
PEANO SPACES WHICH ARE EITHER STRONGLY
CYCLIC OR TWO-CYCLICO

BY

G. RALPH STROHL, JR.

1. Introduction. Let M be a Peano space(2) pdM, and {pn\ any infinite

sequence of distinct points of M converging to p. The space M is said to be

strongly arcwise connected at p provided there is in M a simple arc containing

infinitely many of the points {pn}, strongly cyclic at p provided there is in

M a simple closed curve containing infinitely many of the points \pn}, and

two-cyclic at p provided M contains two arcs Ti and V2 such that each con-

tains infinitely many of the points \pn\ and Txr\T2 = p. If M is strongly arc-

wise connected, strongly cyclic, or two-cyclic at each of its points, then M

is said to be strongly arcwise connected, strongly cyclic, or two-cyclic respec-

tively. Strongly arcwise connected Peano spaces have been studied by Hall

and Puckett [l; 2](8).

It is clear that if M is either strongly cyclic or two-cyclic at p, then M is

strongly arcwise connected at p; and that if If is a cyclic Peano space which

is two-cyclic at p, then M is strongly cyclic at p. Moreover, it is easily shown

that if M is either strongly cyclic or two-cyclic at p, then p lies in at least one,

and at most a finite number, of true cyclic elements of M. Thus only cyclic

Peano spaces will be considered.

An example of a cyclic Peano space which is strongly arcwise connected

at a point p, but which fails to be strongly cyclic at p follows. Let M be the

point set in the Euclidean plane consisting of the closed interval from 0 to 1

on the x-axis, the closed line segment of y = x from (0, 0) to (1, 1), and the

closed line segments from (1/w, 0) to (1/w, 1/w) on the lines x = l/w, w£7.

Considering the sequence of points {pn\ where p„ = (l/w, l/2w), w£J, it is

seen that M fails to be strongly cyclic at the point (0, 0).

In this paper two characterizations of strongly cyclic Peano spaces will

be obtained. The first will show that a cyclic Peano space which is strongly

arcwise connected at p, but not strongly cyclic at p, is essentially like the

example above. The second states that a cyclic Peano space M is strongly

cyclic if and only if for any infinite collection { Vi] of open sets in M, there

exists a simple closed curve in M intersecting infinitely many of these sets.

For an example of a cyclic Peano space which is strongly cyclic at p, but
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not two-cyclic at p, let M denote the square in the Euclidean plane with

vertices (0, 0), (1, 0), (0, 1), and (1, 1), either with or without its interior.

Considering the sequence of points (1/m, 0), mG7, it is seen that M is not two-

cyclic at the point (0, 0). If M is considered without its interior, then J17 fails

to be two-cyclic at (0, 0) because this point lies on a free arc of Tkf. If M is

considered with its interior, define in 217 an arc V consisting of p and the union

of the line segments of x= 1/ra from (1/m, 0) to (1/m, 1/m), the line segments

from (1/2m, 0) to (1/2m —1, 0) on the x-axis, and the line segments from

(1/2m + 1, 1/2m + 1) to (1/2m, 1/2m) on the line y=x, mG7. Thus given e>0,

there exists an arc yCT such that y has p as one endpoint, has diameter less

than e, and M—y has an infinite collection of components converging to p.

It will also be shown thai a cyclic Peano space which is strongly cyclic at

p, but not two-cyclic at p, is essentially like the above example.

2. Lemmas. In this section several lemmas are given which will be useful

in obtaining the principal results.

Lemma 2.1. 7/ a limit point p of an arcwise connected set R is not regularly

accessible from R, then there exists a positive number rj such that Rf~\S(p, rf) has

an infinite collection of distinct components {23,} such that pGlim inf {Bi}.

Moreover, Cr\F[S(p-q,)]^0 for every component C of RC\S(p, rj).

Proof. This is a consequence of a lemma of E. E. Betz [3, p. 128].

Lemma 2.2. Let a = qxp be an arc of a Peano space M and {pn} an infinite

sequence of distinct points of M — a converging to p. If, for every e>0, S(p, e)

contains an arc spanning a' =a— (q^Jp) and containing a point of the sequence

{pn}, then M contains an arc a* from q to p containing infinitely many of the

points {pn}.

Lemma 2.3. Let Mbea cyclic Peano space and J = cAJ3 a simple closed curve

in M where a = qxp and 3 = qyp are arcs such that ct(~\fi = q^Jp, q^p. Let {pn}

be an infinite sequence of distinct points of M — J converging to p, {xn} and

jy„} infinite sequences of distinct points converging monotonically to p on a

and 3 respectively. Assume that M contains a collection {X„} of distinct arcs

converging to p such that X„ is an arc xnp„yn spanning J, and that there is a posi-

tive number 77 for which (M — J)C\S(p, 77) has an infinite collection {25,} of

components such that X.C23, aMd B,r\F[S(p, r))]?±0 for every i. Then there is

a simple closed curve in M containing infinitely many of the points {pn}.

Proof. There is no loss of generality in assuming that the collection {Bi}

converges to a connected set L, and that L contains a nondegenerate subarc

zp ol a. Let 5 be a positive number such that S(p, o)C\aCzp- There exists a

point rCS(p, 8)C\a such that r?^x,- for all *'. There exists an integer Mi, such

that in the natural order from a to p on a, r<x„ for M^Mi^and xni_i<r. Let

U be a neighborhood of r such that U C\ 3 = 0, U C S(p, 5), and

Ur\aCxni-ixni. There exists an integer m2 = Mi + 2 such that B„2VJs contains
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an arc stw where sd UC\a and w=\n2C\stw. Let Ti be the union of the subarc

qs of a, the arc stw, the subarc wyni of X„2, and the subarc y„2p of p1; T2 the

union of the subarc ayn,+i of p\ the arc X„1+i, and the subarc x„+ip of a. Then

riUr2 is a simple closed curve containing the point pn,+i-

Let 52 be a positive number such that S(p, 52)n(FiWr2) contains only

points of the subarcs x„2p and y„2p of a and /3 respectively. The above con-

struction may be repeated in S(p, S2), thereby yielding a simple closed curve

containing a second point of the sequence \pn\- The proof of the lemma fol-

lows by continuing this process inductively.

Lemma 2.4. Let Mbe a Peano space, pdM, a = qxp an arc of M, and {pn}

an infinite sequence of distinct points of M converging monotonically to p on a.

Assume there is a positive number -n and an infinite collection {Di} of com-

ponents of (M-a)nS(p, w) such that (a) pElim inf {Dt}; (b) DiC\F[S(p, rj)]

t^ 0 for every i. Then there exist arcs Ti and V2 in M each of which contains

infinitely many of the points {pn} and such that Vir\T2 = p.

Proof. There is no loss of generality in assuming that the collection {-D,}

converges to a connected set L, and that L contains a nondegenerate subarc

zp of a. Let <ri be a positive number such that S(p, ax)C\adzp- In the natural

order from q to p on a let tx be the last point of a(~\[S(p, ax)—S(p, crx)], and

p* the first point of the sequence {pn} such that tx<p*. Let a2 be a positive

number such that a2<ax/2 and S(p, a2)C\a contains only points of a which

follow p* in the natural order from q to p on a. In the natural order from q

to p on a let t2 be the last point of aC\[S(p, a2)—S(p, a2)], and p* the first

point of the sequence {pn} such that t2<p*. Continuing this process induc-

tively yields sequences jo",}, {ti}, and {p*} with the following properties:

(i) {at} is a null sequence of positive numbers such that Oi+x<at/2, and

S(p, ai+x)r\a contains only points of a which follow p* in the natural order

from q to p on a.

(ii)   {p*} is a subsequence of the {pi} such that p*dS(p, o%) —S(p, <r,+i).

(iii) ti is the last point of aD [S(p, a/) — S(p, a/) ] in the natural order from

q to p on a.

(iv)  In the natural order from q to p on a, ti<pf </,-+i, idl-

Let { Vi} be a null sequence of regions such that t,dV, and V,r\a con-

tains only points interior to the subarc p*~xp* of a. Then there exists a collec-

tion of distinct arcs {e,/,+3} spanning a and such that e;/,+3 lies in

Vi^J[S(p, ai)—S(p, n,+])]UFi+!, The proof of the lemma is completed by

defining the arcs Ti and T2 as follows:

TX   =   p\j\     U   (ein-3fin)      W U   (finptdn+l)      >
L nel J        Lner -I

r2  =   p yj \     U   (e4n-l/4n+2)      W        U   (fin+tpin+tein+i)
LnS/ J Lnsr J
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where the collections {finp*nein+i} and {fin+2ptn+2ein+s} are subarcs of a.

3. Separation theorem. In this section the following theorem is proved.

Theorem 3.1. Let M be a cyclic Peano space which is strongly arcwise con-

nected at p but not strongly cyclic at p, and let J be any simple closed curve in M

containing p. Let J = a\J3 where a = qxp and B = qyp are arcs such that aC\3

= q\Jp, q^p. Then there exist in M an infinite sequence of distinct points

{pn}, and a sequence of simple arcs {X„} having the following properties:

(i) pnCM — J for every n.

(ii)   (pn} converges to p.

(iii) No simple closed curve in M contains infinitely many points of the

sequence {pn}-

(iv) Every simple arc in M containing infinitely many points of the sequence

{pn} intersects each of the arcs a and 3 in a set of points having p as a limit

point.

(v) Each Xn is an arc x„y„ spanning J and containing the point pn.

(vi) \mC\\n = 0 for m^n.

(vii)   {Xn} converges to p.

(viii) Une7XnC«'=«-(aWp), U„G/y„C(3'=j3-(aUp).

(ix) The sequences {xn} and {y„} converge monolonically to p on the arcs

a and 3 respectively.

(x) For m^n,the se£sX£, = Xm — (xmWym) and\'n=\n— (xnWyn) lieindiffer-

ent components of M — J. Furthermore, these components converge to p. Thus for

any simple closed curve J of M containing p, every arc of J having p as an in-

terior point separates M into infinitely many distinct components.

(xi) If {Ri} is the collection of components of M — J such that X,' C-^.'. then

for no value of i is there an arc of Ri — 3 spanning a and containing the point pi,

or an arc of Ri—oc spanning 3 and containing the point pi.

Proof. Since M is not strongly cyclic at p, there exists in 217 an infinite

sequence of distinct points {pn} satisfying (ii) and (iii). From (iii) it follows

that J contains at most a finite number of the points {pn}. Hence no general-

ity is lost in assuming that (i) holds.

Since M is strongly arcwise connected at p, there exists in 217 an arc con-

taining infinitely many of the points {pn}. Let X be an arbitrary arc satisfying

this condition. No generality is lost in assuming that X contains pn lor every n,

that X has p as one endpoint, and that the sequence {pn} converges mono-

tonically to p on X. Let X = bdp where b is the endpoint of X distinct from p.

If one of the arcs a and 3, say a, contains a subarc oti = stp such that

«inX = p, then 217 is strongly cyclic at p. This contradiction proves (iv).

There exists a positive number e such that in S(p, e) no subarc of X con-

taining a point of the sequence {pn} spans one of the arcs a and 3 without

intersecting the other. If this is not true, then with the aid of Lemma 2.2 it

is seen that 217 becomes strongly cyclic at p. Thus there exists a sequence
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{X„} of distinct arcs converging to p such that X„ = x„y„ is a subarc of X

spanning J and containing a point of the sequence {pn}, xnd<x', yndfi', and

the sequences {x„j and {yn} converge monotonically to p on a and fi re-

spectively. Since there is no loss of generality in assuming that p„£X„ for

every w, this proves (v), (vi), (vii), (viii), and (ix).

To prove (x), assume that R is a component of If— J containing infinitely

many of the sets {X/ }, and hence p is a limit point of R. If p is accessible

from R, it is easily shown that M becomes strongly cyclic at p. Thus p is

not regularly accessible from R. Thus by the lemma of E. E. Betz referred to

for the proof of Lemma 2.1 and by Lemma 2.1 there exists a positive number

e>0 such that for every positive number w, 77<e, Rf~\S(p, 77) has an infinite

number of components {Bi} withp£lim ;nf Bi,Bir\F[S(p, 77)] 5*0 ior every

i, and for every positive number 5 such that 5 <-n, BiC\S(p, 8)^0 for all but

a finite number of values of i. There exists a value 770 of 77 such that no com-

ponent of Rf^S(p, 770) contains more than one element of the collection

{X/ }. If this is not the case then with the aid of Lemma 2.2 it is easily shown

that M is strongly cyclic at p. Thus it may be assumed that Rf~\S(p, 770) has

an infinite collection of components {Bi} such that X/ dBt for every ♦. But

this makes M strongly cyclic at p since the hypothesis of Lemma 2.3 is satis-

fied. This contradiction shows that each component of M — J can contain

at most a finite number of the sets {X/ ]. Hence it may be assumed that

M—J has an infinite collection of components {Ri} such that X,' dR< ior

every i. The proof of (x) is complete if it is observed that if the sequence

{Ri} does not converge to p, then again the hypothesis of Lemma 2.3 is satis-

fied.
The proof of the theorem is complete if it is noted that if (xi) is not true,

then M becomes strongly cyclic at p by an application of Lemma 2.2.

4. The properties P(r, a) and P(r, fi). In this section let M be a cyclic

Peano space, J = a\Jfi a simple closed curve in M where a = qxp and fi = qyp

are arcs such that <x(~\fi = q\Jp, q^p, and rdM — J. Let a' =ct — (qVJp),

fi'=fi—(qyjp). The next two theorems are conveniently stated in terms of

a set R(J, r) and properties P(r, a) or P(r, fi) which are defined as follows.

Definition 4.1. By the set R(J, r) is meant the component of M—J con-

taining r.

Definition 4.2. The arc a is said to possess the properties P(r, a) with

respect to the set R(J, r) provided it possesses both of the following prop-

erties:

Pi(r, a): No point of R(J, r) separates r from F[R(J, r) ]P\a' in R(J, r) -fi.

P2(r, a): F[R(J, r)]f\a' is nondegenerate. The properties P(r, fi) are de-

fined by an interchange of a and fi.

Theorem 4.3 (Spanning Theorem). In order that there exists an arc in

M which spans a, contains r, and is disjoint from fi, it is necessary and sufficient

that a possesses the properties P(r, a) with respect to R(J,r).
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Proof. The necessity is immediate. To prove the sufficiency observe that

the arc 8 and the points of M — 8 give an upper semicontinuous decomposition

of 217. Let M' be the hyperspace of this decomposition and /(2l7) = 2l7' the

associated monotone map. Let f(8)=b, and note that f(M — B) = M'— b is

one-to-one.

By property P2(r, a) there exist distinct points Zi and z2 belonging to

aT\F[R(J, r)]. Thus z,- does not separate r from zy (tV/) in M—8, hence no

such separation occurs in M' — b. By property Pi(r, a) no point separates r

and ZiWz2 in M — 8, hence no such separation occurs in M' — b. Thus by a

theorem of Hall and Puckett [2, Theorem 2.2, p. 555], M' — b contains an

arc from Zi to z2 having r as an interior point. Clearly the inverse under / of

this arc is an arc which contains a subarc Oira2 spanning a! and such that

Oira2 —(aiWa2)C7^(7, r).

Theorem 4.4. Let each of the arcs a and 8 possess at most one of the properties

Pi(r, a) and Pi(r, 8) respectively, i=l, 2. If there exists an arc y = arb such that

y(~^a' = a, yC\B'= b, and y — (a\Jb)CR(J, r), then there exists a region V in

R(J, r) and two distinct points c and d of the arc y such that the following condi-

tions hold:

(i) rCV.
(ii) F(V)Z)cVJd where c and d are distinct from p and a.

(iii)  F(V)CcVd\Jq\Jp.
(iv)   V is locally connected, hence a Peano space.

Proof. If there exists a region V ol R(J, r) satisfying (i), (ii), and (iii),

then V is locally connected since V — V is a finite set.

Since a possesses at most one of the properties P,(r, a), i = 1, 2, the subarc

ar of y contains a point c which either separates r from F[R(J, r)]fW in

7^(7, r)—B, or is the single point of F[R(J, r)]rW. Similarly the subarc br

of y contains a point d which either separates r from F[R(J, r)]P\/3' in

R(J, r) —a, or is the single point of F[R(J, r)]C\3'. Thus the component of

R(J, r) — (c\Jd) which contains r is the region V.

5. Principal theorems. In this section the principal theorems on strongly

cyclic Peano spaces are obtained.

Theorem I. 2m order that a cyclic Peano space M which is strongly arcwise

connected at a point p fail to be strongly cyclic at p, it is necessary and sufficient

that there exists in M a closed set D containing p and a separation M—D

= (U,-<e7 Vi)\JN, where { V,} is a collection of distinct components of M — D hav-

ing the following properties: J

(i)   Vr+p.
(ii) For each i, F(Vi) = c,-Udi where c.-Ud.-C-C— p, Ci^d{.
(iii) No simple closed curve of M intersects infinitely many of the regions Vi.

Proof. The sufficiency is immediate. To prove the necessity let J = a\J8
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be any simple closed curve in M containing p, where a = qxp and fi = qyp are

arcs such that a(~\fi = q\Jp, q^p. Let {pn} and {X„} respectively be the se-

quences of points and arcs of Theorem 3.1. By Theorem 3.1 there exists an

infinite collection of distinct components {Ri} of M — J converging to p with

X/ C-K»- Thus Ri is the set R(J, pi) oi Definition 4.1. By Theorems 3.1 (xi)

and 4.4 each component Ri contains a region F,- such that p,d Vi,

F(Vi)dCiyJdiVJqVJp, and F(F,-)DciUd< where c<Ud,CX<, c^di. Since the
sequence {R%} converges to p, it may be assumed q(£F(Vi) for any i. If

pdFi Vk) ior some integer k, then p is accessible from Vk by Theorem 4.4 (iv).

But this makes M strongly cyclic at p contrary to assumption. Thus it may

be assumed that F( Vi) = dVJdi for every i. The necessity of (i) and (ii) is

established by letting Z? = pU[U;e/ (c.-Ud,-)].

To prove the necessity of (iii), let Jx be a simple closed curve in M con-

taining p. If JiCWk^0 ior some integer k, then Ji contains the points Ck

and dk. If the subarc ckdk of Ji lying in Vk is replaced by the subarc Ckpkdk

of X*, then a simple closed curve containing the points pk and p is obtained.

If Ji intersects infinitely many of the sets Vi, then it is seen that M is strongly

cyclic at p. This contradiction completes the proof of the theorem.

Theorem ll. In order that a cyclic Peano space M be strongly cyclic it is

necessary and sufficient that for every infinite collection of open sets { Vi} in

M there exists in M a simple closed curve intersecting infinitely many of these

sets.

Proof. The necessity is immediate. To prove the sufficiency, observe that

M is strongly arcwise connected. If M is not strongly cyclic, then by Theorem

I there is an infinite collection of open sets in M such that no simple closed

curve of M intersects infinitely many of these sets. Since this would contradict

the hypothesis, it follows that M is strongly cyclic.

Corollary 5.1. If a Peano space M is not separated by any two of its points,

then M is strongly cyclic.

Corollary 5.2. If M is a cyclic Peano space which fails to be strongly cyclic

at the point p, then p is an im kleinen cycle point of M.

Theorem 5.3. If M is a cyclic Peano space which is strongly arcwise con-

nected at p, but not strongly cyclic at p, then given e>0, there exists in M an arc

y = txp having diameter less than e awd aw infinite collection of distinct com-

ponents {Ki} of M—y converging to p.

Proof. Let {a,} and {fit} be the collection of subarcs {xiX,+J} and

{y;y»+i} of a and fi respectively. Let a/=at—(xjWx,+i). Consider M — Y

where r=pW(Ut67 X,)W(U,s; a2,_i)W(UlS/ fi2i). If a component K of M-Y

should contain infinitely many of the sets a2i, then p is a limit point of K.

Since M is not strongly cyclic at p, p is not regularly accessible from A'. But
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this makes M strongly cyclic at p by applications of Lemmas 2.1 and 2.4.

Thus M — T has an infinite collection {Kt} of components each of which con-

tains a set a2(. Now K—>p, for otherwise an application of Lemma 2.4 would

makeM strongly cyclic at p. Thus every subarc of T having p as one endpoint

gives the desired separation of M, thereby proving the theorem.

6. Two-cyclic Peano spaces. It is known that every Peano space has a

basis each element of which is an open connected set having property 5

[4, p. 219]. Thus the closure of an arbitrary element of such a basis is a Peano

space. Throughout this section we denote by 2 such a basis for the Peano

space M under consideration.

Theorem III. Let M be a cyclic Peano space and pCM. Suppose that M is

strongly cyclic at p, but not two-cyclic at p. Then either p belongs to a free arc of

M or given e > 0, there exists in M an arc y = txp having diameter less than e and

an infinite collection of distinct components {K,} of 217—y converging to p.

The proof of Theorem III requires that some background material be

developed.

Theorem 6.1. Let M be the Peano space of Theorem III and U an element

ofL such that pCU. Then the following conditions hold:

(j)  The components of U — p may be classified as follows:

(a) {-X-,-}: those components of U — p such that p is an endpoint of Xi;

or if p is not an endpoint of Xi, then Xi is not strongly cyclic at p.

(b) { Yj}: those components of U — p such that Yj is strongly cyclic at p.

(ii) For each i andj, X,n(F- U)^0, Y}r\(0- U)^0.
(iii) Each of the collections {Xt} aMd { Yj} is finite.

(iv) If the collection {Xi} is nonvacuous, then Theorem III is true.

Proof. Statement (i) is just a classification of the components of U — p.

Statement (ii) follows from the fact that 217 is cyclic, while (iii) is a con-

sequence of the local connectivity of 217.

To prove (iv), let XiC{Xi}. It p is an endpoint of Xi, Theorem III is

easily seen to hold. If p is not an endpoint of Xi but A*i is not strongly cyclic

at p, then Theorem III follows from Theorem 5.3.

In view of Theorem 6.1(iv), it may be assumed that for the Peano space

M of Theorem III the collection {AT,-} is empty for every element U of 2

such that pCU. The space J17 then possesses the properties which follow:

Property 1. There exists in M an infinite sequence of distinct points fp„}

converging to p such that if Ti and T2 are two arcs of M having p as one endpoint

and each containing infinitely many of the points {pn}, then TiCWi consists of

a set of points having p as a limit point. Moreover, there exists in M an arc a

= qxp such that the points {pn} converge monotonically to p on a.

Property 2. If £/G2 and pC U, then all but a finite number of the points
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{pn} of property 1 lie in a true cyclic element E of the set Yi where U — p
= VU Yj.

Proof. Let 77G2 such that pCU. Then £/-p = U*_, Fy. In view of Prop-

erty 1 it may be assumed that all but a finite number of the points {p,,} lie

in Yi. Let E be the true cyclic element of Fi containing p. Since 217 is cyclic,

every component of Yi — E must intersect U—U, hence the components of

Yi — E cannot have limit points in E arbitrarily close to p. Thus all but a

finite number of the points {p„} lie in E.

Property 3. E—a = HVJN, where 77 is the set of all points xCE for which

there exists in E a nondegenerate arc xp with xpC\a = p, N is the set of all points

xCE for which no such arc exists.

Property 4. If, for every component W of E — a, Wf~\F(M — E)?£0, then

p is not a limit point of N and the collection {C,-} of components of H is finite.

Thus there exists a subarc vp of a which does not separate 217. Moreover, in this

case there exists at least one component of 77 which has a set of limit points in

a — p having p as a limit point.

Proof. By the definition of 2V, p is not accessible from N. Thus if p is a

limit point of N, the hypothesis of Lemma 2.4 is easily seen to be satisfied.

Since this makes 217 two-cyclic at p, p is not a limit point of N. ll H has an

infinite collection of components, the hypothesis of Lemma 2.4 is again

satisfied. Thus 27 has a finite number of components in this case. In the

natural order from a to p on a, let d be the last point of NC\a. Thus for any

point v interior to the subarc dp, the subarc vp of a does not separate 217. The

proof of Property 4 is complete if it is observed that if 27 does not have a

component which has a set of limit points in a — p having p as a limit point,

then there is an element FG2 containing p lor which the collection {Xi} is

nonempty.

Property 5. If, for arbitrarily small elements UofZ such that pC U there

exists a component W of E—a such that WT\F(M — E) =0, then Theorem III

is true.

The following restrictions may be imposed on all further discussion.

Restrictions 6.2. The space 217 under consideration is a cyclic Peano

space which is strongly cyclic at the point p, but not two-cyclic at p, and for

which every element U ol the basis 2 such that pCU satisfies the following

conditions:

(a) The collection {X{} is empty.

(b) For every component W of E — a, WC\F(M—E)^0, where E and

W are the sets of U as given in the above properties.

Theorem 6.3. Let M be a Peano space satisfying the Restrictions 6.2. Then

there exists a sequence {Ui} of elements of the basis 2 such that pC Uifor every

i, and corresponding sequences {Ei}, {Ni}, and {Hi} as given by Properties

2 aMd 3, such that the following conditions hold:
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(i)   { Ui} is a null sequence, [/Ol/,+i, awd Ui+i(^Ni = 0.

(ii) EO-Ei+i awd HOtHi+i-
(iii) If Ri is a component of Hi having a set of limit points in a — p which

has p as a limit point, then there exists a sequence {R,}, j^i, such that Rj is a

component of Hj having a set of limit points in a — p which has p as a limit point,

and RjZ)Rj+i-

Proof. The sequences {Ui}, {Ei}, {Ar,}, and {Hi} are easily seen to

exist. To prove (iii), note that by Property 4 each set Ht contains at least one

component having a set of limit points in a — p having p as a limit point.

Let Ri be such a component of Hi. In the natural order from q to p on a

let d be the last point of Ni(~\a. There exists a sequence {rn} of points inte-

rior to the subarc dp of a such that r„—>p, rn is a limit point of Ri, and rnd U2,

ndl- Since H2 has only a finite number of components, it is clear that there

is a component R2 of H2 which has infinitely many of the points {rn} as limit

points and R2dPi- Continuing this process inductively completes the proof

of the theorem.

Theorem 6.4. For each sequence {Rj}, j^i, of Theorem 6.3(iii) there exists

an arc \from a point tidF(R,) —a to p, and a sequence {/u,} of arcs such that

(a) \ — pdPi~ot; i.e.,\r\a = p.

(b) \C\Rj ?* 0 for every j = i.
(c) p.j = Xjyj is an arc of Ej — Ej+i such that HjC\a = Xj, n,-rSK=yj.

(d) The sequences {x,} awd {y,} converge monotonically to p on a and X

respectively.

Proof. An arc X satisfying (a) and (b) is readily constructed. In each set

Ei, let tida, ZiGA. There exists an arc pzjti in Ei, and this arc contains a

subarc p.i = x,yi such that piif\a = Xi, p,/^X=y,-. It is clear that no generality

is lost in assuming that (c) and (d) hold.

Theorem 6.5. Each set Hi, idl, of Theorem 6.3 contains exactly one com-

ponent Ri having a set of limit points in a — p which has p as a limit point.

Thus the sequence {Ri}, idl, of Theorem 6.3(iii) is unique, as is the sequence

{Gi} where Gi is the set of all points xdRi which can be joined to a — p by an

arc of Et not meeting X.

Proof. Assume that there is a set H{ which has two components having a

set of limit points in a — p each having p as a limit point. It may be assumed

that Hi is such a set. By Theorem 6.3(iii) there exist two distinct sequences

{Ri} and {Si} as there described. As described in Theorem 6.4, there exist

arcs X and |p<} for the sequence {Ri}, and arcs X* and |p*| for the sequence

{St}. It is easily seen that this makes M two-cyclic at p. This contradiction

proves the theorem.

A review of Properties 1-5 and Theorems 6.3-6.5 reveals that there is no

loss of generality in making the following assumptions.
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Assumptions 6.6. For the Peano space il7of Properties 1-5 and Theorems

6.3-6.5 the following conditions hold:

(a) In the natural order from a to p on a, Xi<pi<Xi+i, iCI-

(b) piCEi-Ei+i, iCI-
(c) piCEi-Ei+i.
(d) X is an arc from a point tCF(Ri) —a to the point p such that X satisfies

Theorem 6.4 for the sequence {Ri}-

Theorem 6.7. Let M be a Peano space satisfying the restrictions 6.2 and

subject to the Assumptions 6.6. Let {ai} be the collection of subarcs of a defined

by ai = XipiXi+i, {X,} the collection of subarcs of X defined by X,=y,y,-+i. Let

a( =«; — (x<Wx,-+i), X/ =Xj — (yAJy,-+i). For each set Gj of the sequence {Gi} of

sets defined in Theorem 6.5, consider the set Gy —U,er pi, jCI- Then there exists

a positive integer k such that for j^k the following hold:

(i) No component of Gy —Uier p,- has limit points in two distinct sets a'm and

«„' where \m — n\ ^2.

(ii) If a component of Gy —U,-er pi has limit points in a set o£, aMd a set X„',

then m = n.

(iii) If a component of Gj — U;e//i, has limit points in a set a'm, then any

limit points of this component in U,sjm,', where pi =pi— (x,-Wy,-), must lie in

P,'nSJPm+l-

Proof. If no such integer k exists, it is easy to construct two arcs Tx and

T2 such that Tif\T2 = p and each contains infinitely many of the points {pn}.

Proof of Theorem III. Theorem 6.1 (iv) and property 5 give special cases

in which Theorem III is true. It may thus be assumed that M satisfies the

Restrictions 6.2 and is subject to the Assumptions 6.6. Moreover, it may be

assumed in Theorem 6.7 that the integer k = l. In the natural order from a

to p on a, let d be the last point of 2ViPia. Then there exists an integer r

such that for i^r, x,- is a point interior to the subarc dp of a. No generality is

lost in assuming that r= 1. Define an arc Y as follows:

r = p u ( U «„_,) u(utt)w(u \iX

Note that the arc T lies in the set Ei and is disjoint from 2V7.

Next define a collection of sets {K,} as follows:

Ki — o^J(all components of Gi — Un=i Pi having limit points in a^i).

Observe that each set Ki is a component of E\ — T by Theorem 6.7. Thus

Ei is separated into infinitely many components {Ki} by the arc T. More-

over, the {Ki} converge to p, for otherwise the hypothesis of Lemma 2.4 is

satisfied thereby making E\, and hence 217, two-cyclic at p. Thus V, and every

subarc of V having p as an endpoint, separates 217 in to infinitely many com-

ponents converging to p, the collection of components in such cases being a
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subcollection of the collection {K~i}. This completes the proof of Theorem

III.

Bibliography

1. D. W. Hall and W. T. Puckett, Jr., Conditions for the continuity of arc-preserving trans-

formations, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 468^75.

2. -, Strongly arcwise connected spaces, Amer. J. Math. vol. 63 (1941) pp. 554-562.

3. E. E. Betz, Accessibility and separation by simple closed curves, Amer. J. Math. vol. 63

(1941) pp. 127-135.
4. D. W. Hall and G. L. Spencer, II, Elementary topology, New York, John Wiley & Sons,

1955.
5. G. T. Whyburn, Analytic topology, New York, Amer. Math. Soc. Colloquium Publica-

tions, vol. 28, 1942.

University of Maryland,

College Park, Md.

United States Naval Academy,

Annapolis, Md.


