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Summary. We intend to study some problems related to the asymptotic

behaviour of a physical system the evolution of which is markovian. The

typical example of such an evolution is furnished by an homogeneous discrete

chain with a finite number of possible states considered first by A. A. Markoff.

In §1 we recall briefly the main results of this theory and in §2 we treat its

obvious generalization to the continuous parameter case. In §3 we pass to

the proper object of this paper and we establish a limit theorem for time-

homogeneous Markoff processes. This limit theorem is then extended to the

nonhomogeneous case under some supplementary conditions (§4). Finally we

give an application of this theory to random functions connected with a

Markoff process (§5).

I express my best thanks to Mr. D. D. Joshi for helpful discussions in the

preparation of this paper.

1. Finite discrete case. Suppose we are given a system in evolution which

can assume a finite number r of distinct states; suppose in addition that the

random changes of states occur at fixed instants of time equally spaced on

the time axis. Let us denote by:

Pl hi = 1, 2, • • • ,  r,n = 0, 1, 2, • • ■

the probability that the system passes from the state i to the state j in ra

consecutive steps. The hypothesis of homogeneity of the chain is revealed

by the fact that this probability depends only on the number n of steps and

not on their position.

We are interested in the asymptotic behaviour of this quantity as «—>oo.

The main result in this direction is that, for fixed i and j, Pij tends always

towards a limit n,;- in the sense of Cesaro, i.e. we always have:

I     -1+        k
hm — 2-, Pa =  n'j-
«->»  n k=i

Cesaro convergence is an averaging effect which hides an important sub-

jacent reality viz. the existence of cyclic groups inside one and the same final

group. It is evident that if such groups exist, P"j cannot tend towards a limit

in the ordinary sense. The existence of such a limit is therefore intimately

connected with the absence of cyclic groups and we speak then of the acyclic
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case. Analytically this is expressed by the fact that the matrix P= {Pa} of

the transition probabilities in one step does not admit any proper value of

modulus 1 other than unity. In this case we have thus:

lim P*, =  Uij
n—»«

and the limit is attained exponentially.

Suppose now that the chain has begun at a certain instant taken as the

origin and let us denote by w?^0, i=l, ■ ■ • , r, ^=i<o? = l a system of

arbitrary initial probabilities. The distribution of a priori probabilities after

n consecutive steps is then given by

(l.D «; = i;*H.
i-i

Letting n—> °o we have

(1.2) Hm <i" = 2Z "> n,y = P,(uk).
»-"» i-1

In other words the a priori probabilities themselves tend towards a limit as

n—>&> and this limit depends linearly on the initial probability distribution.

If we take this limit distribution as the initial distribution of our chain, it is

easily seen that it is "stable," i.e. that it is preserved after every step. In

other words we have:

*/(«*)  =  Z iM<^V";
t-l

for each integer w^O.

With this initial probability distribution the chain is not only time-

homogeneous, but also stationary. The limits IT,, being attained exponen-

tially, the evolution of the system is in fact very soon indiscernible from the

stationary evolution which we have just characterized.

In the general acyclic case there are infinitely many stationary evolutions

of the type just studied, each of them being obtained as the limit of an evolu-

tion of the chain having begun with a given initial distribution co". But in

physical problems we do not know the initial distribution uj and this fact

makes the general acyclic case rather uninteresting. Thus we look for acyclic

chains the evolution of which tends towards a stable limit independent of the

initial distribution w". It is easily seen that this condition is fulfilled if the

limits Hy, which are attained in the ordinary sense, are independent of the

first index i, i.e. are independent of the initial state, such that we can then

write n,7 = P,-.
If this condition is fulfilled we say that we are in the "regular case."

Hence, in the regular case:
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lim Py = Pi

the limit P, being always attained exponentially.

Numerous papers have been devoted to the study of the regular case.

A. A. Markoff [l] was the first in 1906 to find a necessary and sufficient

condition in order that it be realized. His condition is the following:

Condition of Markoff. A necessary and sufficient condition for the regular

case to be realized is that there exist positive integers rao>0,j0£(l, 2, ■ • • , r)

and an e>0 such that Pj"£Se for every index *£(1, 2, • • • , r).

However this condition is very cumbersome to verify in application, be-

cause it needs the iteration of the matrix P = {P,y} of transition probabilities

in one step. Later on several sufficient conditions have been given which are

quite simple to verify in a given case but are often too restrictive. (See an

account in the exhaustive book of M. Frechet [2].) But among them we must

mention the sufficient condition of J. Kaucky [3] which was found to be also

necessary by M. Konecny [4].

Condition of Kaucky-Konelny. A necessary and sufficient condition for

the regular case to be realized is that the matrix P = {Pa} of the transition

probabilities in one step does not admit any proper value of modulus 1 other

than unity (acyclic case) and further that unity is a simple root of the char-

acteristic equation of P.

In the regular case the a priori probabilities co" given by (1.1) tend, as

ra—*oo, towards a limit which is independent of the initial distribution co°.

In fact in this case (1.2) becomes

n J^,      0 J^v      0
hm co, = 2^ <*iPj = Pi 2-, <*i — Pi-

»->» 1=1 i-1

Thus the evolution of the system tends towards a stationary evolution which,

in this case, is unique and independent of the initial distribution. Any initial

disturbance of the chain is smoothed out as «—»°o and that exponentially.

As a first generalization of the chains we have just studied we consider the

case of continuous parameter chains, with a finite number of states.

2. Finite continuous parameter case. In this case the process can be de-

fined by the function

Pa(t) i,j= 1, 2, • • -,r, /S 0

which denotes the probability that the system passes from the state i to the

state j during the time-interval t.

It can be shown that, in this case, the probability 7\y(j) tends always

towards a limit in the ordinary sense as t—>oo, this limit being again obtained

exponentially. In other words we have always

lim Pij(t) = n,7.
1-.0O
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One can say that we are always in the acyclic case.

This result may seem surprising. But in fact, in the continuous parameter

case we impose the Chapman-Kolmogoroff relation P(t+r) =P(t)P(r)

= P(r)P(t), t, t^O for all pairs of non-negative numbers t, r whereas in the

discrete case we impose this condition only for non-negative integral values.

Thus we impose much more stringent conditions in the continuous parameter

case than in the discrete case and it is understandable that there may exist

phenomena in the discrete case which disappear in the continuous case. The

mathematical reason is the following:

In the finite discrete case the existence of cyclic groups is intimately con-

nected with the existence of proper values of the transition matrix P= {P\s}

in one step of modulus one and distinct from unity. If X is such a proper value,

|X| =1, X^l, it is known that it is necessarily a root of unity. But the num-

ber X", which is the proper value of the transition matrix P" = {P"j} is also a

root of unity, and this for each integer n^l.

In the finite continuous parameter case similar considerations can be

made. If X is a proper value of the transition matrix P(l) = {P,-,(l)} of modu-

lus one and distinct from unity, it must be a root of unity. But then X' which

is a proper value of P(t) = {Pa(i)} is also of modulus one and has to be a root

of unity for each t^O. This can be the case only if X = l. Thus in the finite

continuous parameter case every proper value of modulus one of the matrix

P(l) is necessarily equal to unity and the cyclic groups disappear.

It can be shown as in the discrete case that the a priori probability dis-

tribution itself tends towards a limit as t—>°° and that if this limit is taken

as initial probability distribution the evolution becomes stationary.

This limit, of course, depends on the initial distribution unless the 11,;

are independent of the first index i, that is of the initial state.

We shall not insist on the generalization where the number of possible

states is denumerable. This theory is mainly due to A. A. Kolomogoroff [5]

and J. L. Doob [6]. An interesting account of this subject has recently been

given by P. Levy [7].

We pass now to the proper object of this paper where we suppose that the

set of possible states is the real line.

3. Time homogeneous Markoff processes. hetX(t) be a time-homogeneous

Markoff random function and let

F(t; x, E) = P{ X(t + t) E E I X(t) = x} t, t ^ 0

be the probability that the system passes from the point x£P7 to the Borel

set ECR1 (P1 being the real line) in the time-interval t. The process being

supposed time-homogeneous, this function depends only upon the length t oi

this time-interval and not upon its position on the real axis. It should be

noted that the time-homogeneity is a condition imposed on the transition
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probability law and has to be distinguished from the stationarity which

postulates the invariance of the joint probability law under translations of

the time-axis.

The a priori probability law of the process at time t will be denoted by

4,(1, E) = P{X(t)GE},

E being, as always, a Borel subset of R1.

Using some results of J. L. Doob [8 ], we shall prove the following theorem:

Theorem I. Suppose the process has begun at a fixed instant taken as the

origin. If it satisfies the Doeblin condition (D), which we shall define later, then,

the a priori probability law(p(t, E) tends, as t—> °°, towards a limiting probability

distribution A(E) which is independent of any initial probability distribution,

the limit A(E) being attained exponentially and uniformly in E. In other words

it is possible to give a bound of the following type:

| <p(t, E) - A(E) |   < he~kt

where h and k are strictly positive constants independent of E. The limiting dis-

tribution A(E) is in addition stable, i.e. it is preserved throughout the course of

time. In other words it satisfies the integral equation:

A(£) =   I      A(dx)F(t; x, E) for each t S 0.
•* -oo

If we take A(£) as the initial distribution, the process is not only time-

homogeneous, but also stationary. The limit A(£) being attained exponen-

tially the evolution of the system is in fact very soon indiscernible from the

stationary evolution which we have just characterized.

Note: J. Neveu, in his thesis [9], has proved an analogous theorem by an

entirely different method going back to K. Yosida and S. Kakutani [12]. But

all these methods suppose that the set of possible states of X(t) is a compact

subset of R1. In our approach, resembling Markoff's original method, we need

not make this hypothesis.

Doeblin-condition D. Let u(E) be a bounded positive measure, it is well

known that F(t; x, E) (which is a probability measure in E) can be decom-

posed into a component absolutely continuous with respect to u(E) and a

singular component (Lebesgue decomposition). In other words we can always

write:

F(t; x,E)=   f p(t; x, y)n(dy) + A(t; x, E),

p(t; x, y) being a Borel-measurable function of y and A(t; x, E) the singular

component of F(t; x, E) i.e. a measure in E which is zero everywhere except
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on a set of Borel-measure zero (dependent on t, x)(x).

The Doeblin condition D consists then in supposing that there exist a

measure u(E) of the above kind, a strictly positive number 5>0 and a Borel

set C, such that, for a sufficiently large t0 we have.

M(C) > 0,

p(h; x,y)^&>0    uniformly in x £ R\ y £ C.

Proof of the Theorem I. The proof will be given in several steps:

(i) We begin by establishing a fundamental property of the transition

probability function F(t; x, E). We start from the Chapman-Kolmogoroff

equation:

/+00

F(t; x, dy)F(r; y, E) ior each /, r ^ 0.
-00

Since ftZF(t; x, dy) = 1 we have immediately

X+oo
F(t;x,dy)=  sup F(r;y,E).

This bound being uniform in x, we have

sup F(t + t; x, E) S sup F(T; y, E).

In other words the function

M(t, E) = sup F(t; x, E)
xeRl

is an nonincreasing function of t. It can be shown in the same manner that

the function

m(t, E) = inf F(t; x, E)
xeR1

is a nondecreasing function of t and we have of course:

Og m(t, E) S M(t, E) S 1-

These monotonic properties combined with the boundedness of the functions

assure the existence of the following limits

(') The Borel-measure of a Borel-measurable linear set E is defined in the following con-

structive way: one begins by defining the measure of intervals of Rl, without distinguishing

between open and closed intervals. The measure of an interval is the length of this interval,

measured with a certain arbitrary unity. A Borel-measurable linear set E is then defined as the

union of a finite or a denumerably infinite number of disjoint intervals and the Borel-measure

of E is by definition the sum of the measures (lengths) of these intervals.

For this notation, see e.g., E. Borel, Leqons sur la thiorie des functions, Paris, Gauthier-

Villars, 1950.
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lim M(t, E) = L(E), lim m(i, E) = 1(E)

and we have

0 g 1(E) S L(E) g 1.

(ii) Now we return to the a priori distribution <j>(t, E) at time tSO, which

is connected with an arbitrary initial distribution <p(0, E) by the relation

/+oo
0(0, dx)F(t; x, £).

-00

By the definition of the functions 717(/, £) and m(t, E) we have

0 g m(t, E) S (p(t, E) g M(t, £) g 1.

Taking the limit as t—+ a>

0 g 1(E) S Hm inf <p(t, E) g lim sup <p(h E) g L(E) g 1.

So far we have made no hypotheses on the transition probability function

F(t; x, £). The main role of the Doeblin condition D will then be to assure

the equality of the 2 limits L(E) and 1(E).

Denoting their common value by A(£) we will then have:

lim <p(t, E) = A(£).

In addition the limit A(£) is attained exponentially and uniformly in £,

A(£) being the limit, uniformly in £, of a family of probability measures

is itself a probability measure, i.e. A(Rl) = 1. Further it is independent of the

initial distribution c6(0, £).

(iii) We shall now establish that the Doeblin condition D implies that

L(E)=l(E)=A(E). We can write, to being a positive constant to be deter-

mined later

/•+00

F(t + l0; x, E) - F(t + to; y, E) =  j     F(t; X, £) [F(t0; x, d\) - F(t0; y, ik)].
J -00

The form of the second member leads us to introduce the function

*».» (E) = F(to; x, E) - F(to; y, £).

For fixed x and y this function is a a-additive set function in £ and ipx^R1) = 0.

There exists therefore a Borel set S+ such that for each Borel subset £+£5+

we have ^,B(£+)S0 and for each Borel subset £~ of its complement S~

= R1—S+ we have \pXiV(E~) gO. (Hahn decomposition of a signed measure.)

Whence

+*,v(S+)   + f*,y(S-)   =  ̂ (i?1)   =   0, f„y(S+)   =   ~  4>x,y(S-).
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Thus we can set

\^.y(S+)\   =   \+*.v(S-)\   =6(x,y).

The function 6(x, y) lies between 0 and 1, since:

0 S 6(x, y) = F(to; x, S+) - F(t0; y, S+) S F(t0; x, S+) S F(t0; x, Rl) = 1.

We shall see that under the Doeblin condition D, sup(I,B)esiXRi B(x, y) < 1 — e,

e being a certain strictly positive number. In fact:

0(x, y) = <px,v(S+) = F(t0; x, S+) - F(t0; y, S+)

= 1 - F(t0; x, S-) - F(t0; y, S+)

whence, using the Lebesgue decomposition of F(t; x, E)

S 1 - f  p(t0; x, \)p(d\) - |   p(t0; y, \)p(d\)
J s~ J s+

whence, C being the set occurring in the Doeblin condition D:

Sl-f      p(t0; x, \)p(dX) - j       p(to-,y,\)p(d\).
Js~nc Js+nc

Supposing now that t0 is the t0 occurring in the Doeblin condition D

s i - sp(s- r\ c)-8p(s+ r\c) = i - Sp(c).

This bound being independent of x, y we have thus:

sup      6(x, y) S 1 - 8p(C) < 1.
(x,v)eR'XR'

Now we write:

F(t + to; x, E) - F(t + h; y, E)

=   f   F(t;\, E) | +x,v(d\) |  -   f   F(t; X, E) | *x,y(d\) ,
Js+ Js~

S M(t, E)  f    | *x,v(d\) |   - m(l, E)  f    | ̂ ,.,(dX) |
Js+ Js~

= [M(t, E) - m(t, E)]0(x, y) S [M(t, E) - m(t, E)][l - Sp(C)].

This bound being independent of x,.y we have thus:

M(t + t0, E) - m(t + to, E) S [M(i, E) - m(t, E)][l - 8p(Q] S 1 - «m(C)

where 0^1-5p(C)<l or:

Oscillation F(t + t0; x, E) S [l - ^(OjOscillation F(t; x, E).

By iteration we have then, n being a positive integer:

(3.1) M(t + Hit, E) - m(l + nto, E) S [l - 8p(C)]H.
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Supposing now t and t0 fixed and letting ra—>» the first member tends ex-

ponentially towards 0, and this uniformly in £.

But in (i) we have already established the existence of the limits:

lim M(t,E) = £(£),

lim m(t, E) = 1(E).

Every partial sequence extracted from the positive /-axis must give the same

limits, i.e. we have also:

lim M(l+ nto,E) = L(E),
n—* oo

lim m(t + nlo, E) = 1(E).

The inequality (3.1) shows then that L(E) =l(E) =A(£) and further that the

common limit A(£) is attained exponentially and uniformly in £.

We have already said that the to is fixed by the Doeblin condition D. The

value being thus fixed, we can write, t being an arbitrary positive value:

t = nto + r, 0 S r < to

whence from (3.1) for t^t0 (in order that raS 1)

(3.2) M(t, E) - m(t, £) g [1 - «/»(C)] <*-"«■ = Kdl

where

K = [1 - Su(C)]-r"\       6 = [1 - S^C)]1"".

But  Ogr//0<l,   hence  KS [l -8u(C)]-1 = h>0.   Further  Og0<l,   hence

d = e~h, k= — log0>O. We can therefore write (3.2):

M(t, E) - m(t,E) g he-"', (t S to),

h = [1 - o/x(C)]-i > 0,

k = - log [1 - 5/i(C)]"'»> 0

to being the minimum value for which the Doeblin condition D holds. Finally:

(3.4) | 4>(t, E) - A(£) I   g M(t, E) - m(t, E) g he~kt (t S /„)•

(iv) It remains to show that the limiting distribution A(£) is stable i.e.

that it satisfies the integral equation

/+oo
A(dx)F(l; x, E) for each t S 0.

-00

To prove that we need the following lemma which we give without proof:
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Lemma. If, as t—> «>, the family of probability measures <f>(t, E) tends towards

a limit A(E), uniformaly in E we have, X being a bounded Borel measurable

function:

lim   f     </>(/, dy)\(y) =   f     |   lim <p(t, dy)\\(y) =  f     A(7y)X(y).
<-.» J-x 7_M  L t-"> J J_w

We can now prove the stability of A(£). We have:

J     A(dy)F(t; y, E) = f     T Jim *(r. dy)l F(/; y, E)

hence, by the lemma:

/+CO

4>(r, dy)F(t; y, E) = lim <p(t + r, E) = A(£).

The theorem is completely proved.

P.S. As has been pointed out by Professor M. Kac, the Doeblin condition

D, which is an obvious analogue to the Markoff's original condition for the

regular case, is rather difficult to verify for a given homogeneous process.

Thus it would be very interesting to substitute it by another more accessible

condition but we have not succeeded in doing so. However, as has been

pointed out by Professor R. Fortet, Doeblin's condition is, in a certain way,

necessary for the convergence of F(t; x, E) as £—>°o. Suppose in fact, that

lim F(t; x, E) = A(£)        uniformly in x and E,
I-.00

where A(£) is a probability measure. Then, to every e>0 we can associate

to(e) such that, for t>t0:

| F(t; x, E) - A(E) |   < 6

whence F(t; x, E)>A(E) —e uniformly in x and E. But, A(£) being a proba-

bility measure, there exists a Borel-measurable subset C oi R1, of nonzero

Borel-measure, and such that:

A(C) > 2e (if e < 1/2).

Then

F(t; x,E)>e for t > h

and, finally, for t>ta:

(1) F(t; x, E) > SA(C) 8 > 0

with 8<e/A(C). But (1) is a weaker form of Doeblin's condition (D) with
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pi(E) =A(£) and we see that condition (1) is necessary for convergence in

the specified sense.

4. Nonhomogeneous Markoff processes. So far we have studied time-

homogeneous Markoff processes only. Time homogeneity being a rather re-

strictive condition in the long run, it would be desirable to have limit theo-

rems of the above kind in the most general case. In fact the problem becomes

very complicated and we have succeeded in establishing asymptotic proper-

ties only under severe conditions. This problem was suggested to me by the

thesis of J. P. Vigier (unpublished) (10). We set, as always:

F(t, x; r, E) = P{ X(t) £ £ | X(t) = x} t < r,

<p(t,E) = P{x(t)EE},

E being, as always, a Borel-measurable subset of R1. We have seen in §3

that in the time-homogeneous case the Doeblin condition (D) suffices to

assure the existence of a stable limiting distribution A(£), i.e. of a distribu-

tion satisfying the integral equation

/+00

A(dx)F(t; x, E).
-oo

In the general case we shall suppose explicitly the existence of a strictly

positive stable distribution, i.e. we suppose that there exists a distribution

A(£) satisfying the conditions:

A(£) > 0 if the Borel-measure of £ is >0,
(4.1)

A(£) =   I      A(dx)F(t, x; r, E) for all /, t > 0, / < r.
«J-oo

We shall then prove the following theorem:

Theorem II. Suppose the process has begun at a certain instant taken as the

origin. If there exists a strictly positive stable distribution A(£) araa" if in addition

the transition probability distribution F(t, x; r, £), t<r satisfies the condition

D' (analogous to the Doeblin condition D) which we shall define later, the a

priori distribution <j>(t, E) tends, as /—»<», towards the stable distribution A(E).

For the theorem to hold we must however take the initial probability distributions

0(0, £) from a certain family S defined by

S:<p(0, E) g HA(E),

77 being a positive constant independent of E.

Under these conditions the limit is again attained exponentially and uni-

formly in £, i.e. we have again a bound of the following type:

\<p(t,E)i-mA(E)\   S'he-kt,
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h and k being positive constants independent of E.

Condition D'. There exists a Borel set C, a number 5>0 such that, for to

sufficiently large we have simultaneously:

A(C) > 0,

F(t, x; I + to, E) 5; 8A(E)

ior each tER1 and each x£C

First it is clear that the hypotheses of Theorem II imply:

<t>(t, E)
sup-■ S H for every / > 0,
esb  A(E)

B being the class of all Borel measurable subsets of P1. We now proceed to

prove the theorem.

Proof of the theorem. It will follow the patterns of the proof of Theorem I

and will be given in several steps.

(i) We can write:

<b(r, E)       /•+- <b(t, dx)   A(dx)
- =   I-F(t, x;t, E) t < t
A(E)        J-„     A(dx)     A(E)

4>(t,G)  /•+- A(dx)

OeB   A(o-)   J _«     A(E)

*& G)  ,     (A A,
= sup ,^x  by (4-1)

GeB    A(G)

and the supremum is finite owing to the above lemma. The bound on the right

being independent of E, we have also:

<b(r, E)              4>(t, G)
sup- S sup-, t < r.
EBB    A(E) GSB    A(G)

In other words the function

M(t) = sup-
ebb   A(E)

is a nonincreasing function of t. It is shown in the same manner that the func-

tion

m(t) =  inf -
EGB   A(E)

is a nondecreasing function of t and we have of course

0 S m(t) S M(l) S H < °° ■
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These monotonic properties combined with the boundedness of the functions

assure the existence of the following limits

lim M(t) = L, lim m(t) = I

and we have

0g/g7,g#<oo.

(ii) Now we return to the a priori distribution <p(t, E) at time /SO. We

have of course:

<p(t, E)
0 g m(t) S-=S J17(/) g H < oo.

A(£)

Taking the limit as t

<p(t, E) <p(t, E)
0 S I S lim inf —-g lim sup —- < L <, H < ».

<->»     A(£) «—      A(£)

So far we have made no hypotheses on the transition probability function

F(t, x; r, £). The main role of the condition D' will again be to assure the

equality of the two limits L and 1. Denoting their common value by A, we

have then:

,.     t>(t, E)
hm-= A.
<^«   A(£)

But then A is necessarily equal to 1 because, if we take E = R1, <p(t, R1)

=A(R1) = 1. Hence, under condition D' we will see that

,.     <P(t, E)
hm- = 1.
<-.«.   A(£)

In addition the limit 1 is attained exponentially and uniformly in E.

(iii) We shall now show that condition D' implies Z = l =A = 1. We can

write, r0 being a positive constant to be determined later and £, G being two

Borel-measurable sets:

<b(t + to, E)      <b(l + to, G)

A(£) A(G)

r +°° <p(t, dx) r A(dx) A(dx) 1
= L. i^LMi)F(,'*i' + '-E)-7^f<''";, + ,,'c,J-

The form of the second member leads us to introduce the differential expres-

sion:
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A(dx) A(dx)
+t.B,a(x, dx) = —— F(t, x; t + to, E)-—- F(t, x; t + t0, G).

A(E) A(G)

For fixed t, E, G we have then, owing to (4.1):

/+oo
4'i,E,a(x, dx) = 0.

-00

Let us denote by S+ the set of x-values (depending on /, E, G), ior which

iPt.E.o(x, dx) ^0 and by S~ its complement. We have then

0=  I      \pt,E,a(x,dx) =        ypt,E,a(x,dx) +  I    ypt,E,a(x,dx)
J -a J s+ J S~

whence:

J^t,E,a(x, dx) = —  J    ipt,E,G(x, dx).
s+ J s~

Thus we may set

|     \\p,,B.B(x,dx)\  =  f   \ft,E,G(x,dx)\   = 9(t, E, G).

The function 6(t, E, G) lies between 0 and 1, since

0 S 6(t, E,G) =   f   4*t,E,a(x, dx)
J s+

/'     A(dx) r     A(dx)
-—~F(t, x; t + t0,E)- -—— F(t, x; t + to, G)

s+   A(E) Js+   A(G)

/•     A(dx) r+°° A(dx)
—~-F(t,x;t + to,E)S -—F(t, x; I + to, E) = 1.

s+   A(E) 7_M    A(£)

We shall see that under condition D'

sup d(t, E,G)<l-t,
!£Ri;(B,G)eBXB

e being a certain strictly positive number. In fact:

/r     A(dx)
+i,E,o(x,dx) = —-— F(l, x;t + to, E)

s+ J s+   A(E)

/'     A(dx)-^— F(t, x; I + to, G)
s+   A(G)

/•     A(dx) C     A(7x)—-F(t,x;t + to,E)-  j      -—F(t,x;t+to,G)
s-   A(E) J s+   A(G)
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whence, C being the set occurring in the condition (D')

/A (ax) r        A (ax)
-j-±F(l,x;l + t0,E)-  I ——F(t, x; t + to, G)

s-nc A(E) J s+nc  A(G)

whence if to is chosen as required in the condition (D'):

g i - sa(s-nc) - oA(5+ nc) = i - sa(q.

The bound on the right being independent of /, £, G, we have:

sup 6(t, E, G) < 1 - &A(C) < 1.
tsR'-(E,6)sBXB

We now write:

<p(t + to, E)      4>(t + tp, G)

A(£) A(G)

r   <p(t,dx) r    <p(t, dx)
=  I     "T77T I tt-E'<>(x> dx>\   ~  I      T77T I *«.*•»(*> dx)

J s+  A (ax) J s-   A (ax)

g [M(t) - m(t)]d(t, E, G) S [M(t) - m(t)][l - 8A(C)].

The bound on the right being independent of £, G we have, taking the

supremum on the left:

M(t + to) - m(t + to) S [M(t) - m(t)][l - SA(C)] g H[l - 5A(Q]

or

<p(t +t0,E)      . ,    . <p(t, E)
Oscillation —-—- g [l - SA(C)]   X   Oscillation •

E€B A(£) E£B A(£)

By iteration, we have then, ra being a positive integer:

(4.2) M(t + nh) - m(t + nta) g 77[l - oA(C)]".

Supposing now t and fo fixed and letting ra—* «>, the first member tends

exponentially towards 0.

But in (i) we have already established the existence of the limits:

lim JI7(/) = 7, lim m(t) = I.
t—»00 (—»»

Hence

lim M(t + nta) = L, lim m(t + nto) = I.
n—* oo n—»«o

The inequality (4.2) shows then that L = l. But we have already seen that in

this case the common value of L, I must be 1.

The value to is fixed by the condition D'. t being an arbitrary positive
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value, we can write:

t = nto + r 0 S r < to

whence from (4.2), for t^t0 (in order that w^ 1):

(4.3) M(t) - m(t)SH[l - 8A(C)]^i'° = K6*

where

K = 77[1 - «A(C)]-'"",       9 = [1 - 5A(C)]1/(».

But 0Sr/t0<l hence KSH[l -SA(Q]~1 = h>0. Further 0S6<1 hence
0 = e~k, k= — log0>O and finally (4.3) can be written:

M(t) - m(t) S he'"1,

(4.4) h = H[l - 8A(C)]~l > 0,

k = - log [1 - SAfC)]1"" > 0,

to being the minimum value for which condition D' holds. Finally we have:

4>(t, E)
- - 1   S M(t) - m(t) < he-"'
A(E)

whence

i 4>it, E)
| <p(t, E) - A(E) |   = A(£) -^ - 1

A (E)

S A(E)he~kt S A(R>)he-k< = he~kt

i.e. as t—><», <p(t, E) tends exponentially and uniformly in E, towards the

stable distribution A(E).

5. Application: Random functions connected with a Markoff process. Let

X( •) be a bounded nonrandom Borel measurable function defined on the whole

axis. X(t) being an arbitrary general Markoff process, we consider the func-

tion X[X(f)] which is then a random function defined at every instant t and

for each realization of X(t). Following Blanc-Lapierre and Fortet (11) we

call it a random function connected with the original Markoff process X(t).

We are interested in the study of such random functions. We always sup-

pose that the original Markoff process X(t) has begun at a certain instant

taken as the origin.

Let us denote by M the Banach space of (real or complex) cr-additive set

functions defined on the Borel-field of Borel measurable linear sets and being

of bounded total variation; further by M the Banach space of (real or com-

plex) bounded Borel-measurable functions defined on the whole real axis.

It is then known (see [12]) that the transition probability function

F(t, x; t, E) of the original Markoff process X(t) allows us to define on M

and M 2 families of endomorphisms Tt,T and TT,t in the following manner:
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/+00

<p(dx)F(t; x; t, £), t < r;
-00

0 £ M$ -+ TT,$ = $,     i?(x) =   f     $(y)F(t, x; r, dy), t < r.
J _M

Further, if </>£J17, $£J17 a scalar product can be defined by setting:

/+0O

<b(dx)$(x)
-00

and then the operators Tt,T and 7V,j are adjoint with respect to this scalar

product.

It is easily seen that if X£J7, £{X[Z'(f)]} exists and is finite for every

/SO.

We are interested in the asymptotic behavior of £{X[X(/)]} as r—>oo.

Theorem III. Under the conditions of Theorem II, the limit of E(X [X(t)]}

as j—>co , exists and is finite; more precisely we have:

lim E{\[X(t)]} = (A, X) = p < oo,
t—* oo

A(£) being the limit of <p(t, E) as J—»oo.

Proof. We have

£{x[X(f)]} =   f  ™4,(t, dx)\(x)
J -00

whence

lim E{\[X(t)]} = lim   f    d>(t, dx)\(x),

4>(t, E) tending towards the limit A(E) uniformly in £, we have, owing to the

lemma of §3:

/+oo |- r» +co

lim <p(t, dx) \\(x) =  j      A(dx)\(x) = (A, \) = u

and the proof is complete.

Now we turn to the study of the dispersion of X [X(t) ] but we shall restrict

ourselves to the time-homogeneous case. We begin by defining two integrals

which will be of importance in the following. We have seen that under the

conditions of Theorem I of §3 we have:

| <p(t, E) - A(£) |   g M(t, E) - m(t, E) g he-"'; h, k > 0.

Hence the integral
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[<p(t, E) - A(E)]dt
o

is absolutely convergent. Further we have:

m(t, E) S F(t; x, E) S M(t, E),

m(t, E) S A(E) S M(t, E).

Hence

| F(t; x,E) - A(E) \   S M(t, E) - m(t, E) S he~kt

and thus the integral

(5.2) s(x, E) =  f   [F(l; x, E) - A(E)]dt
Jo

is absolutely convergent.

We now consider the dispersion of the integral (l/T)jo\[X(t)]dt (in the

mean's square sense) i.e. the quantity:

a2(T) = E§± f\[X(l)]dt - e(± j\[X(t)]dijJ^ ,

= E^f\[X(t)]dt - mJ} - [sj^- f\[X(t)]dtj - MJ

where p = (A, X). We shall now prove the following theorem:

Theorem IV. Under the conditions of Theorem I of §3, Ta2(T) tends, as

T—>=o, towards a finite positive limit D2 independent of the initial distributicn

and given by

D2 =   f     A(<ix)[\(x) - p]2
J -00

+ 2  f       I      A(7x)s(x, dy)[\(x) - p][\(y) - p].
J -00       J -00

In other words, if T is large, a2(T) is of the order 1/T i.e.

<j2(T) ~ Z)2/7\

or

a(T) ~ D/T1'2.

Proof of the theorem. We shall give it in several steps,

(i) Consider the limit, as T—>°o, of the expression
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r[£{lr/ X[*(0J*} ~ M] = / [£M*(0]} - p] dt

=  j    dt\   j      [<p(t,dx) - A(dx)]\(x)

=  I j    [<t>(t,dx) - A(dx)]dt\\(x).

Letting 77—> oo this expression tends towards

/+00

s(dx)\(x) = ( 5,      X) <  oo.
-oo

Thus

T2[E{-^ f   *[X(t)]dt} - MJ-» [(5, X)]2 < oo

and

r[£{^/o  X[X(i)]dt} ~M

tends towards zero in the same manner as 1/77 Thus the second term on the

right of (6.4) contributes nothing to the limit of Ta2(T).

(ii) Let us study the contribution of the first term, i.e. of

TE§l\L X[*(0^ - "] } = TE^~JT(\[X(l)]-a)dt j

= — f     (   E{ [\[X(u)] - u][\[X(v)} - u]}dudv
T J o   Jo

= ±- f   E{[\[X(t)] - n]*}dt
1 J o

+ —[  duf   dvE{[\[X(u)] - p][\[X(v)} - »}}.
1   " 0 J u

(a) The first term on the right is equal to

1     CT       C +°° /• +00

— I    dt I      <t>(l,dx)[\(x) -m]2-> I      A(dx)[\(x) - u]2.
T J 0 J -oo J -oo

(b) The second term can be written, setting v. — u = w,
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-fduf    UdwE{ [\[X(u)] - p][X[X(u + w)] - p]}
1 J o       Jo

= ~rl  dUI      dw\§§<p(u, dx)F(w; x, dy)[\(x) - p][\(y) - p]\

= ~T 11 \ I  dUf     dW</,("' dx)F(-w; *' dy) tX(ie) ~ ̂  fX(y) ~~ ̂]

= ~T X / /» dU*{-U' ^ [ /      dwlF(-W'> X>dy) ~ A<d^]^x) " ^tX(:v) "A

+ 2 —^/ J f  du<t>(u, dx)A(dy)[\(x) - p][\(y) - „].

But for fixed T the last term on the right vanishes identically because it con-

tains the factor

f     A(dy)[X(y) - p]=   (     A(dy)\(y) - p m 0.
J -OO J —OO

Hence, as T—* qo this quantity tends towards the limit

2 f   f A(dx)s(x, dy)[\(x) - p][\(y) - p].
J zJ V

Finally, as T—»», Ta2(T) tends towards the finite limit

D2 =   f     A(dx)[X(x) - p]2 + 2 f       f     A(dx)s(x, dy)[\(x) - p][\(y) - p]
J —oo J —oo     J —oo

independent of the initial distribution, and the theorem is completely proved.

Note that a similar problem was treated in the finite case by M. Frechet [2].
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