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The transition probability matrix P(t) = (Pn(t)),

Pn(t) = Pr {X(t + *)-/| X(s) = i}, i,j = 0,1,2, ■■■; t,s£0

of a birth and death process X(t) satisfies the differential equations

(0.1) P'(t) = AP(t), (t^O),

(0.2) P'(l) = P(t)A,

the initial condition

(0.3) P(0) = I,

and has the additional properties

(0-4) Pi,(t) = 0,

(0.5) £>«(«) £1,
J'-O

(0.6) P(t + s) = P(t)P(s).

The matrix A = (a,-,) in (0.1) is of the form

a«,»+i — X»,

a,,i = — (\i + pi),

a,-.i_i = pt,

an = 0 if   | i — j \   > 1,

where Xj > 0 for i = 0, p< > 0 for i ^ 1, and po = 0.

In the applications one is given the matrix A and it is required to con-

struct P(t) and to study the properties of the corresponding stochastic proc-

ess. The existence, uniqueness, and the analytic properties of P(t) have been

discussed in detail in [l]. The objective of this paper is to use the results of

[l ] to establish equivalences between properties of the stochastic process

and properties of the sequences {\„}, {p„}, and to evaluate, in terms of these

sequences, some of the interesting probabilistic quantities associated with the

process.
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It is assumed throughout that the state space of the process X(t) is the

set of all non-negative integers. Processes with only a finite number of states

can be treated by the same methods.

In [l, Theorems 14, 15] it is shown that there is one and only one matrix

P(t) which satisfies (0.1), (0.2), (0.3), (0.4), (0.5) if and only if

(0.7) E(t» + tM=°°,
n-0 \ Anir„/

where

XoXi • • • X„_i
(0.8) to =1,        irn =-• for n ^ 1.

PlPi   ■   ■   ■ Pn

Since we know of no application in which (0.7) is not satisfied, it will always

be assumed that (0.7) is valid.

Associated with the matrix A is a system {Qn(x)} of polynomials defined

by the recurrence formulas

Qo(x) = 1,

(0.9) -xC7o(x) = - (Ao + po)Qo(x) + Xo(?i(*),

— XQ„(X)   =  pnQn-l(x)   —   (Xn + Pn)Qn(x)   +  \„Qn+l(x), U  ^   1.

It is shown in [l ] that there is at least one positive regular measure ip on

0 ^ x < oo such that

(0.10) f   Qi(x)Qi(xW(x) = - , i, j = 0, 1, 2, • • • .
J 0 ITj

Any such measure \p is called a solution of the moment problem. We are going

to assume throughout that the solution of the moment problem is unique. If

Po = 0 this is equivalent to condition (0.7). If Mo>0 the solution of the moment

problem is unique if and only if

oo / n—1 j[     \2

(0.11) Zxn(l  + MoZ   -_)     =    CO,
n=0 \ *=0     At7Tt/

and looking at the term 2poirn/\n-.iirn_i = 2po/pn, it is seen that a sufficient

condition for (0.11) is

A   1
2Z — = »•
n-l   Pn

This last condition is satisfied in all practical applications.

The transition matrix P(t) is represented by the formula

(0.12) Pa(t) = in f  r-'QiWQiixWix).
Jo
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The usefulness of this integral representation derives from the simple mono-

tonic properties of e~xt, and from the fact that the dependence on t, i and j

is factored in the integrand.

In the first four sections the behavior of the process as regards ergodicity,

recurrence, and transience is characterized in terms of the behavior of the

sequences {7r„}, {l/X„irB}. In these sections the first passage time distribu-

tions for the ergodic case are studied and the problem of existence and com-

putation of the moments of these distributions is reduced to the existence and

computation of integrals of the form

TM  diKx)

7<H-        X*

The evaluation of these integrals in terms of the irn and l/X„irB is carried out

in the appendix. In the transient case the distribution of the "time at which

w is reached" is examined, and the moments of this distribution are expressed

in terms of integrals of the form

/"° dip
o    ~x~k '

In §5 the case where absorption occurs from the zero state into an ignored

minus-one state (p0>0) is treated. The moments of the absorption time are

computed and similar calculations are made for the distribution of the num-

ber of transitions before absorption occurs.

§6 discusses some general relations between absorbing and nonabsorbing

processes.

In §7 a very strong ergodic theorem for birth and death processes is

given. It is a Tauberian form of the classical Doeblin ratio theorem.

§8 treats the problem of computing yp when the matrix A is given.

In another publication the results of this paper will be applied to the

study of linear growth and certain queuing models.

1. Recurrence and ergodicity (p0 = 0). From the integral representation

(0.12) it follows that lim^w Pn(t, rp) exists and, since all Q„(0) = 1, is equal to

iTjp where p is the mass of \p at x = 0. The constant p is given by

P = 1 /   z2 irn
I        n-0

which is to be interpreted as zero if the series diverges. Thus the classical

ergodic theorem concerning the behavior of Pn(t) as t—* °° is a trivial conse-

quence of the integral representation. It is also easy to see that if ip has no

mass near x = 0 except at x = 0, then Pi,(t) converges exponentially to its

limiting value.
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We now turn to the study of recurrence properties. The recurrence time

distributions Fu(t) and first passage time distributions F,y(i) are defined by

(i)   Fn(t) = Pr { X(t) = j for some t, 0 < r g 11 X(0) = i}, i ^ j,

(ii) Fa(t) = Pr {X(ri) j± i, X(t2) = i for somen,r2,0 < n < r2 g t \ X(0) = i}.

In words, Fa(t), i^j, is the probability that the particle, having started at i,

visits j some time before /, and Fu(t) is the probability that the particle,

having started at i, leaves i and then returns to i some time before /. A rigor-

ous discussion of these quantities has been given by Chung [2]. It may hap-

pen that some of these "distributions" are not honest probability distribu-

tions, i.e.,

f  dFu(t) < 1, f  dFa(t) < 1.
•/ o Jo

The integral JodFu(t) is the probability that if the particle starts at *', it

leaves i and then returns to i in finite time. The ith state is called a recurrent

state il J"dFu(t) = 1, and is called a transient state otherwise. A recurrent state

i is called ergodic or recurrent null according as its expected recurrence time

J"tdFu(t) is finite or infinite. A process is called recurrent, ergodic, recurrent

null, or transient if every one of its states has the corresponding property.

It is clear that

Pr {X(s + t) = i for all r, 0 g r g t \ X(s) = i} = exp (-(X,- + pi)i).

By a standard enumeration of paths it is found that

Pu(t) = exp (-(X,- + pi)l) +  f Pu(t - s)dFa(s),
J o

(1-1)

Pu(t) =   f Pji(t - s)dFa(s).
J 0

Introducing the Laplace transforms,

/» w /% 00
e-^PiMdl    and    Pi3(s) =   j    e^'dP^l)

o J o

we obtain from (1.1)

(1.3) Pu(s) = -r—-   and    Pits) = Pii(s)Fn(s)
(o, + s)(l - Fu(s))

where a,-=X,-+ju,-. As s—>0, Fu(s)^*JodFu(t) ^ 1 so that the recurrence proba-

bilities define true distribution functions if and only if Pu(s) tends to oo or

equivalently JoPa(t) = °°. This last condition by integration of (0.12) reduces

to
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I      -dip = oo.
Jo        x

Thus the amount of mass of ^ in the neighborhood of the origin can be thought

of as a measure of recurrence for the process. Since Qi(0) = 1 for all i, evidently

jQ](x)d\p/x = oo for any i if and only if Jdip/x = oo. The classical result that

either all states or no states are recurrent is now apparent. Furthermore,

from (1.3) it follows that if fd\p/x = oo, then

..   *,,    ..  / rQi(*)Qi(*w / re!(*)#\   ,
hm Fnis) = hm I      -■-/    I -■-) = 1.
s—o S-.0 \J x + s       I     J    x + s /

Hence, if the process is recurrent then J0adFi,-(t) = l. Because of the relation

fd\p/x = ^1/X„7r„ (see (9.9)), we obtain the following useful recurrence cri-

terion.

Theorem 1. The process is recurrent if and only if ]£l/Xnir„ = <*>.

This last condition is easy to check since the process is usually defined in

terms of the birth and death rates X„ and ptn.

It follows from Theorem 1 that if the process is recurrent, then the spec-

trum of yp reaches to the origin.

In the remainder of this section we restrict our attention exclusively to

the zero state. All the results remain valid, after minor modifications, for any

state in the process.

Theorem 2. (a) The process is ergodic if and only if ^,irn < °o awd ^ l/\„ir„

= oo .

(b)  The process is null recurrent if and only if yV„ = °o awd ^1 /\„Tn = «>.

Proof. It is known that it is sufficient to verify the statements of the theo-

rem for the zero state. If \YLirn < oo and 231/Xnirn= oo, then \p has a mass at

zero equal to l/^2irn = p and lim(_„ Pn(t) =pirj. Computing the first moment

of Foo, we get

_p' (S) =    ~PUS)        - —_—
°°W       (qo + s)FK(s)      (qo + s)2 PBo(s)

The second term tends to zero as s-*Q since Poa(s)—Kx>. Observe that

f       ̂  (f_      C     d**   \
-P'oo(s) _      J    (x + s)2 \s2      J   (x + s)2)

PUs) ( C     dip   \2   "   /p_      r    dip*  y

\J   (x+s)) \s      J   (x + s)J
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where \P* is obtained from ip by removing the mass p at 0, so that \p* becomes

continuous at 0. It is easy to see upon multiplying numerator and denomina-

tor by s2 that lim,.0 —Poo(s) = 1/qoP = JotdF0o(t). Conversely, if the zero state

is ergodic, then the irreducible a-periodic Markov chain Pu(nh) where h is

fixed is ergodic. By appealing to the theory of Markov chains, we deduce that

limn^K Pa(nh) is positive so that p>0. But, 0 = 1/ y.7r« and hence ^Vi < qo .

The conclusion of (b) is immediate from (a).

2. Some simple recurrence criteria (po = 0). In this section some additional

methods of testing for recurrence are developed. The results here are moti-

vated by some theorems of Foster [3].

Lemma 1. The process is transient if and only if there is a nonconstant

bounded vector c= {co, Ci, • • ■ } such that

Ac = 0 except for the first component.

Proof. If the process is transient then

n-l      1

Co* = 0,        c* = 53 -' »^1,
,_o X,ir,-

defines a nonconstant bounded vector c* which satisfies the condition.

Conversely, if c is such a vector then, c is nonconstant, the first com-

oonent of Ac* is not zero. Hence for suitable a?*0

e = c — ac*

is a solution of Ae = 0. Consequently e is a constant vector and c* is bounded.

Thus 2^1o lAnTn converges and the process is transient.

Theorem 3. The process is recurrent if and only if there is an unbounded

vector d= {d„} such that d„—>+ <x> and Ad^O except for the first component.

Proof. Define c* as in the lemma and let e= {1, 1, • • • , 1, • • • }. If the

process is recurrent then c* is unbounded, c*—>+ °° and Ac* ^0 except for the

first component.

Suppose there is a vector d satisfying the conditions of the lemma. Choose

a and 8 so that the first two components of the vector

f = d- ae- 8c*

are both zero. Then .47=-<4a7^0 for an components beyond the first, and the

first component of Aj is zero. From/0=/i = 0 and

An (/n+1  — fn)   =   (Af)n + Mn(/n  ~ /n-l), »  «S   1,

it follows by induction that

o = /i fc /« fc /, 2: • • • ifc /. Ifc • • •.
Since d„—>+ °o and e„ = 1 for all n it is seen that c*—->+ oo , which proves the

process recurrent.
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It may be remarked in passing that the sequence ir= {ir„} is to within a

constant factor the only solution of SA = 0.

3. Moments of the first passage time distributions (p0 = 0). The object of

this section is to compute the moments of the first passage time distributions

Fn(t) in terms of the constants ir„ and 1/X„7r„. The details of the computation

are given only in the case of Fn(t). It is assumed throughout that 22ir„< oo,

J3l/X„ir„ = oo , these being the necessary and sufficient conditions for the first

moments of the Fn(t) to be finite.

The measure ip has mass p = l/£x„ at x = 0. Let \p* be the measure ob-

tained from ip by removing the mass at x = 0. Choose some fixed i and let

J"°   2       dip*(x)
Qito—j1*", *-l, 2, •••.

0 OCr

From (1.3) it follows that for s>0

rx 1

1 -        e-'dFu(t) =-

(?.■ + *)(—+ *< I   Qiix)——)
(3.2) \ s Jo x + s/

s      _J_r        1   r* Qj(x)sdip*Yx

pqtiTi l + s/qi L pJo        x + s   J

where g,=X,+Mi- Since s/(x+s)—*0 boundedly on 0<x< oo as s—*0

rl+i r foyr-f( l f^n
L p  J o      x + s J „_o \      p  J 0 X + S    /

for small 5>0.

Now suppose Ik < 0°. Then

if-**#l_zir £(-.)■/, + (- l)V7,l
p 7 o       x + $ p  L i-i J

where
2

/' °°   0 (x)       s-^—-dip*(x) -> 0 as 5 -> 0.
o        x*     x + s

Hence

ri+ir***.r-i(i-i<-»w,Y+.<*
L p   7 o       X  4" 5 J n=0 \ P     i-l /

= E is)'cp + ois»)
p-0



1957] THE CLASSIFICATION OF BIRTH AND DEATH PROCESSES 373

where c0 = 1 and for p > 0

(3.3) cp = 2-, (p) -;-;-!r •••/*.
'l+2»3+. . .+*»t-P I'll •  • • i*!

Consequently,

(3.4) 1 -  f'e-'dFuW =—£,(-*)"'£ cp-}-^- + o(sk+1)
J 0 POtT, p_0 r-0 ffj

from which it follows that Jotk+1dFa(t) < ao. Using an induction argument

it is not difficult to show that conversely if fotk+1dFu(t) < oo then 7* < oo.

This gives the following:

Theorem 4. The (k + l)st moment of Fu(t) is finite if and only iffod\p*(x)/xk

< oo, in which case

r°°                   (k + l)\ *    1
o4+1 =   j    fi+VFu® =- Z — «fc—

J 0 P?,Ti      n=0    <?"

The integrals Ik=:foQi(x)<i4'*(x)/xk have been evaluated in terms of the

constants t„, l/\nirn in the appendix. For future references we record the

values of ai and a2 given by the theorem.

1
(3.5) oi =-,

pquri

(3.6)  „--!-+ —[£ J_(j>wY+g J_(£rY]
PQiJTi QiTTi L n=»     An1Tn \ j—n / n-0    X„Xn \ y_0        /   J

(see formula (9.21)).

By a similar argument starting from the formula

f " -4- [<?'(*) - Q<(x)QAx)]d+*(x)
rx s   Jo   x + s

e-'dFiAt) = 1-
Jo p l  r      s     2

i + -     ——Qi(x)dr(x)
p Jo    x + s

the moments of Ty can be computed:

Theorem 5. 7n order that f0™tk+1dFi](t) (tVj) be finite it is necessary and

sufficient that f™d\p*/xk be finite, in which case

h+i =       tk+1dFii(t) = --2Z Tick-i (k ^ 0)
J 0 P 1=0

where
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Co = 1,

Z-i'i+...+n) ("i + - - - + n)l rn vk
P -;-;-7i  • • ■ /*,

»1+2»J+-•  +*»t-n Vi\   •   •   •  Vk\

C°   2      dip*(x)
Ir= Qi(x)^-^,

Jo xr

T  =   n Q)(x) - Qi(x)Qj(x) dip*(x)

Jo x xT

We now turn to the study of the distributions Fa(t) for large *. The limit-

ing behavior of these quantities as i—►<» has been studied by Bellman and

Harris [4] and Harris [5]. The theorem below should be compared with

Theorem 2 of [4], and Theorem 1 of [5].

It is assumed that ^irn< <* , EVXnTn= °°. If Nn is the time of first re-

turn to i when the initial state is i then E(Nn) = l/pa,-7r,- and

Gi(t) = Pr /-— £ t\ = Fn(—\ ■
\E(Nu)        ) \pqnrj

Hence from (3.2)

(3.7)     1 -  f   e-'dGi(pt) =-—-
Jo /p r°° 2      dip*   \

(1 + ins) ( — + qiwi        Qt(x) —-
\ s Jo x + quris/

and it can be concluded that if for s>0

Cr,2        d+*
quri I    Qi->c<oo ast—>°o,

7 o       x + qiTiS

then Gi converges (in the sense of distributions) as i—»oo to the distribution

G(t; c) whose Laplace transform is

1            c - 1       1       1/c
1-=-+-i-,

1/s + c c c   1/c + s

i.e. to the distribution with a jump (c — l)/c at t = 0 and density c~2e~tlc on

/>0. The limit c, if it exists, is automatically ^1, since for each t and s the

left side of (3.7) is between 0 and 1.

Theorem 6. If J"dip*/x< oo awd

lim qurt X, -= c < oo

then
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(   N« )
lim Pr <-^ l> = G(t; c), t > 0.
*—       \E(Nu)       j

Proof. Under the hypothesis it follows from equation (9.21) of the ap-

pendix that

/•»  , dty*
hm qnTi I    Qi - = c.
(-.» J 0 X

Thus it is sufficient to show that

r  rx   id)*       /•-   ,      d+*     "I
qnn\ Qi-Qi—;- UO

L J 0 * J0 X+  fl.TiJ J

as i—Kx>. This quantity can be written as (see (9.4))

r°°  «        d-p* r°° d\l/*
(qnn)2s        Qi-—- = (q<rt)*s        Qi ——-

J o        x(x + qtiTiS) J o x(x + qiins)

t-l        J        min(M,Jfc) /» oo ^*

(3.8) — qnns zZ -      zZ     iriquTi 1    @,()j-
t=,o XtTfc      ;_o •/ o x + a,T,-J

«-i     1            *                      /•»              d^*
— o.ir.-s 2 7-        zZ       iriqiTi I    Q.-Qi —-

jfc_0    AjtXi     l+min(Af ,*) •'0 X +  0,-7rj5

where 217 is a large fixed integer to be chosen. The three terms on the right of

(3.8) will be denoted by 7\, T2, and Tz respectively. The divergence of

^1/A„x„ implies that qtir,—»0, and since for all large i

qnn ~c / zZ--   < "f / S "-
' 0       An7T„ I   I 0       An7Tn

it is seen that

qua
sup   max - ~= Bi < oo.

i    ogigi qnri

The integrals q<irif//Q\d>p*lx are uniformly bounded, say ^B2. The inequal-

ity

I {"» dip*      \      / C"   2 diP*\1!2/qiTi r°°  t d^*\1/2
\qnri I    QiQi—-   £ [qnn]     Qi -      (-qtwi]    Q, —)
I        Jo x+a,-7r,-5 I      \       Jo x I    \qiTi       J0 x /

shows that the left side is ^B\/2Bi for O^l^i and for each fixed I, —»0 as
i—> oo.

It follows at once that 7\—*0 as »"—>°°. Given «>0 let 217" be chosen so

large that zZi°-m+i t(<* and then choose i so large that
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/dip*QiQi -   < e    for I = 0, 1, • ■ • , M.
o            x + qtKiS

We then have

(<-i     l   \   »
q,TiS JL ~—)Z *■!•«,

*_0 A*T*/   J„0

[ r,|   < (qnns JI -Xbi'b,,
\ k-0     X*T*/

from which the result follows.

By imposing further assumptions on the rates of convergence of ff,7r,-.

y^'-l L/XjTj to c, it is possible to deduce with these methods results about

the rate of convergence of the moments of the distribution of Nkk/E(Nkk) to

the moments of the limiting distribution.

If X„/p„—»a<l, an easy calculation will show that the conditions of

Theorem 6 are fulfilled with c=l+a/l— a.
4. Transient processes (p0 = 0). The following criterion is an immediate

consequence of Theorem 2.

The birth and death process is transient if and only if ^irn = °° and

\yil/i\nirn< °°.

In terms of the particle description, to say that the process is transient

means that with positive probability (in fact, according to Theorem 9, with

probability 1), the particle drifts to infinity. The point at infinity should be

regarded as a permanent absorbing state which may be reached in finite or

infinite time. Two types of transient processes can be distinguished, according

to the rate at which the diffusing particle drifts to infinity. The transient

process is called of type 1 if for some finite />0, and for some i

(4.1) IP«(I)<1,
J-0

and is called of type 2 if it is not of type 1. If the process is of type 1, then

it follows from the semi-group property that the inequality (4.1) is valid for

every t and for all t>0. For given i and (finite) /

Pr i lim X(r) = »  | X(0) = A  = 1 - £ Pd*),
I r-^t-0 ) y_o

which shows that the transient process is of type 1 or 2 according as the proba-

bility of reaching infinity in a given finite time is positive or zero. The next

theorem provides an easy way of distinguishing between the two types of

transient behavior.

Theorem 7. If the process is transient the following conditions are equivalent:
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(i) the process is of type 2, that is zZj°=o Ea(t) = 1 for all i and all i>0,

OO 00 i

(ii) JZ "•» IZ — = °°.
n—0 ,'*-n   X,-1T,-

Proof. The equivalence of (i) and (ii) was proved in [l (Theorem 16)].

The next theorem is trivial for processes of type 1 but gives some informa-

tion about the path functions of type 2 processes.

Theorem 8. For any transient process

Pr | lim X(l) = oo | X(0) = i\ = 1.

Proof. The arbitrary initial state is fixed throughout the discussion. Let

Ej denote the set of all paths for which the particle spends an infinite amount

of time in state j. Since the time spent in state j on a particular visit has a

negative exponential distribution with parameter Ay+py, the set Ey differs

only by a set of measure zero from the set of all paths which visit j infinitely

often. If Pr {£,-} >0 then the expected occupation time of state j is infinite,

i.e.

/. 00 /. 00 MPa(t)dt=       Qi(x)Qi(x) -=oo,
o Jo x

so that zZo lAnfB= oo, and the process is recurrent, contrary to hypothesis.

Hence Pr {£y} =0 and if £ = Uy£y then Pr {E} =0. If the path X(t) is
not in E then clearly X(t)—»o° as t—»oo , and hence

Pr {X(/!)-> oo | X(0) = i} = 1.

Let t be the time at which the particle reaches infinity when the initial

state is i. Then

oo

Hi(t) = Pr {/<*}= 1- zZPiM-
i-0

For processes of type 2, Pr {t= <x> } =1. For processes of type 1 we have

the following result.

Theorem 9. If Pr {/"< oo } >0, then Pr {t< oo } =1 and 1-H{(t) tends

exponentially to zero as t—> oo.

Proof. The hypothesis implies that 1 — zZi'-o Pn(i)>0. By Theorem 7,
zZo iTnzZ,h-n 1/A*7T* < oo which implies that — Q„' (0) remains bounded (see

[l, Lemma 4]). By Theorem 16 of [l] the spectrum of \p begins at a>0 and

concentrates at the zeros of Qx(x) =lim„,00 Q„(x). If 0<6<a, then Qn(b)

>Q»(b)>0 and by equation (4.13a) of [l]
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oo g— bt

y-o Q*(b)

This last equation shows that 1 —H{(t) tends exponentially to zero. The first

part of the theorem is an immediate consequence of this fact.

It is of some interest to compute the moments of the distributions 77,(«).

For simplicity, let the initial state be zero.

/» 00 /• 00 00

E(t) =  I    tdHo(l) = -  I    / E Poj(t)dt
Jo Jo     y-o

00 /*00/*00 00 j% OO       r,   t y\

= E Ty xle^'Qi(x)diP(x)dl = E *, ^^ #•
y=o     « o   ^ o y-o     "0 x

By (9.9) we obtain
oo 00 1

*(J)-2>/E —■
y=0 n=y    AnlTn

The higher moments reduce to

oo *mf\

E(t") = nlE»y|      — #.
y_0        7 o       X"

These integrals obviously exist since the spectrum of ip begins at a>0. With

the aid of the formula (9.4) through (9.8), these can be expressed in terms of

X„ and p„. For example

oo oo 1 m oo 1

E(i2) = 2E'yE -— Et.- E -— •
y—o      m=y Am7rm ,—o      k—i  Atxt

An important problem associated with the study of stochastic processes

is the question of the existence of a stationary measure. In the case of birth

and death processes the problem takes the following form: When does there

exist a non-negative nontrivial solution to the equation

(4.3) o*-£oyPy<(0, t = 0, 1, 2, • ...
y

It is not necessarily required that the series /Ai be finite. For the case of

recurrent Markov chains a solution was given by Derman [9] and later

Chung [2] extended the same method to the continuous time recurrent

Markov chain. Harris has recently dealt with the problem for the general

discrete time recurrent Markov process. For birth and death processes we

present a complete analysis which is independent of any recurrence assump-

tions. We start with the special case Mo = 0. If E»' Pail) — 1 then aj=Tj is

clearly a solution in view of the identity VjPa(t) =7r,7>,-,(i). To establish

uniqueness we use a device introduced by Derman. Suppose ai = 0 is a non-
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trivial solution of (4.3). Since Py,-(f)>0 for all t>0 it follows that a,->0 and

we may take ao= 1. Define

(4.4) qa(t) = ~ Pa(t).
ai

It is readily seen that ffy(0 define transition probabilities of a birth and death

process with parameters A,' =ai+ipi+i/ai and pi =a,_i A,-_i/a,-, i*zl, which

must satisfy the relations

o,+i a,—l

(4.5) X/ +pl =-p,-+i +-A,_i i ^ 1
o,- a,-

where pn and An represent the parameters of the original process. We can

verify inductively that the only solution of the equation (4.5) is a,- = 7r,- which

completes the proof of the uniqueness. We now demonstrate the converse

proposition which is to the effect that if (4.3) has a non-negative solution a,-,

which is necessarily positive, then zZi PiM) — 1- In fact, if a,y(r) is defined as

in (4.4), then we deduce that zZin(f) — 1 an<^ again because of the relations

(4.5) we find that ai=7r,-. It follows that Pa(t)=qn(t) and so zZi Pa(t) = l
obtains.

Combining the analysis with that of Theorem 7 we state the result as

follows: A necessary and sufficient condition that (4.3) possess a positive

solution is that zZj°-o'"'jzZk-j l/~KkiTk = °°. Furthermore, the only possible

solution of (4.3) is necessarily a multiple of {ir3}.

In the case where p;o>0 we state the result without proof. If y represents

the smallest positive value belonging to the spectrum of ip then {iTiQj(y)}

is a solution to (4.3) if and only if zZi'-o ̂ iQAt) = °° • The solution when it

exists is unique except for a multiplicative factor.

5. Absorption processes (p.0>O). When p0>0 it is necessary to consider

in addition to the states 0,1, 2, • • • a state with index — 1. When the particle

is in the 0 state and a transition occurs, the particle goes to 1 with probability

Ao/(Ao+A»o) and to —1 with probability po/Q^o+Po). Once the —1 state has

been reached the particle remains there ever afterward. The event of reaching

— 1 is called absorption at zero.

The polynomials in this case have the property that Qn(0) is strictly in-

creasing. The conditions (i) (?n(0)—>oo, (ii)p0fodif/(x)/x = l and(iii) zZo l/AnT„

= oo are equivalent (see [l, Lemma 6]).

For i^O let G((t) be the probability that absorption at zero occurs before

time t given that at t = 0 the particle is in state i. Then

Pio(r)dr = po |   dr j    e~"Qi(x)diP(x).
0 J 0 J 0
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Using the results of §9, the following theorem is obtained.

Theorem 10. If the initial state is i, the probability of eventual absorption

at zero is

A    1

fVrA CQi{X)*,(\ 1 QM n^   XnlTn
I    dGi(t) = po I      -d\p(x) = 1 - ————- =-

Jo Jo        x hm Qn(0) "       1
«-"» 1 + wL —■

n—0    AnlTn

This is 1 for every ior < 1 for every i according as En°-o 1 AnTn diverges or con-

verges. The formula

C" C° Qi(x)
t"dGi(l) = n\po I     -^-diP(x)

Jo Jo     xn+1

is valid whenever either integral exists. In particular (see (9.20))

/» oo 1       oo i—1 1 00

I       tdGi(t)   =—^,Tk+zZ   -    E    Tr
Jo Mo *-0 y-0   XyTy  r-y+1

whenever either member is finite.

Absorption at zero is called certain if the probability of eventual absorp-

tion at zero is 1, and is called ergodic if it is certain and the expected time of

absorption is finite. Absorption at 0 is called transient ii it is not certain.

These properties are independent of the initial state and from the preceding

theorem it is seen that absorption at zero is

(i) certain if and only if E1 An^n diverges,

(ii) ergodic if and only if E* An^n diverges and E71"" converges.

When absorption at zero is not certain the particle eventually reaches in-

finity with probability Ci(0)/limn,M @„(0). In the case when absorption at

zero is not certain, it is of some interest to determine conditions for the exist-

ence of the moments of the conditional distribution of absorption. In fact,

the explicit evaluation of these moments can be accomplished. Assuming for

simplicity that the initial state is zero the conditional distribution of absorp-

tion is

/.I                                       I-                              >0             I

Poo(s)ds 1 + po E "T-

/"    i Jo L   x   JPoo(s)ds Xj  -
0 L *=0    AfcTjfc _

(see (9.12)). Of course, since absorption is not certain, the series El/X*T*

converges. The rth moment, provided it exists, reduces to the form
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(l+pot—)
/'°°     dip       \                 k-0    \k1Tk/-.

0      X-+1                 "f  J_
*_0   AjfcT*

These integrals in turn can be expressed in terms of A„ and pn by means of

the formulas (9.11) through (9.16). In particular, the expected length of time

until absorption, given that absorption happens in finite time and the initial

state of the particle is zero, is

oo /    oo 1      \2

5>,(Z—)
,     . . y_o      v i—y  A,-7r,- /

(5.1) E\A\ A < co, X(0) = 0\ =-
/ °°1\/M1\

(i + MoE^XEf-)
\ ,--o   X,ir,- / \ k-o   A*7rifc/

(Here the random variable A is the time at which absorption takes place.)

If this last series converges, then the interpretation is that for those paths

where absorption does take place, it must happen rather quickly.

When the — 1 state is absorbing, in view of the result Jdip/x < oo, the

measure ip cannot possess mass at zero. Consequently, limf^.^ Py(j) =0 for

every i, j^O. We now examine lim,^ zZi°-oPa(t) for fixed i. If absorption

ultimately occurs with certainty, then lim(^w zZi°-oPa(i)- ''■ In Iact

00

(5.2) Prob {absorption in time g t\ X(0) = i} + zZ Pq(t) = 1
i-o

and the first term tends to one. Let us now assume that absorption is not

certain or equivalently ^1/Anir„< oo. The principle assertion is that equal-

ity in (5.2) is valid for every t and every i if and only if zZn-o i^nZZi-n l/A.x,-

= oo. The proof is similar to that of Theorem 7 and is omitted. In fact, an

appeal to probabilistic considerations will show that the above assertion can

be reduced to the case of Theorem 7. Since the first term of (5.2) approaches

monotonically a value less than 1, we find that lim^M zZi'-o Pa(t) =a>0 is

equivalent to the divergence of zZ^n zZt'-n l/A,-7Tj. If zZ^nzZi-n 1/Ai7r,< oo,

then it can be shown that zZ?-o Pa(t) converges exponentially to zero. (See

Theorem 8.)

An interesting random variable associated with the absorption process

(assuming absorption is certain) is the number N ol transitions which occur

before absorption. The total number of transitions to the right which occur

before absorption is a random variable M related to N and the initial state i

by

N = i +2M.
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The random variable M was first considered by Kendall in connection with

linear growth models [6].

Let

Rni = Vr {N = n\ X(0) = *}; i = 0, 1, 2, • • • , w = 1, 2, • • • .

After the first transition the particle is at t + 1 with probability p, and at t— 1

with probability g,- where

X,- Mi
pi =->        q, =- •

X, + Pi X, + pt

Hence 7?" satisfies the recurrence relation

~n ~n—t —n ~n—i —«—t

Ro = poRi   ,       Ri = qiRt-i + piRi+i, i > 0,

for w>l, and the initial condition

Ri = (qo if t = o,

l0   if i > 0.

Let Si= E"-i P*. Then 0^5(^1, and from the above relations

•So = poSi + qo,        Si = qtSi^i + ptSi+i, i > 0,

so

Si+i -Si = - (Si - Si-i) = q°'"9i (50 - 1)
pi po ■ • • pi

and hence

sn+i - i = (i + mo E -—V5° - *)•
\ ,_o   Xfir< /

When E>T-o 1A<t< diverges this gives Sa = l for all w. If E"-o lAnir» con-
verges there is positive probability of never being absorbed at zero and hence

Sn < 1 for all w.

The recurrence relations

To(x) = 1,

x70(x) = p07i(x),

x7n(x) = qnTn-iix) + pnTn+iix), n^l,

determine a system of polynomials T„(x) orthogonal on the interval — 1 ̂ x ^ 1

with respect to a measure da(x) of total mass 1. To see this, first consider the

polynomials Vn(x) = Tn(l — x) which satisfy F0(x) = l and
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-xF0= - Fo + poF,,

-xVn  =   qnVn-l  -   Vn + pnVn+X, W  ^   1.

These polynomials are clearly the polynomials belonging to a birth and death

process, and hence are orthogonal on 0^x< oo. Consequently Fr(x)>0 for

x^O and 7\,(x)>0 for x^ 1. Since 7"„(x) is even or odd with w, all the zeros

of the polynomials T„(x) are therefore in —1 <x<l, and all the zeros of the

Fn(x) are in 0<x<2. It follows that the polynomials T„ are orthogonal on

— 1 ̂ x^l. The measure a is unique and in all cases of practical interest it

can be computed explicitly.

It is easily verified that

R* = qo I    xn~lTi(x)da(x).

This formula may be viewed as expressing an absorption probability related

to a random walk. The random walk takes place on the integers 0, 1, 2, • •

When the particle is at i it moves in the next step to t + 1 with probability

pi and toi—1 with probability g,. When it is at 0 it moves in the next step to

1 with probability po and is absorbed with probability g0. The transition

probability matrix of this random walk is

* C'
Pn = "7   I    xn7,(x)ry(x)da(x)

where

* X„ + pn
Tn   =   T„ - •

Xo + MO

If the particle starts at i then the probability it is absorbed on the wth step

is RI. The random variable M and N are concerned only with the number of

transitions which occur before absorption, and not with the speed at which

these transitions occur; thus it is natural that they should lead to random

walk problems.

As k—><*>, l+2x-f • • • +kxk~1 converges monotonically to 1/(1— x)2 on

Ogx^l. Consequently

oo                        f1         1
E nRni = g„ |- Ti(x)da(x)
n-l J_l(l-X)2

if either member is finite. Assuming that E1 A,-n\ diverges, E"-i nP? ls the

expected number of steps until absorption, and the above formula shows that

this is finite for all i or for none, according as J\.xda(x)/(1 —x)2 converges or

diverges.

We assume that t5^1/\„ir„ diverges and hence for every i
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00 fll

1 = L 2c? = a0  |      - Ti(x)da(x).
n-l J-l   1   —   X

Setting i = 0 gives

r1   da(x)
qo I-= 1

J -i 1 — x

The polynomials F„(x) mentioned above are orthogonal on 0 5^x^2 with

respect to the measure 8 defined by

8(x) = + f   da(s)
J i-i

and hence

r1    da(x) r2 dfi(x) r°° d/3(x)
qo I    j- = qo I   —— = qo }   ——

J_i (1 — x)2 Jo       x2 J0       x2

and this integral is of a type already evaluated:

r°° d8(x)      1   -    *
qo -— = — E Tn, (see (9.20))

Jo xz qo n-0

equality holding if either member is finite. Consequently,

-~da(x)  = — ZZ   Tn   =  ( — 2 *»Tn + 1 )   •
-1  (1 — x)1 qo „_o \po n-0 /

Therefore, in order for N to have a finite expected value it is necessary and

sufficient that the series zZ^"irn converge. The higher moments can be analyzed in

a similar manner.

6. Relations of processes with p;0>0 and p;0 = 0. Although the birth and

death process where — 1 is an absorbing state and the process where 0 is a

reflecting barrier have been discussed separately, various useful relations

exist between these two kinds of processes. Let Qn(x) be orthogonal poly-

nomials, with respect to a measure \p which correspond to the reflecting barrier

process (A) (p0 = 0) having birth and death rates, A„(n^0) and p„(«>l)

respectively. The functions 77„(x) =A„7rn[L}n+1(x) — Qn(x)]/(—x) are a system

of orthogonal polynomials with respect to the measure xdip/\o and generate

the process (B) with birth rates A* and death rates pt where \*=p„+i and

M*=^n, valid for n^O. The process (B) possesses an absorbing state at —1.

The two processes (A) and (B) can be thought of as dual to each other in

the sense that the role of the birth and death rates are interchanged combined

with a shift of p„. Since l/A*ir*=7rB+i/Ao and x*=Ao/A„ir„, it follows that if

process (A) is ergodic, recurrent null or transient then process (B) is respec-

tively ergodic absorbing, certain absorbing, or transient absorbing.
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Suppose 7n(x) are the orthogonal polynomials (with respect to a measure

d(x)) obeying the recurrence law

(6.1) -xTn(x) = - (X, + Hn)Tn(x) + X„r„+i(x) + Mn2Vl(x) w ^ 0

where mo>0 and 7"_i(x)=:0. The corresponding process (C) has —1 as an

absorbing state. The polynomials Sn+i(x) = (X„7r„Ao)[7'„+i(x) — Tn(x)], S0(x)

= 1 constitute an orthogonal system with respect to the measure

de(x)
po- for x > 0;

x

r  do(x)
1 — Mo I    - for x = 0.

J        x

The process (D) generated by the polynomials Sn(x) has the state 0 as a re-

flecting barrier. The birth and death rates X* and pt* respectively of the proc-

ess (D) satisfy the relations X* =p„ (w^O) and m* =X„_i (w^ 1) where p„ and

X„ are the parameters appearing in (6.1). Process (C) bears the same relation

to process (D) as process (B) bears to process (A).

Another set of polynomials closely related to Qn(x) are the associated sys-

tem @B0> defined as

_(0) f»    Qn(x)~Qn(t)   ji/tS
Qn  (x) =   I      -diP(t).

Jo X  —   t

Observe that (?„0)(x) is of degree w—1 and Qx')(x) = — lAo- It is known that

—Xo£C (x) = Wn-i(x) satisfy the recursion formula

~xWn-l   =   -   (X„ + pn)Wn-l +  X„JF„ + pnWn-2

for all w^ 1 where Wo=l and W-i = 0. The W„ form a system of orthogonal

polynomials with respect to a measure aon0^x< ^. A method for comput-

ing a when ip is known, is given in §8. The usefulness and significance of the

Wn is that a representation of the first passage time distributions Fin(t) in

terms of the Wn can be given. In fact, the IF„-process is obtained from the

original process by stopping it whenever the zero state is reached. Thus for

t<£l, the first passage time probability Fi0(f) of the original process is the

same as the probability of absorption before time t with initial state t —1,

for the WVprocess:

/, t /• 00
dr j    e-"Wi-i(x)da(x).

o      7 o

In a similar way the first passage time distributions Fik(t), i>k, can be ex-

pressed in terms of the &th associated system Qnk>(x) defined by
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nwr ^ f°°^ , ,Q^(x) - Qn(y) Jlf N
Qn (x) = xk I    Qk(y)-d\P(y).

Jo x — y

In determining the first passage time distribution 7"oi (*>0), we convert

state i into an absorbing state by truncating the matrix A as shown:

-Ao X0 0     • • •

Pi    ( —Ai — pi)   Ai

A<» =       0 pt

0 +P,-i    — (A,_i + p,-_i)

This defines a process with a finite number of states for which

A,_i/(p,_i + X,_i)

is the rate of absorption from the (i— l)th state into the permanent ab-

sorbing state *'. In this case only a finite set of polynomials is determined

by the vector relation A{i)Q = —xQ. They agree with Qj(x) for O^j^i — 1.

The corresponding measure ^(0 is discrete and its spectrum consists of the

zeros of the polynomial — xQ,_i + (A,_i+Mi-i)(?v-i — Pi-iQi-t. The probability

of absorption in time ^t into state i from state 0 is easily seen to be

A,-_1x,_i f ds j    e-*>Qi-i(x)dipW(x).
Jo      Jo

This is of course the same as the first passage time distribution F<n(t) for the

original unrestricted birth and death process.

Next suppose it is required to compute the probability that absorption at

zero occurs before time t and without the state i ever having been visited,

assuming the initial state is j, 0 £j£ai—l. Denoting this probability by iAj(t),

we have

iAi(i) = mo f    -—^- Qi(x)dip^(x)
Jo x

where \p(i) is the distribution introduced above. In particular the probability

of eventual absorption at zero without the state i ever being visited, when the

initial state is j, is
C° #(0(z)

iAj = po |    Qi(x)-— •
Jo x

Now since \p0) concentrates on the zeros of Q,(x)

Qi (y) = *7     Qi(x)-W   (x) = Qi(y)*i I   Q$(x)-
Jo y — x Jo v — X
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and setting y = 0 gives

e,W)(o)
iAj = — po- •

Now the polynomials Q^ix) satisfy [l]

-xQi\x) = PiQ^iix) - (\i + pdQi\x) + \iQ%i(x),

i > j, QTix) =■ o, ft(+i - - -
Xy

and by a simple computation for i>j,

-Q?i0) = -?-\l + \pt, E -^-1-
XyJTy L t-j'+l   XiJTtJ

Consequently,

iAj = MoE ~-/(l + MoE ~-)■
k=j     XilT* /       \ k=0     AklTk/

A result similar to this has previously been obtained by Harris [5, Theorem

2b].
We are also able to obtain explicit expressions for E(iV[0| Ario< «) when-

ever finite, where the random variable Ni0 is the length of time until the

particle first enters state 0 given the initial state is 1. Of course, the results

are new only when the process is transient. The conditions for recurrence were

fully investigated in §1. Introducing the measure a(x) corresponding to poly-

nomial system Qm(x), the zero state becomes an absorbing state, and the

original random variable Ni0 is identified with the random variable A de-

scribing the time up to absorption. Consequently,

(6.2) E(NTw\Nio<<*>)=E[A'\A<ao,X(0) = l].

Appealing to (9.16) where these latter moments have been computed, we ob-

tain in particular

/da(x)   /    r   da
- /    I    — (see equation (5.1)).

Since X*, p.* ior the new process in terms of X„, Mn for the original process

are X* =X„+i and m* =M»+i, by (9.9) we get

oo /     00 1       \  2

I'4Ir )„       / »r    I  -.t ■, «-l       \ t-y   Aiir,- /
Exp (yVio   iVio < «) =-

(t + >.±J-)(±J-)
V i_i    AjT,- /  \ 1=i    A.T,- /
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Finally, it is interesting to observe that the problem of determining, for a

recurrent process, the distribution of the number of transitions which occur

before the expiration of a first passage time or a first return time, also leads

to consideration of the random walk embedded in the birth and death process.

For example suppose we have a recurrent process (p0 = 0, zZo lAnXn = «),

and the random variable Z is the number of transitions which occur before

the first return to zero, the initial state being zero. Then N = Z — 1 is the num-

ber of transitions which occur before absorption for a random walk on the

integers 1, 2, 3, • • • . Using the expected value for N computed in §5, it is

found that

1   "
E(Z)   =—JZ *n(An + pn).

Xo n-0

This is finite or infinite according as EAnx„ converges or diverges.

The example A„ = « + l, po = 0, pn = (n + l)2/n for «^1, shows that there

are ergodic processes for which E(Z) = oo, while on the other hand the exam-

ple A„ = 1 / (n +1), po = 0, pn = (n +1) /n21 or n ^ 1, shows that there are recurr-

ent null processes for which E(Z) is finite.

7. Ratio theorems (pos^O). A remarkable property of birth and death

processes, obvious from the integral representation, is the fact that

Py« = xy

Pa(t)      x,-

is independent of /.

The classical Doeblin ratio theorem asserts that(l)

5   ~t

Pa(i)dt
™ Jo

lim -
(-.00 /*'

Pki(l)dl
J 0

is finite and positive. The integral representation makes it easy to prove a

much deeper theorem. The question of investigating the ratio was suggested

to the authors by T. Harris.

Theorem 11. finite Pa(t)/Pki(t) exists and is finite and positive.

Proof. Let a 2:0 be the smallest point in the support of ip. From the theory

of orthogonal polynomials it is known that Qn(a) >0 for every n. Hence

Pa(t) = e-°>TiQi(a)Qi(a) f   <r<*-><f(x)(kKx)
J a

(•) Doeblin discussed only the discrete time case. The continuous time case was first

analyzed by K. L. Chung [2].
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where

t. ,     Qiix)Qjix)
f(x) =-•

Qi(a)Qj(a)

We study the ratio

f   e-<*-«)'/(x)d^(x)                 f   e-<*-«"[/(x) - l]diP(x)

—-= 1 + —-= 1 + R.
/» oo (* oo

c-(^-)'d^(x) I    «-<*-«>'#(*)

Now / is continuous and f(a) = 1 so given e there is a 5 > 0 such that | f(x) — 11

<€ for a^x^a + 5. Hence

I     /»a+5 j j     /» oo I p oo

I        +    I                      I    <r(x-°)!|/(*) - l|d\^(x)
(        17.     I     |Ja+8| Jj^-

11 /» oo rto+8/2

I    e-^-«)'d^(x) I e~ <*-<■> <d^(x)

^ e + ce8"2 f   e-^-o)' | /(x) - 11 diP(x)
J a+t.

where c=[f?t+s/2chp(x)]~1 which is finite and positive. It follows that

lim sup<_«, | R\ ^« and therefore R—+0 as /—> <x>. From this the theorem follows

at once. In fact we see that

..      Piiit)       irjQiia)Qj(a)
hm-=-•
i— Pki(t)       iriQk(a)Qi(a)

If a=0 and Mo = 0, then

,. Pi&) ITj
hm-= — •
'-»  Pklit) ITl

The Doeblin ratio theorem is an abelian form of the above theorem in

the recurrent case and follows from it easily. In the ergodic case (po = 0)

Pail)—»TyP so t~lP0Pij(T)dr-+irjp and hence

f   Py(r)dr
.. Jo Tj Pij(t)
hm-= — = hm -•

'-"   f r, / u       ""'      '— Pt;W
I     Pki(r)dr

J o

In the recurrent null case (p0 = 0), a = 0 by Theorem 1, so Pn(t)/Pki(t)-*iTj/ir,

while JoPn(t)dt diverges, and by a standard abelian argument the Doeblin
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ratio also —>xy/x;. In the transient case the limits of the two ratios may be

different. We compute the Doeblin ratio limits explicitly, assuming p0 = 0. In

this case

y  1     r <tt
0      AnXn Jo       X

is finite and

f° rK Qi(x)Qi(x)
Pii(t)dt = Tf * dlP(x).

Jo Jo x

If i^j then (appendix, formulas (9.9) and (9.10))

f°° f°°   Qi(x) A     1
Pii(t)dl = Ti   I        ̂ ^ dlP(X)  =  xy Z  —

Jo J 0 X „_y    XnXn

and hence for i £j, k ̂  /

/.t                            "1Pii(r)dr xy £ 7-
o n-y  XBxn

hm -= - •
«-- r' ^i

Pu(r)dr Tt £ '-
J 0 n=i    XnX„

On the other hand

,.     Pa(0
hm-
<-- P*i(0

is xy/xj if the support of ip reaches to zero, and depends on i and k otherwise.

8. The computation of ^.(po ^ 0). Almost all the models of birth and death

processes that have been discussed in the literature are associated with a sys-

tem of polynomials {Qn(x)}, which, after some simple change of variable and

renormalization, are classical polynomials. For these processes the computa-

tion of the distribution ip presents no problem. However there are important

special processes for which the corresponding polynomials do not reduce to

classical polynomials. In this section we discuss a method of computing ip

when the recurrence formulas, that is the constants A„, pn, are given.

The function

J'00 d^(x)

o    x + s

is an analytic function of the complex variable s, regular in the sector

| arg s\ <ir, \s\ >0. The Stieltjes inversion formula
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/l rx
dip(y) = — lim ImBH- iv)d£

o ir i-K)+ J—t

expresses the measure \p in terms of B. It is valid when e>0 and x is a point

of continuity of fodip(y). Consequently the problem of computing ip is reduced

to the problem of finding B(s). If

Rn(s) =  f  e-'Pij(t)dt
Jo

then

(8.3) Rjo(s) = Q?\-s) + B(s)Qj(-s),

and

(8.4) Roj(s) = Qj9\s)*j + B(s)Qj(-s)irj.

There are two cases to consider. First, if Eo° 1A»t» diverges, or more gen-

erally if Eo* l/XnTnEoTt diverges then for fixed s>0 both Qj( — s) and

Qj0)( — s) are unbounded as j—>oo. (See Lemma 4 of [l].) In this case it is

seen from (8.3) that B(s) is uniquely determined by the condition that, for

fixed 5 > 0, Rjo(s) is bounded as j—* oo. In the second case, when E71"" diverges,

both of the series Ey(?y( — s)Ti and E/(?y0)( — s)T; diverge for all s>0,

and it follows from (8.4) that B(s) is uniquely determined by the condition

that Ey" o Poj(s) converges for s>0.

In either of these cases, if the asymptotic behavior of the polynomials

Qnix) and @n0)(x) for w large and x in an interval —agx^ —/3 on the negative

real axis is known, then B(s) can be determined by the above conditions for

ft^s^a. In practice B(s) usually turns out to be a relatively simple function,

and the problems of continuing it into the complex plane, and of applying the

inversion formula, present only minor technical difficulties. A number of im-

portant examples will be treated in a separate publication.

The necessary and sufficient condition in order that the solution of the

Hamburger moment problem generated by the polynomials Q„(x) be unique

is that the series

oo /  n—I 1      \ 2

n-l \ ifc-0     AklTk/

diverges (a proof can be based on [7, Theorem 2.17]). In practice this condi-

tion is usually satisfied, and when it is the function B(s) is uniquely deter-

mined for nonreal s by the requirement

OO

E    I  Qn\-S)   +   B(S)Q„(~S) I   T.   <   00.
n=0
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We now turn to the computation of the measure a belonging to the asso-

ciated polynomials (?„0)(x). Let F0o(t) be the probability that a particle which

starts at the zero state returns to zero for the first time before time t after

having left zero. This function is not in general a probability distribution. If

Foo(s) =  f  <r"dF0O(0,
Jo

then

1 /  rK    dip \-»
(8.5) F0„(s) = l-—-— ( —— )   , s > 0 (see (1.3)).

Xo + Po + 5\ Jo    x + s/

Let

Pa(t) = Pr {X(t) = j, X(t) * 0 for 0 g r ^ /1 X(0) = i}

for *, j"2jlf /^0. Then (Pa(t)) is the transition probability matrix of a birth

and death process on the states 1, 2, 3, • • • whose infinitesimal matrix is ob-

tained from A by deleting the first row and first column (see §8). The cor-

responding polynomials are { — \oQ„m(x)}, hS; 1, and

Pii(t) = ^xy (°°e-*<[-\oQl0\x)][-\oQi°\x)]da(x)
Xo      Jo

where a is a positive measure of total mass one, with respect to which the

polynomials QT(x) are orthogonal. From the relation

Xn C ' C t—T

Foo(t) = - I    (Xo + po)e-(x°+*°)T I      viPu(o-)do-
Xo + po J o Jo

it follows that

-   , , Aopi r"  da(x)
(8.6) Foo(s) = —— •

Ao + po + sJo     X + 5

Combining (8.5) and (8.6) gives

/"» da(x)      i r / r00 #(*)~i
--= —   Xo + po+i-l/   I      ——

o     x + 5       X0pi L                               /    J o     x + 5j

(8.7)

= -   Xo + po + s - ——   .
Xopi L B(s)J

Hence by the inversion formula

/l                rz   Im B( — £ — iv)
da(y) =- lim -p——-—r- d*.

o XoPix i-o+ J_,   | 2>( — £ — mj) |2
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Suppose ip is a discrete distribution with masses po, pi, P2, • • • located at

the points O^Xo<Xi<x2< • • • <x„—»oo. Then

Bi-s) = ± -*-
0      Xn   —S

is a meromorphic function whose only poles are simple poles at the points x„.

In each of the open intervals x„<s<xn+i, B(—s) increases steadily from

— oo to + oo and hence has exactly one zero y„ in the interval. The function

("°  da(x) 1    f 11
I       -= -   Xo + Mo + s-77

J o     x + s      XoMi L B(s)J

is therefore also a meromorphic function, whose only poles are at the zeros y„

of B(—s). These poles are simple poles because, since ImJ5(-j)<0 for

Im s>0, the zeros of B( — s) are all simple. Thus a is also a discrete distribu-

tion whose jumps yn are at the zeros of B( — s) and are interlocked with the

jumps of ip:

0 ^ xo < yo < Xi < yi < x2 < y2 <

The mass concentrated by a at y„ is

1 1

B'(-yn)    X0Mi  '

For future reference we cite the following facts about the inversion of the

Stieltjes transform in relation to the identity (8.7) which connects the meas-

ure ip and the measure a.

Proposition A. If ip has a continuous positive density ip' in an interval

a<x<b, then in any closed subinterval a<a'tkx^b'<b,

- Im B{-t - iv)/ | B(-S - iv) |2
XoMlT

converges boundedly to a'(£) and

1 *'({)

XoMi*"2   / 1   r   Vi*)      V      r

(P.V. denotes principal value).

Proof. Consider

1 1   /•»        rpP'ik)
-ImB(-i-iv)=- W*'      2dl + 0(v),
ir ir Ja    (x — £)2 + v2
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for £ in (a', b'). The integral is recognizable as the Poisson transform applied

to ip'(!-). The Poisson kernel for the half plane generates a regular summation

method so that Im B( — £ — irj)/ir approaches ip'(^) uniformly for a'^£^0'

as r\—>0 + . The convergence is uniform as a consequence of the fact that

^'(£) is continuous on the interval a'^£^o' [8, see p. 31 ]. The study of the

behavior of 1/| B ( — £ — «,) |2 is deeper. Some further requirements are im-

posed on ^'(£).

If ip'(^i) is continuous and in addition positive for a'^£g6', then

1 1 1

I B(-S - iV) \2 = (Im B(-t - iv))2^ xV'(£)2

the convergence being uniform so that

1
-,-r = c(a'> b'< y)
\B(-$-iv)\2

(the constant C depending only on a', b' and 7 = min„'a$S0'ir''(£)). Since ip'(i-)

belongs to 27(0, oo) it is a known result [8, p. 132] that lim,_o+ Re B( — £ — iv)

exists almost everywhere. Consequently, x Im B( — £ — iv)/\B( — £ — mj)| 2

approaches boundedly a.e. the limit

_tf/(£)_

([8, p. 132]) for a'g£^6'. Hence, on this same interval a'(£) exists and is

equal to (1/Aoprx2)0(£).

Proposition B. If a is the smallest point in the support of the measure ip,

then the smallest point in the support of a is ^a. Furthermore, a has no mass at

x = a.

Proof. The first part follows immediately from the fact that fdip/(x+s) is

analytic, real and of one sign for s> —a. Suppose that x = a is a mass point for

a. Then lim,._a+o (a+s)fda/(x+s) =A>0 where A is the mass of a located

at a. But,
(a + s) r 11

lim   -   Ao + po + s — ——    = 0
,_-o+o     Xopi   L B(s)J

since B(y — a) =Jadip(x)/(x — a+y) is strictly positive and increases mono-

tonically as y-+0+ to a positive (oo is a possible value) limit. On multiplying

(8.7) by a+s and allowing 5 to approach —a a contradiction results. The proof

of the proposition is complete.

As an illustration of the above theory let dip(x) =ce~xxfidx, —1<3<0,

then
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/"* dip(x) r1—— = - c(tt cot T0)e-yye - cT(0 + l)e~" j    e^r*-1
o    x — y Jo

so that by Propositions A and B and (8.7), the measure da is completely

specified. The ideas of this section and this last example will be utilized in

connection with the study of linear growth and queuing models to be pub-

lished elsewhere.

9. Appendix. Evaluation of integrals. The integrals J(QiQj/x")dip,

JiQiQj/xn)dip* will now be evaluated in terms of the constants X*, p*. The

computations make use of properties of the polynomials

77n+i(x)   =   \n1Tn[Qn+lix)   —   Qn(x)], Hoix)   =  p0-

These polynomials satisfy

— xHoix) = — poHoix) + p0Hi(x),

-xH„+i(x) = X„#n(x) — (X„ + pn+i)Hn+i(x) + p„+iHn+2(x),     w ^ 0.

The next two lemmas are proved in [l].

Lemma A. 7/po>0 there is a positive measure 6 on 0 ^x< oo such that

,      N f °° Hm(x) Hn(x) dmn
(9.1) I-d8(x) = -        m, n = 0, 1, 2, • • • ,

7o Mo Mo ir'm

where iri =1, ir/i =MoAn-iTn-i/or w^ 1. If 6 is such a measure then

(9.2) dp = xdB/po

defines a solution \p of the moment problem belonging to the polynomials {Qn}, for

which

/'" dip— = 1.
o      x

Conversely if ip is a solution of the {Qr} moment problem for which (9.3) is

valid then the measure 8 which has mass 1 —p.ofo(dip/x) at x = 0 awd is defined

on 0<x< oo by dd = uodip/x, satisfies (9.1).

Lemma B. 7/mo = 0 there is a positive measure 6 on 0^x< oo such that

rx Hm+i(x)  Hn+i(x) bmn
I-dd(x) =-, m, w = 0, 1, 2, • • ■ ,

70        —x —x *■'„'

where W = 1, 7r„" =X0An1I"n/or w^ 1, awd such that

/">   dd(x)—^-^ 1.
0 x

If ip is any solution of the {Qn} moment problem then dO(x) =xd\p(x)/\o defines
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a measure d with the above properties. Conversely if d is such a measure and ip

is the measure with mass l—\ofod$/x at x = 0 and dip(x) =\odd(x)/x on

0 <x < oo, then ip is a solution of the {Qn} moment problem.

The following lemma will also be needed.

Lemma C. If 2Jl/Anx„< °°, and the solution of the moment problem is

unique or equivalently T^xn= oo, then Jo"dip(x)/xk< oo implies

C Qn(x)
lim ^-^- df(x) = 0.
n->»   J0 X*

Proof. The polynomials Qt(x) = Qn(x)/Q„(0) belong to a process with tran-

sition matrix P*(i) =Qi(0)/Qi(0)Pa(t), and with p* = 0, ir* = Q2(0)in. It fol-
lows from [l, Theorem 5] that (1) for each />0, P%(t) is monotone decreas-

ing in j and tends to a limit a(t) ^0 as j—* <x>, and (2) Eo" jP<m(0 = 1- Conse-

quently, since P*j(t) =P%(t)ir*

00

y p%(i)t* ^ i

y_o

and since x*^x,, £x*= oo, from which it follows that a(t)=0. Thus for

f^O, P*,(t) converges monotonely to zero as t—»oo. Now if

C° dip
I      — <  00

Jo     x*

then the integral

//•• ■fpl(rk)drkdrk.i--.dr1 = -^)f'Qi(x)^
OstiSTjS •••irt<oo

is absolutely convergent and hence —*0 as *—»oo. Since

1
i ^ Qm = i + po E — < °°

o    Anx„

the lemma follows.

A.  The integrals fo(QiQj/xk)dip when po = 0, y.irn='x.

For given k these integrals are either all convergent or all divergent. If

f"dp/xh< oo , for some k^l, then Eo° lAnX„=/0°°di/'/x< oo and Lemma C is

applicable. From the identity

(9.4) Qm+i(x) = 1 - x JZ-£ *&(x)
n-0     X,,X„    i=0

we get
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/dip       (""dip        "       1      »        rx dip
Qm+i(x)-= 3 - E —- E *i I    <?•■(*) "TT'

0 X* J 0       Xk n-0    X„1T„   ,_0 Jo X*-1

and letting m—>»

/•" d^        "       1     "        /■- d^
i = ̂  7- E *<1 e,<*) -£r •

o     x*        „_o  X„7r„ ,_o      J o x* x

Combining (9.5) and (9.6)

/dip       ™      1     "        ("» dtf
<?-(*) -r = E 7— E *.       &(*) —r •

o x*      B=m A„7rn ,=o      «/ o xr l

Multiplying (9.4) by Qj(x)/xk and integrating gives

/dip Qmix)Qjix) ~
0 X*

(9.8)
/dip     "£}     1     »        /•» dip<?/(*) --T,—-^^     Qii*)Qiix) ■—.

o x*        „_0 X„7rn ,_o      Jo x*-1

The last two equations determine the integrals joQ,Qjdip/xk in terms of the

integrals JoQiQjdip/xk~1. In particular

f°° d^        "1
(9.9) <?.(*)-= E —-'

•^ 0 X „_„   Xn7Tn

/dip        r°° dip
Qm(x)Qn(x) — =        Qm(x) — if n g tn.

o x       Jo x

B. The integrals J"QiQjdip/xk when pt0>0, E1Anirn<0C, E7I"n= °°.

In this case f™dip/x is convergent and if for some k^l

/'°° dip— <   oo

0      xk

then from Lemma C and the identity

(,H, *f..(l+„±J-)*±J-±™
XT \ o       Xi7T, / X* 0       X.5T,      o X*-1

we get

t—Tir   f"  Ql(x)  M
(9.12) /•- #_     o    X,t,   o   T,J,     x*-1

J       x* CUO) '

where
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(2.(0) = 1+PoJZ-
o    A,Xi

Using the identity again

f °°                   dip     (            "z> 1   \  r"         dip
Qn(x)Qi(x) - = ( 1 + po E —)       Qi(x) -±

Jo                       x*      \               o A.-x./Jo             x*
(y. 16)

"r,1     1     <        r" dip
- E — E *«      Qi(x)Qi(x) — ■

0      X,X,'     o J 0 Xr

These formulas determine the integrals recursively. In particular

/dip 1      "      1
0 X (?M(0)   i-n    X,X,-

/dp ra dp
Qm(x)Qn(x) — = Qm(0)       Qn(x) —, 0^w^»<oo,

o x Jo x

rn(di       Qn(0)    "       1       < »        1e«(x) — = —— E —- E *i E —"
,.   ... Jo X2       <3a (0) ,_„    X.x, y_o i_y   AjXi

(9.16)
_ Qoo(Q) - Q.(0) gl    U.f   y _L.

(?^(0) ,-o   X.X.- y_o !=y   Ajxi

C.  TTje integrals JoQiQjdip/xk when po>0, El AnX„= oo.

In this case it can be seen from the probability interpretation (§5) that

/»« dp-=1-
0       x

This result can also be obtained from the identity

r™     dip ™ 1
I      - =  E -' s ̂  0,

Jo     x+s o     X„xB<3n( — s)Qn+i( — s)

and the relations A„xn[C}n+i(0) -Qn(0)] =po, Qn(0)—>oo. The polynomials

77„(x)/po are an orthogonal system on 0^x< oo with respect to the measure

dd=podip/x. The associated constants are x„' = p0An-rXn-i for n^l, 1/An'x„'

= x„/po, and po' =0. Since E""" = °°i tms system is of the type treated in

part A, and integrals of the form

r»1Hm(x) Hn(x) <W

Jo Jio Po       X*

can be evaluated. In particular from the case m = k = 0, w^l it follows that
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/dip Qn(x) — = 1, « ^ 0.
o x

From

r°° dd       "      1

a) 0 x 0       An ITn

follows

r00 dip    i «
(9-19) - = -E^-

Jo       X2 M0    o

The equations

/•« Z7„(x) d6 =   -       1       « r- 77y(x)    dfl

Jo Mo       X* ,_„   X/x,'   y-o Jo Mo       X*-1

and

/•" g.(«) /7n(x) d»

Jo Mo Mo       Xfc

/•- 77„(x) dd      *-1      1       '      ;   r -  77y(x)  /7n(x)    d0
= |- - 2, -7-7- 2, »-y  I-—

J 0 Mo       X* ,_o   X,- ir,-   y-o        ■/ 0 Mo po       XK   l

together with the identity

n-l         1

Qn(x)   =    1   +   E   - Hi+X(x)
1=0  X,xv

determine the integrals recursively. It is found that

(•"> dip       1    " 1^1"
(9.20) Qn(x)-=-Z^ + -H -— £*/■

*J 0 X Mo   0 Mo   0     At-7r,'  l+i

D.  77je integrals JoQiQjdip*/xk.

When Mo = 0, E7rn< °°, EVXn7r„= 00, it is required to evaluate integrals

of the above form, ip* being the measure obtained from ip by removing the

mass at the origin. In this case the polynomials 77n+i(x)/ —x are orthogonal

with respect to the measure dd = xdip/\o- The integrals in question can be

evaluated by making use of the formal identity

r°°        dip* r°° dd
f(x) — = X„        f(x) — ■

Jo xk Jo x*+1

The constants associated with 6 are mo" =Xo, it" =XoA«i"», l/\/'ir/' =irn+iAo-
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Since E71^" = °°, ElA""71""" < °°> Mo" >0, we are dealing with a situation

of type B. In particular it is found that

oo 1        /    oo \ i n—1 1       /     » \ 2

,n   ^ f    ri1,   ^ ,-n   X,X,-  \ y-f / i-o    X.X.- \ y_o       /
(9.21)       I    Qn(x)-=-—-

J-  *       (s-y
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