PEANO SPACES WHICH ARE EITHER STRONGLY
CYCLIC OR TWO-CYCLIC(})

BY
G. RALPH STROHL, JR.

1. Introduction. Let M be a Peano space() pE M, and {p.} any infinite
sequence of distinct points of M converging to p. The space M is said to be
strongly arcwise connected at p provided there is in M a simple arc containing
infinitely many of the points {p.}, strongly cyclic at p provided there is in
M a simple closed curve containing infinitely many of the points {p,.}, and
two-cyclic at p provided M contains two arcs I'y and I's such that each con-
tains infinitely many of the points { pa} and 'y =p. If M is strongly arc-
wise connected, strongly cyclic, or two-cyclic at each of its points, then M
is said to be strongly arcwise connected, strongly cyclic, or two-cyclic respec-
tively. Strongly arcwise connected Peano spaces have been studied by Hall
and Puckett [1; 2](%).

It is clear that if M is either strongly cyclic or two-cyclic at p, then M is
strongly arcwise connected at p; and that if M is a cyclic Peano space which
is two-cyclic at p, then M is strongly cyclic at p. Moreover, it is easily shown
that if M is either strongly cyclic or two-cyclic at p, then p lies in at least one,
and at most a finite number, of true cyclic elements of M. Thus only cyclic
Peano spaces will be considered.

An example of a cyclic Peano space which is strongly arcwise connected
at a point p, but which fails to be strongly cyclic at p follows. Let M be the
point set in the Euclidean plane consisting of the closed interval from 0 to 1
on the x-axis, the closed line segment of y=x from (0, 0) to (1, 1), and the
closed line segments from (1/#, 0) to (1/n, 1/x) on the lines x=1/n, n&1.
Considering the sequence of points {p,} where p,=(1/%, 1/2%), n€I, it is
seen that M fails to be strongly cyclic at the point (0, 0).

In this paper two characterizations of strongly cyclic Peano spaces will
be obtained. The first will show that a cyclic Peano space which is strongly
arcwise connected at p, but not strongly cyclic at p, is essentially like the
example above. The second states that a cyclic Peano space M is strongly
cyclic if and only if for any infinite collection { V;} of open sets in M, there
exists a simple closed curve in M intersecting infinitely many of these sets.

For an example of a cyclic Peano space which is strongly cyclic at p, but
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not two-cyclic at p, let M denote the square in the Euclidean plane with
vertices (0, 0), (1, 0), (0, 1), and (1, 1), either with or without its interior.
Considering the sequence of points (1/7,0), n <1, it is seen that M is not two-
cyclic at the point (0, 0). If M is considered without its interior, then M fails
to be two-cyclic at (0, 0) because this point lies on a free arc of M. If M is
considered with its interior, define in M an arc I' consisting of p and the union
of the line segments of x=1/n from (1/n, 0) to (1/n, 1/n), the line segments
from (1/2n, 0) to (1/2n—1, 0) on the x-axis, and the line segments from
(1/2n+41, 1/2n+1) to (1/2n, 1/2n) on the line y=x, nE& 1. Thus given >0,
there exists an arc Yy CTI' such that vy has p as one endpoint, has diameter less
than ¢, and M —+ has an infinite collection of components converging to p.

It will also be shown that a cyclic Peano space which is strongly cyclic at
p, but not two-cyclic at p, is essentially like the above example.

2. Lemmas. In this section several lemmas are given which will be useful
in obtaining the principal results.

LEMMA 2.1. If a limit point p of an arcwise connected set R is not regularly
accessible from R, then there exists a positive number 1 such that RN\S(p, n) has
an infinite collection of distinct components {B;} such that pE€lim inf { B,}.
Moreover, CN\F[S(pn,) |5 & for every component C of RNS(p, 7).

Proof. This is a consequence of a lemma of E. E. Betz [3, p. 128].

LEMMA 2.2. Let a=gxp be an arc of a Peano space M and {p.} an infinite
sequence of distinct points of M —« converging to p. If, for every ¢>0, S(p, €)
contains an arc spanning o’ =a— (¢\Jp) and containing a point of the sequence
{pa}, then M contains an arc a* from g to p containing infinitely many of the
points {p.}.

LeEMMA 2.3. Let M be a cyclic Peano space and J =o\JB a simple closed curve
in M where a=gqxp and B=qyp are arcs such that aMN\B=g\Jp, g#~p. Let {p,,}
be an infinite sequence of distinct points of M —J converging to p, {x,.} and
{ya| infinite sequences of distinct points converging monotonically to p on a
and B respectively. Assume that M contains a collection {)\,.} of distinct arcs
converging to p such that X, is an arc x.p.y» spanning J, and that there is a posi-
tive number n for which (M —J)NS(p, 1) has an infinite collection {B;} of
components such that \;C B; and BINF[S(p, n) |5 & for every i. Then there is
a simple closed curve in M containing infinitely many of the points {pa}-

Proof. There is no loss of generality in assuming that the collection {B;}
converges to a connected set L, and that L contains a nondegenerate subarc
zp of a. Let § be a positive number such that S(p, §) \aCzp. There exists a
point r&S(p, 8)Na such that rsx; for all i. There exists an integer 7, such
that in the natural order from ¢ to p on a, r <x, for n=n;, and %, <r. Let
U be a neighborhood of r such that TNB =&, U C S(p, 8), and
TUNaCxn,1%,. There exists an integer #na=n,+2 such that B,,\Us contains



1957] PEANO SPACES 299

an arc stw where s€ UNa and w=N\,,Nstw. Let T'; be the union of the subarc
gs of a, the arc stw, the subarc wy,, of N\,,, and the subarc y.,p of 8; T, the
union of the subarc gy, 41 of B8, the arc X,,41, and the subarc .11 of a. Then
I';UT; is a simple closed curve containing the point p, 1.

Let 8, be a positive number such that S(p, 8;)"\(I'i\UTl;) contains only
points of the subarcs x,,p and y,,p of a and B respectively. The above con-
struction may be repeated in S(p, 8;), thereby yielding a simple closed curve
containing a second point of the sequence {p.}. The proof of the lemma fol-
lows by continuing this process inductively.

LLEMMA 2.4. Let M be a Peano space, pE M, a=qxp an arc of M, and {p,,}
an infinite sequence of distinct points of M converging monotonically to p on a.
Assume there is a positive number n and an infinite collection {D;} of com-
ponents of (M —a)N\S(p, n) such that (a) pE€lim inf {D;}; (b) DNF[S(p, n)]
# (& for every i. Then there exist arcs Ty and T'y tn M each of which contains
infinitely many of the points {p,.} and such that T1M\Ty=p.

Proof. There is no loss of generality in assuming that the collection {D.}
converges to a connected set L, and that L contains a nondegenerate subarc
zp of a. Let g be a positive number such that S(p, 1) NaCzp. In the natural
order from ¢ to p on « let #; be the last point of N [S(p, 1) —S(p, ¢1)], and
pi* the first point of the sequence {p,.} such that t <p*. Let o, be a positive
number such that o2 <o1/2 and S(p, d2)Na contains only points of @ which
follow pi* in the natural order from ¢ to p on «. In the natural order from ¢
to p on « let #, be the last point of @M [S(p, o3) —S(p, 02) ], and ps* the first
point of the sequence {p,,} such that f, <ps. Continuing this process induc-
tively yields sequences {o:}, {t:}, and {p*} with the following properties:

(1) {ai} is a null sequence of positive numbers such that ¢,.1<0:/2, and
S(p, ai11)Na contains only points of & which follow p¥ in the natural order
from g to p on a.

.(ii) {p*} is a subsequence of the {p;} such that p*&S(p, 0:) —S(p, 7i1).

(ili) ¢ is the last point of N\ [S(p, 0:) —S(p, 04) ] in the natural order from
g to pon a.

(iv) In the natural order from ¢ to p on «a, t; <p¥ <tip1, tEL

Let { V:} be a null sequence of regions such that ;&€ V; and V:N\a con-
tains only points interior to the subarc p; ,p of a. Then there exists a collec-
tion of distinct arcs {efiys] spanning @ and such that efiys lies in
VI [S(p, 0.) —S(p, 0i43)]\J Viss. The proof of the lemma is completed by
defining the arcs I'1 and T'; as follows:

Ty =p U[ U (e4n—3f4n):| v [ U (me:Le:am)]’

nel nel

Fz = ﬁ VY l: U (84n_]f4n+2)] U|: U (f4n+2prn+2e4n+3):|

nel nel
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where the collections { f4,.pf,,e4,.+1} and { f4,.+2pf,,+ze4,.+3} are subarcs of a.
3. Separation theorem. In this section the following theorem is proved.

THEOREM 3.1. Let M be a cyclic Peano space which is strongly arcwise con-
nected at p but not strongly cyclic at p, and let J be any simple closed curve in M
containing p. Let J=a\JB where a=qxp and B=qyp are arcs such that aM\p
=q\Up, q#p. Then there exist in M an infinite sequence of distinct points
{pa}, and a sequence of simple arcs {\.} having the following properties:

(1) P EM —J for every n.

(i1) {p,.} converges to p.

(ili) No simple closed curve in M contains infinitely many points of the
sequence {pn}.

(iv) Every simple arc in M containing infinitely many points of the sequence
{pn} intersects each of the arcs a and B in a set of points having p as a limit
point.

(v) Each N\, is an arc x,y. spanning J and containing the point pn.

(vi) MM\ =F for m=n.

(vit) {)\,.} converges to p.

(an) Unelxn Ca, =a— (QUP), Unefyn CB, =6 - (qUP)-

(ix) The sequences {x,,} and {y,,} converge monotonically to p on the arcs
a and B respectively.

(x) For m#=n, the sets Npy=NAm— (xn\JYm) and N, =\, — (x.\Iy,) lie in differ-
ent components of M — J. Furthermore, these components converge to p. Thus for
any simple closed curve J of M containing p, every arc of J having p as an in-
terior point separates M into infinitely many distinct components.

(xi) If {R:} is the collection of components of M —J such that N! CR;, then
for no value of i is there an arc of R;— B spanning a and conlaining the point p.,
or an arc of Ri—a spanning B and containing the point p;.

Proof. Since M is not strongly cyclic at p, there exists in M an infinite
sequence of distinct points {p,.} satisfying (ii) and (iii). From (iii) it follows
that J contains at most a finite number of the points {p,. } Hence no general-
ity is lost in assuming that (i) holds.

Since M is strongly arcwise connected at p, there exists in M an arc con-
taining infinitely many of the points {p,. } . Let X\ be an arbitrary arc satisfying
this condition. No generality is lost in assuming that X contains p, for every #,
that N has p as one endpoint, and that the sequence {pn} converges mono-
tonically to p on N\. Let A\=bdp where b is the endpoint of \ distinct from 2.

If one of the arcs a and B, say «, contains a subarc a;=stp such that
aiM\=p, then M is strongly cyclic at p. This contradiction proves (iv).

There exists a positive number e such that in S(p, €) no subarc of A con-
taining a point of the sequence {p,.} spans one of the arcs « and 8 without
intersecting the other. If this is not true, then with the aid of Lemma 2.2 it
is seen that 1/ becomes strongly cyclic at p. Thus there exists a sequence
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{)\,.} of distinct arcs converging to p such that N,=x,y, is a subarc of \
spanning J and containing a point of the sequence {p,.} , XnEa’, y.EP', and
the sequences {x,} and {y.} converge monotonically to p on a and @ re-
spectively. Since there is no loss of generality in assuming that p,&N, for
every n, this proves (v), (vi), (vii), (viii), and (ix).

To prove (x), assume that Ris a component of M —J containing infinitely
many of the sets {\!}, and hence p is a limit point of R. If p is accessible
from R, it is easily shown that M becomes strongly cyclic at p. Thus p is
not regularly accessible from R. Thus by the lemma of E. E. Betz referred to
for the proof of Lemma 2.1 and by Lemma 2.1 there exists a positive number
¢>0 such that for every positive number 7, 7 <e, RNS(p, 1) has an infinite
number of components {B,-} with pElim inf B;, B.OF[S(p, n) | # J for every
1, and for every positive number 8 such that § <%, B:/N\S(p, 8) # & for all but
a finite number of values of 7. There exists a value 5, of 7 such that no com-
ponent of RMNS(p, no) contains more than one element of the collection
{\!}. If this is not the case then with the aid of Lemma 2.2 it is easily shown
that M is strongly cyclic at p. Thus it may be assumed that RNS(p, 7o) has
an infinite collection of components {B;} such that N/ CB; for every 4. But
this makes M strongly cyclic at p since the hypothesis of Lemma 2.3 is satis-
fied. This contradiction shows that each component of M —J can contain
at most a finite number of the sets {\/}. Hence it may be assumed that
M —J has an infinite collection of components {R;} such that A/ CR; for
every 2. The proof of (x) is complete if it is observed that if the sequence
{R:} doesnot converge to p, then again the hypothesis of Lemma 2.3 is satis-
fied.

The proof of the theorem is complete if it is noted that if (xi) is not true,
then M becomes strongly cyclic at p by an application of Lemma 2.2.

4. The properties P(r, @) and P(r, 8). In this section let M be a cyclic
Peano space, J=a\URB a simple closed curve in M where a=gxp and B=gqyp
are arcs such that aMB=¢\Up, ¢=p, and rEM—J. Let o' =a—(¢Up),
B =B—(¢\Up). The next two theorems are conveniently stated in terms of
a set R(J, r) and properties P(r, a) or P(r, 8) which are defined as follows.

DEFINITION 4.1. By the set R(J, r) is meant the component of M —J con-
taining 7.

DEFINITION 4.2. The arc « is said to possess the properties P(r, a) with
respect to the set R(J, r) provided it possesses both of the following prop-
erties:

Pi(r, a): No point of R(J, 7) separates r from F[R(J,r)]Ne’ in R(J, r) —B.

Py(r, a): F[R(J, r)]Na’ is nondegenerate. The properties P(r, B) are de-
fined by an interchange of @ and 8.

THEOREM 4.3 (SPANNING THEOREM). In order that there exists an arc in
M which spans a, contains r, and is disjoint from (B, it is necessary and sufficient
that a possesses the properties P(r, a) with respect to R(J, r).
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Proof. The necessity is immediate. To prove the sufficiency observe that
the arc 8 and the points of M —8 give an upper semicontinuous decomposition
of M. Let M’ be the hyperspace of this decomposition and f(M)=M' the
associated monotone map. Let f(B) =5, and note that f(M—B8)=M'—b is
one-to-one.

By property Py(r, a) there exist distinct points 2z and 2z, belonging to
&'NF[R(J, r)]. Thus 2; does not separate 7 from z; (i#j) in M —@, hence no
such separation occurs in M’ —b. By property Pi(r, @) no point separates
and z,\Uz, in M —f3, hence no such separation occurs in M’ —b. Thus by a
theorem of Hall and Puckett [2, Theorem 2.2, p. 555], M’ —b contains an
arc from z; to z; having r as an interior point. Clearly the inverse under f of
this arc is an arc which contains a subarc ayrg; spanning &’ and such that
airas— (a,\Ja;) CR(J, r).

THEOREM 4.4. Let each of the arcs o and B possess at most one of the properties
Pi(r, o) and Py(r, B) respectively, 1=1, 2. If there exists an arc v =arb such that
YN\’ =a, yNB' =b, and v— (a\Jb) CR(J, r), then there exists a region V in
R(J, r) and two distinct points ¢ and d of the arc v such that the following condi-
tions hold:

(i) rEV.

(it) F(V)Dc\Jd where c and d are distinct from p and q.

(iii) F(V)Cc\Jd\Jg\Up.

(iv) V is locally connected, hence a Peano space.

Proof. If there exists a region V of R(J, r) satisfying (i), (ii), and (iii),
then V is locally connected since V— V is a finite set.

Since a possesses at most one of the properties Pi(r, @), 1=1, 2, the subarc
ar of 7 contains a point ¢ which either separates r from F[R(J, r)]Na’ in
R(J, r) —B, or is the single point of F[R(J, r)]Na'. Similarly the subarc br
of v contains a point d which either separates r from F[R(J, r)]JNB in
R(J, r) —a, or is the single point of F[R(J, r)]N\B'. Thus the component of
R(J, r) —(c\Jd) which contains 7 is the region V.

5. Principal theorems. In this section the principal theorems on strongly
cyclic Peano spaces are obtained.

THEOREM 1. In order that a cyclic Peano space M which is strongly arcwise
connected at a point p fail to be strongly cyclic at p, it is necessary and sufficient
that there exists in M a closed set D containing p and a separation M —D
= (User VJ)\UN, where { V,»} is a collection of distinct components of M — D hav-
ing the following properties: |

(1) Vi—p.

(ll) For each 1, F( V.) =c;\Jd; where C.’Ud.‘CD—P, c;#d;.

(iii) No simple closed curve of M intersects infinitely many of the regions V.

Proof. The sufficiency is immediate. To prove the necessity let J=a\J8
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be any simple closed curve in M containing p, where a =¢xp and B=gyp are
arcs such that aNB=¢g\Up, g#p. Let { pa} and {)\n} respectively be the se-
quences of points and arcs of Theorem 3.1. By Theorem 3.1 there exists an
infinite collection of distinct components {R;} of M —J converging to p with
N CR;. Thus R; is the set R(J, p;) of Definition 4.1. By Theorems 3.1 (xi)
and 4.4 each component R; contains a region V; such that p;€V;,
F( V,)CC,Ud.UqUP, and F( V{)DC.‘Ud; where c,-UdiC)\;, ¢;#d;. Since the
sequence {R;} converges to p, it may be assumed ¢ F(V;) for any 3. If
pE F(Vy) for some integer &, then p is accessible from V; by Theorem 4.4 (iv).
But this makes M strongly cyclic at p contrary to assumption. Thus it may
be assumed that F(V,)=c;\Ud; for every 7. The necessity of (i) and (ii) is
established by letting D =p\U [Uicr (c:\Jd)) ].

To prove the necessity of (iii), let J; be a simple closed curve in M con-
taining p. If JiNVi= & for some integer k, then J; contains the points ¢
and dy. If the subarc cidi of Jy lying in Vy is replaced by the subarc cipids
of A, then a simple closed curve containing the points p, and p is obtained.
If J, intersects infinitely many of the sets V;, then it is seen that M is strongly
cyclic at p. This contradiction completes the proof of the theorem.

THEOREM 1. In order that a cyclic Peano space M be strongly cyclic it is
necessary and sufficient that for every infinite collection of open sets {V;} in
M there exists in M a simple closed curve intersecting infinitely many of these
sets.

Proof. The necessity is immediate. To prove the sufficiency, observe that
M is strongly arcwise connected. If M is not strongly cyclic, then by Theorem
I there is an infinite collection of open sets in M such that no simple closed
curve of M intersects infinitely many of these sets. Since this would contradict
the hypothesis, it follows that M is strongly cyclic.

COROLLARY 5.1. If a Peano space M 1is not separated by any two of its points,
then M is strongly cyclic.

COROLLARY 5.2. If M 1s a cyclic Peano space which fails to be strongly cyclic
at the point p, then p is an im kleinen cycle point of M.

THEOREM 5.3. If M 1s a cyclic Peano space which is strongly arcwise con-
nected at p, but not strongly cyclic at p, then given €>0, there exists in M an arc
v =txp having diameter less than € and an infinite collection of distinct com-
ponents { K} of M —~ converging to p.

Proof. Let {a:} and {B:} be the collection of subarcs {xwx:1} and
{yiyir1} of @ and B respectively. Let a! =a;— (x;\Ux:y:). Consider M—T
where I'=pU(U.er \)\UUsier a2i-1)\J(Uier Bas). If a component K of M —T
should contain infinitely many of the sets a3, then p is a limit point of K.
Since M is not strongly cyclic at p, p is not regularly accessible from K. But



304 G. R. STROHL, JR. [November

this makes M strongly cyclic at p by applications of Lemmas 2.1 and 2.4.
Thus M —T has an infinite collection { K} of components each of which con-
tains a set ay. Now K,—p, for otherwise an application of Lemma 2.4 would
make M strongly cyclic at p. Thus every subarc of I having p as one endpoint
gives the desired separation of M, thereby proving the theorem.

6. Two-cyclic Peano spaces. It is known that every Peano space has a
basis each element of which is an open connected set having property S
[4, p. 219]. Thus the closure of an arbitrary element of such a basis is a Peano
space. Throughout this section we denote by Z such a basis for the Peano
space M under consideration.

THEOREM I11. Let M be a cyclic Peano space and pE M. Suppose that M is
strongly cyclic at p, but not two-cyclic at p. Then either p belongs to a free arc of
M or given €>0, there exists in M an arc v =txp having diameter less than € and
an infinite collection of distinct components {K ;} of M —+ converging to p.

The proof of Theorem III requires that some background material be
developed.

THEOREM 6.1. Let M be the Peano space of Theorem 111 and U an element
of Z such that pE U. Then the following conditions hold:

(i) The components of U—p may be classified as follows:

(@) {X.}: those components of U—p such that p is an endpoint of Xi;
or if p is not an endpoint of X., then X; is not strongly cyclic at p.

(b) {V,}: those components of U—p such that ¥; is strongly cyclic at p.

(ii) For eachiand j, X (UT—-U)#=&, Y;N\(U—-U)=.

(iii) Each of the collections {X;} and {Y;} is finite.

(iv) If the collection {X ;} is nonvacuous, then Theorem 111 is true.

Proof. Statement (i) is just a classification of the components of U —p.
Statement (ii) follows from the fact that M is cyclic, while (iii) is a con-
sequence of the local connectivity of M.

To prove (iv), let X, & {X;}. If p is an endpoint of X;, Theorem III is
easily seen to hold. If p is not an endpoint of X; but X, is not strongly cyclic
at p, then Theorem III follows from Theorem 5.3.

In view of Theorem 6.1(iv), it may be assumed that for the Peano space
M of Theorem III the collection {X:} is empty for every element U of Z
such that pE U. The space M then possesses the properties which follow:

PrOPERTY 1. There exists in M an infinite sequence of distinct points {pn}
converging to p such that if Ty and T'; are two arcs of M having p as one endpoint
and each containing infinitely many of the points {p,. }, then T1N\T'z consists of
a set of points having p as a limit point. Moreover, there exists in M an arc o
=qxp such that the points {p,,} converge monotonically to p on .

PROPERTY 2. If UEZ and pE U, then all but a finite number of the points
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{pa} of property 1 lie in a true cyclic element E of the set V1 where U—p
=U;=1 Y,'.

Proof. Let UEZ such that pE U. Then U—p=Uj., ¥;. In view of Prop-
erty 1 it may be assumed that all but a finite number of the points | p,.} lie
in Y. Let E be the true cyclic element of ¥, containing p. Since M is cyclic,
every component of ¥;—E must intersect U — U, hence the components of
Y1—E cannot have limit points in E arbitrarily close to p. Thus all but a
finite number of the points {p.} lie in E.

PROPERTY 3. E—a=H\UN, where H 1is the set of all points xE E for which
there exists in E a nondegenerate arc xp with xpMa=p, N is the set of all points
xEE for which no such arc exists.

PROPERTY 4. If, for every component W of E—a, WN\F(M —E)#= &, then
p is not a limit point of N and the collection {Ci} of components of H is finite.
Thus there exists a subarc vp of o which does not separate M. Moreover, in this
case there exists at least one component of H which has a set of limit points in
a—p having p as a limit point.

Proof. By the definition of N, p is not accessible from N. Thus if p is a
limit point of NV, the hypothesis of Lemma 2.4 is easily seen to be satisfied.
Since this makes M two-cyclic at p, p is not a limit point of N. If H has an
infinite collection of components, the hypothesis of Lemma 2.4 is again
satisfied. Thus H has a finite number of components in this case. In the
natural order from g to p on «, let d be the last point of NN\a. Thus for any
point v interior to the subarc dp, the subarc vp of o does not separate M. The
proof of Property 4 is complete if it is observed that if H does not have a
component which has a set of limit points in &« —p having p as a limit point,
then there is an element VEZ containing p for which the collection {X.} is
nonempty.

PRrROPERTY 5. If, for arbitrarily small elements U of Z such that pE& U there
exists a component W of E—a such that WNF(M —E) = &, then Theorem 111
s true.

The following restrictions may be imposed on all further discussion.

RESTRICTIONS 6.2. The space M under consideration is a cyclic Peano
space which is strongly cyclic at the point p, but not two-cyclic at p, and for
which every element U of the basis = such that p& U satisfies the following
conditions:

(a) The collection {X;} is empty.

(b) For every component W of E—a, WNF(M —E) > &, where E and
W are the sets of U as given in the above properties.

THEOREM 6.3. Let M be a Peano space satisfying the Restrictions 6.2. Then
there exists a sequence { U;} of elements of the basis = such that pE U; for every
i, and corresponding sequences {E;}, { N:}, and {H.} as given by Properties
2 and 3, such that the following conditions hold:
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() {U:} is a null sequence, U; DUy, and Uiy Ni= .

(ii) E;DEiy and H;DHy.

(iii) If R; is a component of H; having a set of limit points in a—p which
has p as a limit point, then there exists a sequence { R,v} , j=1, such that R; is a
component of H; having a set of limit points in a— p which has p as a limit point,
and R,D ﬁ,q.].

Proof. The sequences { U}, {E:}, {N:}, and {H,} are easily seen to
exist. To prove (iii), note that by Property 4 each set H; contains at least one
component having a set of limit points in «—p having p as a limit point.
Let R, be such a component of H;. In the natural order from ¢ to p on
let d be the last point of NyN\a. There exists a sequence {r.} of points inte-
rior to the subarc dp of a such that r,—p, 7, is a limit point of Ry, and 7, & Uy,
n& 1. Since H, has only a finite number of components, it is clear that there
is a component R; of H, which has infinitely many of the points {r,} as limit
points and R;C R;. Continuing this process inductively completes the proof
of the theorem.

THEOREM 6.4. For each sequence {Rj} , j =1, of Theorem 6.3(iii) there exists
an arc \ from a point t;E F(R;) —a to p, and a sequence {[.lj} of arcs such that

(@) N\=pCR;—a;ie, \Na=p.

(b) N\R;== & for every j=1.

(c) m;=xjy; is an arc of E;— E 1 such that u;MN\a=x;, u;M \N=1y;.

(d) The sequences {xj} and { y,~} converge monotonically to p on o and N
respectively.

Proof. An arc \ satisfying (a) and (b) is readily constructed. In each set
E,, let t;€a, z,EN. There exists an arc pzi; in E;, and this arc contains a
subarc p;=x:y; such that u;Na=x;, u:\XN=y,. It is clear that no generality
is lost in assuming that (c) and (d) hold.

THEOREM 6.5. Each set H,, i€ 1, of Theorem 6.3 contains exactly one com-
ponent R; having a set of limit points in oo—p which has p as a limit point.
Thus the sequence {R;}, i€ 1, of Theorem 6.3(iii) is unigue, as is the sequence
{Gi} where G; 1s the set of all points xER; which can be joined to a—p by an
arc of E; not meeting \.

Proof. Assume that there is a set H; which has two components having a
set of limit points in «—p each having p as a limit point. It may be assumed
that H, is such a set. By Theorem 6.3(iii) there exist two distinct sequences
{R;} and {S.} as there described. As described in Theorem 6.4, there exist
arcs N and {u;} for the sequence {R:}, and arcs \* and {u*} for the sequence
{Si}. It is easily seen that this makes M two-cyclic at p. This contradiction
proves the theorem.

A review of Properties 1-5 and Theorems 6.3—6.5 reveals that there is no
loss of generality in making the following assumptions.
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ASSUMPTIONS 6.6. For the Peano space M of Properties 1-5 and Theorems
6.3-6.5 the following conditions hold:

(a) In the natural order from ¢ to p on «a, x; <p; <xip1, tE1.

(b) p.€E,—E;,,, i€1.

(¢) wiCEi—Ei.

(d) Nisan arc from a point ¢E F(R;) —a to the point p such that \ satisfies
Theorem 6.4 for the sequence {R;}.

THEOREM 6.7. Let M be a Peano space satisfying the restrictions 6.2 and
subject to the Assumptions 6.6. Let {ai} be the collection of subarcs of a defined
by a;=%xpiXita, {)\,»} the collection of subarcs of N defined by N;=y:yi41. Let
al =a;i— (2 Jxi), Nl =Ni— (v:\Iy:1). For each set G; of the sequence {G;} of
sets defined in Theorem 6.5, consider the set G;—User pi, JEI. Then there exists
a positive integer k such that for j =k the following hold:

(i) No component of G;—VUcr u: has limit points in two distinct sets o, and
. where |m—n| =2.

(i) If a component of G;—\VUicr i has limit points in a set oy, and a set \,!,
then m=n.

(iii) If a component of G;—VUier u: has limit points in a set o, then any
limit points of this component in U.cr u!, where u! =p;— (x:\Jy;), must lie in
Fon\ 41

Proof. If no such integer k exists, it is easy to construct two arcs I'; and
T’y such that I''' T’y = p and each contains infinitely many of the points {p,.} .

Proof of Theorem I1I. Theorem 6.1 (iv) and property S give special cases
in which Theorem III is true. It may thus be assumed that M satisfies the
Restrictions 6.2 and is subject to the Assumptions 6.6. Moreover, it may be
assumed in Theorem 6.7 that the integer 2=1. In the natural order from ¢
to p on «, let d be the last point of N/ \a. Then there exists an integer r
such that for 227, x; is a point interior to the subarc dp of @. No generality is
lost in assuming that r=1. Define an arc I" as follows:

I = pU < U azi_l)U( U p.,'>u< U )\z,').
el i€l el

Note that the arc I' lies in the set E; and is disjoint from N,.

Next define a collection of sets { K} as follows:

K;=a},\J(all components of G;—U;er u; having limit points in aj,).

Observe that each set K, is a component of E;—TI' by Theorem 6.7. Thus
E, is separated into infinitely many components {K;} by the arc I'. More-
over, the {Ki} converge to p, for otherwise the hypothesis of Lemma 2.4 is
satisfied thereby making E;, and hence 37, two-cyclic at . Thus T', and every
subarc of T having p as an endpoint, separates M in to infinitely many com-
ponents converging to p, the collection of components in such cases being a
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subcollection of the collection {K;}. This completes the proof of Theorem
III.
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