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BY
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1. Introduction. In 1921 and subsequently, Hardy and Littlewood [5; 6;

7] developed the following approximate functional equation for the Riemann

zeta function:

(1.1) f(s) = E n- + x(s) E »a~l + 0(x~")   + 0( \ t \u*-y-i),
n%X nsy

where s=a+it, 27rxy= \t\, x>h>0, y>h>0, —k<a<k, and

1
X(s) = 2(2tt)'~1 sin — «r(l - s).

They regarded formula (1.1) as a "compromise" between the series expansion

f (s) = E n-
n=l *

and the functional equation f(s) = xCy)f(l ~~s)-

The approximate functional equation (1.1) has proved to be particularly

valuable in studying the behavior of f(s) in the critical strip 0<<r<l, and

especially on the critical line cr = l/2. Further refinements, in which the O-

terms of (1.1) are replaced by an asymptotic series, have been carried out by

Siegel [13]. (See also Titchmarsh [19, §§4.16, 4.17].) The special case of this

with x=y and o- = l/2 was already known to Riemann.

Analogous approximate functional equations have since been obtained for

other Dirichlet series by Suetuna [14; 15], Hardy and Littlewood [7], Wilton

[21], Potter [10], Titchmarsh [17], Cudakov [2], Tatazuwa [16], and

Wiebelitz [20].
In this paper we derive approximate functional equations for a large class

of interesting Dirichlet series, namely Hecke's series of signature (X, k, y).

These are defined in §2. Although our methods are applicable to a rather

larger class of series having functional equations, we will confine ourselves

here to a discussion of Hecke series only, partly for the sake of simplicity,

but mainly because this class of series is important enough to warrant special

consideration. Many of the Dirichlet series which occur naturally in analytic

number theory are Hecke series. (See [8].) Among these are the Riemann
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zeta function itself, in the form f(25); the zeta-functions of imaginary quad-

ratic fields; the series whose coefficients are the divisor functions a^+iM

(k>0); and the series whose coefficients are rk(n), the number of representa-

tions of ra as a sum of k squares.

In §3 we derive an exact identity which is basic to all the subsequent

work. This identity is of interest in itself and can be viewed as giving an exact

formula for the error made in approximating a Hecke Dirichlet series by its

partial sums in regions where the series fails to converge. In §4 we restate

some well-known lemmas of Hardy and Littlewood in forms suitable for our

purposes. These are then applied in §§5 and 6 in conjunction with the identity

of §3. In §5 they yield a simple approximation theorem (Theorem 2) analo-

gous to the following approximate formula for f (s):

(1.2) i(s) = zZn-' + ^—- + 0(x-'),

valid for a^a0>0, x>C|/|, C> l/2ir. (See [19, Theorem 4.11].) In §6 we

obtain the approximate functional equation proper (Theorem 3).

2. Hecke series. The Dirichlet series considered here will be denoted by

X

E a(n)n~',        s = a + it,
n-l

with abscissae of convergence and absolute convergence a0 and a„, respec-

tively. Hecke series can be characterized by the following four properties:

1. a0< + °°.

2. The function <p, defined for a>a0 by the equation

ao

<t>(s) = E a(n)n~;
n-l

can be continued analytically as a meromorphic function in the entire 5-plane.

3. There exist two positive constants A and k such that

(\/2ir)T(s)d>(s) = y(\/2ir)«-'T(n - s)<p(k - s)

where y= +1. We will write this functional equation in the form

(2.1) <p(s) = x(i)*(« - 5),

where

(2.2) X(s) = y(\/2ir)<-2°T(K - s)/T(s).

The triple (A, k, y) is called the signature of <p.

4. (s — k)<P(s) is an entire function of finite order. The residue of <p(s) at

s = k will be denoted by p.

If <j> has a pole at 5 = k it follows that a0^K and hence aa^K. If <t> is an entire
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function then the inequality aa<K is possible. However, we can easily prove

that o-0^k/2 in any case. In fact, the general theory of Dirichlet series (see,

e.g., Titchmarsh [18, Chapter 9]) tells us that

p(<r) =0 for or ^ aa,

where u(a) = inf {a\<p(a+it) =0(|/| a)}. In addition, the functional equation

(2.1) in conjunction with Stirling's formula implies

4>(a + il) = 0(\t I*-2*) for a S « - o-„

and this means p.(a) Sn — 2a for aSu — <r„. Since p is decreasing we must have

0Sp(K — aa)S2aa — K and this implies o-0^k/2. At the end of this paper (§7)

we prove that, in fact, we always have <r„^ k/2 + 1/4.

The strip K — aa<a<aa in which neither Ea(M)n_' nor Ea(w)w'~" 's

absolutely convergent is called the critical strip of <p(s) and its central line

<r = /c/2 is the critical line. The width of the critical strip is 2aa—a.

Later on we will make use of the following sums involving the coefficients

of a Hecke series:

(2.3) S(x) = E «(»),       Ax(x) = E I «(») I ,       A2(x) = E I «(») I2-
n£i n£x n£X

The value of the abscissa <r„ is, of course, governed by the order of magnitude

of these sums. Specifically, the general theory of Dirichlet series implies that

for every Hecke series we have

(2.4) aa = inf {c| Ax(x) = 0(x')}.

Moreover, the Schwarz inequality gives us -4i(x) SxA2(x). Hence when the

order of A2(x) is known, say A2(x) =0(xn), we can write ^4i(x) =0(x('2+1)/s),

from which we obtain

1
(2.5) *a S — (<T2 +  1).

In this case the width of the critical strip does not exceed a2 + l—K.

Of particular interest are those Hecke series that satisfy one or the other

of the following relations:

(2.6) Ax(x) = Cix" + 0(x'°-a) Ci^0,a>0,

(2.7) A2(x) = C,x* + 0(x*s-") C2 ̂  0, 8 > 0.

The Riemann zeta-function £(2s) is an example of a function satisfying (2.6).

Many other instances may be found by use of a general theorem of Landau

[9, Hauptsatz]. In the case of Hecke series, Landau's theorem may be stated

as follows: A Hecke series<f>(s) with k>1/2, such that a(n)^0for all n, satisfies

(2.6) with Cx=p/k, aa = K, « = 2/c/(2k + 1) — e, where «>0 is arbitrary, and p is

the residue of <p(s) at s = k.



1957] HECKE'S DIRICHLET SERIES 449

R. A. Rankin [ll ] has shown that for an extensive class of functions (2.7)

is satisfied with a2 = K, 8^2/5. In addition, Rankin has shown that the func-

tions he considered satisfy the further relation

(2.8) S(x) = 0(x"2-J)

with 5^ 1/10 (see [12]). For instance, Rankin's work shows that (2.8) holds

for every Hecke series with A = l and p = 0. Conversely, if (2.8) holds then

the general theory of Dirichlet series implies a0^K/2 — 5<k and hence p = 0.

One of the most important cases of a Hecke series satisfying (2.8) is the series

whose coefficients a(n) are Ramanujan's function r(ra). In this case the sig-

nature is (1, 12, 1).

3. The basic identity. This section is devoted to a proof of the following

theorem:

Theorem 1. Let <p(s) = Ea(w)w_' °e a Hecke series of signature (A, k, y).

For real x>0 and integer j^O define

<t>(0) T(k) 1  __ /        raV'
(3.1)     Q(x,j) = ^ + P V'        x' - - Z a(n) ( 1 - -) .

]\ T(k+j + 1) ]\ „sx \ x!

Let a be an integer greater than c —1/2, where c = 2a„ — k is the width of the critical

strip. Then for every x>0 and for a> (k — a—1/2)/2 we have the identity

p t~1 r(5 +/)
<t>(s) = E a(n)n- + --x— + x- E —77— QO, j)

»j, 5 - k j_o    r(5)

/\\'~2>  T(s + q)   «     a(n)    f"°/u\<-«-2>
+ 71—)       —-——E - I     I — ) 7«+,-i(«)d«,

\27r/ T(s)     „-i    »"Jj   \2/

where !- = 4ir(nx)ll2/\ and J, is the usual Bessel function of order v. The series

on the right of (3.2) is absolutely convergent. The region of validity of (3.2) is a

half-plane which includes the critical strip, since (k — a —1/2)/2 <k — a„.

Proof. We begin with the formula

r(j)T(a+l) r°°
(3.3) -Ll^l-L „-. =   I    v-*-°-i(v - n)«dv,

r(5+9+l) Jn

valid for real a> — 1 and a>0. This formula is an easy consequence of entry

6.2.19 in the table of Mellin transforms which occurs in [4]. Taking a>a„

and x>0, (3.3) leads to

T(5)r(o+ 1) r M
-E a(n)n~" = 2^ <*(«)  I    v~"~'~l(v — n)"dv

,,  .s        T(s + q + 1) n>x n>x Jn
(3.4)

0-9-.-1   J2  a(n)(v — n)"dv.
X I<flil)
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The interchange of summation and integration in (3.4) can be justified as

follows: For X > x we have

iri-'-^n — n)qdv = E   a(n)  J    »-«-•-1(» — n)"dv
n z<nSX Jx

X

+  I    ti-'-3-'    22   a(n)(v — n)qdv.
" X x<naf

Using (2.4) we find that the first term on the right of (3.5) is majorized by

v-i-°-lv«dv = o-'X-°   E   I <*(») I   = 0(X-'+"'+').
X i<«S.Y

This term is o(i) as X—><x> since <7><r0 and e>0 is arbitrary.

Writing E*<»s» = E"s»— E»s* in (3.4) we now obtain

_-, T(s + q+ 1)   ra ^
2_, a(n)n~* = - I     tr*-*-1 2_ a(n)(v — n)qdv
n>x r(j)r(0 + l) 7X BS,

(3.6) r(.y + 9+i)_        r
->   a(n)  |    c-«-*-1(» — »)«</»

r(*)r(<7+ i)~      J*

= h- h,

say. When q is an integer we can simplify I2 by means of the formula

T(s + q+l)   rx w qT(s+j)/ »V

V(q+ 1)    Jx jti  v(j+i)\        x)

(which is easily verified by using integration by parts repeatedly). We then

obtain

« T(s + /)      _, / n V
(3.7) /2 = x-«E-^—E o(»)(l-)•

U r(*)ry+D tx      \      x)

To deal with 7i we use the identity (see formula (1.1) of [l ])

_ r(«)r(} + l)
22 a(n)(v - n)" = <p(0)v" + p-v'+q
w Y(K + q+ 1)

/X\5 A /»\ (*-«>/»        /tor       ,     \

Absolute convergence of the series in (3.8) is insured by the restriction(2)

q>c—1/2. When (3.8) is substituted in the integral defining 7i we find

(2) Formula (1.1) in [l] is stated with the restriction q>K —1/2. However it is also valid

forg>c-l/2.
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T(5 + 0+l) T(s + q+l)T(K)  f
Ii =-<p(0)x~> + p- I    v'-'-Hv

r(»)r(}+l) T(s)T(K + q+l)Jx

j^vns + i + i)
\2irJ T(s)

■J    v-"-'-1   y a(n){—J J<+q[—(nv)ll2\dv.

We note that the second term on the right of (3.9) is not present unless

p>=0. But for p 5^0 we have a„^K and, since we are assuming a>aa, the inte-

gral in this term converges to (s — li)~1x*~,. Therefore the second term can al-

ways be written as

T(s + g + 1)T(k)

P (s - k)T(s)T(k + q + 1) X

In the third term of (3.9) absolute convergence enables us to interchange

summation and integration. Therefore, when (3.7) and (3.9) are used in con-

junction with (3.6) we obtain the identity

T(s + q + 1)0(0) r(5 + a + i)r(«)
0(5) =  ?_, a(n)n~" -\-x~' + p-x"_*

%* T(s + l)T(q +1) H(s- k)T(s)T(k + q + 1)

«       T(s+j) / raV
- x-> E-E <*(«) (1 —)

U r(5)r(i+i)n,, WV      x)

(3.10)
/A\«r(5+ q+ 1)  »

\2ir/ T(s) n-i

xj    vu-t)n-.-ijt+(— (nvyi^dv,

valid for a>aa. The sum of the second, third and fourth terms in the right

of (3.10) can be written in the form

x*-° «    T(s+j)
P-\- x~* E —-7—- Q(x,j),

S — K y_0        T(s)

by using (3.1) and the identities

(3 11) T(s+g+1)       = £     T(s+j) T(5)

(5 - k)T(k + q+l)"  h  T(k +j +1)      (5 - k)T(k)

and

(312) r(s + q +1} = y T(s+j)

sT(q + 1) to  T(j + 1) '
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[Identities (3.11) and (3.12) can be proved, e.g., by induction on q.] Formula

(3.10) now becomes

x"-' *    r(i + ;')
<t>(s) = E <*(»)»- + p-+ *-• E     ,' Qixj)

nSX S —  K ,-_o T(S)

/\yT(s + q+l)~

(3.13) '\2t/ T(s) „_i   l

x    f   vu-<,)n-*-ijK+(— (nvyi'Jdv.

Although (3.13) was proved under the restriction a>aa, its validity can be

extended by analytic continuation to that region of the s-plane for which the

integral on the right is absolutely convergent. Since J,(z) =0(z~112) it is

easily seen that this region is the half-plane <t>(k — q—1/2)/2.

It is now easy to complete the proof. An integration by parts yields

E a(«)rc-<"+«>'2 f   »««-«»/2-«-17,+,(— (nvyAdv
n-l JX \ X /

x(K-q)l2-i    oo /^T \

(3.14) =-Ea(«)«-('+9)/27»+4 — (mx)1'2)
s + q    n=i \ X /

2tt/X   " rx /Air \
-\-— E a(n)n-^+*-l)l2 \     i;'"-'-1>'2-'7»+5_i I — (nv)1'2) dv.

s + q n~i J x \ X /

This is valid for a> (k — q —1/2)/2 because the first series on the right is

absolutely convergent for q>2aa — K— 1/2. This and the absolute convergence

of the series on the left imply the absolute convergence of the second series on

the right.
When the first term on the right of (3.14) is multiplied by y(\/2ir)'>

■T(s+q + l)/T(s) it becomes -x~'T(s+q)Q(x, q)/T(s), because of (3.8) and

(3.1). Hence, when (3.14) is substituted into (3.13) the identity (3.2) follows

after making the change of variable u = 4=ir(nv)ll2/\ in the integral. This com-

pletes the proof of Theorem 1.

For the Riemann zeta-function we can take q = l in (3.2) and replace x

by x2 to get the well-known identity [5, Equation (2.111)]

x1_s       / 1 \

f(j) = E«-' + J—:-(*- W -t)*"'
niX S  —   1 \ 2  /

00 y» 00

+ 2(2ir)*_lj E n'~l I      «~"-1 sin u du.
n—1 J irni

For functions satisfying (2.7) with o2 = k and  (2.8) with 5>0 we have
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p=<p(0)=0. By (2.5) we have cgl and we can again take a = l in (3.2) to

obtain the identity

<t>(s) = E a(n)n~' — x~' E a(n)
nix nix

(3.15) +7W     s^Za^n'~KJ    Vj)        J<(u)du-

4. The Hardy-Littlewood lemmas. Throughout this section A and B will

denote real constants (not necessarily the same at each occurrence) satisfying

the inequalities 0 <A <1<B.

We begin by re-stating parts of Lemmas 12 and 13 of [5, pp. 298-301]

and some related formulas.

Lemma 1. If a<0, b>0, t real, T= \r\ >A, then we have

(4.1) |    w"+,> SU\du = 0(e), (T < BT < £)
J{             cos

(4.2) =0(-~), (T<S<BT)

(4.3) = O^T1'2), (T =S Q,

f( sin
(4.4) «*+*>       «dM = O^'+'T-1), (£<iir<D

Jo           cos

(4.5) =o(l—\ (AT<i<T)

(4.6) = 0(i>T>/2), (^ < ( g 7).

Equation (4.1) is the same as Hardy-Littlewood's (3.15) and (4.2) is the

same as their (3.14). As remarked in their paper, these hold for a<0. Equa-

tion (4.3) is a consequence of (4.2) and Hardy-Littlewood's (3.18) and is valid

for a<0. Similarly, (4.4) and (4.5) follow from their (3.17) whereas (4.6) is

a consequence of (4.5) and their (3.18). These are valid for 6>0.

For our purposes we require similar estimates for integrals involving Bes-

sel functions. These are given in the following lemma.

Lemma 2. 7/a<l/2, t real, T=|r| >A, then we have

ua+"Jv(u)du = 0(^"1/2), (T < BT <Z)

/ ta+l/2\

(4.8) =0(~/' (T<i<BT)

(4.9) = o($-1',ri',)> (T = $.
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If, in addition, v+a + 1 >0, then we also have

(4.10) J    u*+"J,(u)du = G.(a, t) + O^+'^T-1),    ({ < AT < T)

/ fc.+l/»\

(4.11) = G,(o,r) + Ol——-j,        (AT<l<T)

(4.12) = G,(o,t) + Ofr-^T1'2),        (A <£^T)

where

(v + a + 1 + ir\

G,(a, t) = 2"- •
(v — a + 1 — ir\

-2-)

Proof. Using the following formula for J, (see [3, 7.13.1]),

/2V/2    (2" + »*
J,(u) =1 — 1     cos-cos u

\tu/ 4
(4.13)

/2\1'2        (2v +- 1)tt
+ ( —)     sin-sin u + 0(«-3/2),

\tu/ 4

the relations (4.7), (4.8) and (4.9) follow at once from (4.1), (4.2) and (4.3),

respectively. In the remaining cases we have

ua+iTJy(u)du =   j      —   I     = G,(a, t) —  j    ua+"J,(u)du,
j Jo Jo Jo

by formula (6.8.1) in [4] which is valid if p+a + 1 >0. Ii we write

I(v, a) =   I   ua+iTJv(u)du,
Jo

integration by parts yields

{«+!+"/.({) 7(*- 1,0+1)
7(j<, a) = -;--

a + 1 — p + tY      a + 1 — j> + ir

= 0(T-1^+1'2) + 7(p - 1, a + 1)0(7^).

Similarly, m integrations by parts lead to the relation

I(v, a) = JZ 0(T-"£"+°-1/2) + I(v - m, a + m)0(T-m)
71-1

= 0(T-'^+1/2) + I(v -m,a + m)0(T~m),
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provided I;ST. Taking m large enough so that m+a —1/2>0 we may sub-

stitute (4.13) in the integral defining I(v — m, a+m) and use (4.4), (4.5) and

(4.6) to obtain (4.10), (4.11) and (4.12), respectively.

Later on we will have % = T(n/y)112 where y is fixed and positive. It is

therefore convenient to rephrase Lemma 2 in terms of n.

Lemma 3. If a<l/2,r real, T=\r\ >A, n^l,y>0, £=T(n/y)l/2,tkenwe

have

ua+"J,(u)du = o^'-uyi'-'iW2-1'*), (y < By < n)

/ w«/»-l/4     V
(4.15) =0   ^Yu,! -),   (y1'2 < n1'2 < By1'2)

\ n112 — y1/2/

(4.16) = cKr-y^/v2-1'4), (y S n).

If, in addition, v+a + 1 >0, then we also have

/I  00

ua+iTJ„(u)du = C(a,r) + 0(ra-1/VI'4-o/2«''/2+1/4),   (w < Ay <y)

l

(4.18) = Gv(a,r) + Ol To-vyi*-*'2 —--),
\ yll' — n ' /

(Ay1'2 < n1'2 < y1'2)

(4.19) = G,(a, r) + 0(roy1/4-°/V2-1'4), (n S y).

5. The simplest approximation theorem for Hecke series. This section is

devoted to a proof of the following theorem:

Theorem 2. Let <p(s) = Ea(M)w~s be a Hecke series of signature (X, k, y).

Under the hypotheses of Theorem 1, we have

_,   a(n) p
(5.1) <p(s) = 2Z^-+—Z-x"-'

q^i T(s+j)
+ x-« E- Q(x,j) + 0(x"'2-"-l'i)

y-o     T(s)

uniformly for <r^<ri> (k —5—l/2)/2, provided x>B(\/4ir)2t2 for some B>1.

Proof. Taking £=47r(nx)1/2/X in (4.7) we have

/% 00

I    u<-q-2*J <+q_i(u)du = 0((»x)<«-«-2'-l/2>/2).
J i

Accordingly, we have
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T(s+ q)   " r°°
-—— E a(n)n'~< I    u'-^2'JK+q_i(u)du

T(s)      „_i J f

= 0(| /|«a;(«-«-2o-i/2)/2  ^ | o(ra) | »-c»+«+i/2>/2)

n-l

=  0(| i Ua;(«-4-2i7-l/2)/2)   =  Q(xt.n-c-l/4\

since (/c+a+l/2)/2>a<, and  |/| = 0(x1/2). Using this estimate in identity

(3.2) the theorem follows.

For the Riemann zeta-function Theorem 2 reduces to (1.2). For functions

satisfying (2.7) and (2.8) we can use (3.15) to obtain

<j>(s) = E a(n)n-' + 0(x<''2-'-(i>)
nix

where 0 = min (1/4, 8).

6. The approximate functional equation. In deriving (5.1) we made essen-

tial use of the fact that the quotient /2/x was bounded. In this section we

write y = (\/(2ir))2t2/x and we re-estimate the last term of (3.2) in terms of

y. This yields the approximate functional equation for a Hecke series having

signature (A, k, y). The result is stated in Theorem 3 below. Corollaries 1

and 2 deal with special cases in which more is assumed about the coefficients

a(ra).

Theorem 3 is stated for a general exponent ai^a„ because in a particular

case the exact value of a„ may not be known.

Theorem 3. 7,e/ <f>(s) = Ea(M)M_'> s=a+it, be a Hecke series of signature

(A, k, y). Let Ai(x) =0(x"1) and let q denote the integer satisfying 2ai — k— 1/2 <a

S2ai-K+l/2. Thenforx>l,y>l,2ir(xy)1'2 = \\t\ >A, (K-q-l/2)/2<a<K,

we have:

4>(s) = E a(n)n~s + xM E a(n)n'-' -\-x'~'
nix nSV ■* K

(6. 1)
Pi T(s+j)

+ x-'zZ-^~Q(x,j) + R
y-o      T(s)

where x(s) « given by (2.2), Q(x,j) is defined in (3.1) and

% _ Q(xi.-ic-iii)iiy(i,l-t-imiitn\

+ 0L(^^i/H/y(rH/!)/j     -y      |a(n)|/(»)Y
\ y/2<n<2v '

Here m is given by

(I if q < 2o-i - k + 1/2,
(6.3) m = {

(log y if q = 2o-i — k + 1/2
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and f(n) by

y/iy - «) if u S yx,

(6.4) f(u) =f(u;y,t) = ■ l/2\ t\>'2{3- \t\(l-u/y)2}  if yx S u S y*,

y/(u - y) if m ^ y2,

where

(6.5) yi = y(l -  \t |~1/2)    and    y2 = y(l + \t \~112).

Corollary 1. If the conditions of Theorem 3 are satisfied, and in addition

Ai(x) is given by (2.6), then (6.1) holds with the error term R replaced by

(6.6) R = 0(x(«-2"-1/2"2y(c-1'2)'2wi) + O^"'2-^'2-")

where a is the a of (2.6), c = 2aa — k (the width of the critical strip), and

(6.7) mx = max (log | t\ , log y).

Corollary 2. If the conditions of Theorem 3 are satisfied and in addition

A2(x) is given by (2.7), then (6.2) holds with R given by

(6.8) R   =   0(XC«-2ff-l/2)/2;y(o-2-«+m2)/2(x +  -y)l/4OTl)

where mx is defined by (6.7) and m2 by

(6.9) m2 = maxfo,-/3j.

Proof of Theorem 3. Because of the identity (3.2) we can write

R + x(s) E a(n)n°-<

(6.10)
/ X \ "-2«   T(s + q)   " r » / u \"-«-2s

where £ = 47r(wx)1/2/X = 2|/| (n/y)1'2. In the infinite series we write

/xy-2s r(s+ q) -

(6.11)      y   — ——— E = Si+S2+23+S4 + S6+S6
\27r/ r(^)    n_i

where the sums S< are defined by the respective ranges 1 SnSy/2, y/2 <n

Syx, yx<nSy, y<nSyi, y2<nS2y, 2y<n, yx and y2 being defined by (6.5).

In 2i we use (4.17) to obtain

Si = x(s)   E  a(n)n*-« + 0( \ ^|«-2"-i/2y'-«/2+9/2-i/4   ^   | 0(w) | w_u+9-i/2)/2^ _

Using partial integration, the sum appearing in the 0-term is
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-U+«-l/2)/2

E   | a(n) | »-<«+<r-i/2>/2 = Ai(y/2)(y/2)
niv/i

i / i\ rv'2
H-( K +  q-J    I ^l1(M)M-('+«-l/2)/2-l(fM

= 0(y(2,"-'-5+1/2)/2) + 0(    f     M<2"-"-<ri-1/2>/2-i</M  J.

The integral in the last O-term is 0(y^^-'-i+U2)n)  if 2<2ai-x+l/2.  If

q = 2<Ti — k + 1/2, then the integral is

log (y/2) = 0(log y) = 0(y^-^"+1^12 log y).

Consequently we have

2i = x(5)   E  a(n)n'-K + 0( | / \'-2°-u2yi+°-*m)

(6.12)
= xW   E   a(n)n'-" + OW'-^-UWyU1"--*-1!2"2™)

nsy/i

since |;| = 0(x1/2y1/2). A similar argument, using (4.14), shows that

(6.13) S6 = 0(*<-1*-1'«',y»'^-1'«'1).

In 22 we use (4.18) to obtain

S2 = xW     E     a(n)n'-*
VlKnivi

/                                                                                                             w-(«+9-l/2)/2\

+  01    I  /U-2>-l/2^+Co+l/2-«)/2        V> |a(M)|   -\
V ..5""^ -V1'2   —   «l/2     /
\ v/2<nsvi y n       /

Now we have

M-(<+<T-l/2)/2 w-(«+3-l/2)/2(;yl/2 +  „l/2)

^    I a(w) I "TTi-777 =     -^     I a(w) I -
»/2<ns»1 >   '     -  »  ' »/2<nS!/l y   —   »

= o(y-('+'+1/2'/2     E     I <*(«) I ——)
V viKnivi y — n)

= o(y-("+«+1/2)/2     E     I a(») !/(«))-

Accordingly,

S2 = x(5)      E     a(n)ns-<
(6.14) W2<nS!"

+ 0(x('-2"-1/2)/2y-(*+1/2)/2     E      | <*(»)!/(»)) •
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Similarly, using (4.19), (4.16) and (4.15) we obtain

23 = xW     E a(n)ns~'

(6.15)

+ 0 (x<-*-*°-m)iA-y-<.<+imn    £    \a(n)\f(n)\
\ Vl<"SV I

(6.16) 24 = 0 Ixu-2°-imny-<.<+m)i2   £    |o(n)|/(n)Y

(6.17) S6 = o(x<«-2<'-1'2>/2y-<''+1/2>/2    E    I «(») I/(»))•

Combining (6.10) through (6.17) yields (6.2) and completes the proof of

Theorem 3.

Proof of Corollary 1. Combining (6.2) with (2.6) yields

R   =   ()(a:(«-2<r-l/2)/2;y(c-l/2)/2?w)

+ o(x<«-2'-i/i,>/iy-(H'1/i,>/1 E  |fl(»)|/(») )•

\ y/2<na2H /

We have, by partial integration,

E      | a(n) |/(i») = ^i(2y)/(2y) - ^ x(y/2)f(y/2) -   f "Ax(u)f'(u)du
y/2<n£2y J y/2

/. 2y / ply \

= 0(yT") - Cx I     ua-f'(u)du + Ol y""-a I      \f'(u) \ du 1.
J vll \ J y/2 /

This is valid because, by definition (6.4), f(u) has a continuous derivative.

Integrating by parts, we have

/» 1y nly

I     W°f'(u)du = (2y)''f(2y) - (y/2)'°f(y/2) - o-a I     ua°-xf(u)du
J y/2 J y/2

= 0(y'«) + o(y°°-1   I    f(u)du\.

Direct use of (6.4) gives

/. 2y

f(u)du = 0(ymx)    where   mx is given in (6.7),
V/2

and

/■ 2»
\f'(u) | du = 0(| t\1'2) = 0(x1'iy1'4).

y/2

Consequently, we obtain
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E      | a(n)\f(n) = 0(y"tn1) + 0(x1'V"+1/4~a)-
V/2<ni2y

When this is put into (6.18), the result is (6.6).

Proof of Corollary 2. Given (2.7), we may, by (2.5), take ax = (a2+ l)/2 in

(6.2), and write (6.2) in the form

R _ g?x(,-2c-i/2)/2y(o-2-«+i/2)/2)

(°-19) / ^ i       \
+ 0lx(*-2,-imny-(*+imn    £     |a(ra)|/(«)).

By Schwarz's inequality

(6.20) E     \a(n)\f(n)^i     zZ   \   <n)\2f(n)V ' i     E   /(»)} ' ' .
y/i<ns2y \y/2<ns2y I \yli<niiy J

The second sum on the right becomes

E    f(n) =  f "f(u)du + o(   max  /(«))

= O(ymi) + 0(\ ll1'2)

= 0(ymi) + 0(xliiy1'i)

= 0(ymi max (1, x"V3/4))-

But we have

max (1, z^y-"4) = 0(1 + x"V3/4) = o(l + (—)    Y

and

/x\1/4 / /z\1/2\1/2        / x\1/4

1 + U  S2"'(1 + (7) )  s2(1 + 7) '

Accordingly,

(6.21) E    /(») = 0(ym1(l + x/y)1'").
«/2<n$!y

We can estimate the first sum on the right of (6.20) in the same manner as

we estimated El a(n) \f(n) m the proof of Corollary 1, using (2.7) instead of

(2.6). The result is

E      | a(n) \2f(n) = 0(y"«i) + 0(*1/4y<rj+1/4H')-
B/2<ns2a

These 0-terms may be re-written as follows:
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0(y°*mx) + CKx'/y^1'4-*5) = 0(y"Hnx) + 0(y"+1/2-^(x/y)1/4wi)

= 0(y">Mxmx) + 0(y"'+1'2-^M xmx)

= 0(y"+m2Mxmx)

where Afi = max {l, (x/y)1'4} and m2 is defined by (6.9). But

max (1, (x/y)1'4) = 0(1 + x/y)1'4

and hence we can write

(6.22) E      I «(») \'fin) = 0(y2+m2(l + x/y)1/4wi).
y/2<n£2y

Combining (6.19) through (6.22) yields (6.8).

When 4>(s)=t(2s), Corollary 1 reduces to an "imperfect" form of the

approximate functional equation for the Riemann zeta-function, the imper-

fection consisting of an extra factor m in one 0-term. Special cases of Corollary

2 are provided by the functions studied by Rankin. For these functions we

have 0*2 = k, W2=l/10 and so (6.8) reduces to

R   =   0(a;<«-2--l/2)/-y/JO(a. +  3,)!/%,).

For x = y= (X/(2-r))|/|, this gives

R =  0(| /|-/2~<-+l/20 log   | ,| )

7. A lower bound for the width of the critical strip. In this section we

prove that for every Hecke series of signature (X, k, y) with abscissa of ab-

solute convergence aa we have

This tells us that the width of the critical strip, 2cra — k, is at least 1/2.

To prove (7.1) we make use of identity (3.8) which is valid for q>2a„.

—k — 1/2. The series on the right of (3.8), considered as a function of v, con-

verges uniformly on every finite interval 0<aSvSb and hence the right

member of (3.8) is a continuous function of v on every such interval. However,

the left member of (3.8) cannot be continuous in v when 5 = 0. It follows that

the identity in (3.8) cannot be valid for q — 0. Hence 2<ra — k— 1/2 3:0 and this

is the same as (7.1).
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