arrive at a point where the terms are of the form P(77i, • • • , 77i, 77^, • • • ,

H'k,XXv ■ ■ • , Yh, ■ ■ • ),withX,(771)=Xs(771)= • • • = bi(Hi) = 82(Hi) = ■ ■ ■
= 0. We then apply the process of the lemma to 77^, and so on, finally arriving

at the situation 7(77i, • • • , 77y, Xai, ■ ■ ■ , Y01, • ■ • ) = (*) + (**), with (**)

a linear combination of terms of the form

p    terms
<—■        —>

<-j terms->

t=T(Hh ■ • ■, Hi, h2, ■ ■ ■, h2, ■ ■ ■, hd, ■. ■ ■, hd, h, ■ ■ ■, h, Xri, ■ ■ ■, FA„ • ■ •),

h2, ■ ■ ■ ,hd elementsolH(t),hdH(f), andTT(fh)= ■ ■ ■ =irr(hd) =Ar(h,) = • • •

= Ar(hd) =0 for all subscripts r. So the theorem will be proved if it can be

shown that any term t of (**) has property P.

Case 1. Suppose that for some r, irT(h)y^Q or Ar(ft)?*0; and, for simplicity,

suppose it is irx(h) which is not zero. Then the invariance of

p + 1 terms

T(HU ■ ■ •, Hh h2, ■ ■ ■, h2, ■ ■ ■, hi, ■ ■ •, hd, h, ■ ■ ■ , h, XT„ ■■ ■ , YAl, • • •)

<-/ + 1 terms ->

under F», shows that t has property P.

Case 2. Suppose irr(h) —Ar(h) =0 for all r. Choose an 77 with iri(H)7^^,

77£77(f). Then the invariance of the following term under FT, shows that /

has property P:
P     terms

T(HX, ■ ■ -,Hi, h2, ■ ■ ■ ,h2, ■ ■ -,hd, ■ ■ ■ ,hA, h, ■ ■ ■ , h,H,XT1, ■ ■ ■, FA„ • • •).

<-7 + 1 terms->

Corollary 1. If rank Gt* rank K, the Euler-PoincarS characteristic of

G/K is zero. (This is part of the theorem proved in [5].)

Proof. The Gauss-Bonnet theorem shows that it suffices to prove fis is

identically zero. This is true by definition if G/K has odd dimension. If the

dimension of G/K is 2N, choose 77(f) to be a maximal abelian subalgebra of

f and let 77i, • • ■ , 77at be any elements of 77(f); then 5(77i, • • • , 77^)

=  2«(ad ^i[m]).v« • • • (ad iTyfm])^^.     It    will    be    shown    that



1957] CHARACTERISTIC CLASSES OF HOMOGENEOUS SPACES 365

S(Hi, • • • , HN) is zero. It then follows from the preceding theorem that 5 is

identically zero on f, hence that fis is identically zero. Let 77(f) = 77(f) +J77(f).
Extend 77(f) to a maximal abelian subalgebra 77(g') of g', and let 77(tn)

= 77(g')ntn and 77(m') =77(g')nm'. Then 77(g') = 27(f) +27(m'), and
77(tn')7^0 since rank G^rank K. Ii we choose an orthonormal properly-

oriented basis 771, • • • , 77", X, • • • , Z of m (with Hl, ■ • ■ , H' in 77(m)),

then, with respect to this basis,

r   i      /   0  I   0  \
ad H,[m] = [-J-\-j:) j=l,---,N

with Aj a skewsymmetric (22V — s) X (2N — s) matrix.

In the definition of 5(72!, • • • , Hn), one of i\, • • • , im must in each sum-

mand be equal to the number 1. From the above matrix it can be seen that

the corresponding term (ad 77,-[m])i,<t is zero. Thus S(Hi, • ■ ■ , HN) =0.

Corollary 2. If rank G = rank K, the natural mapping of 7(g) into 7(f) is

1-1.

Proof. Choose any maximal abelian subalgebra of g which lies entirely in

f. The preceding theorem shows that any element of 7(g) is then determined

by its values on f.
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