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1. Introduction. In an earlier paper [12] the author has found certain

numerical conditions which must be satisfied if a (v, k, X) configuration is to

possess a regular collineation group. These conditions were derived from rela-

tions similar to the incidence matrix equations of [3; 4]. Here these conditions

are extended in that we show the existence of certain matrix equations which

must be satisfied if a iv, k, X) configuration is to possess an arbitrary collinea-

tion group. Using these equations, it is shown that the number of transitive

classes of points is always equal to the number of transitive classes of lines(2),

and that the matrix equations always lead to a rational congruence.

Specializing the collineation groups considered to the class of standard

collineation groups, we apply the Hasse-Minkowski theory to the rational

congruence mentioned above and derive numerical conditions on the param-

eters v, k, X, the order m of the collineation group, and the number N of fixed

points. A standard collineation group is one whose nonidentity elements all

fix the same set of points and lines; any collineation group of prime order is

standard, so a (v, k, X) configuration with nontrivial collineations possesses

nontrivial standard collineation groups. The author wishes to take this op-

portunity to thank H. J. Ryser for his helpful comments in the preparation

of this part of the paper, in particular with the application of the Hasse-

Minkowski theory.

Several interesting but unsolved problems in the theory of groups arise

from these investigations. An intimate connection is displayed between the

theories of collineations of (v, k, X) configurations, groups possessing subsets

similar to partial difference sets, and topics in the theory of matrices with

integer elements.

2. Collineation groups. Let v, k, X, where v>k>\>0, be integers satisfy-

ing \(v — 1) =k(k — l). Let rr be a collection of v points and v lines, together

with an incidence relation (i.e., point on line, line contains point, etc.) such

that each point (line) is on k lines (contains k points) and such that each pair

of distinct points (lines) are on exactly X common lines (contain exactly X
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common points). (These axioms are redundant, a fact which is of no interest

here; see [4; 7; 15] for further discussion.) Then ir is a (v, k, X) configuration

(or a symmetric balanced incomplete block design, or a X-plane); if X = 1 then

ir is a finite projective plane with v = n2+n + l, k = n + l. In general, we define

the order n of ir as n = k— X. A collineation of ir is a one-to-one mapping of

points onto points, lines onto lines, which preserves incidence.

Let ® be a collineation group of ir, and let m be the order of ®. The points

of ir can be broken up into Wi transitive classes (P,-, i=l, 2, • • • , Wi, where

P and Q are in the same transitive class if and only if Q = Px for some x in ®.

Similarly, the lines of ir can be broken up into w2 transitive classes $,-, i

= 1, 2, • ■ ■ , w2. Throughout this paper we shall use "class" as a synonym

for "transitive class" (with respect to ®), if no ambiguity results. In each class

6>i choose a "base point" P, and in each class gi a "base line" Ji. Let tyi be

the subgroup of ® which fixes Pi and let 3i be the subgroup of ® which fixes

Jt; let $; have order r* and let 3,- have order s,-. Then each point in (Pi is

fixed by a subgroup of order r, and each line in $, is fixed by a subgroup of

order st. Let 7?,-,- be the subset of ® consisting of all x such that P(X is on Jj,

and let a,> be the number of elements in Dy. Note that ^Pi7J>,-y3y = 7?i/i and

so both fi and Sj divide a,-,-.

Theorem 2.1. (i) 53j °0'A;= 53; ajt/rj = k, for each i=l, 2, • • • , Wi, or
i=l, 2, ■ ■ ■ , w2, as appropriate.

(ii) 53?' a2j/sj = rin+\m, for each i=l, 2, • ■ ■ , Wi, and J3, a2i/r,- = 5j«

+\m, for each i=l, 2, ■ ■ ■ , w2.

(iii) For each i, j=l, 2, - • • , Wi, ir*j, 53' aitajt/st=\m, and for each

i,j=l, 2, ■ ■ ■ ,w2, i^j, YjtaHatj/rt = \m.

Proof, (i) Each line of $j which contains Pi is counted exactly Sj times by

a,y, hence 53j aij/sj = k; the other half of (i) is similar, counting points on the

line /,.

(ii) Let i be fixed, where i is one of 1, 2, ■ • • , Wi. If xG®, xG^ii then

Pi^PiX, so there are exactly X choices of j (not all necessarily distinct) such

that Pi, PiX are both on Jjy, for some y. But for each j and y, there are in

fact Sj choices of y. Hence y~l, xy~lCDa, or x = dia7r\ where d\, d2CDij,

holds for X choices of j and sj choices of the pair di, d2CDa for each such i;

note that diC^id2. Conversely, if diCtyidi, where di, diCDy, then di, d2

determine x = didr1 G^>. Hence 2~2,i aij(aij — ri)/sj counts the number of ele-

ments of ®, each X times, excepting the elements of tyi. So ^3, aij(aij — ri)/sj

= \(m—ri). Hence, using (i), J3ya2/^ = r^+Xm — r,X = rjW+Xw. The other

half of (ii) is similar, using the pair of lines /,-, 7,x, xG3;, to find representa-

tions x = dr1d2, where di, d2CDji-

(iii) Let i, j be chosen from among 1, 2, • • • , W\, where ij&j. For each

#G®, Pi and PjX determine X lines Jty, whence as in (ii), x = did;r1, where

diCDjt, d2CDit, for X choices of t and st choices of dx, d2 for each /. Thus the
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first half of (iii) follows immediately, and the other half is analogous.

Now let Ci be the square diagonal matrix of order w2 with sr1 in its ith

diagonal position; let C2 be the square diagonal matrix of order wx with rr1

in its ith diagonal position. Let Bi be the square matrix of order Wi with \m

in all positions off of the main diagonal and r,w+Xw in the ith diagonal posi-

tion; let B2 be the square matrix of order w2 with Xw in all positions off of

the main diagonal and 5,w+Xw in the ith diagonal position. Let A be the

matrix (an). Throughout the paper we shall let ET denote the transpose of the

matrix E, and let det (E) denote the determinant of E, if E is square. Then

Theorem 2.1 can be rephrased in matrix form as follows:

Theorem 2.2. ACiAT = Bi, ATC2A=B2; each row sum of ACi and each

column sum of C2A is k.

Now suppose Wi>w2. Then the matrix ACi can be made into a square

matrix Ai of order Wi by adjoining Wi — w2 columns of zeros on its right, and

the matrix AT becomes a square matrix A2 of order Wi by adjoining wi — w2

rows of zeros beneath it. But AiA2 = Bu whence Bi must be singular, as both

Ai and .42 are. Similarly, if w2>Wi, then there are singular square matrices

A3, At such that AzAi = B2, whence B2 is singular.

Lemma 2.1. Let B be a square matrix of order w with bi+d in the ith position

on the main diagonal, 6,^0, awd d elsewhere. Then(3)

det (B) = u.bi+d[ z(^ n*yj/ *<}

Proof. Subtract the last column of B from every other column; the result-

ing matrix B' has the same determinant as B. In the lower right corner of B'

is the element bw+d, the rest of the last column consists entirely of d, the rest

of the last row consists entirely of — 0«, and the rest of B' is a diagonal matrix

of order w — 1 with bi, b2, ■ ■ ■ , 6„_i down its main diagonal.

Now we prove the lemma by induction. It is clearly true if w = l, so we

assume it true for w—1. Let B have order w and consider B' as defined above.

It is easy to see  that  det (B) =det (B') =bi det (Di)+(-l)v-1d det (D2),

where
b2 ■       d 0    •  bt

03 0 03 0

Di = ■ ,    Dt =

0     '        • :     0
ow_i d 0 0M_i

— bw • ■ •   —bw-bw + d -Jo, ■   — bw • • • — bw

(') If 61, say, is zero, then det (B) =rfH _" bi, while B is singular if as many as two of the

bi are zero.
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But by the induction hypothesis,

det (Di) = II bi + d[ 2Z [ IT ii) / bij ■

Also, it is easy to compute det (T>2):

w-l

det(£>2) = (-l)»(-b„)Ubi.
t'=*2

Combining these, it is immediate that the formula of the lemma is correct.

Since the matrices 23i and B2 consist of positive entries, they are both

nonsingular. So:

Theorem 2.3. If ® is a collineation group of the (v, k, X) configuration ir,

then the number of transitive classes of points of ir equals the number of transitive

classes of lines of ir (with respect to ®). The matrix A of Theorem 2.2 is square

and nonsingular.

From Lemma 2.1 we can derive some further results. Let w = Wi = w2, and

let r = Wj,, s = IXs,-, where the products are from 1 to w. Then where all

sums are from 1 to w, det (Bi) = snw~l(n+\m2~2,sTl). However, m/si is the

number of lines in the class gi, so m2~^,sTx=v. Since X(» — 1) =k(k — l) implies

n+~r\v = k2, this yields:

det (Bi) = sriw-1(n + \v) = sn^k2.

Now, det (Ci) = l/r, and so [det (A)]2 = rsnw~*k2. The other matrix equation

leads to the same result. Thus we have proved:

Theorem 2.4. If r, s, w are defined as above, then rsnw~1 is a square.

Now let S be the square matrix of order w, all of whose entries are +1.
Then Theorem 2.2 can be stated as ACiAT = nC21+\mS, ATC2A=nCrl

+XmS, and AdS=SC2A =kS.

Theorem 2.5. If Di is the diagonal matrix of order w with x, in the ith di-

agonal position, where each x, is a nonzero real number, if X and D2 are non-

singular matrices of order w, and if n, k, y are reals satisfying nj^O, k?^0,

y53< Xi = k2—n, then

(i)      XDiXT = nDi1 + yS (ii) XDtS = kS,

implies

(iii)    XTD2X = nDr1 + yS, (iv) SD2X = kS.

Proof. From (i) we have Di = n(XTD2X)-l+yX-1S(X-1)T; but from (ii),

X-'S = k~lDiS and S(X~1)T = (X-'S)* = k-lSDlt so (X^X)'1

= n-1(Di-yk-2DiSDi). Let P = (XTD2X)-\nDi-1+yS) and let 2 be the iden-
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tity matrix of order w. Then:

P = I + n-'yDiS - yk~2DiS - y^-H-^DiS)2

= I + yn-'k-^k2 - n)DiS - y(DiS)2].

But DiS is a square matrix of order w whose ith row consists completely of

x,, and if we let b = Z» *<■ trien (DiS)2 = bDiS. Since yb = k2 — n:

P = I + yn~lk-2(k2 - n - yb)DxS = /,

and we have proved (iii).

From (iii), D2X = n(X~l)rDrl + y(X~1)TS, so SD2X = nS(X~l)TDrl

+yS(X~l)TS. As above, S(X-l)T = k-lSDu so SD2X = nk~1S+yk~1SDiS. The

product S(DiS) "sums the columns" of DiS, and so SDiS = bS. Hence SD2X

= k~1(n+yb)S = k~1(k2)S = kS, which is (iv).

Clearly the necessary "converse" of Theorem 2.5 can be proved, whence if

d, Bi, i=l, 2, are the matrices of Theorem 2.2, we have the following:

Corollary. The square matrix X satisfies (i) if and only if it satisfies (ii):

(i)     XCXXT = Bx,    XCXS = kS; (ii)     XTC2X = Bt,    SCtX = kS.

Hence we need concern ourselves with only half of Theorem 2.2, if we are

merely interested in the existence or nonexistence of the matrix A = (an).

3. Standard collineations. Suppose ® is a collineation group of the (v, k, X)

configuration nr, and as above let m be the order of ©. If every nonidentity

element of © fixes the same set of points and lines of ir, then we say that ®

is a standard collineation group; note that this is equivalent to demanding

that every r,- and 5,- be either 1 or m. Let N be the number of points fixed by

®, and let Nx be the number of lines fixed. The number of transitive classes

of points is (v — N)/m + N, while the number of transitive classes of lines is

(v — Nx)/m + Nx; since these two expressions must be equal, we have N = Ni.

The matrix Ci has t=(v — N)/m ones on its main diagonal and we can

assume that these are in the first / positions; the remaining TV elements on

the main diagonal are all l/m. The matrix Bi has t elements w+Xwi on its

main diagonal, which we can also assume to be in the first t position; then the

remaining N diagonal elements are mn+\m. Let C — &, B=Bi.

The classical theory of rational congruence asserts that if A, B, C are non-

singular matrices (4) of the same order, consisting entirely of rational entries,

and if ACAT = B, then the "Hasse invariants" of B and C are equal (and of

course, [det (yl)]2[det (C)]=det (B)). Although this theory applies to the

more general matrix relations of Theorem 2.2, we shall confine our attention

to the standard collineation group situation. Since there exists a rational non-

singular matrix D such that DC'DT=C, where C is the diagonal matrix with

(4) B and C must be symmetric, and this assumption is tacitly made at all relevant points

in the discussion which follows.
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one in the first / diagonal positions and m in the last N positions, we can as-

sume that C has been replaced by the integral matrix C. Furthermore, r = s,

so Theorem 2.4 asserts that nt+N~1 is a square; i.e., either t + N—1 is even or

n is a square.

We now proceed to a description of the relevant points of the Hasse-

Minkowski theory of rational congruence; the reader is referred to [13,

Chap. II] for proofs and a more thorough discussion. Let C=B mean that

C and B are rationally congruent matrices: that is, C and B are nonsingular

matrices of the same order, with rational entries, for which ACAT = B for

some matrix A with rational entries. If x and y are nonzero rational numbers

such that x/y is a rational square, then we write x=y.

First we discuss the Hilbert norm-residue symbol (Hilbert symbol, for

short) (x, y)p; (x, y)p is defined for all nonzero rational numbers x and y,

and for all primes p. Where no ambiguity is possible, we shall omit the sub-

script p on the Hilbert symbol. Some of the properties of the Hilbert symbol

are given below, where it is understood that x, y, z are nonzero rational num-

bers :

(1) (x, y)P = (y, x)p;

(2) (x,y)P(x, z)p=(x, yz)p;

(3) (x, y)P = (x, yz2)p;

(4) il n, «i, m are nonzero integers and m = Mi^0 (mod p), then (n, m)v

= (mi, m)p;

(5) if m is an integer, m=^0, 1, then (n, n)p= (n, n — l)p= (n, — l)p;

(6) if m and m are nonzero integers, if p is an odd prime, and if n = pani,

m = pbmi, where Mi and Wi are prime to p, then (n, m)p = ( — l\p)ab(ni\p)b

(mi\p)a, where (x|p) is the Legendre symbol.

Now let D be a square nonsingular matrix of order u, consisting of rational

entries, and let Di be the determinant of the ith ordered submatrix in the

upper left corner of D. For our purposes we can assume that all of the 2?,- are

nonzero. Then for each prime p the Hasse invariant cp(D) is defined by:

M-l

cp(D) = (-l,fl.),II (Di, -Di+i)P.
1=1

Then B=C if and only if cp(B) = cp(C) for all primes p, and det (B)

^det (C).

Let a, b be rational numbers, u a positive integer, and define an (a, b, u)-

matrix to be a square matrix of order u with a+6 on its main diagonal and b

elsewhere.

Lemma 3.1. If a, b are integers and B is an (a, b, u)-matrix, then det (B)

= a"~l(a+bu). If B is nonsingular and if p is an odd prime, then cp(B)

= (a, -l)f -m(a, u)p(-ua"~\ a + bu)p.
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Proof. The first part of the lemma follows from Lemma 2.1. To prove the

second part, subtract the last column of B from every other column, then

subtract the last row from every other row. This yields a matrix D=B, where

D has a+b in the lower right corner, —a in the rest of the last row and last

column, and the rest of D has a off of the main diagonal and 2a on the main

diagonal. Letting D, be the determinant of the ith ordered submatrix of D

in the upper left corner, we have:

Di = a\i + 1) for i = 1, 2, •••,«- 1,    and   Du = au^(a + bu).

Then:

u—2 u—2

II (Di, -Di+i) = II («'(* + 1)- -ai+1H + 2))
i—1 »-l

= n («*. -<*i+i) ii (»m, i+1) n («i+2>»+2) n (»+1, -(*+2))
<-i        1-1 1-1 t-i

= (a, -lY(a2, 2)(a«, u) U (i + 1, -1) f[ (-1, i + 2)
<-i ,-i

= (a, -l)«(-o«, u),

where e = (w — l)(u — 2)/2, and where we are assuming that p is odd; thus

(2, —l)p=+l, for instance. So:

cp(D) = (-1, a"-x(a + bu))(au-1u, -a^a + bu))(a, -l)«(-a", «)

= (a, -lY^-^i^a, u)(-ua"-\ a + bu),

and the lemma is proved.

Now we return to the matrices B and C of the standard collineation group

situation. If N = 0, then the group & is in fact regular and this case has been

treated in [12]; if N = v, then m = l and the relevant matrix equations are the

incidence matrix equations of [4]. So we assume that N^O, v in what follows.

It is easy to see that cp(C) = (m, — l^t^+i)/2, so we have c»(B) to compute.

Sum the last N rows of B, multiply by X/(w+XiV), and subtract from

every other row; then sum the last N columns, multiply by X/(w+XAr), and

subtract from every other column. The result of these operations is a matrix

B'^B, where B'=BX*@B2, and where Bx* is an (w, \mn/(n+\N), ^-matrix,

B2 is an (mn, \m, ./V+matrix ("©" denotes matrix direct sum). Furthermore,

Bx*^Bi, where Bi is an (w(w+XN)2, Xww(w+XiV), /)-matrix. We need the

following lemma, whose proof will be found in [13]:

Lemma 3.2. If D=DX®D2, where each Di is rational and nonsingular, and

if dt = det (Di), i=l, 2, then cp(D)=cp(Dx)cp(D2)(di, d2)„.

Since n(n +\N)2 +\mn(n +\N)t = w(w +XiV)(w +\v) = n(n+\N)k2, we

have:
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cp(Bi) = (n, -l)«<«-»'»(», ^(-tn'-1, n(n + \N))

= (n, -1)'(,+1"2(« + X2V, -tn''1),

and also, det (Bi)^n'(n+\N).

Similarly,

cp(B2) = (m, -iyrw+»l*(n, -lyw-u/ifo #)(„,, „)*-i(» + X2v\ -AT(Mm)"-1),

and det (232)^MAr-1ww(«+X2Vr).

Now we shall understand that ( + l)1/2= +1; then (x2, y)1'2=+l, for

instance. Furthermore, (n, x)'+N~1= +1 for all x, since either n is a square

or t + N—1 is even. Now from the above expressions for cp(Bi) and det (Bi),

we have, using Lemma 3.2 and simplifying:

cp(B) = (m, -l)w<™2(«, -1)'(», m)"-l(n, N)(n + \N, -nN(v - N)),

where e = t(t + l)/2 + (N - 1)(N - 2)/2.  But either n is a square, or

e=(t + N-l)/2 (mod 2), so we can replace e by (t + N-l)/2.

Lemma 3.3. For odd primes p, (n, N)p(n+\N, —nN(v — N))p = (n, X)p-

Proof. The proof is extremely tedious and long, but is rather straight-

forward, relying highly on property (6) of the Hilbert symbol. We will give the

complete proof for the case m^O (mod p), since this amply demonstrates the

technique, and only sketch the case n = 0 (mod p). For the rest of the proof,

all congruences are modulo p. Let/= («, \N)(n+\N, —nN(v — N)); we must

show that/= +1.

I. Suppose N = 0. Then /=(«, X)(m, v-N). If v^O, then f=(n, \v)

= (n, k2 — n). If k2 — nf^0, then p divides neither argument, so/=+l; if

k2-n = 0, then n = k2^0, sof=(k2, k2-n) = +1. If tsO, then n = k2-\v = k2,

so again/= +1.

II. Suppose TVyO. Then/ =(n,\)(n+\N, -nN(v-N)).

(1) If n+\N=0, then n=-\N, so Xf^O. Hence f=(n+\N, \(v-N)).

But \(v-N)=k2-(n+\N)=k2, so if v^N then f=+l. If v = N, then

k = 0. Let n+\N = p"ni, k = phki, where Mi and ki are prime to p. Then

\(v-N)=p2bk\-pani.

(a) Ifa<26, thenX(w-2V)=pa(p26-aA2-Mi),so/=(-l|p)a(Mi|p)°(-Mi|p)0

= +1.

(b) If 2b<a, then \(v-N) = p2b(k\-pa~2bm), so/= (-11 p)2ab(k\\ p)a(ni\p)2b

= +1.

(c) Ifc = 2ft, thenn+\N = p2bm,\(v-N)=p2b(k2i-ni). If £2-Wi^0, then

it is easy to see that/= +1. If k\ — Mi=0, then \(v — N) =pcd, where c>2b and

d is prime to p. But then /= (- 11 p)2bc(ni\p)c(d\ p)2b = (m\ p)c= +1, since

Wl==jfe2=i0.

(2) ll n+\N^0, then f=(n,\)(n+\N, v-N). Ii \ = 0, then n+\N=n,

while k2-(n+\N)=\(v-N)=0, so k2=-n+\N=n, and hence/=+l. If

X^O, v-N=0, then/=(«+X2V, v-N); but n+\N=k2, so/= +1.
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For the case w = 0, we will indicate an organization of the proof which

will yield the desired result; it does not seem unlikely that there is a shorter

and more elegant method of proof, however.

I. Jk=X=0.

(1) N=0,
(2) Nj±0,

(a) TV-1=0,        (b) TV-1^0.
II. k=\^0.

(!) V-N=0,

(2) 7V=.0,
(3) N^O, v-N^O.

Now since cp(C) = (m, —i)NW+i)itt We have proved:

Theorem 3.1. If the (v, k, X) configuration ir possesses a standard collinea-

tion group ® of order m, if N points of ir are fixed by all of ®, awd if n = k—\,

t=(v — N)/m, then for each odd prime p:

. (t+S-l)/i N-i
(n, —l)p (n,m)p   (n, \)p = + 1.

The condition of Theorem 3.1 can be rephrased in terms of Diophantine

equations, where we note the following: the equation x2 = ay2+bz2, a and b

nonzero integers, possesses a nontrivial solution in integers if and only if

(a, b)p= +1 for all primes p. Since the matrices B and C are positive definite,

the case p = 2 is trivial, and Theorem 3.1 allows us to assert:

Theorem 3.2. // the (v, k, X) configuration ir possesses a standard collinea-

tion group ® of order m, if N points of ir are fixed by all of @, awd if n = k —X,

t= (v — N)/m, e= (t + N — l)/2, then the equation

x* = ny2 + (-lYmF-^z2

possesses a nontrivial solution in integers.

In the statement of Theorem 3.2, nothing is said about the case when

t + N— 1 is not even; however, in this case w must be a square, n — n\, so

x = Wi, y = l, 2 = 0 is a nontrivial solution. Note further that we have only

demonstrated Theorems 3.1 and 3.2 for TWO, v. However, the results of

[4; 12] are easily seen to be equivalent in these cases (actually, the results

of [4; 12] are cast in a form similar to Theorem 3.2, rather than Theorem 3.1).

If the (v, k, X) configuration exists, then from [4], the condition

(w, — l)c"_1,/2(w, X) = +1 must also hold; using this, the above results can be

somewhat simplified, as follows:

(i) If N is even then either w is a square or m is odd and

(m-l)/2
(n, —l)v (n, m)p = + 1.

(ii)  If N is odd and m is even, then (w, — 1),= +1, where e = (v — N)/2m.
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We omit the proofs of these statements; they are not difficult.

4. Finite projective planes. Now we specialize the configurations to the

class of finite projective planes, which are the (v, k, X) configurations with

X= 1. Suppose ©, of order m, is a standard collineation group of the projective

plane ir of order w. The set of fixed points and lines of ir (with respect to ®)

must be one of the following (see [l; 5]):

Type (0). The empty set; then N = 0.

Type (1). A line together with w0+l points on the line and w0 further lines

through one of these points; then iV = Wo + L

Type (2). A line K together with w0 points on K, one point Q not on K,

and the w0 lines joining Q to the w0 fixed points on K; then 7V = Wo + L

Type (3). A projective subplane ir0 of ir, where 7r0 has order w0; then

N = nl+n» + l.
Suppose L is one of the lines fixed by all of ®, and L contains x fixed

points, and hence n — x + 1 nonfixed points. Since no nonidentity element of

@ fixes any of these n — x + 1 nonfixed points, we have w — x + l=-0 (mod m).

In the respective cases, this is:

Type (1). n = n — w0 = 0 (mod m), or n = n0 = 0 (mod m).

Type (2). If w0 = 0, then w + 1 =0 (mod m). If w0^0, then n — l=n — nv + l

=■0 (mod m), or n = l (mod m), n0 = 2 (mod m).

Type (3). w —w0 = 0 (mod m).

Although there are no fixed lines in type (0), it is clear that m must divide

w2+w + l.

If m = 2, then every point of ir is on a fixed line (see [l]), so according to

which type occurs, we have: type (1), w0 = w; type (2), w0 = w + l; type (3),

w = Wq. If m is even, then the same conclusions must be valid, for otherwise

® contains an element of order two which fixes points or lines of ir that are

not fixed by all of ©.

Lemma 4.1. If m is even then N is odd. If n is not a square, then if n is even,

7V = w + l, while if n is odd, then 7V = w + 2.

Proof. If m is even and type (3) occurs, then 7V = Wo + w0 + l is odd. If w

is not a square, then type (3) does not occur; then according as w is even or

odd, type (1) or type (2), respectively, occur, whence N = n + 1 or 7V = w + 2.

Now suppose m is even. If w is a square, then Theorem 3.1 gives no in-

formation, so we assume that n is not a square. If w is even, then from Lemma

4.1, (* + JV-l)/2 = («/2)(n/m + l). If w = 0 (mod 4), then w/2=0 (mod 2),
while ii n = 2 (mod 4) then also m = 2 (mod 4), so n/m is odd and n/m +1=0

(mod 2). Hence (t + N—1)/2=0 (mod 2), and Theorem 3.1 gives no informa-

tion.

Ifwisodd,then(Z + /V-l)/2=[(w + l)/2][(w-l)/m + l]. Ifw=-3(mod4)
then (n + l)/2=0 (mod 2). If w=T (mod 4), then (t + N-l)/2 might be odd,
but the existence conditions of [3] assert that (w, — l)p= +1 if w exists. So
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again Theorem 3.1 gives no information.

Thus for projective planes, all of the information of Theorem 3.1 is con-

tained in the assertion (i) at the end of §3 (and of course the existence condi-

tions of [3] must also be satisfied).

As an example of the application of Theorem 3.1, we remark that it

rejects everything it can for m = 10; i.e., a projective plane of order 10 pos-

sesses only standard collineation groups which fix an odd number of points.

On the other hand, Theorem 3.1 rejects nothing for m = 12.

Theorem 3.1 can be applied to give information about planar ternary

rings of certain special types (see [5; 10; 14] for definition and discussion).

Suppose ir is coordinatizable with a linear planar ternary ring with associa-

tive addition, where ir has order n (in the terminology of Baer, this is a

"Cartesian group"). Then the additive group and each of its subgroups make

up standard collineation groups fixing the m + 1 points on the "line at infin-

ity," and fixing no other points. So if n is odd, then 2V = m + 1 is even.

Theorem 4.1. If there is a linear planar ternary ring of odd order n with

associative addition, and if m is any divisor of n such that every group of order n

possesses a subgroup of order m (e.g., m is a prime divisor of ri), then for all odd

primes p, (n, -l)pm~1)l2(n, m)p=+l.

Thus for instance, Theorem 4.1 rejects n = 15, 35, 45, 51, 65, 75, 85, 91, 99,

and gives no information for m = 39, 55, 63, 95.

Similarly, if ir possesses a linear planar ternary ring with associative mul-

tiplication, then the multiplicative group and each of its subgroups make up

standard collineation groups fixing the m + 1 points on the "y-axis" and one

additional point. So if n is even, then JV = m + 2 is even. Note that the multi-

plicative group has order n — 1.

Theorem 4.2. If there is a linear planar ternary ring of even order n with

associative multiplication, and if m is any divisor of n — 1 such that every group

of order n — 1 possesses a subgroup of order m, then for all odd primes p,

(n, -lYr1)/2(n,m)p=+l.

Theorem 4.2 rejects m = 10, 26, 34, 40, 50, and gives no information for

» = 12, 18, 20, 24, 28, 36,44, 48.
5. Further investigations. The proof of Theorem 2.1 reveals properties of

the sets D,-y very similar to those possessed by difference sets and partial

difference sets (see [2: 6; 9; 10; ll]). Indeed, the study of configurations (or

planes) characterized by partial difference sets or difference sets is a special-

ization of the material here. It is not hard to construct a set of axioms for a

group ® with subgroups tyi, 3y, subsets Diit i, j = l, 2, ■ ■ ■ , w, such that

a (v, k, X) configuration can be constructed from the group; hence a collinea-

tion group, together with the appropriate subgroups and subsets, character-

izes the configuration on which it acts. Since some powerful restrictions on
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groups with certain kinds of partial difference sets have been found, it is

natural to inquire whether these restrictions will extend to the theory of

more arbitrary collineation groups. In particular, theorems on "multipliers"

would be of great interest: essentially, this is asking that the existence of cer-

tain collineations be shown to imply the existence of further collineations.

For instance, the proof of Theorem 3.1 of [2] can be generalized easily to

prove the following:

Theorem 5.1. // ® is a collineation group of the (v, k, X) configuration

ir, N(®) the normalizer of ® in the group of all collineations of ir, and if the

Dij are defined as in §2, then a necessary and sufficient condition that the map-

ping T of ir be a collineation of ir contained in N(®) is that

(Pix)T = Piaa^-xO,        (Jix)T = Jmbi-xd,

for all xd® and for all i= 1,2, • • • , w, where a and fi are permutations of the

set (1, 2, ■ ■ ■ , w) and 6 is an automorphism of ® such that Difi = aiDia,j(ibj,

for all i, j.

A mapping 0 with the properties given in Theorem 5.1 might be called a

multiplier, but it is not clear what (if anything) should correspond to the

more fruitful notion of right multiplier, as in [2]. In particular, what is the

meaning of the group 7V(®)/®?

Theorem 2.2 is quite properly a generalization of the incidence matrix

equations of earlier papers [3; 4], and for m = 1 includes those earlier relations.

An added difficulty exists here, however: even if an integral matrix A can be

determined (and the conclusion of Theorem 3.1, for instance, only assures us

that a rational A can be found), the sets Z?„ must still be shown to exist if

the (v, k, X) configuration is to be constructed.

Added in proof. (1) In a paper (Generalized incidence matrices over group

algebras) to appear shortly in the Illinois Journal of Mathematics, the author

has shown that the matrix equations of Theorem 2.2 can be deduced from

more general equations involving group algebra matrices, and has proved

from these latter equations that if X = l, w =2 (mod 4), then ir possesses no

collineations of even order. The group algebra matrix equations have the

further property that their existence is equivalent to the existence of the

design with the specified collineation group.

(2) H. P. Dembowski, in a doctoral dissertation at Frankfort au Main,

has derived more general results very similar to those in this paper, concerning

so-called "tactical decompositions."
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